JP4760702B2 - Leak ammonia reduction method in non-catalytic denitration of non-transfer type ash melting furnace exhaust gas - Google Patents

Leak ammonia reduction method in non-catalytic denitration of non-transfer type ash melting furnace exhaust gas Download PDF

Info

Publication number
JP4760702B2
JP4760702B2 JP2006351529A JP2006351529A JP4760702B2 JP 4760702 B2 JP4760702 B2 JP 4760702B2 JP 2006351529 A JP2006351529 A JP 2006351529A JP 2006351529 A JP2006351529 A JP 2006351529A JP 4760702 B2 JP4760702 B2 JP 4760702B2
Authority
JP
Japan
Prior art keywords
denitration
exhaust gas
ammonia
zone
catalytic denitration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006351529A
Other languages
Japanese (ja)
Other versions
JP2008161759A (en
Inventor
利雄 濱
秀 百田
新吾 田中
和範 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2006351529A priority Critical patent/JP4760702B2/en
Publication of JP2008161759A publication Critical patent/JP2008161759A/en
Application granted granted Critical
Publication of JP4760702B2 publication Critical patent/JP4760702B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treating Waste Gases (AREA)

Description

本発明は、空気を作動ガスに用いるノントランスファ式プラズマトーチを加熱源に用いた灰溶融炉から排出されるガス中の高濃度窒素酸化物(NOx)を、還元剤としてアンモニアを用いて無触媒で選択的に還元し、無触媒脱硝ゾーンの後流側において未反応のアンモニアを分解除去する方法に関する。   The present invention is a non-catalyst using high concentration nitrogen oxide (NOx) in a gas discharged from an ash melting furnace using a non-transfer type plasma torch using air as a working gas as a heating source, and ammonia as a reducing agent. In which the unreacted ammonia is decomposed and removed on the downstream side of the non-catalytic denitration zone.

ノントランスファ式灰溶融炉を備えたユーロプラズマ式灰溶融システムを図5に示す。ノントランスファ方式のプラズマトーチの作動ガスには一般に空気が用いられる。プラズマトーチ内では、作動ガスである空気が3000℃を超える高温まで昇温されるため、空気中の窒素が酸素により酸化され、30000ppmを越える高濃度のNOxが生成される。この高濃度NOxを分解するには高度な排ガス処理技術が要求すれる。そのため、湿式の排ガス処理や、高濃度硝酸系窒素を処理できる排水処理装置や、多量の脱硝触媒を用いなくてはならなかった(特許文献1、2および3参照)。
特開平8−215536号公報(ごみ焼却炉の無触媒脱硝) 特開昭52−39834号公報(流動床炉の流動床上のフリーボード部に還元剤としてアンモニアガスを注入(排ガス中に0.1%以下) 特開平7−39720号公報(アンモニアの酸化反応によるNOx、CO生成抑制)
A Europlasma ash melting system equipped with a non-transfer ash melting furnace is shown in FIG. Air is generally used as a working gas for a non-transfer type plasma torch. In the plasma torch, since the working gas air is heated to a high temperature exceeding 3000 ° C., nitrogen in the air is oxidized by oxygen, and high concentration NOx exceeding 30000 ppm is generated. In order to decompose this high-concentration NOx, advanced exhaust gas treatment technology is required. Therefore, it has been necessary to use wet exhaust gas treatment, waste water treatment equipment capable of treating high-concentration nitric acid-based nitrogen, and a large amount of denitration catalyst (see Patent Documents 1, 2 and 3).
Japanese Patent Laid-Open No. 8-215536 (Non-catalytic denitration of a waste incinerator) JP 52-39834 A (injecting ammonia gas as a reducing agent into the free board portion on the fluidized bed of the fluidized bed furnace (0.1% or less in the exhaust gas) JP 7-39720 A (suppression of NOx and CO production by ammonia oxidation reaction)

上記のような問題を解決するために、排ガス処理装置へ排ガスを導入される前に無触媒選択脱硝法でNOx濃度を高効率に低減させようとすると、アンモニア吹込み量が多くなり、アンモニアのリーク量が増す。このリークアンモニアは乾式の排ガス処理では低減し切れないので、湿式の排ガス処理などが必要になる。   In order to solve the above problems, if the NOx concentration is to be reduced with high efficiency by the non-catalytic selective denitration method before the exhaust gas is introduced into the exhaust gas treatment device, the amount of ammonia blowing increases, Leakage increases. Since this leaked ammonia cannot be reduced by dry exhaust gas treatment, wet exhaust gas treatment is required.

本発明は、上記実状に鑑み、ノントランスファ式プラズマ灰溶融炉から排出されるNOx含有排ガスを無触媒脱硝処理に付すに当たり、無触媒脱硝ゾーンの後流側に可燃性ガスを供給して燃焼させ、脱硝後の排ガスを昇温させて未反応のアンモニアを分解除去することを特徴とする、ノントランスファ式灰溶融炉排ガスの無触媒脱硝におけるリークアンモニア低減方法を提供する。   In view of the above situation, the present invention supplies a combustible gas to the downstream side of the non-catalytic denitration zone and combusts it when subjecting the NOx-containing exhaust gas discharged from the non-transfer type plasma ash melting furnace to the non-catalytic denitration treatment. The present invention provides a method for reducing leakage ammonia in non-catalytic denitration of non-transfer type ash melting furnace exhaust gas, characterized in that exhaust gas after denitration is heated to decompose and remove unreacted ammonia.

無触媒脱硝とは、NHや、尿素などのNH供与体を用いて排ガス中のNOxを選択的に還元除去する方法である。 The non-catalytic denitration, NH 3 and a method of selectively reducing and removing NOx in the exhaust gas with NH 3 donor such as urea.

本発明において、可燃性ガスとしてはプロパンや天然ガス等が用いられる。   In the present invention, propane, natural gas, or the like is used as the combustible gas.

無触媒脱硝ゾーンにおける排ガス滞留時間は1〜2秒であることが好ましい。この範囲未満では脱硝効率が悪く、この範囲を越えるとリークアンモニアが急増する。   The exhaust gas residence time in the non-catalytic denitration zone is preferably 1 to 2 seconds. Below this range, the denitration efficiency is poor, and beyond this range, leaked ammonia increases rapidly.

無触媒脱硝ゾーンにおける反応温度は800〜870℃であることが好ましい。この範囲未満では脱硝効率が悪く、この範囲を越えるとリークアンモニア濃度は非検出まで下がるが、アンモニア分解によってNOxが生成するため脱硝性能が低下する嫌いがある。   The reaction temperature in the non-catalytic denitration zone is preferably 800 to 870 ° C. If it is less than this range, the denitration efficiency is poor, and if it exceeds this range, the leaked ammonia concentration decreases to non-detection, but NOx is generated due to ammonia decomposition, so there is a disagreement that the denitration performance deteriorates.

アンモニア分解ゾーンにおける排ガスの滞留時間は0.83〜2秒であることが好ましい。この範囲未満ではアンモニア分解効率が悪く、この範囲を越えてもアンモニア分解効率に差違はない。
The residence time of the exhaust gas in the ammonia decomposition zone is preferably 0.83 to 2 seconds. Below this range, the ammonia decomposition efficiency is poor, and even above this range, there is no difference in ammonia decomposition efficiency.

アンモニア分解ゾーンにおける反応温度は900〜1000℃であることが好ましい。この範囲未満ではアンモニア分解効率が悪く、この範囲を越えた場合もリークアンモニア濃度は非検出まで下がるが、アンモニア分解によってNOxが生成するため脱硝性能が低下する嫌いがある。   The reaction temperature in the ammonia decomposition zone is preferably 900 to 1000 ° C. If it is less than this range, the ammonia decomposition efficiency is poor, and if it exceeds this range, the leaked ammonia concentration decreases to non-detection.

請求項1に係る発明によれば、無触媒選択脱硝で大気排出可能な濃度までNOxを高効率に低減することができると共に、リークアンモニアを白煙が出ない濃度まで低減し、これにより処理ガスの湿式洗煙が不要になり、より排ガス処理が簡素化される。   According to the first aspect of the present invention, NOx can be reduced with high efficiency up to a concentration capable of being discharged into the atmosphere by non-catalytic selective denitration, and the leaked ammonia is reduced to a concentration at which white smoke does not occur. Therefore, the exhaust gas treatment is further simplified.

また、後流に設置する排ガス処理システムヘの浄化負荷を低減することもできる。   In addition, the purification load on the exhaust gas treatment system installed downstream can be reduced.

請求項2に係る発明によれば、無触媒脱硝ゾーンとその後流のアンモニア分解ゾーンでは、排ガスは800〜1000℃で2〜4秒滞留するので、ダイオキシンの低減効果も奏することができる。   According to the second aspect of the present invention, since the exhaust gas stays at 800 to 1000 ° C. for 2 to 4 seconds in the non-catalytic denitration zone and the downstream ammonia decomposition zone, the effect of reducing dioxins can also be achieved.

つぎに、本発明を具体的に説明するために、本発明の実施例およびこれとの比較を示すための比較例をいくつか挙げる。   Next, in order to specifically explain the present invention, some examples of the present invention and comparative examples for showing comparison with the examples will be given.

比較例1
空気を作動ガスに用いるノントランスファ式ブラズマトーチからは、30,000ppmを超えるNOxを含む高温の排ガスが排出される。図6に示す無触媒脱硝ゾーン(1) とアンモニア分解ゾーン(2) を備えた試験装置(3) において、この排ガスを無触媒脱硝ゾーン(1) へ流入する前に空気で希釈してその温度を750〜900℃の範囲内で調整した。この排ガスに、空気で約10倍に希釈したアンモニアを注入し、無触媒脱硝を行った。この試験結果を図1〜図4に示す。図1は滞留時間2秒でのNH/NOxモル比と脱硝率、リークアンモニアの関係を示したものである。同図から分かるように、好条件では99%を超える脱硝効果を得た。図2〜図4は同じ試験における結果を、各温度毎に滞留時間と脱硝率、リークアンモニアの関係で示したものである。
Comparative Example 1
A high temperature exhaust gas containing NOx exceeding 30,000 ppm is discharged from a non-transfer type plasma torch that uses air as a working gas. In the test device (3) equipped with the non-catalytic denitration zone (1) and ammonia decomposition zone (2) shown in Fig. 6, the exhaust gas is diluted with air before flowing into the non-catalytic denitration zone (1) Was adjusted within the range of 750 to 900 ° C. Ammonia diluted about 10 times with air was injected into the exhaust gas to perform non-catalytic denitration. The test results are shown in FIGS. FIG. 1 shows the relationship between NH 3 / NOx molar ratio, denitration rate, and leaked ammonia at a residence time of 2 seconds. As can be seen from the figure, a denitration effect exceeding 99% was obtained under favorable conditions. 2 to 4 show the results of the same test in relation to residence time, denitration rate, and leaked ammonia for each temperature.

これらの試験結果より、下記のことが判明した。   From these test results, the following was found.

○無触媒脱硝を高効率に進めるためには、供給アンモニアをその可燃濃度範囲を下回る濃度に希釈する必要があった。   ○ In order to promote non-catalytic denitration with high efficiency, it was necessary to dilute the supplied ammonia to a concentration below its flammable concentration range.

○上記の反応条件では、850℃での脱硝効率が最も良く、モル比(NH/NOx)2で99%程度のNOxを分解できた。 ○ Under the above reaction conditions, denitration efficiency at 850 ° C. was the best, and about 99% of NOx could be decomposed at a molar ratio (NH 3 / NOx) 2.

しかし、このときのリークアンモニア濃度は200ppmを超えており、このままでは湿式洗煙等でリークアンモニアを低減しないと煙突出口で白煙を排出することになる。   However, the leak ammonia concentration at this time exceeds 200 ppm, and if the leak ammonia is not reduced by wet smoke washing or the like as it is, white smoke will be discharged from the smoke outlet.

○無触媒脱硝ゾーンにおける反応温度を800℃、850℃および900℃として、無触媒脱硝ゾーンにおける排ガスの滞留時間に対する脱硝率およびリークアンモニア濃度を求めた。この結果を図2、図3および図4に示す。これらの図から、脱硝反応は滞留時間1秒程度でほぼ完結していることが分かる。   ○ The reaction temperature in the non-catalytic denitration zone was set to 800 ° C., 850 ° C., and 900 ° C., and the denitration rate and the leaked ammonia concentration with respect to the residence time of the exhaust gas in the non-catalytic denitration zone were determined. The results are shown in FIG. 2, FIG. 3 and FIG. From these figures, it can be seen that the denitration reaction is almost completed with a residence time of about 1 second.

○反応温度900℃になるとアンモニアの酸化分解反応が早くなり、脱硝効率は低下するが、リークアンモニア濃度は数ppm程度まで低下した。   ○ When the reaction temperature reached 900 ° C., the oxidative decomposition reaction of ammonia was accelerated and the denitration efficiency was reduced, but the leaked ammonia concentration was reduced to about several ppm.

実施例1
図6に示す無触媒脱硝ゾーン(1) とアンモニア分解ゾーン(2) を備えた試験装置(3) において、脱硝反応温度850℃で、排ガスの滞留時間を約2秒とした点を除いて比較例1と同様に操作して無触媒脱硝を行った。次いで無触媒脱硝での接触時間が約1.2秒になった時に後流側で脱硝反応器内方向にノズル(6) を経てアンモニア分解ゾーン(2) へプロパンガスを注入し、燃焼させた。プロパンの燃焼によりアンモニア分解ゾーン(2) における反応温度が900℃になるように、プロパン注入量を調節した。なお、図6において、(4) は試験装置入口サンプリング口、(5) は試験装置出口サンプリング口である。
Example 1
Compared with the test equipment (3) with non-catalytic denitration zone (1) and ammonia decomposition zone (2) shown in Fig. 6 except that the denitration reaction temperature is 850 ° C and the residence time of the exhaust gas is about 2 seconds. Non-catalytic denitration was carried out in the same manner as in Example 1. Next, when the contact time in non-catalytic denitration reached about 1.2 seconds, propane gas was injected into the ammonia decomposition zone (2) through the nozzle (6) in the denitration reactor on the downstream side and burned. . The amount of propane injection was adjusted so that the reaction temperature in the ammonia decomposition zone (2) was 900 ° C. due to the combustion of propane. In FIG. 6, (4) is a test apparatus inlet sampling port, and (5) is a test apparatus outlet sampling port.

また、プロパンの注入前後および撹拌用空気の注入前後にリークアンモニア濃度の増減をチェックした。   In addition, the increase and decrease of the leak ammonia concentration were checked before and after the propane injection and before and after the stirring air injection.

比較例1と同様の操作で脱硝率およびリークアンモニア濃度を求める試験を行った。実験結果を表1に示す。   A test for determining the denitration rate and the leaked ammonia concentration was performed in the same manner as in Comparative Example 1. The experimental results are shown in Table 1.

比較例2
実施例1と同様の方法で無触媒脱硝を行った。無触媒脱硝での接触時間が約1.2秒になった時に後流側で脱硝反応器内方向にノズルを経て空気を噴射注入した。撹拌効果によるリークアンモニアの低減効果を計測した。
Comparative Example 2
Non-catalytic denitration was performed in the same manner as in Example 1. When the contact time in the non-catalytic denitration was about 1.2 seconds, air was injected and injected through the nozzle in the denitration reactor in the downstream side. The reduction effect of leaked ammonia due to the stirring effect was measured.

比較例1と同様の操作で脱硝率およびリークアンモニア濃度を求める試験を行った。実験結果を表1に示す。   A test for determining the denitration rate and the leaked ammonia concentration was performed in the same manner as in Comparative Example 1. The experimental results are shown in Table 1.

実施例2〜4、比較例2〜4
無触媒脱硝ゾーンにおける反応温度を750〜900℃の範囲で変動させ、アンモニア分解ゾーンにおける反応温度が900〜1100℃になるようにプロパン供給量を調節した以外は、実施例1と同様に操作を行った。
Examples 2-4, Comparative Examples 2-4
The operation was performed in the same manner as in Example 1 except that the reaction temperature in the non-catalytic denitration zone was varied in the range of 750 to 900 ° C. and the propane supply amount was adjusted so that the reaction temperature in the ammonia decomposition zone was 900 to 1100 ° C. went.

比較例1と同様の操作で脱硝率およびリークアンモニア濃度を求める試験を行った。実験結果を表1に示す。

Figure 0004760702
A test for determining the denitration rate and the leaked ammonia concentration was performed in the same manner as in Comparative Example 1. The experimental results are shown in Table 1.
Figure 0004760702

表中、ゾーン(1) は無触媒脱硝ゾーン、ゾーン(2) はアンモニア分解ゾーン、SNCRは無触媒脱硝ゾーン(1) とアンモニア分解ゾーン(2) を備えた試験装置、DXNはダイオキシン、後燃焼はアンモニア分解ゾーンにおける可燃性ガスの燃焼をそれぞれ意味する。   In the table, zone (1) is a non-catalytic denitration zone, zone (2) is an ammonia decomposition zone, SNCR is a test device equipped with a non-catalytic denitration zone (1) and an ammonia decomposition zone (2), DXN is dioxin, post-combustion Means combustion of combustible gas in the ammonia decomposition zone, respectively.

表1から明らかなように、実施例ではいずれも、高い脱硝率が得られると共に、リークアンモニア濃度を格段に低減することができ、加えてダイオキシンも低減することができた。   As is clear from Table 1, in each of the Examples, a high denitration rate was obtained, and the leak ammonia concentration could be remarkably reduced, and in addition, dioxin could be reduced.

モル比(NH/NOx)と脱硝率およびリークアンモニア濃度との関係を示すグラフである。Is a graph showing the molar ratio (NH 3 / NOx) the relationship between the denitrification rate and leakage ammonia concentration. 脱硝反応温度800℃における滞留時間と脱硝率およびリークアンモニア濃度との関係を示すグラフである。It is a graph which shows the relationship between the residence time in the denitration reaction temperature of 800 degreeC, a denitration rate, and leak ammonia concentration. 脱硝反応温度850℃における滞留時間と脱硝率およびリークアンモニア濃度との関係を示すグラフである。It is a graph which shows the relationship between the residence time in the denitration reaction temperature of 850 degreeC, a denitration rate, and leak ammonia concentration. 脱硝反応温度900℃における滞留時間と脱硝率およびリークアンモニア濃度との関係を示すグラフである。It is a graph which shows the relationship between the residence time in the denitration reaction temperature of 900 degreeC, a denitration rate, and leak ammonia concentration. ノントランスファ式灰溶融炉を備えたユーロプラズマ式灰溶融システムを示すフローである。It is a flow which shows the euro plasma type ash melting system provided with the non-transfer type ash melting furnace. 無触媒脱硝ゾーンとリークアンモニア分解ゾーンを備えた試験装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the test apparatus provided with the non-catalyst denitration zone and the leak ammonia decomposition zone.

符号の説明Explanation of symbols

(1) 無触媒脱硝ゾーン
(2) アンモニア分解ゾーン
(3) 試験装置
(4) 試験装置入口サンプリング口
(5) 試験装置出口サンプリング口
(6) ノズル
(1) Non-catalytic denitration zone
(2) Ammonia decomposition zone
(3) Test equipment
(4) Test equipment inlet sampling port
(5) Test equipment outlet sampling port
(6) Nozzle

Claims (2)

ノントランスファ式プラズマ灰溶融炉から排出されるNOx含有排ガスを、アンモニアを用いた無触媒脱硝処理に付すに当たり、無触媒脱硝ゾーンの後流側に可燃性ガスを供給して燃焼させ、脱硝後の排ガスを昇温させ未反応のアンモニアを分解除去することを特徴とする、ノントランスファ式灰溶融炉排ガスの無触媒脱硝におけるリークアンモニア低減方法。 When the NOx-containing exhaust gas discharged from the non-transfer type plasma ash melting furnace is subjected to non-catalytic denitration treatment using ammonia , flammable gas is supplied to the downstream side of the non-catalytic denitration zone and burned, and after denitration A method for reducing leaked ammonia in non-catalytic denitration of non-transfer ash melting furnace exhaust gas, wherein the exhaust gas is heated to decompose and remove unreacted ammonia. 無触媒脱硝ゾーンにおける排ガス滞留時間が1〜2秒であり、反応温度が800〜870℃であり、アンモニア分解ゾーンにおける排ガスの滞留時間が0.83〜2秒であり、反応温度が900〜1000℃である請求項1記載の方法。 Flue gas residence time in the non-catalytic denitration zone is 1 to 2 seconds, the reaction temperature is from 800 to 870 ° C., the residence time of the exhaust gas in the ammonia decomposition zone is from 0.83 to 2 seconds, the reaction temperature is 900 to 1,000 The method of claim 1 wherein the temperature is ° C.
JP2006351529A 2006-12-27 2006-12-27 Leak ammonia reduction method in non-catalytic denitration of non-transfer type ash melting furnace exhaust gas Expired - Fee Related JP4760702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006351529A JP4760702B2 (en) 2006-12-27 2006-12-27 Leak ammonia reduction method in non-catalytic denitration of non-transfer type ash melting furnace exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006351529A JP4760702B2 (en) 2006-12-27 2006-12-27 Leak ammonia reduction method in non-catalytic denitration of non-transfer type ash melting furnace exhaust gas

Publications (2)

Publication Number Publication Date
JP2008161759A JP2008161759A (en) 2008-07-17
JP4760702B2 true JP4760702B2 (en) 2011-08-31

Family

ID=39691939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006351529A Expired - Fee Related JP4760702B2 (en) 2006-12-27 2006-12-27 Leak ammonia reduction method in non-catalytic denitration of non-transfer type ash melting furnace exhaust gas

Country Status (1)

Country Link
JP (1) JP4760702B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6134094B2 (en) 2011-11-04 2017-05-24 株式会社神戸製鋼所 Nitrogen oxide removal method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5499773A (en) * 1978-01-25 1979-08-06 Mitsubishi Heavy Ind Ltd Removing method for ammonia in combustion exhaust gas
JPS6014926A (en) * 1983-07-07 1985-01-25 Hitachi Zosen Corp Apparatus for decreasing nh3 leakage in denitration by injecting nh3
JP3032400B2 (en) * 1993-03-08 2000-04-17 関西電力株式会社 NOx reduction method in plasma furnace
JPH0751536A (en) * 1993-08-12 1995-02-28 Mitsubishi Heavy Ind Ltd Denitration of combustion exhaust gas

Also Published As

Publication number Publication date
JP2008161759A (en) 2008-07-17

Similar Documents

Publication Publication Date Title
JP3924150B2 (en) Gas combustion treatment method and apparatus
US9308496B2 (en) System and method for controlling and reducing NOx emissions
AU2014349841B9 (en) Methods for treating waste gas streams from incineration processes by addition of ozone
JP2011230121A (en) SYSTEM AND METHOD FOR CONTROLLING AND REDUCING NOx EMISSION
PL2144690T3 (en) Method for purifying flue gases from incinerators and then producing urea
CN207856647U (en) A kind of gaseous oxidation collaboration absorption flue gas multiple pollutant purifier
DK0988885T3 (en) Exhaust gas denitration process
JP4760702B2 (en) Leak ammonia reduction method in non-catalytic denitration of non-transfer type ash melting furnace exhaust gas
EP3875167A1 (en) Improved nox removal method
JP2013072571A (en) Exhaust gas treating system
JP2005508727A (en) Method for treating ammonia-containing combustion exhaust gas
JP2004036983A (en) Method and device for treating ammonia containing gas
TWI744524B (en) Method and system for the removal of particulate matter and noxious compounds from flue-gas
JP4446269B2 (en) Dry simultaneous desulfurization denitration equipment
KR20170019524A (en) Apparatus for removing of nitrogen oxides in exhaust sintering gas and method for removing of nitrogen oxides
CA2443911A1 (en) Method for abatement of waste oxide gas emissions
KR101172125B1 (en) Method for removing of nitrogen oxides
JP5016240B2 (en) Exhaust gas treatment apparatus and exhaust gas treatment method
JP2005254093A (en) Method and apparatus for denitrification
TWI744525B (en) Method and system for the removal of noxious compounds from flue-gas
JP4806991B2 (en) NOx reduction method for exhaust gas from plasma ash melting furnace
JP4020708B2 (en) Exhaust gas treatment method, exhaust gas treatment equipment and stoker-type incinerator
KR200314641Y1 (en) Reaction Nox exclusion device of slip deoxidizer 2 of SNCR
JP2007327389A (en) Exhaust gas treatment device
JP2017124379A (en) Combustion processing facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110304

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees