JP4759870B2 - High frequency heating device - Google Patents

High frequency heating device Download PDF

Info

Publication number
JP4759870B2
JP4759870B2 JP2001233222A JP2001233222A JP4759870B2 JP 4759870 B2 JP4759870 B2 JP 4759870B2 JP 2001233222 A JP2001233222 A JP 2001233222A JP 2001233222 A JP2001233222 A JP 2001233222A JP 4759870 B2 JP4759870 B2 JP 4759870B2
Authority
JP
Japan
Prior art keywords
frequency
radiation
waveguide
heated
heating chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001233222A
Other languages
Japanese (ja)
Other versions
JP2003045641A (en
Inventor
等隆 信江
浩二 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001233222A priority Critical patent/JP4759870B2/en
Publication of JP2003045641A publication Critical patent/JP2003045641A/en
Application granted granted Critical
Publication of JP4759870B2 publication Critical patent/JP4759870B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、被加熱物を誘電加熱する高周波加熱装置に関し、更に詳しくは加熱室内への高周波放射部の構成および放射制御に関するものである。
【0002】
【従来の技術】
高周波加熱装置は、被加熱物を直接的に加熱できるのでなべ釜を準備する必要がない簡便さでもって生活上の不可欠な機器になっている。しかしながら、被加熱物を収納する加熱室はその形状が変化させうる構造体ではないので、被加熱物の存在により加熱室の電気的な特性は変化する。この加熱室内の電気的特性変化は、加熱室内に供給する高周波を発生する高周波発生手段の特性や加熱室内の高周波分布に影響を与える。高周波発生手段が受ける影響は、発振周波数と発振出力の変化に代表される。また、高周波分布は被加熱物の形状やその物理特性の影響が相乗されて局所加熱が発生することがある。
【0003】
高周波加熱装置の理想的な特性は、高周波発生手段が発生する高周波エネルギを最大効率でもって被加熱物に供給することと被加熱物を均一に加熱することに集約される。
【0004】
高周波エネルギの高効率利用という視点では、高周波加熱装置に表示されている高周波出力は、その測定方法がJIS規格やIEC規格に規定され、高周波出力測定に用いられる被加熱物の量はそれぞれ水2000ccと1000ccであり、生活上一般的に加熱する被加熱物の量(約200cc〜400cc)と乖離している。そして、この被加熱物の量の影響により、一般的な被加熱物の量に対する高周波出力は装置に表示されている出力値の60〜80%程度の利用効率である。
【0005】
このような高周波特性を改善するための技術としては、高周波における整合技術が用いられる。そもそも高周波加熱装置は、規格に規定された被加熱物に対して高周波発生手段が発生した高周波エネルギを最大化して加熱室に伝送するために導波管内に金属ポストを突出させて整合状態の最適化が図られているのが一般的である。もちろん、この金属ポストの配設位置や形状を変更すれば任意の被加熱物に対して最適な整合状態を図ることができるが、金属ポストを移動させるためには複雑で高価な構造が要求され実用上の課題となっている。
【0006】
また、この整合用の金属ポストが加熱室内の高周波分布に影響を与えることも知られている。従って、整合用の金属ポストの配設は、高周波エネルギの有効利用と高周波分布の最適化との両立を図る中で実用的な構成が決定されている。
【0007】
一方、被加熱物を均一に加熱するという視点では、被加熱物を回転させる方式や加熱室内の高周波を攪拌させる方式などに加えて、加熱室内への高周波放射のさせ方に関する先行技術がある。
【0008】
高周波放射に関する従来技術としては、複数の高周波発生手段を備え、高周波発生手段が発生する高周波エネルギを略直方体形状の加熱室の異なる壁面にそれぞれ設けた放射部から放射する構成や単一の高周波発生手段に対して同一壁面に複数の放射部を備える構成のものがある。
【0009】
また加熱室の壁面に設けた開口を放射口とする放射部構成においては、この開口の形状が通常は矩形形状である。これに対して特開2000−164341号公報には、く字状の放射口と矩形形状の放射口とを併設した構成が開示されている。
【0010】
【発明が解決しようとする課題】
しかしながら、従来の放射部の構成はく字状の放射口を副次的に設けたものであり、主放射口との相乗作用による特別の放射作用を呈するものではなく複数の放射口を備えたものと同様の作用および効果である。また同公報に開示された図7、図8および図11のように高周波発生手段の出力アンテナの周辺の導波管の短絡面側の導波管壁面にく字状の放射口を配置する場合は、加熱室側から反射して導波管内に戻ってくる高周波の影響を受けて出力アンテナ近傍で生じる定在波により放射口でスパークが発生する課題がある。
【0011】
本発明は上記課題を解決するもので、放射口の形状に工夫をして加熱室への放射分布を従来とは異なる放射特性として被加熱物を効率よくまた均一に高周波加熱する装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明の高周波加熱装置は上記課題を解決するために、被加熱物を収納する加熱室と、高周波を発生する高周波発生手段と、一端に前記高周波発生手段が装着され他端に2つの放射口が設けられることにより前記高周波を前記加熱室に伝送する導波管とを備え、前記2つの放射口は、それぞれが前記導波管の管軸に対して平行な部分と垂直な部分とを有するL字状であり、前記導波管の管軸上の点に対して点対称に設けられ、前記導波管の他端の端面から前記高周波の伝送波長の略1/2離れた位置までの間に設けられた構成としている。
【0013】
上記発明によれば、複数のL字状の放射口を点対称に配置することで各放射口を励振する電界の向きはそれぞれが異なる方向となり、各放射口から放射される高周波が放射口近傍で結合したり反発したりして放射口周辺に幅広い放射分布を形成する。この放射口近傍での振る舞いにより、被加熱物の量や形状の違いによる高周波発生手段への影響が緩和され様々な被加熱物に対して高周波発生手段を安定に動作させることができ、エネルギの利用効率を高めることができる。
【0014】
【発明の実施の形態】
請求項1に記載の発明は、被加熱物を収納する加熱室と、高周波を発生する高周波発生手段と、一端に前記高周波発生手段が装着され他端に2つの放射口が設けられることにより前記高周波を前記加熱室に伝送する導波管とを備え、前記2つの放射口は、それぞれが前記導波管の管軸に対して平行な部分と垂直な部分とを有するL字状であり、前記導波管の管軸上の点に対して点対称に設けられ、前記導波管の他端の端面から前記高周波の伝送波長の略1/2離れた位置までの間に設けられたものであり、2つのL字状の放射口を点対称に配置することで各放射口を励振する電界の向きはそれぞれが異なる方向となり、各放射口から放射される高周波が放射口近傍で結合したり反発したりして放射口周辺に幅広い放射分布を形成する。この放射口近傍での振る舞いにより、被加熱物の量や形状の違いによる高周波発生手段への影響が緩和され様々な被加熱物に対して高周波発生手段を安定に動作させることができ、エネルギの利用効率を高めることができる。
【0015】
また、2つの放射口の導波管の管軸方向における最大間隔は、この導波管を伝送する高周波の伝送波長の略1/2としたことにより、各放射口を横切る高周波電界の方向を相反する方向に規定させることができ放射方向の全方向化を確実に図ることができる。
【0016】
請求項2に記載の発明は、特に、請求項に記載の発明において、点対称の点の近傍に容量成分を付設した構成により、点対称の点の近傍に高周波を集中させて各放射口の励振状態を安定に維持させることができる。
【0017】
請求項記載の発明は、特に、請求項に記載の発明において、前記2つの放射口は導波管の管軸を横切らない構成としたものであり、高周波発生手段側に位置する放射口からの放射エネルギを抑制し各放射口の高周波励振を保証させることができる。
【0018】
【実施例】
以下、本発明の実施例について図面を用いて説明する。
【0019】
(実施例1)
図1は本発明の実施例1を示す高周波加熱装置の断面構成図、図2は図1の導波管の構成図、図3は図1の放射口による高周波電界分布である。
【0020】
図において、10は被加熱物を収納する加熱室、11は導波管であり高周波発生手段12を一端に装着する。また導波管11の他端には加熱室10の壁面に設けた放射口13を配置している。14は被加熱物を載置する載置皿、15は回転台、16は回転台の駆動モータである。
【0021】
放射口13は導波管11の高周波発生手段12を装着する側から遠い側の導波管端面17とこの端面17から導波管11を伝送する周波数の伝送波長の略1/2の距離だけ離れた位置との間の壁面に配置している。放射口13は二つのL字状の開口からなる放射口13a,13bを点対称に配置している。点対称の位置は導波管11の管軸18上であり図2において19で示す。各放射口13a,13bの開口は管軸18に対して平行な部分と垂直な部分とを有し、かつ開口は管軸18を横切らないように配置している。また、放射口の点対称位置の放射口に対向する導波管壁面に容量成分を付加させるとともにインピーダンス整合作用を持たせた金属ポスト20を設けている。なお、21は高周波発生手段12の出力アンテナを挿入する接続穴である。また、22は導波管内の伝送波長を定在波分布として一例を示したが、図示したように導波管内で共振するような導波管11の長さに限定する必要はない。
【0022】
次に上記構成の主要動作について説明する。導波管壁面には図2において矢印23〜26で示すような高周波電流が流れ、L字状の放射口13a,13bには同様に矢印23〜26で示す方向の高周波電界が生じる。この高周波電界の方向は全方向に分布した形であり、これにより図3に示すような高周波電界分布が生じる。すなわち、電界の強い領域がL字状の放射口の点対称位置に現れ、導波管11の管軸に対して垂直方向に高周波が伝搬していく分布となる。点対称位置が強い電界強度になるのは各放射口から放射される高周波が放射口近傍で結合することによるものであり、これにより放射口周辺に幅広い放射分布を形成している。この放射口近傍での振る舞いにより、被加熱物の量や形状の違いによる高周波発生手段への影響が緩和され様々な範囲の被加熱物に対して高周波発生手段を安定に動作させることができ、エネルギの利用効率を高めることができる。
【0023】
なお、図3において、高周波電界分布が導波管の管軸に対して対称になっていない理由は、高周波発生手段側の放射口からの放射エネルギが強いからであり、この放射口の開口形状を小さくすることで対称性を改善することが可能となる。
【0024】
(実施例2)
次に本発明の実施例2について図4から図7を用いて説明する。実施例2が実施例1と相違する点は、被加熱物を載置する載置皿を角皿とし非回転構成としたことと、放射口を設けた加熱室壁面に開口部を設けこの開口部の高周波インピーダンスを可変する手段を付設した構成である。
【0025】
すなわち、図4において、30はセラミック材料からなる載置皿、31および32は加熱室10を形成する壁面に設けた開口部である。またこの開口部31,32を塞ぐ形で加熱室10の外側に図5に示すインピーダンス可変手段50をそれぞれ配設する。
【0026】
図5において、インピーダンス可変手段50は、金属部材で構成した箱型部51を本体とし、加熱室壁面に組立実装することで溝部を形成する構成としている。その箱型部51内には、板状構造の回転板52を設けている。この回転板52の両端には回転板52を回転させるための回転軸53、54を設け、回転軸53は箱型部51の壁面に設けた孔に挿入しその孔で回転支持している。一方、回転軸54には回転板52を回転駆動する手段であるステッピングモータ55の出力シャフトと連結させている。56は回転軸54に設けた回転角度検出のための遮光部であり、回転角度検出手段としてフォトインタラプタ(図示していない)を用いている。57〜60は加熱室実装用フランジであり、加熱室壁面にスポット溶接組立する。61は回転板52を箱型部51内に実装するための孔である。箱型部51の具体的な構成寸法としては、幅が80mm、長さがLa+Lb、高さが20mmである。LaおよびLb寸法は回転板52の中心から箱型部51のそれぞれの端面までの長さである。このような構成のインピーダンス可変手段を加熱室に実装する場合、箱型部52のLa寸法側の所定位置に開口部62(図4における31,32)を配置する。この結果、箱型部51と加熱室壁面で形成される溝部の終端は図5において箱型部51を形成する壁面63である。回転板52の支持角度は回転板52の幅広面52aが壁面63に対して略平行の状態を0度と規定する。
【0027】
回転板52は、200℃以上の耐熱温度を有し装置が使用する周波数帯で低誘電損失の特性を有する樹脂材料あるいは無機材料の非金属材料を基材とし、その基材を所定の板厚さにそれぞれ成形あるいは焼成成形加工して構成している。次にインピーダンス可変手段50の動作、作用を説明する。インピーダンス可変手段は、La=30mm、Lb=20mmの構成とすることで開口部62における電圧反射係数S11の位相値を略±180度から略−30度の範囲で可変させることができる。すなわちこの場合、回転板52を回転させることで開口部62には容量性リアクタンス成分を変化させたインピーダンスを形成できる。また、La=50mm、Lb=20mmの構成とすることで開口部における電圧反射係数S11の位相値を略+90度から±180度を通って略−135度の範囲に可変させることができる。すなわち、この場合、回転板52を回転させることで開口部62には誘導性リアクタンス成分(位相値範囲:+90度から±180度)と容量性リアクタンス成分(位相値範囲:±180度から略−135度)値を存在させることができる。さらにLa=70mm、Lb=20mmの構成とすることで開口部62における電圧反射係数S11の位相値を略+0度から+90度を通って略±180度の範囲に可変させることができる。すなわち、この場合、回転板52を回転させることで開口部62には誘導性リアクタンス成分が変化するインピーダンスを存在させることができる。
【0028】
そして開口部における電圧反射係数の位相値が略±180度、すなわち開口部のインピーダンスが略零の場合は、開口部を金属壁面と同様の作用にさせることができる。
【0029】
また回転板52の支持角度を変化させると、開口部62のインピーダンスは変化し開口部62における高周波の入射波と反射波との位相差を変化させることができる。加熱室10の金属壁面での高周波の入射波と反射波との位相差は180度である。一方金属壁面に設けた開口部における入射波と反射波との位相差は、開口部のインピーダンス値が零の場合は180度、インピーダンス値が無限大の場合は0度、誘導性リアクタンスの場合は入射波に対して反射波の位相が遅れ、容量性リアクタンスの場合は位相が進む。入射波と反射波との位相の変化に伴って加熱室の見掛け上の大きさが変化する。誘導性リアクタンスの場合は電波的作用より加熱室の大きさが見掛け上大きくなり、一方容量性リアクタンスの場合は小さくなる。これは、たとえば加熱室内に収納した被加熱物と放射口との見掛け上の距離を変化させるようなものである。この現象を利用することで被加熱物の平面上の加熱領域を可変したり、被加熱物の高さ方向の加熱領域を可変させることができ、被加熱物を移動させることなく被加熱物の加熱の均一化を図ることができる。
【0030】
また、開口部を図4に示すように配設しそれぞれの開口部に対応してインピーダンス可変手段の回転板を回転制御することで加熱室内の高周波分布を加熱室の上下方向や左右方向に偏向させることができる。これらの作用現象を利用することで被加熱物を回転させることなく被加熱物の加熱領域を可変制御をして被加熱物を均一に加熱させることができる。
【0031】
次に図6および図7を用い図4に示す高周波加熱装置の実加熱特性を説明する。
図6は、水を被加熱物とし各水量の温度上昇値から算出した水が吸収した加熱パワーおよび装置の入力電力に対する加熱パワーの比率を効率として表したものである。図6において、図4に示す放射口に対して71が加熱パワー特性、72が効率、一方従来の矩形形状の放射口に対して73が加熱パワー特性、74が効率を示す。同特性より、本発明の放射口を用いることで全体的に高周波エネルギの利用効率が高くでき、特に少量負荷に対する利用効率を大幅に高めることができた。なお、開口部31,32のインピーダンス値は略零の状態である。
【0032】
また図7は市販の1合酒ビンにアドヘア合成糊を180g入れて高周波加熱した時の加熱分布を示す。放射口は図4に示すものとし、(a)は開口部31,32のそれぞれのインピーダンス値が略零の場合、(b)は開口部31,32のそれぞれのインピーダンス値を略無限大にした時の加熱分布である。図の特性より、開口部のインピーダンスを変化させることで加熱領域を上下方向に変化させることができることが認められた。また、牛乳や酒燗のように下方から加熱することで全体の均一化が図れる被加熱物に対して開口部のインピーダンスを制御することで加熱の均一化が実現できることも認められた。
【0033】
(実施例3)
次に本発明の実施例3について図8を用いて説明する。実施例3が実施例2と相違する点は、開口部の配設位置を放射口からの放射分布に対応して配設した構成である。
【0034】
すなわち、図8において、開口部75,76の長手方向は図3に示す放射分布に則って導波管11の管軸に平行となるように配設している。このような開口部の配設によれば、開口部のインピーダンスを変化させることで加熱室10内の高周波分布を図8の左右方向に偏向させることができる。これは扁平な被加熱物、たとえば冷凍お好み焼き、や複数の被加熱物の同時加熱における加熱の均一化の促進に特に有効である。
【0035】
(実施例4)
次に本発明の実施例4について図9および図10を用いて説明する。実施例4が実施例1の図2と相違する点は放射口の構成にある。
【0036】
すなわち、図9において高周波を伝送する導波管11に設けた放射口は矩形形状の放射口100と、放射口100の対角101,102を起点して導波管11の管軸方向18にそれぞれ延在する連結放射口103,104とで構成している。この矩形形状の放射口100の開口形状は導波管11を伝送する高周波の周波数帯において共振する寸法構成としている。すなわち、周波数が2455MHzの場合には一辺の長さが約61mmの正方形形状としている。
【0037】
また連結放射口103,104の終端間の距離(図9で105で示す)は導波管の管軸方向18において導波管を伝送する高周波の伝送波長の1/2以上としている。具体的には、周波数を2455MHz、導波管H面の幅寸法を80mmとすると導波管内の伝送波長は約190mmであり、連結放射口103,104の終端間の距離は95mm以上とする。従って、連結放射口の開口形状としてはたとえば、幅20mm、長さ30mm(計算上では17mm以上)としている。
【0038】
このような構成の放射口によれば、導波管壁面を流れる高周波電流によって図9の矢印106〜109で示す高周波電界が生じる。すなわち、矩形形状の放射口100の励振方向は導波管の管軸を横切る方向にすることができ、この励振形態により図10に示すような高周波電界分布を生じる。この高周波電界分布より実施例4に示した放射口構成による高周波の放射方向は導波管の管軸を横切る方向にすることができる。これにより略直方体形状の加熱室において加熱室の対角線の方向に高周波を放射させることができ、嵩高い被加熱物を均一に加熱させることができる。
【0039】
(実施例5)
次に本発明の実施例5を図11を用いて説明する。実施例5が実施例3と相違する点は、加熱室壁面への開口部の配設構成である。
【0040】
すなわち、図11において、110は加熱室10の壁面に設けた開口部である。この開口部110の配設位置は図10の高周波電界分布に基づき、開口部110の長手方向が連結放射口の起点101,102を結ぶ線に対して平行になるように所定位置に設けている。またこの開口部110を塞ぐ形で加熱室10の外側に図5に示すインピーダンス可変手段50を配設する。
【0041】
この構成によれば、開口部のインピーダンスを変化させて加熱室内の高周波分布を変化させることで被加熱物を移動させることなく均一な高周波加熱を実行させることができる。また、開口部の長手方向を連結放射口の起点を結ぶ線に対して平行に設けることで、開口部のインピーダンス変化を加熱室内の高周波分布の変化に確実に作用させることができる。さらには1つのインピーダンス可変手段だけでもって加熱室内の高周波分布を上下方向あるいは左右方向に変化させることができる。
【0042】
なお、各放射口のコーナー部は適当に丸く加工するのが加工上およびエッジ部によるスパーク発生抑止の観点で望ましい。また、放射部や開口部は被加熱物の飛散物が飛びこむことを回避するためにマイカ材などで封止する。また開口部のインピーダンスの変化範囲は上記説明内容に限定されるものではなく、たとえば回転板の支持角度が90度の場合に開口部のインピーダンスを略零とすることで誘導成分のみの可変範囲としたり、回転板の支持角度が略45度の場合に開口部のインピーダンスを略零とすることで誘導成分と容量成分の両方を含む可変範囲に設定したりすることができる。さらにはインピーダンス可変手段を載置皿を回転させる構成の加熱室に付設しても構わない。
【0043】
【発明の効果】
以上のように本発明によれば、複数のL字状の放射口を点対称に配置することで各放射口を励振する電界の向きはそれぞれが異なる方向となり、各放射口から放射される高周波が放射口近傍で結合したり反発したりして放射口周辺に幅広い放射分布を形成する。この放射口近傍での振る舞いにより、被加熱物の量や形状の違いによる高周波発生手段への影響が緩和され様々な被加熱物に対して高周波発生手段を安定に動作させることができ、エネルギの利用効率を高めることができる。
【0044】
また、放射口とは異なる位置の加熱室壁面に設けた開口部と、前記開口部における高周波インピーダンスを変化させるインピーダンス可変手段とを備えることで、開口部のインピーダンスを変化させて放射口からの高周波の放射方向を変化させ被加熱物を移動させることなく均一な加熱を促進させることができる。
【0045】
また、高周波を伝送する導波管に設けた矩形形状の放射口と、前記放射口の対角を起点して導波管の管軸方向にそれぞれ延在する連結放射口とを備えることで、矩形形状の放射口の励振方向を導波管の管軸を横切る方向にすることができ、この励振形態により放射方向を導波管の管軸を横切る方向にすることができる。これにより略直方体形状の加熱室において加熱室の対角線の方向に高周波を放射させることができ、嵩高い被加熱物を均一に加熱させることができる。
【図面の簡単な説明】
【図1】 本発明の実施例1の高周波加熱装置の断面構成図
【図2】 同高周波加熱装置の導波管の構成図
【図3】 同高周波加熱装置の高周波電界分布図
【図4】 本発明の実施例2の高周波加熱装置の断面構成図
【図5】 同高周波加熱装置のインピーダンス可変手段の構成図
【図6】 同高周波加熱装置の第1の加熱特性図
【図7】 同高周波加熱装置の第2の加熱特性図
【図8】 本発明の実施例3の高周波加熱装置の断面構成図
【図9】 本発明の実施例4の高周波加熱装置の断面構成図
【図10】 同高周波加熱装置の高周波電界分布図
【図11】 本発明の実施例5の高周波加熱装置の断面構成図
【符号の説明】
11 導波管
12 高周波発生手段
13,13a,13b 放射口
18 管軸
19 点対称位置
20 金属ポスト(容量成分)
31,32,62,75,76,110 開口部
50 インピーダンス可変手段
100 矩形形状の放射口
101,102 対角の起点
103,104 連結放射口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-frequency heating apparatus that dielectrically heats an object to be heated, and more particularly to the configuration and radiation control of a high-frequency radiation unit in a heating chamber.
[0002]
[Prior art]
The high-frequency heating device is an indispensable device in daily life because it can directly heat an object to be heated and does not require preparation of a pan. However, since the heating chamber that houses the object to be heated is not a structure whose shape can be changed, the electrical characteristics of the heating chamber change depending on the presence of the object to be heated. This change in electrical characteristics in the heating chamber affects the characteristics of the high-frequency generating means that generates the high frequency supplied into the heating chamber and the high-frequency distribution in the heating chamber. The influence received by the high frequency generation means is represented by changes in the oscillation frequency and the oscillation output. In addition, the high-frequency distribution may cause local heating due to a synergistic effect of the shape of an object to be heated and its physical characteristics.
[0003]
The ideal characteristics of the high-frequency heating device are summarized in that the high-frequency energy generated by the high-frequency generating means is supplied to the object to be heated with maximum efficiency and the object to be heated is uniformly heated.
[0004]
From the viewpoint of high-efficiency utilization of high-frequency energy, the measurement method of the high-frequency output displayed on the high-frequency heating device is stipulated in the JIS standard and IEC standard, and the amount of the heated object used for the high-frequency output measurement is 2000 cc of water And 1000 cc, which is different from the amount of the object to be heated generally (about 200 cc to 400 cc) in daily life. Due to the influence of the amount of the object to be heated, the high-frequency output with respect to the general amount of the object to be heated has a utilization efficiency of about 60 to 80% of the output value displayed on the apparatus.
[0005]
As a technique for improving such a high frequency characteristic, a matching technique at a high frequency is used. In the first place, the high-frequency heating device maximizes the high-frequency energy generated by the high-frequency generating means for the object to be heated specified in the standard, and transmits the metal post into the waveguide to optimize the matching state. In general, it is designed. Of course, if the arrangement position and shape of the metal post are changed, an optimum alignment state can be achieved for any object to be heated. However, in order to move the metal post, a complicated and expensive structure is required. It has become a practical issue.
[0006]
It is also known that this matching metal post affects the high frequency distribution in the heating chamber. Accordingly, the arrangement of the metal post for matching has been determined to be a practical configuration while achieving both effective use of high-frequency energy and optimization of the high-frequency distribution.
[0007]
On the other hand, from the viewpoint of uniformly heating an object to be heated, there is a prior art relating to a method of causing high-frequency radiation into the heating chamber, in addition to a method of rotating the object to be heated and a method of stirring the high frequency in the heating chamber.
[0008]
Conventional techniques related to high-frequency radiation include a configuration in which a plurality of high-frequency generation means are provided, and the high-frequency energy generated by the high-frequency generation means is radiated from radiation sections provided on different wall surfaces of a substantially rectangular parallelepiped heating chamber. There exists a thing of a structure provided with several radiation | emission part on the same wall surface with respect to a means.
[0009]
Moreover, in the radiation | emission part structure which uses the opening provided in the wall surface of the heating chamber as a radiation opening, the shape of this opening is a rectangular shape normally. On the other hand, Japanese Patent Laid-Open No. 2000-164341 discloses a configuration in which a square-shaped radiation port and a rectangular radiation port are provided.
[0010]
[Problems to be solved by the invention]
However, the configuration of the conventional radiating unit is provided with a square-shaped radiating port as a secondary, and does not exhibit a special radiating effect due to synergy with the main radiating port, but has a plurality of radiating ports. It is the same operation and effect as the one. In addition, as shown in FIGS. 7, 8 and 11 disclosed in the publication, a rectangular radiation port is arranged on the waveguide wall surface on the short-circuit surface side of the waveguide around the output antenna of the high frequency generating means. However, there is a problem that a spark is generated at the radiation opening due to a standing wave generated in the vicinity of the output antenna under the influence of a high frequency wave reflected from the heating chamber side and returned into the waveguide.
[0011]
The present invention solves the above problems, and provides a device for efficiently and uniformly high-frequency heating an object to be heated by devising the shape of the radiant port so that the radiation distribution to the heating chamber has a radiation characteristic different from the conventional one. For the purpose.
[0012]
[Means for Solving the Problems]
In order to solve the above problems, a high-frequency heating device of the present invention has a heating chamber for storing an object to be heated, high-frequency generating means for generating a high frequency, two high-frequency generating ports mounted on one end and the high-frequency generating means on one end. Is provided with a waveguide for transmitting the high frequency to the heating chamber, and each of the two radiation ports has a portion parallel to a tube axis of the waveguide and a portion perpendicular to the tube axis. L-shaped, provided point-symmetrically with respect to a point on the tube axis of the waveguide, from the end face of the other end of the waveguide to a position approximately ½ of the transmission wavelength of the high frequency It is the structure provided in between .
[0013]
According to the above invention, by arranging a plurality of L-shaped radiation ports symmetrically, the directions of the electric fields exciting the radiation ports are different from each other, and the high frequency radiated from each radiation port is near the radiation port. A wide radiation distribution is formed around the radiation aperture by combining or repelling. This behavior near the radiation port mitigates the influence on the high-frequency generating means due to the difference in the amount and shape of the object to be heated, and allows the high-frequency generating means to operate stably for various objects to be heated. Use efficiency can be increased.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
According to the first aspect of the present invention, the heating chamber for storing the object to be heated, the high frequency generating means for generating a high frequency, the high frequency generating means is mounted at one end, and two radiation ports are provided at the other end. A waveguide for transmitting a high frequency to the heating chamber, and the two radiation ports are L-shaped each having a portion parallel to a tube axis of the waveguide and a portion perpendicular to the tube axis. Provided point-symmetrically with respect to a point on the tube axis of the waveguide, and provided between the end face of the other end of the waveguide and a position approximately ½ of the transmission wavelength of the high frequency By arranging two L-shaped radiation ports symmetrically, the direction of the electric field exciting each radiation port is different, and the high frequency radiated from each radiation port is coupled in the vicinity of the radiation port. To produce a wide radiation distribution around the radiation opening. This behavior near the radiation port mitigates the influence on the high-frequency generating means due to the difference in the amount and shape of the object to be heated, and allows the high-frequency generating means to operate stably for various objects to be heated. Use efficiency can be increased.
[0015]
In addition, the maximum distance in the tube axis direction of the waveguide of the two radiation ports is set to approximately ½ of the transmission wavelength of the high frequency transmitted through the waveguide, so that the direction of the high-frequency electric field across each radiation port can be changed. The directions can be defined in opposite directions, and the omnidirectional radiation direction can be reliably achieved.
[0016]
According to a second aspect of the invention, in particular, in the invention described in claim 1, with the configuration annexed to the vicinity to the capacitance component of the points of the point symmetry, each emission opening by concentrating the high frequency in the vicinity of the point symmetry point Can be maintained stably.
[0017]
According to a third aspect of the present invention, in particular, in the first aspect of the present invention, the two radiation ports are configured not to cross the tube axis of the waveguide, and the radiation located on the high frequency generating means side. The radiation energy from the mouth can be suppressed and high frequency excitation of each radiation mouth can be guaranteed.
[0018]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0019]
Example 1
1 is a cross-sectional configuration diagram of a high-frequency heating apparatus showing Embodiment 1 of the present invention, FIG. 2 is a configuration diagram of a waveguide of FIG. 1, and FIG. 3 is a high-frequency electric field distribution by a radiation port of FIG.
[0020]
In the figure, 10 is a heating chamber for storing an object to be heated, 11 is a waveguide, and a high frequency generating means 12 is attached to one end. A radiation port 13 provided on the wall surface of the heating chamber 10 is disposed at the other end of the waveguide 11. Reference numeral 14 denotes a mounting tray on which an object to be heated is placed, 15 is a turntable, and 16 is a drive motor for the turntable.
[0021]
The radiation port 13 has a waveguide end face 17 far from the side on which the high frequency generating means 12 of the waveguide 11 is mounted, and a distance of about ½ of the transmission wavelength of the frequency transmitted from the end face 17 to the waveguide 11. It is placed on the wall between the remote location. The radiant aperture 13 has radiant apertures 13a and 13b made up of two L-shaped openings arranged symmetrically. The point-symmetrical position is on the tube axis 18 of the waveguide 11 and is indicated by 19 in FIG. The opening of each radiation port 13a, 13b has a portion parallel to the tube axis 18 and a portion perpendicular to the tube axis 18, and the openings are arranged so as not to cross the tube axis 18. In addition, a metal post 20 is provided to which a capacitive component is added and an impedance matching action is added to a waveguide wall surface facing the radiation port at a point-symmetrical position of the radiation port. Reference numeral 21 denotes a connection hole into which the output antenna of the high frequency generator 12 is inserted. Further, 22 shows an example in which the transmission wavelength in the waveguide is a standing wave distribution, but it is not necessary to limit the length of the waveguide 11 to resonate in the waveguide as shown.
[0022]
Next, the main operation of the above configuration will be described. A high-frequency current as indicated by arrows 23 to 26 in FIG. 2 flows through the waveguide wall surface, and a high-frequency electric field in the direction indicated by arrows 23 to 26 is similarly generated at the L-shaped radiation ports 13a and 13b. The direction of the high-frequency electric field is distributed in all directions, thereby producing a high-frequency electric field distribution as shown in FIG. That is, the region where the electric field is strong appears at the point-symmetrical position of the L-shaped radiation port, and the high-frequency wave propagates in the direction perpendicular to the tube axis of the waveguide 11. The strong field intensity at the point-symmetrical position is due to the high frequency radiated from each radiation port being coupled in the vicinity of the radiation port, thereby forming a wide radiation distribution around the radiation port. Due to the behavior near the radiation port, the influence on the high-frequency generating means due to the difference in the amount and shape of the object to be heated is mitigated, and the high-frequency generating means can be stably operated with respect to the object to be heated in various ranges. Energy utilization efficiency can be increased.
[0023]
In FIG. 3, the reason that the high-frequency electric field distribution is not symmetric with respect to the tube axis of the waveguide is that the radiation energy from the radiation port on the high-frequency generating means side is strong, and the opening shape of this radiation port. It is possible to improve the symmetry by reducing.
[0024]
(Example 2)
Next, a second embodiment of the present invention will be described with reference to FIGS. The difference between the second embodiment and the first embodiment is that the placing plate on which the object to be heated is placed is a square plate and has a non-rotating configuration, and an opening is provided on the wall surface of the heating chamber provided with a radiation port. Is provided with means for changing the high-frequency impedance of the part.
[0025]
That is, in FIG. 4, 30 is a mounting plate made of a ceramic material, and 31 and 32 are openings provided on the wall surface forming the heating chamber 10. Further, impedance varying means 50 shown in FIG. 5 is disposed outside the heating chamber 10 so as to close the openings 31 and 32.
[0026]
In FIG. 5, the impedance varying means 50 has a box-shaped portion 51 made of a metal member as a main body, and is configured to form a groove portion by being assembled and mounted on the heating chamber wall surface. In the box-shaped part 51, a rotating plate 52 having a plate-like structure is provided. Rotating shafts 53 and 54 for rotating the rotating plate 52 are provided at both ends of the rotating plate 52, and the rotating shaft 53 is inserted into a hole provided in the wall surface of the box-shaped portion 51 and is rotatably supported by the hole. On the other hand, the rotary shaft 54 is connected to an output shaft of a stepping motor 55 which is a means for rotating the rotary plate 52. Reference numeral 56 denotes a light shielding portion for detecting the rotation angle provided on the rotation shaft 54, and a photo interrupter (not shown) is used as the rotation angle detecting means. Reference numerals 57 to 60 are heating chamber mounting flanges which are spot-welded and assembled to the heating chamber wall surface. 61 is a hole for mounting the rotating plate 52 in the box-shaped part 51. As specific dimensions of the box-shaped part 51, the width is 80 mm, the length is La + Lb, and the height is 20 mm. La and Lb dimensions are the lengths from the center of the rotating plate 52 to the respective end faces of the box-shaped part 51. When the impedance variable means having such a configuration is mounted in the heating chamber, the opening 62 (31, 32 in FIG. 4) is arranged at a predetermined position on the La dimension side of the box-shaped part 52. As a result, the end of the groove portion formed by the box portion 51 and the heating chamber wall surface is a wall surface 63 forming the box portion 51 in FIG. The support angle of the rotating plate 52 defines the state where the wide surface 52a of the rotating plate 52 is substantially parallel to the wall surface 63 as 0 degree.
[0027]
The rotating plate 52 has a heat resistant temperature of 200 ° C. or higher and a non-metallic material of a resin material or an inorganic material having a low dielectric loss characteristic in a frequency band used by the apparatus, and the base material has a predetermined plate thickness. In addition, each is formed or fired. Next, the operation and action of the impedance varying means 50 will be described. The impedance variable means can be configured such that La = 30 mm and Lb = 20 mm to vary the phase value of the voltage reflection coefficient S11 at the opening 62 in a range of approximately ± 180 degrees to approximately −30 degrees. That is, in this case, by rotating the rotating plate 52, an impedance in which the capacitive reactance component is changed can be formed in the opening 62. Further, by adopting the configuration of La = 50 mm and Lb = 20 mm, the phase value of the voltage reflection coefficient S11 at the opening can be varied from approximately +90 degrees to ± 180 degrees through approximately −135 degrees. That is, in this case, when the rotating plate 52 is rotated, the inductive reactance component (phase value range: +90 degrees to ± 180 degrees) and the capacitive reactance component (phase value range: ± 180 degrees are approximately − 135 degrees) value can be present. Furthermore, by adopting a configuration of La = 70 mm and Lb = 20 mm, the phase value of the voltage reflection coefficient S11 at the opening 62 can be varied from approximately +0 degrees to +90 degrees to a range of approximately ± 180 degrees. That is, in this case, by rotating the rotating plate 52, the opening 62 can have an impedance in which the inductive reactance component changes.
[0028]
When the phase value of the voltage reflection coefficient at the opening is approximately ± 180 degrees, that is, when the impedance of the opening is approximately zero, the opening can be operated in the same manner as the metal wall surface.
[0029]
When the support angle of the rotating plate 52 is changed, the impedance of the opening 62 is changed, and the phase difference between the high frequency incident wave and the reflected wave at the opening 62 can be changed. The phase difference between the high frequency incident wave and the reflected wave on the metal wall surface of the heating chamber 10 is 180 degrees. On the other hand, the phase difference between the incident wave and the reflected wave at the opening provided on the metal wall surface is 180 degrees when the impedance value of the opening is zero, 0 degrees when the impedance value is infinite, and in the case of inductive reactance. The phase of the reflected wave is delayed with respect to the incident wave, and the phase is advanced in the case of capacitive reactance. The apparent size of the heating chamber changes with the change in phase between the incident wave and the reflected wave. In the case of inductive reactance, the size of the heating chamber is apparently larger than the radio wave effect, whereas in the case of capacitive reactance, it is reduced. This is, for example, to change the apparent distance between the object to be heated housed in the heating chamber and the radiation port. By utilizing this phenomenon, the heating area on the plane of the object to be heated can be changed, or the heating area in the height direction of the object to be heated can be changed, and the object to be heated can be moved without moving the object to be heated. Uniform heating can be achieved.
[0030]
Further, the openings are arranged as shown in FIG. 4 and the rotation plate of the impedance varying means is controlled to rotate corresponding to each opening, thereby deflecting the high-frequency distribution in the heating chamber in the vertical and horizontal directions of the heating chamber. Can be made. By utilizing these action phenomena, it is possible to variably control the heating region of the object to be heated without rotating the object to be heated, thereby heating the object to be heated uniformly.
[0031]
Next, actual heating characteristics of the high-frequency heating device shown in FIG. 4 will be described with reference to FIGS. 6 and 7.
FIG. 6 shows the ratio of the heating power absorbed by water calculated from the temperature rise value of each amount of water and the ratio of the heating power to the input power of the apparatus as efficiency. In FIG. 6, 71 is a heating power characteristic and 72 is efficiency with respect to the radiation port shown in FIG. 4, while 73 is a heating power characteristic and 74 is efficiency with respect to the conventional rectangular radiation port. From the same characteristics, the use efficiency of the high-frequency energy can be improved as a whole by using the radiation port of the present invention, and the use efficiency for a small load can be greatly improved. The impedance values of the openings 31 and 32 are substantially zero.
[0032]
FIG. 7 shows a heating distribution when 180 g of ad hair synthetic paste is put in a commercially available sake bottle and subjected to high-frequency heating. The radiation port is as shown in FIG. 4, where (a) shows that the impedance values of the openings 31 and 32 are substantially zero, and (b) shows that the impedance values of the openings 31 and 32 are almost infinite. It is the heating distribution at the time. From the characteristics shown in the figure, it was recognized that the heating region can be changed in the vertical direction by changing the impedance of the opening. It was also recognized that uniform heating can be realized by controlling the impedance of the opening for the object to be heated, which can be made uniform by heating from below, such as milk and sake lees.
[0033]
(Example 3)
Next, Embodiment 3 of the present invention will be described with reference to FIG. The difference between the third embodiment and the second embodiment is a configuration in which the positions of the openings are arranged corresponding to the radiation distribution from the radiation port.
[0034]
That is, in FIG. 8, the longitudinal directions of the openings 75 and 76 are arranged so as to be parallel to the tube axis of the waveguide 11 in accordance with the radiation distribution shown in FIG. According to such an arrangement of the openings, the high-frequency distribution in the heating chamber 10 can be deflected in the left-right direction in FIG. 8 by changing the impedance of the openings. This is particularly effective for promoting uniform heating in flat heating objects such as frozen okonomiyaki or simultaneous heating of a plurality of heating objects.
[0035]
Example 4
Next, Embodiment 4 of the present invention will be described with reference to FIGS. The difference between the fourth embodiment and FIG. 2 of the first embodiment is the configuration of the radiation port.
[0036]
That is, in FIG. 9, the radiation port provided in the waveguide 11 that transmits a high frequency is a rectangular radiation port 100 and diagonals 101 and 102 of the radiation port 100, and is in the tube axis direction 18 of the waveguide 11. Each of the connecting radiation ports 103 and 104 extends. The opening shape of the rectangular radiation port 100 is configured to resonate in a high frequency band that transmits the waveguide 11. That is, when the frequency is 2455 MHz, it is a square shape with a side length of about 61 mm.
[0037]
The distance between the terminal ends of the coupling radiation ports 103 and 104 (indicated by 105 in FIG. 9) is set to ½ or more of the high-frequency transmission wavelength transmitted through the waveguide in the tube axis direction 18 of the waveguide. Specifically, when the frequency is 2455 MHz and the width dimension of the waveguide H surface is 80 mm, the transmission wavelength in the waveguide is about 190 mm, and the distance between the terminal ends of the coupling radiation ports 103 and 104 is 95 mm or more. Therefore, the opening shape of the connection radiation port is, for example, 20 mm wide and 30 mm long (17 mm or more in calculation).
[0038]
According to the radiation port having such a configuration, a high-frequency electric field indicated by arrows 106 to 109 in FIG. 9 is generated by a high-frequency current flowing through the waveguide wall surface. That is, the excitation direction of the rectangular-shaped radiation port 100 can be a direction crossing the tube axis of the waveguide, and this excitation form generates a high-frequency electric field distribution as shown in FIG. From this high-frequency electric field distribution, the high-frequency radiation direction by the radiation port configuration shown in the fourth embodiment can be made to cross the tube axis of the waveguide. Thereby, a high frequency can be radiated in the direction of the diagonal line of the heating chamber in the substantially rectangular parallelepiped heating chamber, and a bulky object to be heated can be heated uniformly.
[0039]
(Example 5)
Next, a fifth embodiment of the present invention will be described with reference to FIG. The fifth embodiment is different from the third embodiment in the arrangement of the opening on the wall surface of the heating chamber.
[0040]
That is, in FIG. 11, 110 is an opening provided on the wall surface of the heating chamber 10. The opening 110 is provided at a predetermined position based on the high-frequency electric field distribution of FIG. 10 so that the longitudinal direction of the opening 110 is parallel to the line connecting the starting points 101 and 102 of the coupling radiation port. . Further, an impedance variable means 50 shown in FIG. 5 is disposed outside the heating chamber 10 so as to close the opening 110.
[0041]
According to this configuration, uniform high frequency heating can be performed without changing the object to be heated by changing the high frequency distribution in the heating chamber by changing the impedance of the opening. Further, by providing the longitudinal direction of the opening parallel to the line connecting the starting points of the connection radiation ports, the impedance change of the opening can be reliably applied to the change of the high-frequency distribution in the heating chamber. Furthermore, the high frequency distribution in the heating chamber can be changed in the vertical direction or the horizontal direction with only one impedance variable means.
[0042]
In addition, it is desirable from the viewpoint of processing and suppressing the occurrence of sparks by the edge portion that the corner portion of each radiation port is appropriately rounded. Further, the radiating portion and the opening are sealed with a mica material or the like in order to avoid the scattering of the heated object. The range of change in the impedance of the opening is not limited to the above description. For example, when the support angle of the rotating plate is 90 degrees, the impedance of the opening is made substantially zero so that only the inductive component is variable. Or, when the support angle of the rotating plate is approximately 45 degrees, the variable impedance range including both the inductive component and the capacitive component can be set by setting the impedance of the opening to substantially zero. Furthermore, you may attach an impedance variable means to the heating chamber of the structure which rotates a mounting tray.
[0043]
【The invention's effect】
As described above, according to the present invention, by arranging a plurality of L-shaped radiation ports in point symmetry, the directions of the electric fields that excite the radiation ports are different from each other, and the high frequencies radiated from the radiation ports are different. Are combined or repelled in the vicinity of the radiation aperture to form a wide radiation distribution around the radiation aperture. This behavior near the radiation port mitigates the influence on the high-frequency generating means due to the difference in the amount and shape of the object to be heated, and allows the high-frequency generating means to operate stably for various objects to be heated. Use efficiency can be increased.
[0044]
In addition, an opening provided on the wall surface of the heating chamber at a position different from the radiation port and impedance variable means for changing the high-frequency impedance in the opening can be provided to change the impedance of the opening so as to change the high frequency from the radiation port. The uniform heating can be promoted without changing the radiation direction and moving the object to be heated.
[0045]
In addition, by including a rectangular radiation port provided in the waveguide that transmits high frequency, and a connection radiation port that extends in the tube axis direction of the waveguide starting from the diagonal of the radiation port, The excitation direction of the rectangular radiation port can be set to a direction that intersects the tube axis of the waveguide, and the excitation direction can be set to the direction that intersects the tube axis of the waveguide. Thereby, a high frequency can be radiated in the direction of the diagonal line of the heating chamber in the substantially rectangular parallelepiped heating chamber, and a bulky object to be heated can be heated uniformly.
[Brief description of the drawings]
FIG. 1 is a cross-sectional configuration diagram of a high-frequency heating device according to a first embodiment of the present invention. FIG. 2 is a configuration diagram of a waveguide of the high-frequency heating device. FIG. 5 is a cross-sectional configuration diagram of a high-frequency heating device according to a second embodiment of the present invention. FIG. 5 is a configuration diagram of impedance variable means of the high-frequency heating device. FIG. 8 is a cross-sectional configuration diagram of the high-frequency heating device according to the third embodiment of the present invention. FIG. 9 is a cross-sectional configuration diagram of the high-frequency heating device according to the fourth embodiment of the present invention. High-frequency electric field distribution diagram of high-frequency heating device [FIG. 11] Cross-sectional configuration diagram of high-frequency heating device of Example 5 of the present invention [Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Waveguide 12 High frequency generation means 13, 13a, 13b Radiation port 18 Tube axis 19 Point symmetry position 20 Metal post (capacitance component)
31, 32, 62, 75, 76, 110 Opening 50 Impedance variable means 100 Rectangular radiation port 101, 102 Diagonal origin 103, 104 Linked radiation port

Claims (3)

被加熱物を収納する加熱室と、高周波を発生する高周波発生手段と、一端に前記高周波発生手段が装着され他端に2つの放射口が設けられることにより前記高周波を前記加熱室に伝送する導波管とを備え、前記2つの放射口は、それぞれが前記導波管の管軸に対して平行な部分と垂直な部分とを有するL字状であり、前記導波管の管軸上の点に対して点対称に設けられ、前記導波管の他端の端面から前記高周波の伝送波長の略1/2離れた位置までの間に設けられた高周波加熱装置。 A heating chamber for storing an object to be heated, a high-frequency generating means for generating a high frequency, and a high-frequency generating means mounted at one end and two radiation ports provided at the other end, thereby transmitting the high-frequency to the heating chamber. A wave tube, and each of the two radiation openings has an L shape having a portion parallel to and perpendicular to a tube axis of the waveguide, and is on the tube axis of the waveguide. A high-frequency heating device provided symmetrically with respect to a point, and provided between the end face of the other end of the waveguide and a position approximately ½ of the high-frequency transmission wavelength . 点対称の点の近傍に容量成分を付設した構成からなる請求項1に記載の高周波加熱装置。The high-frequency heating device according to claim 1, comprising a configuration in which a capacitive component is provided in the vicinity of a point-symmetrical point. 前記2つの放射口は前記導波管の管軸を横切らない構成とした請求項1に記載の高周波加熱装置。 The two radiating port high frequency heating apparatus according to claim 1 where the structure does not cross the tube axis of the waveguide.
JP2001233222A 2001-08-01 2001-08-01 High frequency heating device Expired - Fee Related JP4759870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001233222A JP4759870B2 (en) 2001-08-01 2001-08-01 High frequency heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001233222A JP4759870B2 (en) 2001-08-01 2001-08-01 High frequency heating device

Publications (2)

Publication Number Publication Date
JP2003045641A JP2003045641A (en) 2003-02-14
JP4759870B2 true JP4759870B2 (en) 2011-08-31

Family

ID=19065020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001233222A Expired - Fee Related JP4759870B2 (en) 2001-08-01 2001-08-01 High frequency heating device

Country Status (1)

Country Link
JP (1) JP4759870B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60126998U (en) * 1984-02-02 1985-08-26 三洋電機株式会社 microwave oven
JPH08124670A (en) * 1994-10-25 1996-05-17 Hitachi Home Tec Ltd High frequency heating device
JP2000164341A (en) * 1998-11-30 2000-06-16 Hitachi Hometec Ltd High-frequency heating device

Also Published As

Publication number Publication date
JP2003045641A (en) 2003-02-14

Similar Documents

Publication Publication Date Title
US10356855B2 (en) Microwave heating apparatus
CA1173512A (en) Feed system for radiating elliptically polarized electromagnetic waves in microwave oven
JP3510523B2 (en) Microwave and waveguide systems
JP3031898B2 (en) microwave
WO2012073451A1 (en) Microwave heater
WO2016006249A1 (en) Microwave heating device
US3798404A (en) Electronic oven with mode exciter
JP6273598B2 (en) Microwave heating device
WO2017164290A1 (en) Microwave heating device
WO2013005438A1 (en) Microwave heating device
JP4759870B2 (en) High frequency heating device
WO2013094175A1 (en) Microwave heating device
JP3931623B2 (en) High frequency heating device
JP2014216067A (en) High-frequency wave heating device
WO2015118101A1 (en) Microwave-energy feeding arrangement, microwave heating arrangement, microwave oven, method for manufacturing a microwave oven and method for heating food
Zhang et al. A dual-band reflective metasurface using near-field focusing and zero-order Bessel beam for wireless power transfer
JP2000348858A (en) Microwave oven
Baum Modification of TEM-Fed Reflector for Increased Efficiency
KR100284501B1 (en) Slot antenna for microwave oven
JP2013105690A (en) Microwave heating device
JP2008226510A (en) Microwave heating apparatus
JP7285413B2 (en) High frequency heating device
JP2002033612A (en) Beam scanning antenna
Olokede et al. A multifunctional antenna with a small form factor: Designing a novel series-fed compact triangular microstrip ring resonator antenna array
JP3925345B2 (en) High frequency heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080414

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4759870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees