JP3931623B2 - High frequency heating device - Google Patents

High frequency heating device Download PDF

Info

Publication number
JP3931623B2
JP3931623B2 JP2001330428A JP2001330428A JP3931623B2 JP 3931623 B2 JP3931623 B2 JP 3931623B2 JP 2001330428 A JP2001330428 A JP 2001330428A JP 2001330428 A JP2001330428 A JP 2001330428A JP 3931623 B2 JP3931623 B2 JP 3931623B2
Authority
JP
Japan
Prior art keywords
frequency
radiation
opening
heating chamber
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001330428A
Other languages
Japanese (ja)
Other versions
JP2003133050A (en
Inventor
等隆 信江
浩二 吉野
明美 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001330428A priority Critical patent/JP3931623B2/en
Publication of JP2003133050A publication Critical patent/JP2003133050A/en
Application granted granted Critical
Publication of JP3931623B2 publication Critical patent/JP3931623B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Constitution Of High-Frequency Heating (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、被加熱物を誘電加熱する高周波加熱装置に関し、更に詳しくは加熱室内への高周波放射部の構成および放射制御に関するものである。
【0002】
【従来の技術】
高周波加熱装置は、被加熱物を直接的に加熱できるのでなべ釜を準備する必要がない簡便さでもって生活上の不可欠な機器になっている。しかしながら、被加熱物を収納する加熱室はその形状が変化させうる構造体ではないので、被加熱物の存在により加熱室の電気的な特性は変化する。この加熱室内の電気的特性変化は、加熱室内に供給する高周波を発生する高周波発生手段の特性や加熱室内の高周波分布に影響を与える。高周波発生手段が受ける影響は、発振周波数と発振出力の変化に代表される。また、高周波分布は被加熱物の形状やその物理特性の影響が相乗されて局所加熱が発生することがある。
【0003】
高周波加熱装置の理想的な特性は、高周波発生手段が発生する高周波エネルギを最大効率でもって被加熱物に供給することと被加熱物を均一に加熱することに集約される。
【0004】
高周波エネルギの高効率利用という視点では、高周波加熱装置に表示されている高周波出力は、その測定方法がJIS規格やIEC規格に規定され、高周波出力測定に用いられる被加熱物の量はそれぞれ水2000ccと1000ccであり、生活上一般的に加熱する被加熱物の量(約200cc〜400cc)と乖離している。そして、この被加熱物の量の影響により、一般的な被加熱物の量に対する高周波出力は装置に表示されている出力値の60〜80%程度の利用効率である。
【0005】
このような高周波特性を改善するための技術としては、高周波における整合技術が用いられる。そもそも高周波加熱装置は、規格に規定された被加熱物に対して高周波発生手段が発生した高周波エネルギを最大化して加熱室に伝送するために導波管内に金属ポストを突出させて整合状態の最適化が図られているのが一般的である。もちろん、この金属ポストの配設位置や形状を変更すれば任意の被加熱物に対して最適な整合状態を図ることができるが、金属ポストを移動させるためには複雑で高価な構造が要求され実用上の課題となっている。
【0006】
また、この整合用の金属ポストが加熱室内の高周波分布に影響を与えることも知られている。従って、整合用の金属ポストの配設は、高周波エネルギの有効利用と高周波分布の最適化との両立を図る中で実用的な構成が決定されている。
【0007】
一方、被加熱物を均一に加熱するという視点では、被加熱物を回転させる方式や加熱室内の高周波を攪拌させる方式などに加えて、加熱室内への高周波放射のさせ方に関する先行技術がある。
【0008】
高周波放射に関する従来技術としては、複数の高周波発生手段を備え、高周波発生手段が発生する高周波エネルギを略直方体形状の加熱室の異なる壁面にそれぞれ設けた放射部から放射する構成や単一の高周波発生手段に対して同一壁面に複数の放射部を備える構成のものがある。
【0009】
また放射部の構成としては、加熱室の壁面に設けた略矩形形状の開口を放射口とする構成や放射アンテナを設けてそれを回転させる構成のものがある。また、特異な放射部構成としては、特開2000−164341号公報に示されたように矩形形状の放射口にく字状の放射口を併設した構成がある。
【0010】
【発明が解決しようとする課題】
しかしながら、従来の放射部から放射される高周波はいわゆる垂直偏波の伝搬形態でありsin関数として解析的には表現されるものであった。この垂直偏波は被加熱物を収納する閉空間である加熱室を伝搬すると加熱室の壁面で位相差180°の略完全反射を繰り返し、その結果、加熱室内には反射波同士の合成によって特定の定在波が生じる。この定在波の分布は被加熱物の種類、量あるいは形状によって大きく変化するが、同一被加熱物においては被加熱物を回転動作させてもほとんど変化しないので、被加熱物の均一加熱の促進を図る上で限界があった。一方、電波攪拌手段の攪拌では大きな変化を生じさせることができるが、高周波発生手段との負荷整合状態も大きく変動するので高周波エネルギーの有効利用が低下する課題を有していた。
【0011】
本発明は上記課題を解決するもので、放射口の形状に工夫をして加熱室への放射分布を従来とは異なる放射特性として被加熱物を効率よくまた均一に高周波加熱する装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明の高周波加熱装置は上記課題を解決するために、被加熱物を収納する加熱室と、前記加熱室の底面に設けた複数のL字形状の放射口と、前記放射口に高周波を伝送する矩形形状の導波管とを備えた構成とし、さらには複数のL字形状の放射口は、矩形形状の導波管の管軸上の点を対称点とし、前記放射口の近傍の加熱室壁面に設け前記矩形形状の導波管の管軸方向に長手寸法の方向を配した開口部と、前記開口部における高周波インピーダンスを変化させるインピーダンス可変手段とを備えた構成としている。
【0013】
上記発明によれば、複数のL字状の放射口を点対称に配置することで各放射口を励振する電界の向き(または高周波電流の流れる方向)はそれぞれが異なる方向となり、各放射口から放射される高周波が放射口近傍で結合したり反発したりして放射口周辺に幅広い放射分布を形成する。この放射口近傍での振る舞いにより、被加熱物の量や形状の違いによる高周波発生手段への影響が緩和され様々な被加熱物に対して高周波発生手段を安定に動作させることができ、エネルギの利用効率を高めるとともに加熱の均一化を促進することができる。また、開口部のインピーダンスを変化させて放射口の近傍に形成した幅広い高周波分布を偏向させることができ、被加熱物を移動させることなく種類・量あるいは温度が異なる複数の被加熱物を同時仕上げすることができる。
【0014】
【発明の実施の形態】
請求項1に記載の発明は、被加熱物を収納する加熱室と、前記加熱室の底面に設けた複数のL字形状の放射口と、前記放射口に高周波を伝送する矩形形状の導波管と、前記放射口の近傍の加熱室壁面に設け前記矩形形状の導波管の管軸方向に長手寸法の方向を配した開口部と、前記開口部における高周波インピーダンスを変化させるインピーダンス可変手段とを備えたものであり、開口部のインピーダンスを変化させて放射口の近傍に形成した幅広い高周波分布を偏向させることができ、被加熱物を移動させることなく種類・量あるいは温度が異なる複数の被加熱物を同時仕上げすることができる。
【0015】
請求項2に記載の発明は、被加熱物を収納する加熱室と、前記加熱室の底面に設けた複数のL字形状の放射口と、前記放射口に高周波を伝送する矩形形状の導波管と、前記放射口の上方に設けた略円形形状の金属板からなる回転体と、前記放射口の近傍の加熱室底壁面に設け前記矩形形状の導波管の管軸方向に長手寸法の方向を配した開口部と、前記開口部における高周波インピーダンスを変化させるインピーダンス可変手段とを備えたものであり、回転体からの放射分布を偏向させることにより複数の被加熱物や偏平な被加熱物の加熱の均一化を促進できる。
【0016】
請求項3に記載の発明は、特に、請求項1または2記載の複数のL字形状の放射口は、矩形形状の導波管の管軸上の点を対称点とした構成からなるものであり、これにより各放射口を励振する電界の向きがそれぞれ異なる方向となり、各放射口から放射される高周波が放射口近傍で結合したり反発したりして放射口周辺に幅広い放射分布を形成できる。この放射口近傍での振る舞いにより、被加熱物の量や形状の違いによる高周波発生手段への影響が緩和され様々な被加熱物に対して高周波発生手段を安定に動作させることができ、エネルギの利用効率を高めるとともに加熱の均一化を促進することができる。
【0017】
請求項4に記載の発明は、特に、請求項3記載の対称点の位置に高周波発生手段の出力部を配設したものであり、これにより各放射口を励振する電界の向きを確実に異ならしめることができ、さらには高周波発生手段の出力部の強い電磁波エネルギーで放射口を励振するので放射分布をより広範囲にできるとともに導波管をコンパクトな構成にできる。
【0018】
請求項5の発明は、特に、請求項2記載の複数のL字形状の放射口は、矩形形状の導波管の管軸上の点を対称点とし、回転体は前記対称点を回転の中心とした構成からなり、これにより各放射口を励振する電界の向きがそれぞれ異なる方向となり、各放射口から放射される高周波が放射口近傍で結合したり反発したりして放射口周辺に幅広い放射分布を形成できる。そして回転体がこの放射分布を保護することで、被加熱物の量や形状の違いによる高周波発生手段への影響が緩和され様々な被加熱物に対して高周波発生手段を安定に動作させることができ、エネルギの利用効率を高めるとともに加熱の均一化を促進することができる。
【0019】
請求項6に記載の発明は、特に、請求項1または2記載の複数の放射口の矩形形状の導波管の管軸方向における最大間隔は、この導波管を伝送する高周波の伝送波長の略1/2としたものであり、各放射口を横切る高周波電界の方向を相反する方向に規定させることができ放射方向の全方向化を確実に図ることができる。
【0020】
請求項7に記載の発明は、特に、請求項1または2記載の複数の放射口は矩形形状の導波管の管軸を横切らない構成としたものであり、高周波発生手段側に位置する放射口からの放射エネルギを抑制し各放射口の高周波励振を保証させることができる。
【0021】
請求項8に記載の発明は、特に、請求項1または2記載の開口部は矩形形状の導波管の管軸を軸対称として複数配設したものであり、開口部のインピーダンス変化に対応して変化する高周波分布の偏向方向の識別を単純化し異なる被加熱物の同時加熱における利便性を高めることができる。
【0022】
請求項9に記載の発明は、特に、請求項1または2記載のインピーダンス可変手段は、開口部を一端とし他端が閉じられた溝部と、前記溝部内に設けた板状の可動板と、前記可動板を回転あるいはスライドさせる可動手段とからなるものであり、これにより高周波をリークすることなく開口部のインピーダンスを広範囲に変化させることができる。
【0023】
【実施例】
以下、本発明の実施例について図面を用いて説明する。
【0024】
(実施例1)
図1は本発明の実施例1を示す高周波加熱装置の正面断面構成図、図2は図1のA−A‘矢視断面図、図3は図1のインピーダンス可変手段の制御例を示す正面断面構成図、図4は図1の放射口による高周波電界分布、図5は図1のインピーダンス可変手段の拡大構成図である。
【0025】
図において、10は被加熱物を収納する加熱室、11は断面が略矩形形状の導波管であり一端には高周波発生手段(図示していない)を装着する挿入穴12を備えている。また導波管11の他端には加熱室10の底壁面13に設けた放射口14a,14bを配置している。15は被加熱物を載置する誘電体材料で構成した載置皿、16a,16bは加熱室の底壁面13に設けた開口部、17a,17bはそれぞれ開口部16a,16bにおける空間インピーダンスを変化させるインピーダンス可変手段、18は加熱室10内に被加熱物を出し入れする開閉扉である。
【0026】
放射口14a,14bは導波管11の高周波発生手段を装着する側から遠い側の導波管端面19とこの端面19から導波管11を伝送する周波数の伝送波長の略1/2の距離だけ離れた位置との間の壁面(導波管のH面)に配置している。放射口14a,14bはそれぞれL字形状の開口から構成し点対称に配置している。点対称の位置は導波管11の管軸20上であり図2において×印21で示す。各放射口14a,14bの開口は管軸20に対して平行な部分と垂直な部分とを有し、かつ開口は管軸20を横切らないように配置している。
【0027】
また、開口部16a,16bの長手寸法の方向は、矩形形状の導波管11の管軸方向とし、さらには矩形形状の導波管11の管軸を軸対称として配設している。
【0028】
次に上記構成の主要動作について説明する。導波管壁面には図2において矢印22〜25で示すような高周波電流が流れ、L字形状の放射口14a,14bには同様に矢印22〜25で示す方向の高周波電界が生じる。一つのL字形状の放射口14aにおいて開口を横切る高周波電界22と23は略直交するとともに導波管11内を伝送する高周波の位相としては略90度の位相差に相当している。放射口14bも同様である。そしてこのような高周波電界によって励振された放射口14aおよび14bから放射される高周波により、放射口の周辺には図4に示すような高周波電界分布が生じる。すなわち、電界の強い領域がL字状の放射口の点対称位置に現れ、導波管11の管軸に対して垂直方向に高周波が伝搬していく分布となる。点対称位置が強い電界強度になるのは各放射口から放射される高周波が放射口近傍で結合することによるものである。そして各放射口から放射される高周波が放射口近傍で結合したり反発したりして放射口周辺に幅広い放射分布を形成している。この放射口近傍での振る舞いにより、被加熱物の量や形状の違いによる高周波発生手段への影響が緩和され様々な範囲の被加熱物に対して高周波発生手段を安定に動作させることができ、エネルギの利用効率を高めることができる。また、このような放射口を加熱室の底面に設け、放射口の上方の近傍に被加熱物を載置する構成とすることによりこの放射口により現出される高周波分布によって被加熱物を包み込むことにより高いエネルギ利用効率でもって高周波加熱を行うことができる。
【0029】
また、開口部16a,16bの長手寸法の方向は、矩形形状の導波管11の管軸方向とすることにより、開口部のインピーダンス変化による放射口からの高周波の放射方向をより強く変化させることができる。さらには矩形形状の導波管11の管軸を軸対称として配設することにより、開口部のインピーダンス変化に対応して変化する高周波分布の偏向方向の識別を単純化し異なる被加熱物の同時加熱における利便性を高めることができる。
【0030】
なお、図4において、高周波電界分布が導波管の管軸に対して対称になっていない理由は、高周波発生手段側の放射口からの放射エネルギが強いからであり、この放射口の開口形状を小さくすることで対称性を改善することが可能となる。
【0031】
また、本実施例の具体的な構成寸法としては、導波管11の幅寸法が80mm、L字形状の開口の幅寸法が20mmである。
【0032】
次に図5を用いてインピーダンス可変手段の構成と作用を説明する。図5において、インピーダンス可変手段50は、金属部材で構成した箱型部51を本体とし、加熱室壁面に組立実装することで溝部を形成する構成としている。その箱型部51内には、可動板である板状構造の回転板52を設けている。この回転板52の両端には回転板52を回転させるための回転軸53、54を設け、回転軸53は箱型部51の壁面に設けた孔に挿入しその孔で回転支持している。一方、回転軸54には回転板52を回転駆動する手段であるステッピングモータ55(可動手段)の出力シャフトと連結させている。56は回転軸54に設けた回転角度検出のための遮光部であり、回転角度検出手段としてフォトインタラプタ(図示していない)を用いている。57〜60は加熱室実装用フランジであり、加熱室壁面にスポット溶接組立する。61は回転板52を箱型部51内に実装するための孔である。箱型部51の具体的な構成寸法としては、幅が80mm、長さがLa+Lb、高さが20mmである。LaおよびLb寸法は回転板52の中心から箱型部51のそれぞれの端面までの長さである。このような構成のインピーダンス可変手段を加熱室に実装する場合、箱型部52のLa寸法側の所定位置に開口部62(図2における16a,16b)を配置する。この結果、箱型部51と加熱室壁面で形成される溝部の終端は図5において箱型部51を形成する壁面63である。回転板52の支持角度は回転板52の幅広面52aが壁面63に対して略平行の状態を0度と規定する。
【0033】
回転板52は、200℃以上の耐熱温度を有し装置が使用する周波数帯で低誘電損失の特性を有する樹脂材料あるいは無機材料の非金属材料を基材とし、その基材を所定の板厚さにそれぞれ成形あるいは焼成成形加工して構成している。次にインピーダンス可変手段50の動作、作用を説明する。インピーダンス可変手段は、La=30mm、Lb=20mmの構成とすることで開口部62における電圧反射係数S11の位相値を略±180度から略−30度の範囲で可変させることができる。すなわちこの場合、回転板52を回転させることで開口部62には容量性リアクタンス成分を変化させたインピーダンスを形成できる。また、La=50mm、Lb=20mmの構成とすることで開口部における電圧反射係数S11の位相値を略+90度から±180度を通って略−135度の範囲に可変させることができる。すなわち、この場合、回転板52を回転させることで開口部62には誘導性リアクタンス成分(位相値範囲:+90度から±180度)と容量性リアクタンス成分(位相値範囲:±180度から略−135度)値を存在させることができる。さらにLa=70mm、Lb=20mmの構成とすることで開口部62における電圧反射係数S11の位相値を略+0度から+90度を通って略±180度の範囲に可変させることができる。すなわち、この場合、回転板52を回転させることで開口部62には誘導性リアクタンス成分が変化するインピーダンスを存在させることができる。
【0034】
そして開口部における電圧反射係数の位相値が略±180度、すなわち開口部のインピーダンスが略零の場合は、開口部を金属壁面と同様の作用にさせることができる。
【0035】
また回転板52の支持角度を変化させると、開口部62のインピーダンスは変化し開口部62における高周波の入射波と反射波との位相差を変化させることができる。加熱室10の金属壁面での高周波の入射波と反射波との位相差は180度である。一方金属壁面に設けた開口部における入射波と反射波との位相差は、開口部のインピーダンス値が零の場合は180度、インピーダンス値が無限大の場合は0度、誘導性リアクタンスの場合は入射波に対して反射波の位相が遅れ、容量性リアクタンスの場合は位相が進む。入射波と反射波との位相の変化に伴って加熱室の見掛け上の大きさが変化する。誘導性リアクタンスの場合は電波的作用より加熱室の大きさが見掛け上大きくなり、一方容量性リアクタンスの場合は小さくなる。これは、たとえば加熱室内に収納した被加熱物と放射口との見掛け上の距離を変化させるようなものである。この現象を利用することで被加熱物の平面上の加熱領域を可変したり、被加熱物の高さ方向の加熱領域を可変させることができ、被加熱物を移動させることなく被加熱物の加熱の均一化を図ることができ、たとえば種類・量あるいは温度が異なる複数の被加熱物を同時仕上げすることができる。
【0036】
また、開口部を図2に示すように配設しそれぞれの開口部に対応してインピーダンス可変手段の可動板を回転制御することで加熱室内の高周波分布を加熱室の上下方向や左右方向に偏向させることができる。図3はこの一例を示すものでインピーダンス可変手段17a,17bの構成部材である回転板26a,26bの支持角度をそれぞれ0度、90度としたものであり、これにより開口部16bにおける空間インピーダンスを略無限大にする。この結果、放射分布を開口部16a側に偏向させることができる。これらの作用現象を利用することで被加熱物を回転させることなく被加熱物の加熱領域を可変制御をして被加熱物を均一に加熱させることができる。
【0037】
なお、上記説明において可動板は回転させる構成を用いたが、可動板を溝部の終端に平行にスライドさせる構成でも構わない。
【0038】
(実施例2)
次に本発明の実施例2について図6を用いて説明する。実施例2が実施例1と相違する点は、高周波発生手段をL字形状の放射口の点対称の位置に設けた構成である。
【0039】
すなわち、図において70は矩形形状の導波管、71は高周波発生手段の出力部を挿入実装する挿入穴である。この挿入穴71はL字形状の放射口72a,72bの点対称位置に相当させている。
【0040】
この構成により各放射口を励振する電界の向きを確実に異ならしめることができ、さらには高周波発生手段の出力部の強い電磁波エネルギーで放射口を励振するので放射分布をより広範囲にできるとともに導波管をコンパクトな構成にできる。
【0041】
(実施例3)
次に本発明の実施例3について図7および図8を用いて説明する。実施例3が実施例1および実施例2と相違する点は、加熱室壁面に設けたL字形状の放射口の上方に回転体を配設した構成である。なお、実施例1と同一部材または同一相当部材は同一番号で示し説明を省略する。
【0042】
すなわち、図8において、矩形形状の導波管11の終端側にはL字形状の開口を有する放射口14a,14bを導波管11の管軸上に位置する点を点対称として配設している。この複数の放射口14a,14bの上方には回転体である略円形形状の金属板73を設けている。この金属板73は複数の放射口の点対称位置を回転の中心として回転駆動する構成としている。すなわち、金属板73の略円形形状の中心部に接続した金属支柱74と、この金属支柱74を支える低誘電損失材料で構成した支持部75と、金属支柱74に嵌合する低誘電損失材料で構成した出力軸76を備えたモータ77とを設けている。また回転体である金属板73には導波管11に設けたL字形状の開口と同様の開口78a,78bを配設している。
【0043】
このような構成により、金属性の回転体によりL字形状の放射口によって形成させた放射分布を保護しながら回転体から被加熱物側に高周波を放射することで被加熱物の加熱の均一化を促進することができる。
【0044】
また、実施例1と同様に、放射口の近傍の加熱室底壁面に設けた開口部16a,16bと、開口部16a,16bにおける高周波インピーダンスをそれぞれ変化させるインピーダンス可変手段17a,17bとを備えることにより、回転体からの放射分布を偏向させることにより複数の被加熱物や偏平な被加熱物の加熱の均一化を促進できる。
【0045】
なお、回転体である金属板73の形状は複数のL字形状の開口からなる放射口によって現出される放射分布を許可する構成であればよく、たとえば略長方形状や扇型形状でも構わない。また、金属板73は偏心回転駆動させてもよい。また、金属板73に設けた開口の形状はL字形状に限るものではなく、たとえば矩形形状の長手方向を直交させて複数配設しても構わない。
【0046】
以上において、各放射口のコーナー部は適当に丸く加工するのが加工上およびエッジ部によるスパーク発生抑止の観点で望ましい。また開口部のインピーダンスの変化範囲は上記説明内容に限定されるものではなく、たとえば回転板の支持角度が90度の場合に開口部における空間インピーダンスを略零とすることで誘導成分のみの可変範囲としたり、回転板の支持角度が略45度の場合に開口部における空間インピーダンスを略零とすることで誘導成分と容量成分の両方を含む可変範囲に設定したりすることができる。
【0047】
【発明の効果】
以上のように本発明によれば、複数のL字状の放射口を点対称に配置することで各放射口を励振する電界の向きはそれぞれが異なる方向となり、各放射口から放射される高周波が放射口近傍で結合したり反発したりして放射口周辺に幅広い放射分布を形成する。そしてこのような放射口を加熱室の底面に設けその上方近傍に被加熱物を配置させる構成により、被加熱物の量や形状の違いによる高周波発生手段への影響が緩和され様々な被加熱物に対して高周波発生手段を安定に動作させることができ、エネルギの利用効率を高めることができる。
【0048】
また、加熱室底面に設けた開口部と、前記開口部における高周波インピーダンスを変化させるインピーダンス可変手段とを備えることで、開口部のインピーダンスを変化させて放射口周辺に形成される高周波分布を偏向を変化させ被加熱物を移動させることなく均一な加熱を促進させることができる。
【図面の簡単な説明】
【図1】 本発明の実施例1の高周波加熱装置の正面断面図
【図2】 同高周波加熱装置のA−A‘断面矢視図
【図3】 同高周波加熱装置のインピーダンス可変手段の制御例を示す正面断面図
【図4】 同高周波加熱装置の高周波電界分布図
【図5】 同高周波加熱装置のインピーダンス可変手段の構成図
【図6】 本発明の実施例2の高周波加熱装置の断面構成図
【図7】 本発明の実施例3の高周波加熱装置の正面断面図
【図8】 同高周波加熱装置のB−B‘断面矢視図
【符号の説明】
10 加熱室
11,70 矩形形状の導波管
13 加熱室の底面
14a,14b,72a,72b L字形状の放射口
16a,16b 開口部
17a,17b,50 インピーダンス可変手段
20 管軸
21、71 点対称位置
26a,26b,52 回転板(可動板)
73 回転体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-frequency heating apparatus that dielectrically heats an object to be heated, and more particularly to the configuration and radiation control of a high-frequency radiation unit in a heating chamber.
[0002]
[Prior art]
The high-frequency heating device is an indispensable device in daily life because it can directly heat an object to be heated and does not require preparation of a pan. However, since the heating chamber that houses the object to be heated is not a structure whose shape can be changed, the electrical characteristics of the heating chamber change depending on the presence of the object to be heated. This change in electrical characteristics in the heating chamber affects the characteristics of the high-frequency generating means that generates the high frequency supplied into the heating chamber and the high-frequency distribution in the heating chamber. The influence received by the high frequency generation means is represented by changes in the oscillation frequency and the oscillation output. In addition, the high-frequency distribution may cause local heating due to a synergistic effect of the shape of an object to be heated and its physical characteristics.
[0003]
The ideal characteristics of the high-frequency heating device are summarized in that the high-frequency energy generated by the high-frequency generating means is supplied to the object to be heated with maximum efficiency and the object to be heated is uniformly heated.
[0004]
From the viewpoint of high-efficiency utilization of high-frequency energy, the measurement method of the high-frequency output displayed on the high-frequency heating device is stipulated in the JIS standard and IEC standard, and the amount of the object to be heated used for high-frequency output measurement is 2000 cc of water. And 1000 cc, which is different from the amount of the object to be heated generally (about 200 cc to 400 cc) in daily life. Due to the influence of the amount of the object to be heated, the high-frequency output with respect to the general amount of the object to be heated has a utilization efficiency of about 60 to 80% of the output value displayed on the apparatus.
[0005]
As a technique for improving such a high frequency characteristic, a matching technique at a high frequency is used. In the first place, the high-frequency heating device maximizes the high-frequency energy generated by the high-frequency generating means for the object to be heated specified in the standard, and transmits the metal post into the waveguide to optimize the matching state. In general, it is designed. Of course, if the arrangement position and shape of the metal post are changed, an optimum alignment state can be achieved for any object to be heated. However, in order to move the metal post, a complicated and expensive structure is required. It has become a practical issue.
[0006]
It is also known that this matching metal post affects the high frequency distribution in the heating chamber. Accordingly, the arrangement of the metal post for matching has been determined to be a practical configuration while achieving both effective use of high-frequency energy and optimization of the high-frequency distribution.
[0007]
On the other hand, from the viewpoint of uniformly heating an object to be heated, there is a prior art relating to a method of causing high-frequency radiation into the heating chamber, in addition to a method of rotating the object to be heated and a method of stirring the high frequency in the heating chamber.
[0008]
Conventional techniques related to high-frequency radiation include a configuration in which a plurality of high-frequency generation means are provided, and the high-frequency energy generated by the high-frequency generation means is radiated from radiation sections provided on different wall surfaces of a substantially rectangular parallelepiped heating chamber. There exists a thing of a structure provided with several radiation | emission part on the same wall surface with respect to a means.
[0009]
As a configuration of the radiating unit, there are a configuration in which a substantially rectangular opening provided on the wall surface of the heating chamber is used as a radiating port and a configuration in which a radiating antenna is provided and rotated. Moreover, as a specific radiation | emission part structure, there exists a structure which added the square-shaped radiation | emission opening | mouth to the rectangular-shaped radiation | emission opening | mouth as shown by Unexamined-Japanese-Patent No. 2000-164341.
[0010]
[Problems to be solved by the invention]
However, the high frequency radiated from the conventional radiating section is a so-called vertical polarization propagation form and is analytically expressed as a sin function. When this vertically polarized wave propagates through the heating chamber, which is a closed space that houses the object to be heated, it repeats almost perfect reflection with a phase difference of 180 ° on the wall surface of the heating chamber. As a result, the heating chamber is identified by combining reflected waves. The standing wave is generated. This standing wave distribution varies greatly depending on the type, amount, or shape of the object to be heated, but in the same object to be heated, it hardly changes even if the object to be heated is rotated, so it promotes uniform heating of the object to be heated. There was a limit in planning. On the other hand, the agitation of the radio wave agitating means can cause a great change, but the load matching state with the high frequency generating means also greatly fluctuates, so that there is a problem that the effective utilization of the high frequency energy is reduced.
[0011]
The present invention solves the above problems, and provides a device for efficiently and uniformly high-frequency heating an object to be heated by devising the shape of the radiant port so that the radiation distribution to the heating chamber has a radiation characteristic different from the conventional one. For the purpose.
[0012]
[Means for Solving the Problems]
In order to solve the above-described problem, the high-frequency heating device of the present invention transmits a high frequency to a heating chamber for storing an object to be heated, a plurality of L-shaped radiant ports provided on the bottom surface of the heating chamber, and the radiant port. And a plurality of L-shaped radiating ports, with a point on the tube axis of the rectangular waveguide as a symmetric point, and heating in the vicinity of the radiating port. An opening provided on the wall of the chamber and having a longitudinal dimension in the tube axis direction of the rectangular waveguide, and an impedance variable means for changing the high-frequency impedance in the opening are provided .
[0013]
According to the above invention, by arranging a plurality of L-shaped radiation ports symmetrically, the direction of the electric field exciting each radiation port (or the direction in which the high-frequency current flows) is different from each other. The radiated high frequency is combined or repelled in the vicinity of the radiant aperture to form a wide radiation distribution around the radiant aperture. This behavior near the radiation port mitigates the influence on the high-frequency generating means due to the difference in the amount and shape of the object to be heated, and allows the high-frequency generating means to operate stably for various objects to be heated. It is possible to enhance the utilization efficiency and promote uniform heating. In addition, by changing the impedance of the opening, it is possible to deflect a wide range of high-frequency distribution formed in the vicinity of the radiation port, and simultaneously finish multiple heated objects of different types, amounts, or temperatures without moving the heated object can do.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 is a heating chamber for storing an object to be heated, a plurality of L-shaped radiation ports provided on the bottom surface of the heating chamber, and a rectangular waveguide for transmitting a high frequency to the radiation port. A tube, an opening provided on a wall surface of the heating chamber in the vicinity of the radiation port, the opening having a longitudinal dimension in the tube axis direction of the rectangular waveguide, and impedance varying means for changing a high-frequency impedance in the opening Can change the impedance of the opening and deflect a wide range of high-frequency distribution formed in the vicinity of the radiating port. The objects to be heated can be finished simultaneously.
[0015]
According to a second aspect of the present invention, there is provided a heating chamber for storing an object to be heated, a plurality of L-shaped radiation ports provided on the bottom surface of the heating chamber, and a rectangular waveguide for transmitting a high frequency to the radiation port. A tube, a rotating body made of a substantially circular metal plate provided above the radiation port, and a longitudinal dimension in the tube axis direction of the rectangular waveguide provided on the heating chamber bottom wall surface in the vicinity of the radiation port. A plurality of objects to be heated and flat objects to be heated by deflecting a radiation distribution from a rotating body, comprising an opening having a direction and impedance changing means for changing a high-frequency impedance in the opening. The heating can be made uniform.
[0016]
In the invention described in claim 3, in particular, the plurality of L-shaped radiating ports according to claim 1 or 2 have a configuration in which a point on the tube axis of a rectangular waveguide is a symmetric point. With this, the direction of the electric field that excites each radiation port becomes a different direction, and high-frequency radiation radiated from each radiation port can be combined or repelled near the radiation port to form a wide radiation distribution around the radiation port. . This behavior near the radiation port mitigates the influence on the high-frequency generating means due to the difference in the amount and shape of the object to be heated, and allows the high-frequency generating means to operate stably for various objects to be heated. It is possible to enhance the utilization efficiency and promote uniform heating.
[0017]
The invention described in claim 4 is the one in which the output part of the high-frequency generating means is disposed at the position of the symmetry point described in claim 3 in particular, so that the direction of the electric field for exciting each radiation port is surely different. Furthermore, since the radiation opening is excited by strong electromagnetic wave energy at the output part of the high frequency generating means, the radiation distribution can be made wider and the waveguide can be made compact.
[0018]
In the invention of claim 5 , in particular, the plurality of L-shaped radiation ports of claim 2 have a point on the tube axis of the rectangular waveguide as a symmetry point, and the rotating body rotates the symmetry point. Consists of a central configuration, so that the direction of the electric field that excites each radiation port becomes a different direction, and the high frequency radiated from each radiation port is combined and repelled in the vicinity of the radiation port so that it is wide around the radiation port. A radiation distribution can be formed. And since the rotating body protects this radiation distribution, the influence on the high-frequency generating means due to the difference in the amount and shape of the object to be heated is alleviated, and the high-frequency generating means can be operated stably with respect to various objects to be heated. It is possible to increase the efficiency of energy use and promote uniform heating.
[0019]
In the invention according to claim 6 , in particular, the maximum interval in the tube axis direction of the rectangular waveguide of the plurality of radiation ports according to claim 1 or 2 is a high-frequency transmission wavelength transmitted through the waveguide. The direction of the high-frequency electric field that crosses each radiation port can be defined in opposite directions, and the omnidirectional radiation direction can be reliably achieved.
[0020]
In the invention described in claim 7 , in particular, the plurality of radiation ports according to claim 1 or 2 are configured so as not to cross the tube axis of the rectangular waveguide, and the radiation located on the high frequency generating means side is provided. The radiation energy from the mouth can be suppressed and high frequency excitation of each radiation mouth can be guaranteed.
[0021]
In the invention described in claim 8 , in particular, a plurality of openings according to claim 1 or 2 are arranged with the tube axis of the rectangular waveguide being axially symmetric, corresponding to impedance changes of the openings. Therefore, it is possible to simplify the identification of the deflection direction of the high-frequency distribution that changes and to improve the convenience in simultaneous heating of different objects to be heated.
[0022]
In the ninth aspect of the present invention, in particular, the impedance variable means according to the first or second aspect includes a groove portion having an opening as one end and the other end closed, a plate-like movable plate provided in the groove portion, The movable plate comprises movable means for rotating or sliding the movable plate, whereby the impedance of the opening can be changed over a wide range without leaking high frequency.
[0023]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0024]
Example 1
1 is a front cross-sectional configuration diagram of a high-frequency heating device showing Embodiment 1 of the present invention, FIG. 2 is a cross-sectional view taken along the line AA ′ in FIG. 1, and FIG. 3 is a front view showing a control example of the impedance variable means in FIG. 4 is a cross-sectional configuration diagram, FIG. 4 is a high-frequency electric field distribution by the radiation port of FIG. 1, and FIG. 5 is an enlarged configuration diagram of the impedance variable means of FIG.
[0025]
In the figure, 10 is a heating chamber for storing an object to be heated, 11 is a waveguide having a substantially rectangular cross section, and is provided with an insertion hole 12 for mounting a high frequency generating means (not shown) at one end. Further, radiation ports 14 a and 14 b provided on the bottom wall surface 13 of the heating chamber 10 are disposed at the other end of the waveguide 11. 15 is a placing plate made of a dielectric material on which the object to be heated is placed, 16a and 16b are openings provided on the bottom wall surface 13 of the heating chamber, and 17a and 17b are spatial impedances at the openings 16a and 16b, respectively. An impedance varying means 18 is an open / close door for taking an object into and out of the heating chamber 10.
[0026]
The radiating ports 14a and 14b have a waveguide end face 19 on the side far from the side where the high frequency generating means of the waveguide 11 is mounted, and a distance of about ½ of the transmission wavelength of the frequency transmitted from the end face 19 to the waveguide 11. It is arrange | positioned on the wall surface (H surface of a waveguide) between the only distance positions. The radiating ports 14a and 14b are each composed of an L-shaped opening and are arranged point-symmetrically. The point-symmetrical position is on the tube axis 20 of the waveguide 11 and is indicated by an x mark 21 in FIG. The openings of the radiation ports 14 a and 14 b have a portion parallel to the tube axis 20 and a portion perpendicular to the tube axis 20, and the openings are arranged so as not to cross the tube axis 20.
[0027]
Further, the longitudinal direction of the openings 16a and 16b is set to the tube axis direction of the rectangular waveguide 11, and the tube axis of the rectangular waveguide 11 is arranged to be axially symmetrical.
[0028]
Next, the main operation of the above configuration will be described. A high-frequency current as indicated by arrows 22 to 25 in FIG. 2 flows through the waveguide wall surface, and a high-frequency electric field in the direction indicated by arrows 22 to 25 is similarly generated at the L-shaped radiation openings 14a and 14b. The high-frequency electric fields 22 and 23 crossing the opening in one L-shaped radiation port 14a are substantially orthogonal to each other, and the phase of the high frequency transmitted through the waveguide 11 corresponds to a phase difference of about 90 degrees. The same applies to the radiation port 14b. Then, due to the high frequency radiated from the radiation ports 14a and 14b excited by such a high frequency electric field, a high frequency electric field distribution as shown in FIG. 4 is generated around the radiation port. That is, the region where the electric field is strong appears at the point-symmetrical position of the L-shaped radiation port, and the high-frequency wave propagates in the direction perpendicular to the tube axis of the waveguide 11. The point where the point symmetry position has a strong electric field strength is due to the fact that the high frequency radiated from each radiation port is coupled in the vicinity of the radiation port. And the high frequency radiated | emitted from each radiation aperture couple | bonds or repels in the radiation aperture vicinity, and forms wide radiation distribution around a radiation aperture. Due to the behavior near the radiation port, the influence on the high-frequency generating means due to the difference in the amount and shape of the object to be heated is mitigated, and the high-frequency generating means can be stably operated with respect to the object to be heated in various ranges. Energy utilization efficiency can be increased. In addition, by providing such a radiation port on the bottom surface of the heating chamber and placing the object to be heated in the vicinity of the upper part of the radiation port, the object to be heated is encased by the high-frequency distribution produced by the radiation port. Thus, high-frequency heating can be performed with high energy utilization efficiency.
[0029]
Further, the direction of the longitudinal dimension of the openings 16a and 16b is set to the tube axis direction of the rectangular waveguide 11, so that the high-frequency radiation direction from the radiation port due to the impedance change of the opening is changed more strongly. Can do. Further, by arranging the tube axis of the rectangular waveguide 11 to be axially symmetric, it is possible to simplify the identification of the deflection direction of the high-frequency distribution that changes corresponding to the impedance change of the opening, and simultaneously heat different objects to be heated. Convenience can be improved.
[0030]
In FIG. 4, the reason why the high-frequency electric field distribution is not symmetric with respect to the tube axis of the waveguide is that the radiation energy from the radiation port on the high-frequency generating means side is strong, and the opening shape of this radiation port It is possible to improve the symmetry by reducing.
[0031]
Further, as specific configuration dimensions of the present embodiment, the width dimension of the waveguide 11 is 80 mm, and the width dimension of the L-shaped opening is 20 mm.
[0032]
Next, the configuration and operation of the impedance varying means will be described with reference to FIG. In FIG. 5, the impedance varying means 50 has a box-shaped portion 51 made of a metal member as a main body, and is configured to form a groove portion by being assembled and mounted on the heating chamber wall surface. In the box-shaped part 51, a rotating plate 52 having a plate-like structure as a movable plate is provided. Rotating shafts 53 and 54 for rotating the rotating plate 52 are provided at both ends of the rotating plate 52, and the rotating shaft 53 is inserted into a hole provided in the wall surface of the box-shaped portion 51 and is rotatably supported by the hole. On the other hand, the rotary shaft 54 is connected to the output shaft of a stepping motor 55 (movable means) which is means for rotating the rotary plate 52. Reference numeral 56 denotes a light shielding portion for detecting the rotation angle provided on the rotation shaft 54, and a photo interrupter (not shown) is used as the rotation angle detecting means. Reference numerals 57 to 60 are heating chamber mounting flanges which are spot-welded and assembled to the heating chamber wall surface. 61 is a hole for mounting the rotating plate 52 in the box-shaped part 51. As specific dimensions of the box-shaped part 51, the width is 80 mm, the length is La + Lb, and the height is 20 mm. La and Lb dimensions are the lengths from the center of the rotating plate 52 to the respective end faces of the box-shaped part 51. When the impedance variable means having such a configuration is mounted in the heating chamber, the opening 62 (16a and 16b in FIG. 2) is disposed at a predetermined position on the La dimension side of the box-shaped portion 52. As a result, the end of the groove portion formed by the box portion 51 and the heating chamber wall surface is a wall surface 63 forming the box portion 51 in FIG. The support angle of the rotating plate 52 defines the state where the wide surface 52a of the rotating plate 52 is substantially parallel to the wall surface 63 as 0 degree.
[0033]
The rotating plate 52 has a heat resistant temperature of 200 ° C. or higher and a non-metallic material of a resin material or an inorganic material having a low dielectric loss characteristic in a frequency band used by the apparatus, and the base material has a predetermined plate thickness. In addition, each is formed or fired. Next, the operation and action of the impedance varying means 50 will be described. The impedance variable means can be configured such that La = 30 mm and Lb = 20 mm to vary the phase value of the voltage reflection coefficient S11 at the opening 62 in a range of approximately ± 180 degrees to approximately −30 degrees. That is, in this case, by rotating the rotating plate 52, an impedance in which the capacitive reactance component is changed can be formed in the opening 62. Further, by adopting the configuration of La = 50 mm and Lb = 20 mm, the phase value of the voltage reflection coefficient S11 at the opening can be varied from approximately +90 degrees to ± 180 degrees through approximately −135 degrees. That is, in this case, when the rotating plate 52 is rotated, the inductive reactance component (phase value range: +90 degrees to ± 180 degrees) and the capacitive reactance component (phase value range: ± 180 degrees are approximately − 135 degrees) value can be present. Furthermore, by adopting a configuration of La = 70 mm and Lb = 20 mm, the phase value of the voltage reflection coefficient S11 at the opening 62 can be varied from approximately +0 degrees to +90 degrees to a range of approximately ± 180 degrees. That is, in this case, by rotating the rotating plate 52, the opening 62 can have an impedance in which the inductive reactance component changes.
[0034]
When the phase value of the voltage reflection coefficient at the opening is approximately ± 180 degrees, that is, when the impedance of the opening is approximately zero, the opening can be operated in the same manner as the metal wall surface.
[0035]
When the support angle of the rotating plate 52 is changed, the impedance of the opening 62 is changed, and the phase difference between the high frequency incident wave and the reflected wave at the opening 62 can be changed. The phase difference between the high frequency incident wave and the reflected wave on the metal wall surface of the heating chamber 10 is 180 degrees. On the other hand, the phase difference between the incident wave and the reflected wave at the opening provided on the metal wall surface is 180 degrees when the impedance value of the opening is zero, 0 degrees when the impedance value is infinite, and in the case of inductive reactance. The phase of the reflected wave is delayed with respect to the incident wave, and the phase is advanced in the case of capacitive reactance. The apparent size of the heating chamber changes with the change in phase between the incident wave and the reflected wave. In the case of inductive reactance, the size of the heating chamber is apparently larger than the radio wave effect, whereas in the case of capacitive reactance, it is reduced. This is, for example, to change the apparent distance between the object to be heated housed in the heating chamber and the radiation port. By utilizing this phenomenon, the heating area on the plane of the object to be heated can be changed, or the heating area in the height direction of the object to be heated can be changed, and the object to be heated can be moved without moving the object to be heated. Heating can be made uniform, and for example, a plurality of objects to be heated of different types / amounts or temperatures can be simultaneously finished.
[0036]
Further, the openings are arranged as shown in FIG. 2, and the high frequency distribution in the heating chamber is deflected in the vertical and horizontal directions of the heating chamber by controlling the rotation of the movable plate of the impedance variable means corresponding to each opening. Can be made. FIG. 3 shows an example of this, in which the support angles of the rotary plates 26a and 26b, which are constituent members of the impedance varying means 17a and 17b, are set to 0 degrees and 90 degrees, respectively, thereby reducing the spatial impedance at the opening 16b. Make it almost infinite. As a result, the radiation distribution can be deflected toward the opening 16a. By utilizing these action phenomena, it is possible to variably control the heating region of the object to be heated without rotating the object to be heated, thereby heating the object to be heated uniformly.
[0037]
In the above description, the movable plate is rotated. However, the movable plate may be slid parallel to the end of the groove.
[0038]
(Example 2)
Next, Embodiment 2 of the present invention will be described with reference to FIG. The second embodiment is different from the first embodiment in that the high-frequency generating means is provided at a point-symmetrical position of the L-shaped radiation port.
[0039]
That is, in the figure, 70 is a rectangular waveguide, and 71 is an insertion hole for inserting and mounting the output portion of the high-frequency generating means. The insertion hole 71 corresponds to a point-symmetrical position of the L-shaped radiation ports 72a and 72b.
[0040]
With this configuration, the direction of the electric field for exciting each radiation aperture can be made different, and the radiation aperture is excited with strong electromagnetic wave energy at the output of the high frequency generating means, so that the radiation distribution can be made wider and guided. The tube can be made compact.
[0041]
(Example 3)
Next, a third embodiment of the present invention will be described with reference to FIGS. Example 3 differs from Example 1 and Example 2 in the configuration in which a rotating body is disposed above an L-shaped radiation port provided on the heating chamber wall surface. In addition, the same member as Example 1 or the same equivalent member is shown with the same number, and description is abbreviate | omitted.
[0042]
That is, in FIG. 8, the radiation ports 14 a and 14 b having L-shaped openings are arranged on the terminal side of the rectangular waveguide 11 so as to be point-symmetric with respect to the point on the tube axis of the waveguide 11. ing. A substantially circular metal plate 73 as a rotating body is provided above the plurality of radiation openings 14a, 14b. The metal plate 73 is configured to be rotationally driven with the point symmetry positions of the plurality of radiation openings as the center of rotation. That is, a metal support 74 connected to the central portion of the substantially circular shape of the metal plate 73, a support portion 75 made of a low dielectric loss material that supports the metal support 74, and a low dielectric loss material fitted to the metal support 74. A motor 77 having an output shaft 76 is provided. In addition, openings 78 a and 78 b similar to the L-shaped openings provided in the waveguide 11 are provided in the metal plate 73 that is a rotating body.
[0043]
With this configuration, heating of the object to be heated is made uniform by radiating high-frequency waves from the rotating body to the object to be heated while protecting the radiation distribution formed by the L-shaped radiation port by the metallic rotating body. Can be promoted.
[0044]
Further, similarly to the first embodiment, provided with openings 16a and 16b provided on the bottom wall surface of the heating chamber near the radiation opening, and impedance variable means 17a and 17b for changing high-frequency impedances in the openings 16a and 16b, respectively. Thus, it is possible to promote uniform heating of a plurality of objects to be heated and flat objects to be heated by deflecting the radiation distribution from the rotating body.
[0045]
In addition, the shape of the metal plate 73 that is a rotating body may be a configuration that permits a radiation distribution that is expressed by a radiation port including a plurality of L-shaped openings, and may be, for example, a substantially rectangular shape or a fan shape. . Further, the metal plate 73 may be driven to rotate eccentrically. Moreover, the shape of the opening provided in the metal plate 73 is not limited to the L-shape, and a plurality of openings may be arranged with the longitudinal directions of the rectangular shapes orthogonal to each other, for example.
[0046]
In the above, it is desirable from the viewpoint of processing and suppressing the occurrence of sparks by the edge portion that the corner portion of each radiation port is appropriately rounded. The range of change in impedance of the opening is not limited to the above description. For example, when the support angle of the rotating plate is 90 degrees, the variable range of only the inductive component can be obtained by setting the spatial impedance in the opening to be substantially zero. Or, when the support angle of the rotating plate is approximately 45 degrees, the variable impedance including both the inductive component and the capacitive component can be set by setting the spatial impedance at the opening to substantially zero.
[0047]
【The invention's effect】
As described above, according to the present invention, by arranging a plurality of L-shaped radiation ports in point symmetry, the directions of the electric fields that excite the radiation ports are different from each other, and the high frequencies radiated from the radiation ports are different. Are combined or repelled in the vicinity of the radiation aperture to form a wide radiation distribution around the radiation aperture. In addition, the configuration in which such a radiation port is provided on the bottom surface of the heating chamber and the object to be heated is arranged in the vicinity of the heating chamber reduces the influence on the high frequency generation means due to the amount and shape of the object to be heated. In contrast, the high-frequency generating means can be operated stably, and the energy use efficiency can be increased.
[0048]
In addition, by providing an opening provided on the bottom surface of the heating chamber and impedance variable means for changing the high-frequency impedance in the opening, the impedance of the opening is changed to deflect the high-frequency distribution formed around the radiation port. Uniform heating can be promoted without changing and moving the object to be heated.
[Brief description of the drawings]
FIG. 1 is a front sectional view of a high-frequency heating device according to a first embodiment of the present invention. FIG. 2 is a cross-sectional view taken along the line AA ′ of the high-frequency heating device. FIG. 4 is a front cross-sectional view of the high-frequency heating apparatus. FIG. 5 is a configuration diagram of impedance variable means of the high-frequency heating apparatus. FIG. 6 is a cross-sectional configuration of the high-frequency heating apparatus according to the second embodiment of the present invention. FIG. 7 is a front sectional view of a high-frequency heating device according to a third embodiment of the present invention. FIG. 8 is a cross-sectional view taken along the line BB ′ of the high-frequency heating device.
DESCRIPTION OF SYMBOLS 10 Heating chamber 11,70 Rectangular-shaped waveguide 13 Bottom surface of heating chamber 14a, 14b, 72a, 72b L-shaped radiation port 16a, 16b Opening portion 17a, 17b, 50 Impedance variable means 20 Tube axis 21, 71 points Symmetric position 26a, 26b, 52 Rotating plate (movable plate)
73 Rotating body

Claims (9)

被加熱物を収納する加熱室と、前記加熱室の底面に設けた複数のL字形状の放射口と、前記放射口に高周波を伝送する矩形形状の導波管と、前記放射口の近傍の加熱室壁面に設け前記矩形形状の導波管の管軸方向に長手寸法の方向を配した開口部と、前記開口部における高周波インピーダンスを変化させるインピーダンス可変手段とを備えた高周波加熱装置。A heating chamber for storing an object to be heated, a plurality of L-shaped radiation ports provided on the bottom surface of the heating chamber, a rectangular waveguide for transmitting a high frequency to the radiation port, and a vicinity of the radiation port A high-frequency heating apparatus comprising: an opening provided on a heating chamber wall surface, the opening having a longitudinal dimension disposed in a tube axis direction of the rectangular waveguide; and impedance variable means for changing a high-frequency impedance in the opening. 被加熱物を収納する加熱室と、前記加熱室の底面に設けた複数のL字形状の放射口と、前記放射口に高周波を伝送する矩形形状の導波管と、前記放射口の上方に設けた略円形形状の金属板からなる回転体と、前記放射口の近傍の加熱室底壁面に設け前記矩形形状の導波管の管軸方向に長手寸法の方向を配した開口部と、前記開口部における高周波インピーダンスを変化させるインピーダンス可変手段とを備えた高周波加熱装置。A heating chamber for storing an object to be heated, a plurality of L-shaped radiation ports provided on the bottom surface of the heating chamber, a rectangular waveguide for transmitting a high frequency to the radiation port, and above the radiation port A rotating body made of a substantially circular metal plate provided, an opening provided on the bottom wall surface of the heating chamber in the vicinity of the radiation port, and a longitudinal dimension in the tube axis direction of the rectangular waveguide ; A high-frequency heating apparatus comprising impedance varying means for changing a high-frequency impedance in the opening. 複数のL字形状の放射口は、矩形形状の導波管の管軸上の点を対称点とした構成からなる請求項1または2記載の高周波加熱装置。  The high-frequency heating device according to claim 1 or 2, wherein the plurality of L-shaped radiation ports have a configuration in which a point on a tube axis of a rectangular waveguide is a symmetric point. 対称点の位置に高周波発生手段の出力部を配設した請求項3記載の高周波加熱装置。  The high frequency heating apparatus according to claim 3, wherein an output portion of the high frequency generating means is disposed at the position of the symmetry point. 複数のL字形状の放射口は、矩形形状の導波管の管軸上の点を対称点とし、回転体は前記対称点を回転の中心とした構成からなる請求項2記載の高周波加熱装置。The high-frequency heating device according to claim 2, wherein the plurality of L-shaped radiating ports have a configuration in which a point on the tube axis of the rectangular waveguide is a symmetric point, and the rotating body has the symmetric point as a center of rotation. . 複数の放射口の矩形形状の導波管の管軸方向における最大間隔は、この導波管を伝送する高周波の伝送波長の略1/2とした請求項1または2記載の高周波加熱装置。The high frequency heating apparatus according to claim 1 or 2 , wherein a maximum interval in the tube axis direction of the rectangular waveguide of the plurality of radiation openings is approximately ½ of a transmission wavelength of a high frequency transmitted through the waveguide. 複数の放射口は矩形形状の導波管の管軸を横切らない構成とした請求項1または2記載の高周波加熱装置。The high-frequency heating device according to claim 1 or 2, wherein the plurality of radiation openings are configured not to cross a tube axis of a rectangular waveguide. 開口部は矩形形状の導波管の管軸を軸対称として複数配設した請求項1または2記載の高周波加熱装置。The high-frequency heating device according to claim 1 or 2, wherein a plurality of openings are arranged with the axis of the rectangular waveguide being axially symmetrical. インピーダンス可変手段は、開口部を一端とし他端が閉じられた溝部と、前記溝部内に設けた板状の可動板と、前記可動板を回転あるいはスライドさせる可動手段とからなる請求項1または2記載の高周波加熱装置。Impedance varying means includes a groove and the other end to one end of the opening is closed, and the plate-shaped movable plate provided in said groove, and a movable means for rotating or sliding the movable plate according to claim 1 or 2 The high-frequency heating device described.
JP2001330428A 2001-10-29 2001-10-29 High frequency heating device Expired - Fee Related JP3931623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001330428A JP3931623B2 (en) 2001-10-29 2001-10-29 High frequency heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001330428A JP3931623B2 (en) 2001-10-29 2001-10-29 High frequency heating device

Publications (2)

Publication Number Publication Date
JP2003133050A JP2003133050A (en) 2003-05-09
JP3931623B2 true JP3931623B2 (en) 2007-06-20

Family

ID=19146149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001330428A Expired - Fee Related JP3931623B2 (en) 2001-10-29 2001-10-29 High frequency heating device

Country Status (1)

Country Link
JP (1) JP3931623B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137447A1 (en) * 2011-04-01 2012-10-11 パナソニック株式会社 Microwave heating device

Also Published As

Publication number Publication date
JP2003133050A (en) 2003-05-09

Similar Documents

Publication Publication Date Title
US10356855B2 (en) Microwave heating apparatus
US10045403B2 (en) Microwave heating device
JP3510523B2 (en) Microwave and waveguide systems
WO2013018358A1 (en) Microwave heating device
JP5895247B2 (en) Microwave heating device
WO2016006249A1 (en) Microwave heating device
JP2014135123A (en) Microwave heating device
JP3677017B2 (en) Slot array antenna and plasma processing apparatus
US3798404A (en) Electronic oven with mode exciter
JP3931623B2 (en) High frequency heating device
JP6179814B2 (en) Microwave heating device
JP2558877B2 (en) High frequency heating equipment
JP2014216067A (en) High-frequency wave heating device
JP4759870B2 (en) High frequency heating device
JP2014229532A (en) Microwave heating apparatus
KR100284501B1 (en) Slot antenna for microwave oven
JP2000348858A (en) Microwave oven
JP2002033612A (en) Beam scanning antenna
JP2014120416A (en) Microwave heating device
KR100304588B1 (en) Circular polarized wave antenna of microwave oven
JP2013191349A (en) Microwave heating device
JP3972466B2 (en) microwave
JPS58169792A (en) High frequency heater
JP2013125670A (en) Microwave heating device
JP2014116175A (en) Microwave heating device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees