JP2014216067A - High-frequency wave heating device - Google Patents

High-frequency wave heating device Download PDF

Info

Publication number
JP2014216067A
JP2014216067A JP2013089909A JP2013089909A JP2014216067A JP 2014216067 A JP2014216067 A JP 2014216067A JP 2013089909 A JP2013089909 A JP 2013089909A JP 2013089909 A JP2013089909 A JP 2013089909A JP 2014216067 A JP2014216067 A JP 2014216067A
Authority
JP
Japan
Prior art keywords
vertical wall
choke
rotating antenna
frequency heating
supply chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013089909A
Other languages
Japanese (ja)
Inventor
窪田 哲男
Tetsuo Kubota
哲男 窪田
本間 満
Mitsuru Honma
満 本間
紀之 大都
Noriyuki Daito
紀之 大都
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2013089909A priority Critical patent/JP2014216067A/en
Publication of JP2014216067A publication Critical patent/JP2014216067A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/76Prevention of microwave leakage, e.g. door sealings
    • H05B6/763Microwave radiation seals for doors

Abstract

PROBLEM TO BE SOLVED: To emit a microwave power generated by a magnetron at the maximum in a heating chamber without loss by efficiently coupling the microwave power with a rotation antenna.SOLUTION: A high-frequency wave heating device comprises: a heated object placement plate provided on a bottom face of a heating chamber; a high-frequency supply chamber provided at a substantially central part on the bottom face of the heating chamber, below the heated object placement plate; a magnetron; a waveguide to which the magnetron is attached; a coupling hole provided at the central part on a bottom face of the high-frequency supply chamber; an inner conductor provided to penetrate through the coupling hole and to face the inside of the high-frequency supply chamber substantially vertically; a metal rotation antenna having a spacial structure, substantially horizontally coupled in the high-frequency supply chamber at one end of the inner conductor; a dielectric body shaft coupled in the waveguide of the inner conductor; and a drive part rotating and driving the dielectric body shaft. The rotation antenna is configured by a square plane part, and a downward vertical wall part provided at an outer periphery of one side of the plane part and two sides sandwiching it.

Description

本発明は、回転アンテナを用いてマイクロ波エネルギーを加熱室内に放射し、食品などを加熱する高周波加熱装置に関するものである。   The present invention relates to a high-frequency heating apparatus that uses a rotating antenna to radiate microwave energy into a heating chamber to heat food and the like.

特許文献1の高周波加熱装置は、加熱室の底面に固着された誘電体からなる載置台を備え、導体面中央部に設けた導波管の励振口部分にホーン形の放射路からなる回転アンテナを備え、導波管により導かれるマイクロ波エネルギーを回転アンテナに結合させた後、回転アンテナのホーン形開口部より加熱室内に放射し、載置台に載置された食品などを高周波加熱するものである。   The high-frequency heating device of Patent Document 1 includes a mounting base made of a dielectric material fixed to the bottom surface of a heating chamber, and a rotating antenna made of a horn-shaped radiation path at an excitation port portion of a waveguide provided in the central portion of the conductor surface. The microwave energy guided by the waveguide is coupled to the rotating antenna, and then radiated into the heating chamber from the horn-shaped opening of the rotating antenna to heat the food placed on the mounting table at a high frequency. is there.

特開2010−199009号公報JP 2010-199209 A

特許文献1では、導体面に設けられた結合孔を貫通して、前記導体面内へ略垂直に臨んで設けられ回転アンテナと結合された内導体の一端を導波管内に突出させ、その導体面状の幅広面の上底辺、下底辺で辺長の長い上底辺と、これより短い下底辺を結ぶ2辺と上記下底辺に下向きに幅狭面を設けたホーン形の放射路からなる回転アンテナに、マグネトロンで発生し導波管内を伝送されてきたマイクロ波を結合させた後、上記幅狭面が設置されていない回転アンテナの上底辺先端からマイクロ波を加熱室内に放射するようになっている。また、回転アンテナの導体面の幅狭面端には導体面と対向して幅狭面端に直角に短絡面を設け、結合されたマイクロ波が幅狭面端とこれと対向する導体面隙間から漏洩するのを抑制している。   In Patent Document 1, one end of an inner conductor that passes through a coupling hole provided in a conductor surface, faces substantially vertically into the conductor surface and is coupled to a rotating antenna is projected into a waveguide, and the conductor Rotation consisting of a horn-shaped radiating path with a narrow upper surface on the lower base and two lower edges connecting the upper base with a long side at the upper and lower bases of the planar wide surface. After the microwave generated by the magnetron and transmitted through the waveguide is coupled to the antenna, the microwave is radiated into the heating chamber from the top end of the rotating antenna where the narrow surface is not installed. ing. In addition, a short-circuit surface is provided at the narrow surface end of the rotating antenna at the narrow surface end so as to face the conductive surface at a right angle to the narrow surface end. To prevent leakage.

しかしながら、平板状の短絡面を設けることのみでは幅狭面と導体面間の隙間から漏洩するマイクロ波を十分に抑制することができず、指向性や結合度を向上することは困難である。特に、前記台形状の幅広面で幅狭面部が設けられていない上底辺と対向する下底辺側幅狭面端と導体面間の隙間から漏洩するマイクロ波が多いと、幅広面の上底辺から放射するマイクロ波の指向性が弱くなり結合度が著しく低下するという課題がある。   However, the microwave leaking from the gap between the narrow surface and the conductor surface cannot be sufficiently suppressed only by providing the flat short-circuit surface, and it is difficult to improve the directivity and the degree of coupling. In particular, if there is a large amount of microwaves leaking from the gap between the lower bottom side narrow surface end facing the upper bottom side where the narrow surface portion is not provided in the trapezoidal wide surface and the conductor surface, the upper base side of the wide surface There is a problem that the directivity of the radiating microwave is weakened and the degree of coupling is significantly reduced.

本発明は上記の課題を解決するためになされたものであり、被加熱物を収容する加熱室と、該加熱室の底面に設けた誘電体からなる被加熱物載置板と、この被加熱物載置板の下方で前記加熱室の底面略中央部に設けた導体面である高周波供給室と、マイクロ波エネルギーを発生するマグネトロンと、該マグネトロンを取り付ける導波管と、前記高周波供給室底面中央部に設けた結合孔と、該結合孔を貫通して前記高周波供給室内へ略垂直に臨んで設けた内導体と、前記高周波供給室に収納し前記内導体の一端に連結した金属製の回転アンテナと、前記内導体の前記導波管内で連結した誘電体軸と、該誘電体軸を回転駆動する駆動部とを備えた高周波加熱装置において、前記回転アンテナは、前記内導体と接続された略水平かつ略多角形の平面部と、該平面部の外周の一部に下垂れるように設けられた垂直壁部と、を有しており、前記平面部の外周のうち、前記垂直壁部が設けられていない辺に対向する辺に設けられた垂直壁部には、電磁波の漏洩を抑制するチョーク構造を設けたものである。   The present invention has been made to solve the above-described problem, and includes a heating chamber that accommodates an object to be heated, a heated object mounting plate made of a dielectric provided on the bottom surface of the heating chamber, and the heated object. A high-frequency supply chamber that is a conductor surface provided at a substantially central portion of the bottom surface of the heating chamber below the object placement plate, a magnetron that generates microwave energy, a waveguide for mounting the magnetron, and a bottom surface of the high-frequency supply chamber A coupling hole provided in the center, an inner conductor provided through the coupling hole and facing the high-frequency supply chamber substantially vertically, and a metal made of metal that is housed in the high-frequency supply chamber and connected to one end of the inner conductor In a high-frequency heating apparatus including a rotating antenna, a dielectric shaft connected in the waveguide of the inner conductor, and a drive unit that rotationally drives the dielectric shaft, the rotating antenna is connected to the inner conductor. A substantially horizontal and polygonal plane And a vertical wall portion provided so as to hang down on a part of the outer periphery of the planar portion, and faces a side of the outer periphery of the planar portion where the vertical wall portion is not provided. The vertical wall portion provided on the side is provided with a choke structure that suppresses leakage of electromagnetic waves.

本発明の高周波加熱装置の回転アンテナでは、回転アンテナで垂直壁部外方にチョークを配することにより、垂直壁部端と高周波供給室底面間の隙間から漏洩するマイクロ波を遮断することができる。これにより回転アンテナに結合されたマイクロ波は、開口面となる垂直壁部のない放射口に伝送される放射路を形成するので指向性や結合度が向上する。   In the rotating antenna of the high-frequency heating device of the present invention, the microwave leaking from the gap between the vertical wall end and the bottom of the high-frequency supply chamber can be blocked by arranging the choke outside the vertical wall with the rotating antenna. . As a result, the microwave coupled to the rotating antenna forms a radiation path that is transmitted to a radiation port without a vertical wall portion serving as an opening surface, thereby improving directivity and degree of coupling.

実施例1の高周波加熱装置の要部縦断面図。1 is a longitudinal sectional view of a main part of a high-frequency heating device according to Embodiment 1. FIG. 実施例1の回転アンテナの斜視図。1 is a perspective view of a rotary antenna according to Embodiment 1. FIG. 実施例1の回転アンテナのチョーク部の拡大斜視図。FIG. 3 is an enlarged perspective view of a choke portion of the rotating antenna according to the first embodiment. 実施例1の回転アンテナのa−a面での断面図。Sectional drawing in the aa surface of the rotating antenna of Example 1. FIG. 実施例1の回転アンテナのリターンロスの解析結果。The analysis result of the return loss of the rotating antenna of Example 1. 実施例1の回転アンテナのチョークの等価伝送路。FIG. 3 is an equivalent transmission path of the choke of the rotating antenna according to the first embodiment. FIG. 実施例1の回転アンテナのチョークの等価回路。3 is an equivalent circuit of a choke for the rotating antenna according to the first embodiment. 実施例1の回転アンテナのチョークの漏洩マイクロ波電界分布解析結果。The leakage microwave electric field distribution analysis result of the rotating antenna choke of Example 1. 実施例1の回転アンテナの指向性示す近傍界(Near Field Pattern)解析結果Near field pattern analysis result indicating directivity of the rotating antenna of the first embodiment 実施例2の回転アンテナの斜視図。FIG. 6 is a perspective view of a rotating antenna according to a second embodiment. 実施例3のチョーク部の拡大斜視図。FIG. 6 is an enlarged perspective view of a choke portion according to a third embodiment. 実施例5の回転アンテナの斜視図。FIG. 10 is a perspective view of a rotating antenna according to a fifth embodiment. 実施例6の回転アンテナの斜視図で、実施例1の回転アンテナを一体成型で製作した時の斜視図。It is a perspective view when the rotation antenna of Example 1 is manufactured by integral molding in the perspective view of the rotation antenna of Example 6. FIG.

以下、図1〜図13を参照して、本発明の実施例を説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1は実施例1の高周波加熱装置の要部縦断面図、図2は回転アンテナの斜視図、図3は図2の回転アンテナのチョーク部の拡大斜視図、図4は回転アンテナのリターンロスの解析結果、図5は回転アンテナのチョークの等価伝送路である。また、図6は回転アンテナのチョークの等価回路、図7は回転アンテナのa−a断面ある。図8は回転アンテナのチョークの漏洩マイクロ波電界分布解析結果、図9は回転アンテナの指向性示す近傍界(Near Field Pattern)解析結果を示したものである。   1 is a longitudinal sectional view of a main part of the high-frequency heating apparatus according to the first embodiment, FIG. 2 is a perspective view of a rotating antenna, FIG. 3 is an enlarged perspective view of a choke portion of the rotating antenna of FIG. FIG. 5 shows an equivalent transmission path of the rotating antenna choke. FIG. 6 is an equivalent circuit of the choke of the rotating antenna, and FIG. 7 is an aa cross section of the rotating antenna. FIG. 8 shows the leakage microwave electric field distribution analysis result of the rotating antenna choke, and FIG. 9 shows the near field pattern analysis result indicating the directivity of the rotating antenna.

図1の要部断面図に示すように、本実施例の高周波加熱装置は、被加熱物12を収容する加熱室1と、加熱室1の底面に設けられた誘電体からなる被加熱物載置板2と、この被加熱物載置板2の下方に設けられた高周波供給室3と、マイクロ波エネルギーを発生するマグネトロン4と、マグネトロン4を取り付ける導波管5と、導波管5に導かれたマイクロ波エネルギーを高周波供給室3に放射するために高周波供給室3の底面中央部に設けられた結合孔6と、結合孔6を貫通して高周波供給室3内へ略垂直に臨んで設けられた内導体7と、内導体7の一端の高周波供給室3内に略水平に連結された金属製で立体構造の回転アンテナ8と、内導体7の導波管5内で連結された誘電軸9と、誘電体軸9を回転駆動する駆動部10とを備えており、回転アンテナ8は駆動部10により回転制御されるマグネトロン4で発生したマイクロ波エネルギーは導波管5に導かれ、結合孔6を貫通する内導体7との同軸モード結合により回転アンテナ8に伝搬され、高周波供給室3、被加熱物載置板2を通じて加熱室1内に放射される。   As shown in the cross-sectional view of the main part of FIG. 1, the high-frequency heating device of the present embodiment is mounted on a heated object 1 made of a heating chamber 1 that houses a heated object 12 and a dielectric provided on the bottom surface of the heated chamber 1. A mounting plate 2, a high-frequency supply chamber 3 provided below the heated object mounting plate 2, a magnetron 4 that generates microwave energy, a waveguide 5 to which the magnetron 4 is attached, and a waveguide 5. In order to radiate the guided microwave energy to the high-frequency supply chamber 3, the coupling hole 6 provided in the center of the bottom surface of the high-frequency supply chamber 3 and the coupling hole 6 penetrate into the high-frequency supply chamber 3 substantially vertically. Are connected in a waveguide 5 of the inner conductor 7, the metal three-dimensional rotating antenna 8 connected substantially horizontally in the high-frequency supply chamber 3 at one end of the inner conductor 7, and the inner conductor 7. A dielectric shaft 9 and a drive unit 10 that rotationally drives the dielectric shaft 9. In the rotating antenna 8, the microwave energy generated in the magnetron 4 whose rotation is controlled by the driving unit 10 is guided to the waveguide 5 and propagated to the rotating antenna 8 by coaxial mode coupling with the inner conductor 7 penetrating the coupling hole 6. Then, it is radiated into the heating chamber 1 through the high-frequency supply chamber 3 and the heated object placing plate 2.

回転アンテナ8は、図2に示すように内導体7と接触する略多角形(本実施例では四角形)の平面部11と、該平面部11に設けた高周波供給室底面3方向に略垂直に下垂れた垂直壁部8a、8b、8cで構成し、前記平面部11の1辺8aとそれを挟む2辺8b、8cの計3辺に設けた該垂直壁部8a、8b、8cにより、一端を開口にした矩形の樋形状の放射路を構成する。前記平面部11で垂直壁部が設けられていない辺8dとこれと対向する垂直壁部8aの幅長さを1/2λ(λはマイクロ波の波長)より長くかつλより短く、前記垂直壁の高さは、1/2λより短く1/25λとした導波管5と同じ形状の放射路で回転アンテナ8の全長は3/2λとしている。そして垂直壁部が設けられていない辺8dと対向する垂直壁部8a外方に電磁波の漏洩を抑制するチョーク13を配している。チョーク13は図3に示すように四角形の平面をロ字型に折り曲げた直方体空胴13−1を形成し、前記高周波供給室3の底面と対向する直方体空胴面13−2には前記垂直壁部8a側に垂直壁部8d端に沿って切り欠き13−3を設けた構造からなる。そしてチョーク13のチョーク入り口点Aからチョーク短絡点Bの長さLは1/4波長を選んでいる。例えば周波数は2450±50MHzを用いている家庭用の高周波加熱装置(電子レンジ)では波長λは125から120mmである。このためチョークの長さLは約30mmとしている。また、本実施例の回転アンテナ8を収納する高周波供給室3の大きさは横幅5/3λ、奥行き4/3λ、深さは1/6λとしているので、チョーク13を配した横幅3/2λ、奥行き3/4λ、深さ1/25λの上記回転アンテナ8を十分収納できる大きさとなっている。   As shown in FIG. 2, the rotating antenna 8 has a substantially polygonal (quadrangle in this embodiment) plane portion 11 that contacts the inner conductor 7, and a direction substantially perpendicular to the direction of the high-frequency supply chamber bottom surface 3 provided on the plane portion 11. The vertical wall portions 8a, 8b, and 8c that hang down, and the vertical wall portions 8a, 8b, and 8c provided on a total of three sides, that is, the one side 8a of the plane portion 11 and the two sides 8b and 8c sandwiching the one side 8a, A rectangular bowl-shaped radiation path having an opening at one end is formed. The width of the side 8d where the vertical wall portion is not provided in the flat portion 11 and the vertical wall portion 8a facing the side 8d is longer than 1 / 2λ (λ is the wavelength of the microwave) and shorter than λ, and the vertical wall Is a radiation path having the same shape as the waveguide 5 shorter than 1 / 2λ and 1 / 25λ, and the total length of the rotating antenna 8 is 3 / 2λ. A choke 13 that suppresses leakage of electromagnetic waves is disposed outside the vertical wall portion 8a facing the side 8d where no vertical wall portion is provided. As shown in FIG. 3, the choke 13 forms a rectangular parallelepiped cavity 13-1 in which a rectangular plane is bent in a square shape, and the rectangular parallelepiped cavity surface 13-2 facing the bottom surface of the high-frequency supply chamber 3 has the above-mentioned vertical shape. The notch 13-3 is provided along the end of the vertical wall 8d on the wall 8a side. The length L from the choke entrance point A of the choke 13 to the choke short-circuit point B is selected to be ¼ wavelength. For example, in a home high-frequency heating device (microwave oven) using a frequency of 2450 ± 50 MHz, the wavelength λ is 125 to 120 mm. Therefore, the choke length L is about 30 mm. Further, since the size of the high-frequency supply chamber 3 that houses the rotating antenna 8 of this embodiment is 5 / 3λ in width, 4 / 3λ in depth, and 1 / 6λ in depth, the width 3 / 2λ in which the choke 13 is arranged, The rotating antenna 8 having a depth of 3 / 4λ and a depth of 1 / 25λ can be sufficiently accommodated.

本実施例の回転アンテナ8では平面部11と該平面部11の辺の外周の3辺に下向きの垂直壁部8a、8b、8cを設け、このうち前記平面部で垂直壁部が設けられていない辺8dとこれと対向する垂直壁部8aの幅長さを1/2λ(λはマイクロ波の波長)より長くかつλより短く、高さは、1/2λより短く選んだ放射路としている。これにより高さ方向に電界がなくなるため、高次モードのマイクロ波を発生させることなく、前記導波管5と同じTE10モードの基本波を回転アンテナ8に結合させることができる。よって、反射が少なく結合度も大きくとれ、マグネトロン4で発生させたマイクロ波エネルギーを効率よく回転アンテナ8に伝送できる。 In the rotating antenna 8 of the present embodiment, the vertical portion 8a, 8b, 8c is provided on the three sides of the flat portion 11 and the outer periphery of the flat portion 11, and the vertical wall portion is provided in the flat portion. The width of the non-side 8d and the vertical wall portion 8a facing the side 8d is longer than 1 / 2λ (λ is the wavelength of the microwave) and shorter than λ, and the height is selected as a radiation path shorter than 1 / 2λ. . As a result, the electric field disappears in the height direction, so that the same TE 10 mode fundamental wave as that of the waveguide 5 can be coupled to the rotating antenna 8 without generating higher-order mode microwaves. Therefore, the reflection is small and the degree of coupling is high, and the microwave energy generated by the magnetron 4 can be efficiently transmitted to the rotating antenna 8.

図4は回転アンテナ8の放射路が特許文献1(図7)に記載の従来のホーン形状の場合と本実施例の導波管形状の場合のリターンロスの解析結果を示したものである。本実施例の導波管形状の放射路を有する回転アンテナ8は使用周波数2460MHzにおいて−3dBのリターロスを抑制でき、反射が少なくマグネトロン4で発生させたマイクロ波エネルギーを効率よく回転アンテナ8に結合していることがわかる。結合度は反射係数の値から評価し、反射係数が小さいほど結合度が大きくなる。なお、リターンロスとは反射係数の対数をとったもので0dBに近づくほど反射が大きくなり、図4に示すように本実施例のリターンロスが低減されている事が分かる。   FIG. 4 shows the return loss analysis results when the radiation path of the rotating antenna 8 has the conventional horn shape described in Patent Document 1 (FIG. 7) and the waveguide shape of this embodiment. The rotating antenna 8 having a waveguide-shaped radiation path according to the present embodiment can suppress a -3 dB retard loss at a use frequency of 2460 MHz, and can efficiently couple the microwave energy generated by the magnetron 4 to the rotating antenna 8 with little reflection. You can see that The degree of coupling is evaluated from the value of the reflection coefficient, and the degree of coupling increases as the reflection coefficient decreases. Note that the return loss is a logarithm of the reflection coefficient, and the reflection increases as it approaches 0 dB, and it can be seen that the return loss of this embodiment is reduced as shown in FIG.

マグネトロン4で発生したマイクロ波エネルギーは導波管5に導かれ、結合孔6を貫通する内導体7との同軸モード結合により上記回転アンテナ8に伝搬され、高周波波供給室3、被加熱物載置板2を通して加熱室1内に放射される。この時上記回転アンテナ8に結合されたマイクロ波エネルギーは垂直壁部8a、8b、8cで反射され垂直壁が設置されていない辺8dの開口面から加熱室1内にマイクロ波が放射される。一般的に、垂直壁端と対向する高周波波供給室3間に隙間がある場合、この隙間を通してマイクロ波が漏洩し指向性や結合度が低下する。特に開口面と対向する垂直壁8a(バックプランジャーと称す)と高周波供給室3底面間の隙間から漏洩し易く、このマイクロ波を遮断抑制することが回転アンテナの指向性や結合度の向上につながる。   Microwave energy generated in the magnetron 4 is guided to the waveguide 5 and propagated to the rotating antenna 8 by coaxial mode coupling with the inner conductor 7 penetrating the coupling hole 6, and the high frequency wave supply chamber 3, the object to be heated is mounted. It is emitted into the heating chamber 1 through the mounting plate 2. At this time, the microwave energy coupled to the rotating antenna 8 is reflected by the vertical wall portions 8a, 8b and 8c, and the microwave is radiated into the heating chamber 1 from the opening surface of the side 8d where the vertical wall is not installed. Generally, when there is a gap between the high-frequency wave supply chambers 3 facing the end of the vertical wall, microwaves leak through the gap and the directivity and coupling degree are lowered. In particular, leakage from the gap between the vertical wall 8a (referred to as a back plunger) facing the opening surface and the bottom surface of the high-frequency supply chamber 3 is likely to occur, and blocking and suppressing this microwave improves the directivity and coupling degree of the rotating antenna. Connected.

本実施例の回転アンテナ8では垂直壁部8a外方にチョーク13を配することにより、垂直壁8aと高周波供給室3底面間の隙間から漏洩するマイクロ波を抑制することができ、指向性や結合度が向上する。この理由を図5、図6、図7を用いて説明する。   In the rotating antenna 8 of the present embodiment, by arranging the choke 13 outside the vertical wall portion 8a, the microwave leaking from the gap between the vertical wall 8a and the bottom surface of the high-frequency supply chamber 3 can be suppressed. The degree of coupling is improved. The reason for this will be described with reference to FIGS.

チョーク13は前述したように四角形の平面をロ字型に折り曲げたチョーク13のチョーク入り口点Aからチョーク短絡点Bを形成し、前記高周波供給室底面3と対向する前記直方体空胴面13−2の前記垂直壁部8a側に垂直壁部8a端に沿って切り欠き13−3を設けた構造からなる。そしてチョーク13のチョーク入り口点Aからチョーク短絡点Bの長さLは1/4波長に選んでおり、ここでは約30mmとしている。   As described above, the choke 13 forms the choke short-circuit point B from the choke entrance point A of the choke 13 obtained by bending a rectangular plane into a square shape, and the rectangular parallelepiped cavity surface 13-2 facing the high-frequency supply chamber bottom surface 3 is formed. The notch 13-3 is provided along the end of the vertical wall 8a on the vertical wall 8a side. The length L of the choke 13 from the choke entrance point A to the choke short-circuit point B is selected to be ¼ wavelength, and here it is about 30 mm.

この立体回路であるチョーク13は、図5に示す線路長Lの終端の負荷インピーダンスZLを短絡(ZL=0)した場合の特性インピーダンスがZoの等価伝送路で示される。また、チョーク13は電気回路的には図6で示したように回路にL、Cの並列共振回路が直列に接続され回路となる。 The choke 13 which is this three-dimensional circuit is represented by an equivalent transmission line having a characteristic impedance Z o when the load impedance Z L at the end of the line length L shown in FIG. 5 is short-circuited (Z L = 0). In addition, the choke 13 is a circuit in which an L and C parallel resonant circuit is connected in series to the circuit as shown in FIG.

ここでチョーク入り口点Aからチョーク短絡点Bをみた入力インピーダンスZinは線路が無損失と仮定すると Here, the input impedance Z in viewed from the choke entrance point A to the choke short-circuit point B is assumed that the line is lossless.

と表される。ここでLはチョーク13の線路長、βは位相定数で It is expressed. Where L is the line length of the choke 13 and β is the phase constant.

である。 It is.

チョーク13のチョーク入り口点Aからチョーク短絡点Bまでの線路長Lはλ/4に設計しているのでチョーク入り口A点での入力インピーダンスZinは数1から無限大となる。A点で入力インピーダンスZinが無限大となることは図6のL、Cの並列共振回路が共振を起こし、これにより回路が開放状態となるので電流が遮断され、高周波供給室3底面と垂直壁部8a隙間から漏洩するマイクロ波が遮断される。このチョーク13は電気回路的には図6で示したように回路にL、Cの並列共振回路が直列に接続され回路となり、漏洩マイクロ波がA点で並列共振を起こすことで回路が開放状態となり電流が遮断されマイクロ波が漏洩しない。このようなλ/4毎に並列と直列の共振となる現象をインピーダンスの反転作用という。チョーク13はこのインピーダンスの反転作用を利用して漏洩マイクロ波を抑制するようにしたマイクロ波立体回路である。 Since the line length L from the choke entrance point A to the choke short-circuit point B of the choke 13 is designed to be λ / 4, the input impedance Z in at the choke entrance A point becomes infinite from Equation 1. When the input impedance Z in becomes infinite at the point A, the parallel resonant circuit of L and C in FIG. 6 resonates, thereby opening the circuit, so that the current is cut off and perpendicular to the bottom surface of the high-frequency supply chamber 3. Microwaves leaking from the wall portion 8a are blocked. As shown in FIG. 6, the choke 13 is a circuit in which L and C parallel resonant circuits are connected in series to the circuit, and the leakage microwave causes parallel resonance at the point A so that the circuit is open. The current is cut off and the microwave does not leak. Such a phenomenon of resonance in parallel and in series every λ / 4 is referred to as impedance reversal action. The choke 13 is a microwave three-dimensional circuit that uses this impedance reversal action to suppress leakage microwaves.

図8、図9にチョーク13を設けた場合の漏洩波抑制と指向性向上効果をマイクロ波解析により比較した結果を示す。図8は回転アンテナ8の垂直壁8aに特許文献1(図7)に記載の従来の短絡面を設けた場合と本実施例のチョーク13を設けた場合の漏洩波の様子を電界強度分布で示している。図8で上図がフランジ方式によるもの、下図が本実施例におけるチョーク方式によるものである。フランジ方式では回転アンテナ8の放射路内から外部に漏洩波が見られるが、本実施例におけるチョーク方式では漏洩波は見られずチョーク13を設けることで漏洩波が遮断されることが分かる。また、図9にはフランジ方式によるものとチョーク方式の近傍界(Near Field Pattern)を示している。チョーク方式がフランジ方式によりも約10kV/m電界強度が大きく指向性に優れることがわかる。なお指向性はアンテナ放射方向の電界強度の値から評価し、電界強度が大きいほど指向性が鋭くなる。   FIG. 8 and FIG. 9 show the results of comparison of leakage wave suppression and directivity improvement effect by microwave analysis when the choke 13 is provided. FIG. 8 shows the electric field intensity distribution of the leakage wave when the conventional short-circuit surface described in Patent Document 1 (FIG. 7) is provided on the vertical wall 8a of the rotating antenna 8 and when the choke 13 of this embodiment is provided. Show. In FIG. 8, the upper diagram is based on the flange method, and the lower diagram is based on the choke method in this embodiment. In the flange method, a leaky wave is seen from the inside of the radiation path of the rotating antenna 8, but in the choke method in this embodiment, no leaky wave is seen, and it can be seen that the leakage wave is blocked by providing the choke 13. Further, FIG. 9 shows the near field (Near Field Pattern) of the flange type and the choke type. It can be seen that the choke method has a large electric field strength of about 10 kV / m and superior directivity than the flange method. The directivity is evaluated from the value of the electric field intensity in the antenna radiation direction, and the directivity becomes sharper as the electric field intensity increases.

以上で説明した本実施例の高周波加熱装置の回転アンテナでは、回転アンテナで垂直壁部外方にチョークを配することにより、垂直壁部端と高周波供給室底面間の隙間から漏洩するマイクロ波を遮断することができる。これにより回転アンテナに結合されたマイクロ波は、開口面となる垂直壁部のない放射口に伝送される放射路を形成するので指向性や結合度が向上する。   In the rotating antenna of the high-frequency heating apparatus of the present embodiment described above, the microwave leaking from the gap between the vertical wall end and the bottom of the high-frequency supply chamber can be obtained by arranging the choke outside the vertical wall with the rotating antenna. Can be blocked. As a result, the microwave coupled to the rotating antenna forms a radiation path that is transmitted to a radiation port without a vertical wall portion serving as an opening surface, thereby improving directivity and degree of coupling.

また、放射路の幅を1/2λ〜λ以下に、高さを1/2λ以下にしたことにより、高次モードのマイクロ波を発生させることなく、導波管と同じマイクロ波が伝送する場合の基本モードであるTE10モードの基本波の姿態で回転アンテナに結合させることができる。よって、放射路の反射が少なく、マグネトロンで発生させたマイクロ波エネルギーを効率よく回転アンテナに結合できる。また、結合度の向上により、垂直壁端とこれと対向する高周波供給室底面間からの漏洩マイクロ波を抑制する効果がある。 In addition, when the width of the radiation path is set to 1 / 2λ to λ or less and the height is set to 1 / 2λ or less, the same microwave as the waveguide is transmitted without generating a high-order mode microwave. It can be coupled to the rotating antenna in the form of the fundamental wave of the TE 10 mode, which is the fundamental mode. Therefore, there is little reflection of the radiation path, and the microwave energy generated by the magnetron can be efficiently coupled to the rotating antenna. Further, the improvement in the degree of coupling has the effect of suppressing leakage microwaves from between the vertical wall end and the bottom surface of the high-frequency supply chamber facing it.

実施例2の回転アンテナ8の斜視図を図10に示す。なお、本実施例は実施例1の図1に収納する回転アンテナの他の構成例であり、以下実施例1と共通する点は説明を省略する。   A perspective view of the rotating antenna 8 of the second embodiment is shown in FIG. In addition, a present Example is another structural example of the rotating antenna accommodated in FIG. 1 of Example 1, and abbreviate | omits description which is common in Example 1 below.

実施例2の回転アンテナ8は、四角形の平面部11と該平面部11の3辺に下向きの垂直壁部8a、8b、8cが設けられ矩形の樋形状の放射路に、前記垂直壁部が設けられていない辺8d側の開口面に合わせ、台形の平面部11aとその上底辺8gおよび下底辺8dを除く2辺の外周に下向(高周波供給室3底面方向)きの垂直壁部8e、8fを設けたホーン形状の放射路を連結した回転アンテナとしている。   The rotating antenna 8 according to the second embodiment includes a rectangular flat portion 11 and downward vertical wall portions 8a, 8b, and 8c on three sides of the flat portion 11, and the vertical wall portion is disposed in a rectangular bowl-shaped radiation path. A vertical wall portion 8e extending downward (toward the bottom surface of the high-frequency supply chamber 3) on the outer periphery of the two sides excluding the trapezoidal flat portion 11a and its upper base 8g and lower base 8d in accordance with the opening surface on the side 8d not provided. , 8f is a rotating antenna that connects horn-shaped radiation paths.

これにより実施例1の効果に加えて、回転アンテナから加熱室内に幅広くマイクロ波が放射されるので加熱むらを抑制できる効果がある。   Thereby, in addition to the effect of Example 1, since a microwave is radiated | emitted widely from a rotating antenna in a heating chamber, there exists an effect which can suppress a heating nonuniformity.

実施例3の回転アンテナ8のチョーク13部の拡大を図11に示す。なお、他の実施例と共通する点は説明を省略する。   FIG. 11 shows an enlargement of the choke 13 portion of the rotating antenna 8 of the third embodiment. Note that description of points in common with the other embodiments is omitted.

実施例3では実施例1のチョーク13で切り欠き13−3を設けた直方体空胴面13−2と、該直方体空胴面13−2に直角折り曲げられた直方体空胴面13−2にスリット13−4を設けL字型コルゲート片13−5を形成させたものである。チョーク13のチョーク入り口点Aからチョーク短絡点Bの長さLは実施例1のチョーク13と同様に1/4波長の構成としている。このように実施例3では複数のL字型コルゲート片13−5を形成させることで、チョークを小型化でき安定した漏洩抑制効果を得ることができる。   In Example 3, a rectangular parallelepiped cavity surface 13-2 provided with a notch 13-3 by the choke 13 of Example 1, and a rectangular parallelepiped cavity surface 13-2 bent at right angles to the rectangular parallelepiped cavity surface 13-2 are slit. 13-4 is provided to form an L-shaped corrugated piece 13-5. The length L from the choke entrance point A to the choke short-circuit point B of the choke 13 is set to a quarter wavelength as in the choke 13 of the first embodiment. Thus, in Example 3, by forming the plurality of L-shaped corrugated pieces 13-5, the choke can be reduced in size and a stable leakage suppressing effect can be obtained.

つまり、本実施例の構成によれば、直方体空胴面13−2にスリット13−4を設けることで、チョークに流れる壁面電流がL字型コルゲート片13−5に沿って整列され高密度の状態で流れ、これによりコルゲート片13−5先端とこれと対向する壁面間に強い電界を生じ、チョークに結合する漏洩波が強くなり外部に漏洩するマイクロ波を抑制できる。   That is, according to the configuration of the present embodiment, by providing the slit 13-4 on the rectangular parallelepiped cavity surface 13-2, the wall surface current flowing through the choke is aligned along the L-shaped corrugated piece 13-5 and has a high density. As a result, a strong electric field is generated between the tip of the corrugated piece 13-5 and the wall surface facing the corrugated piece 13-5, and the leakage wave coupled to the choke becomes stronger, and the microwave leaking to the outside can be suppressed.

実施例4の回転アンテナ8を図12に示す。なお、他の実施例と共通する点は説明を省略する。   The rotating antenna 8 of Example 4 is shown in FIG. Note that description of points in common with the other embodiments is omitted.

本実施例の回転アンテナ8の説明では実施例4のL字型コルゲート片13−5を形成させたチョークを用いている。実施例1ではチョークはバックプランジャー側の垂直壁8a外方に設けた構造であったが、本実施例では前記回転アンテナ8は、平面部11と該平面部11の辺の外周の3辺に下向きに設けた垂直壁部8a、8b、8c外方に直角にチョーク13a、13b、13cを上記垂直壁部8a、8b、8cに溶接によりコの字型に配した放射路構造の回転アンテナト8としたことで、バックプランジャー側の垂直壁部8aに加えて他の2個の垂直壁8b、8c端と高周波供給室3底面間の隙間から漏洩するマイクロ波を遮断抑制することができる。チョーク13a、13b、13cを設けることは構造上も電波的にも矩形型の伝送用導波管と同じとなり、マイクロ波が導波管を伝送する場合の基本モードであるTE10モードが結合され伝送されることになる。このため反射損失や挿入損失が殆どなく垂直壁部8aと反対側のマイクロ波放射口側に伝送されるマイクロ波が増加し指向性や結合度をより向上させる作用がある。なお垂直壁8b、8cに溶接により設けたチョーク13b、13c長さは垂直壁部8aから辺8dまでは必要でなく少なくとも1/4波長以上あれば、指向性や結合度をより向上させる作用がある。 In the description of the rotating antenna 8 of the present embodiment, a choke formed with the L-shaped corrugated piece 13-5 of the fourth embodiment is used. In the first embodiment, the choke is provided outside the vertical wall 8a on the back plunger side. However, in this embodiment, the rotating antenna 8 has three sides on the outer periphery of the plane portion 11 and the sides of the plane portion 11. Rotating antenna having a radiation path structure in which chokes 13a, 13b, 13c are arranged in a U-shape by welding to the vertical wall portions 8a, 8b, 8c at right angles to the outer sides of the vertical wall portions 8a, 8b, 8c provided downward In this way, the microwave leaking from the gap between the other two vertical walls 8b and 8c and the bottom surface of the high-frequency supply chamber 3 can be cut off and suppressed in addition to the vertical wall 8a on the back plunger side. it can. The provision of the chokes 13a, 13b, and 13c is the same as the rectangular transmission waveguide in terms of structure and radio wave, and the TE 10 mode, which is the fundamental mode when microwaves are transmitted through the waveguide, is coupled. Will be transmitted. For this reason, there is almost no reflection loss and insertion loss, and the number of microwaves transmitted to the microwave radiation port side opposite to the vertical wall portion 8a is increased, and the directivity and coupling degree are further improved. Note that the lengths of the chokes 13b and 13c provided by welding on the vertical walls 8b and 8c are not required from the vertical wall portion 8a to the side 8d, and if they are at least ¼ wavelength or more, the directivity and the degree of coupling are further improved. is there.

実施例5の回転アンテナ8を図13に示す。なお、他の実施例と共通する点は説明を省略する。   A rotating antenna 8 of Example 5 is shown in FIG. Note that description of points in common with the other embodiments is omitted.

実施例5では実施例1の前記回転アンテナ8の平面部11を用いてこれと一体成型によりチョーク13を形成し製作コストを考慮したものである。そしてチョーク13を一体成型加工で製作するために、垂直壁部8a外方に上記平面部11を用いて樋状の凹部14を形成し、該凹部14の外方にチョーク13を構成している。樋状の凹部14を垂直壁部8aとチョーク13間に設けることで垂直壁部8aの板厚が見掛け上厚くなったと見なされるので、漏洩マイクロ波の減衰効果が増すという効果と、垂直壁部8aと対向する高周波供給室3底面間の隙間でのスパークや異常加熱を防止する効果がある。   In the fifth embodiment, the choke 13 is formed by integral molding with the flat portion 11 of the rotating antenna 8 of the first embodiment, and the manufacturing cost is taken into consideration. In order to manufacture the choke 13 by integral molding, a bowl-shaped concave portion 14 is formed on the outer side of the vertical wall portion 8 a by using the flat surface portion 11, and the choke 13 is configured outside the concave portion 14. . By providing the bowl-shaped recess 14 between the vertical wall 8a and the choke 13, it is considered that the plate thickness of the vertical wall 8a is apparently increased. This has the effect of preventing sparks and abnormal heating in the gap between the bottom surfaces of the high-frequency supply chamber 3 facing the 8a.

なお、実施例5の回転アンテナを一体成型する場合も垂直壁部8b、8cに実施例6と同様な一体成型のチョーク構成する構造とする。また、実施例1、5、6では回転アンテナ8は導波管5と同じ形状の放射路として垂直壁部外方にチョーク13を配しているが、放射路の形状はこの限りではなく、回転アンテナ8の放射路は従来例のホーン形状の放射路としてチョークを設けてもよい。この場合は導波管形状の放射路に比べ結合度と指向性の効果は劣るが、チョークが結合度と指向性の向上に寄与するために極端な効果の低下にはならないので構わない。   In addition, when the rotary antenna of Example 5 is integrally molded, the vertical wall portions 8b and 8c have a structure of integrally molded choke similar to that of Example 6. In the first, fifth, and sixth embodiments, the rotating antenna 8 has the choke 13 disposed outside the vertical wall as a radiation path having the same shape as the waveguide 5, but the shape of the radiation path is not limited to this. The radiation path of the rotating antenna 8 may be provided with a choke as a conventional horn-shaped radiation path. In this case, the effect of the degree of coupling and directivity is inferior to that of the waveguide-shaped radiation path. However, since the choke contributes to the improvement of the degree of coupling and directivity, it does not matter that the effect is not extremely reduced.

1 加熱室
2 被加熱物載置板
3 高周波供給室
4 マグネトロン
5 導波管
6 結合孔
7 内導体
8 回転アンテナ
8a 垂直壁部(バックプランジャー)
8b、8c、8e、8f 垂直壁部
9 誘電体軸
10 駆動部
11 平面部
12 被加熱物
13 チョーク
13−1 直方体空胴
13−2 13−3 直方体空胴面
13−3 切り欠き
13−4 スリット
13−5 コルゲート片
14 凹部
DESCRIPTION OF SYMBOLS 1 Heating chamber 2 To-be-heated object mounting board 3 High frequency supply chamber 4 Magnetron 5 Waveguide 6 Coupling hole 7 Inner conductor 8 Rotating antenna 8a Vertical wall part (back plunger)
8b, 8c, 8e, 8f Vertical wall portion 9 Dielectric shaft 10 Drive portion 11 Plane portion 12 Object to be heated 13 Choke 13-1 Cuboid cavity 13-2 13-3 Cuboid cavity surface 13-3 Notch 13-4 Slit 13-5 Corrugated piece 14 Recess

Claims (7)

被加熱物を収容する加熱室と、
該加熱室の底面に設けた誘電体からなる被加熱物載置板と、
該被加熱物載置板の下方で前記加熱室の底面略中央部に設けた高周波供給室と、
マイクロ波エネルギーを発生するマグネトロンと、
該マグネトロンを取り付ける導波管と、
前記高周波供給室底面中央部に設けた結合孔と、
該結合孔を貫通して前記高周波供給室内へ略垂直に臨んで設けた内導体と、
前記高周波供給室に収納し前記内導体の一端に連結した金属製の回転アンテナと、
前記内導体の前記導波管内で連結した誘電体軸と、該誘電体軸を回転駆動する駆動部とを備え、
前記回転アンテナは、
前記内導体と接続された略水平かつ略多角形の平面部と、
該平面部の外周の一部に下垂れるように設けられた垂直壁部と、
を有しており、
前記平面部の外周のうち、前記垂直壁部が設けられていない辺に対向する辺に設けられた垂直壁部には、電磁波の漏洩を抑制するチョーク構造が設けられていることを特徴とする高周波加熱装置。
A heating chamber for storing an object to be heated;
A heated object mounting plate made of a dielectric provided on the bottom surface of the heating chamber;
A high-frequency supply chamber provided at a substantially central portion of the bottom surface of the heating chamber below the heated object placing plate;
A magnetron that generates microwave energy;
A waveguide for mounting the magnetron;
A coupling hole provided in the center of the bottom surface of the high-frequency supply chamber;
An inner conductor that passes through the coupling hole and faces the high-frequency supply chamber substantially vertically;
A metal rotating antenna housed in the high-frequency supply chamber and connected to one end of the inner conductor;
A dielectric shaft connected in the waveguide of the inner conductor, and a drive unit that rotationally drives the dielectric shaft,
The rotating antenna is
A substantially horizontal and polygonal plane portion connected to the inner conductor;
A vertical wall provided to hang down from a part of the outer periphery of the flat part;
Have
A choke structure that suppresses leakage of electromagnetic waves is provided on a vertical wall provided on a side opposite to a side on which the vertical wall is not provided in the outer periphery of the flat part. High frequency heating device.
請求項1に記載の高周波加熱装置において、
前記回転アンテナの前記平面部は四角形であり、
前記平面部の1辺とそれを挟む2辺の計3辺に設けた垂直壁部により、一端を開口にした矩形の樋形状の放射路を構成する構造であって、
前記垂直壁部が設けられていない辺と対向する辺の垂直壁部外方にチョークを配したことを特徴とする高周波加熱装置。
In the high frequency heating apparatus according to claim 1,
The planar portion of the rotating antenna is square;
A vertical wall portion provided on a total of three sides, one side of the plane portion and two sides sandwiching it, constitutes a rectangular bowl-shaped radiation path with one end opened,
2. A high-frequency heating apparatus according to claim 1, wherein a choke is disposed outside the vertical wall portion opposite to the side where the vertical wall portion is not provided.
請求項2に記載の高周波加熱装置において、
前記垂直壁部が設けられていない回転アンテナの開口面に合わせ、前記垂直壁部を設けたホーン型の放射路を連結したことを特徴とする高周波加熱装置。
In the high frequency heating apparatus according to claim 2,
A high-frequency heating apparatus, wherein a horn-type radiation path provided with the vertical wall portion is connected to an opening surface of a rotating antenna not provided with the vertical wall portion.
請求項2または3に記載の高周波加熱装置において、
前記チョークは、1辺に切り欠きを設けたロ字型の直方体空胴であって、該切り欠きを前記高周波供給室底面と対向する前記直方体空胴面の前記垂直壁部側に設けたことを特徴とする高周波加熱装置。
In the high frequency heating device according to claim 2 or 3,
The choke is a rectangular parallelepiped cavity having a notch on one side, and the notch is provided on the vertical wall portion side of the rectangular cavity surface facing the bottom surface of the high-frequency supply chamber. A high-frequency heating device characterized by
請求項2から4何れか一項に記載の高周波加熱調理器において、
前記回転アンテナに設けた前記チョークの前記直方体空胴に複数のスリットを設け、複数のL字型コルゲート片を形成させたことを特徴とする高周波加熱装置。
In the high frequency heating cooking appliance as described in any one of Claim 2 to 4,
A high frequency heating apparatus, wherein a plurality of slits are provided in the rectangular parallelepiped cavity of the choke provided in the rotating antenna to form a plurality of L-shaped corrugated pieces.
請求項2から5何れか一項に記載の高周波加熱調理器において、
前記チョークを前記回転アンテナの複数の前記垂直壁部外方に設けたことを特徴とする高周波加熱装置。
In the high frequency heating cooking appliance according to any one of claims 2 to 5,
A high-frequency heating apparatus, wherein the choke is provided outside the plurality of vertical walls of the rotating antenna.
請求項2から6何れか一項に記載の高周波加熱調理器において、
放射路を形成する前記アンテナにおいて、前記開口面に対向した設けた垂直壁部の幅を1/2λ(λはマイクロ波の波長)からλ以下に、高さを1/2λ以下にしたことを特徴とする高周波加熱装置。
In the high frequency heating cooking appliance as described in any one of Claim 2 to 6,
In the antenna forming the radiation path, the width of the vertical wall portion provided facing the opening surface is reduced from 1 / 2λ (λ is the wavelength of the microwave) to λ or less, and the height is reduced to 1 / 2λ or less. A high-frequency heating device.
JP2013089909A 2013-04-23 2013-04-23 High-frequency wave heating device Pending JP2014216067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013089909A JP2014216067A (en) 2013-04-23 2013-04-23 High-frequency wave heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013089909A JP2014216067A (en) 2013-04-23 2013-04-23 High-frequency wave heating device

Publications (1)

Publication Number Publication Date
JP2014216067A true JP2014216067A (en) 2014-11-17

Family

ID=51941679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013089909A Pending JP2014216067A (en) 2013-04-23 2013-04-23 High-frequency wave heating device

Country Status (1)

Country Link
JP (1) JP2014216067A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107734734A (en) * 2016-08-23 2018-02-23 安徽天达谱申生物科技有限公司 A kind of thermostatically-controlled equipment of microwave synthesizer
CN108007124A (en) * 2017-12-30 2018-05-08 高俊 A kind of microwave drier
CN110140424A (en) * 2017-01-10 2019-08-16 松下电器产业株式会社 Magnetic distribution adjusts device and microwave heating equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107734734A (en) * 2016-08-23 2018-02-23 安徽天达谱申生物科技有限公司 A kind of thermostatically-controlled equipment of microwave synthesizer
CN110140424A (en) * 2017-01-10 2019-08-16 松下电器产业株式会社 Magnetic distribution adjusts device and microwave heating equipment
CN108007124A (en) * 2017-12-30 2018-05-08 高俊 A kind of microwave drier

Similar Documents

Publication Publication Date Title
US10356855B2 (en) Microwave heating apparatus
WO2013018358A1 (en) Microwave heating device
WO2013171990A1 (en) Microwave heating device
JP2000030853A (en) Microwave oven and waveguide system
JP2014135123A (en) Microwave heating device
KR19980017873A (en) Microwave Waveguide Structure
JP2014216067A (en) High-frequency wave heating device
JP2014032744A (en) Microwave heating device
JP5894864B2 (en) High frequency heating device
US2586754A (en) Radio-frequency system
JP2558877B2 (en) High frequency heating equipment
US20090032528A1 (en) Microwave heating applicator
JP7380221B2 (en) microwave processing equipment
JP2011124049A (en) Microwave heating device
JP2736793B2 (en) High frequency heating equipment
JP2015162321A (en) Radio frequency heating device
JP3931623B2 (en) High frequency heating device
KR100284500B1 (en) Waveguide system for electronic range
RU2145155C1 (en) Microwave oven
JP2013125670A (en) Microwave heating device
Dashti et al. Comparative investigation of dielectric image line-slot and microstrip-slot coupled rectangular dielectric resonator antenna
JP4759870B2 (en) High frequency heating device
KR20050032424A (en) Shielding apparatus for electro-magnetic wave of electric oven
JP3222964B2 (en) Vertical discontinuous leaky wave NRD guide
JP2014089942A (en) Microwave heating device