JP2014116175A - Microwave heating device - Google Patents

Microwave heating device Download PDF

Info

Publication number
JP2014116175A
JP2014116175A JP2012269054A JP2012269054A JP2014116175A JP 2014116175 A JP2014116175 A JP 2014116175A JP 2012269054 A JP2012269054 A JP 2012269054A JP 2012269054 A JP2012269054 A JP 2012269054A JP 2014116175 A JP2014116175 A JP 2014116175A
Authority
JP
Japan
Prior art keywords
microwave
standing wave
heating chamber
heating
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012269054A
Other languages
Japanese (ja)
Inventor
Masayuki Kubo
昌之 久保
Koji Yoshino
浩二 吉野
Tadashi Sadahira
匡史 貞平
Daisuke Hosokawa
大介 細川
Tomotaka Nobue
等隆 信江
Yoshiharu Omori
義治 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012269054A priority Critical patent/JP2014116175A/en
Priority to CN201310659105.3A priority patent/CN103868115A/en
Publication of JP2014116175A publication Critical patent/JP2014116175A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a microwave heating device in which heating is carried out efficiently while ensuring uniformity of heating distribution, without using a drive section.SOLUTION: When microwaves are radiated from a plurality of openings 105a, 105b, 105c, 105d, 105e, 105f to a heated object mounted substantially in the center of a heating chamber bottom surface, uniformity of heating distribution is ensured without using a drive section. Since a drive section is not used, reflection is suppressed by eliminating variation of load impedance, when viewed from a magnetron 103. Furthermore, heating can be carried out efficiently by generating the anti-node of a standing-wave inside in the central part of the heating chamber bottom surface 108, thereby exposing the heated object to the standing-wave inside.

Description

本発明は、被加熱物にマイクロ波を放射して誘電加熱する電子レンジ等のマイクロ波加熱装置に関するものである。   The present invention relates to a microwave heating apparatus such as a microwave oven that radiates microwaves to an object to be heated and performs dielectric heating.

代表的なマイクロ波加熱装置の電子レンジは、代表的なマイクロ波発生手段であるマグネトロンから放射されたマイクロ波を導波管を介して金属製の加熱室の内部に供給し、加熱室内部に置かれた被加熱物を誘電加熱するものである。よって加熱室内部のマイクロ波の電磁界分布が不均一であると、被加熱物を均一に加熱することができない。   A microwave oven of a typical microwave heating apparatus supplies microwave radiated from a magnetron, which is a typical microwave generation means, to the inside of a metal heating chamber through a waveguide, and into the inside of the heating chamber. The object to be heated is dielectrically heated. Therefore, if the microwave electromagnetic field distribution in the heating chamber is not uniform, the object to be heated cannot be heated uniformly.

そこで、被加熱物を均一に加熱する方法として、テーブルを回転させて被加熱物自体を回転させる構成や、被加熱物は固定したままでマイクロ波を放射するアンテナのほうを回転させる構成など、何らかの駆動部を用いて被加熱物に放射されるマイクロ波の向きを変えながら加熱して均一化をはかる方法が一般的であった。   Therefore, as a method of uniformly heating the object to be heated, a structure that rotates the object itself by rotating the table, a structure that rotates the antenna that emits microwaves while the object to be heated is fixed, etc. A general method has been to use a drive unit to heat and uniformize the direction of the microwave radiated to the object to be heated.

一方、構成を簡単にするために駆動部を持たずに均一加熱する方法が期待されており、時間的に電界の偏波面が回転する円偏波を利用する方法が提案されている。本来、誘電加熱は誘電損失を有する被加熱物をマイクロ波の電界によって加熱する原理に基づくため、電界が回転することは均一化に効果があるものと考えられる。たとえば具体的な円偏波の発生方法としては、特許文献1には図8のように導波管1上で交差するX字型の開口2で一つの円偏波を発生させる方法が示され、特許文献2には図9のように導波管1上で直交する向きの二つの長方スリット状の開口3、4を対向させつつも離して配置することで一つの円偏波を発生させる方法が示され、特許文献3には図10のように導波管1に結合させたパッチアンテナ5の平面形状に切り欠き6を設けることで一つの円偏波を発生させる方法が記載されている。   On the other hand, in order to simplify the configuration, a method of uniformly heating without a driving unit is expected, and a method using circularly polarized waves in which the polarization plane of an electric field rotates with time is proposed. Originally, since dielectric heating is based on the principle of heating an object to be heated having dielectric loss with a microwave electric field, rotation of the electric field is considered to have an effect on uniformity. For example, as a specific method of generating circularly polarized waves, Patent Document 1 discloses a method of generating one circularly polarized wave with an X-shaped opening 2 intersecting on the waveguide 1 as shown in FIG. In Patent Document 2, as shown in FIG. 9, one circularly polarized wave is generated by disposing two rectangular slit-shaped openings 3 and 4 that are orthogonal to each other on the waveguide 1 while facing each other. Patent Document 3 describes a method of generating one circularly polarized wave by providing a notch 6 in the planar shape of the patch antenna 5 coupled to the waveguide 1 as shown in FIG. ing.

また、円偏波とは無関係であるが、特許文献4には図11のように複数の長方スリットを波長の1/4の間隔で配列し、互いに相違する位相で放射させる例が示されている。   Although not related to circular polarization, Patent Document 4 shows an example in which a plurality of rectangular slits are arranged at intervals of ¼ of the wavelength as shown in FIG. ing.

米国特許第4301347号明細書U.S. Pat. No. 4,301,347 特許第3510523号公報Japanese Patent No. 3510523 特開2005−235772号公報Japanese Patent Laying-Open No. 2005-235772 特開平10−284246号公報Japanese Patent Laid-Open No. 10-284246

しかしながら、前記従来のマイクロ波加熱装置は、特許文献1〜3のいずれの場合においても、円偏波を利用してはいるものの、駆動部無しにできるほどの均一効果はないという問題があった。いずれの特許文献も、円偏波と駆動部の相乗効果で従来の駆動部のみよりも均一になるということを記載しているに過ぎない。具体的には、特許文献1では図8のように導波管の終端に位相シフター7と呼ばれる回転体を有し、特許文献2では被加熱物を回転させるターンテーブル(図示せず)を有し、特許文献3ではターンテーブル8に加えてパッチアンテナ5をも回転させて攪拌機として利用する構成を記載している。いずれも円偏波を用いれば駆動部無しにできるとは記載されていないのである。これは、もし円偏波で駆動部を無しにすると、一般的な駆動部有りの構成(たとえばテーブルを回転さ
せるとかアンテナを回転させるなどの構成)に比べて均一性が劣るためである。
However, the conventional microwave heating apparatus has a problem that in any case of Patent Documents 1 to 3, the circularly polarized wave is used, but there is no uniform effect that can be achieved without a driving unit. . Both patent documents only describe that the synergistic effect of the circularly polarized wave and the drive unit makes it more uniform than the conventional drive unit alone. Specifically, Patent Document 1 has a rotating body called a phase shifter 7 at the end of the waveguide as shown in FIG. 8, and Patent Document 2 has a turntable (not shown) for rotating an object to be heated. Patent Document 3 describes a configuration in which the patch antenna 5 is also rotated in addition to the turntable 8 to be used as a stirrer. In any case, it is not described that a circularly polarized wave can be used without a drive unit. This is because if the drive unit is not provided with circular polarization, the uniformity is inferior to a general configuration with a drive unit (for example, a configuration in which a table is rotated or an antenna is rotated).

一方、加熱効率は、均一性と二律背反の関係にあると言われている。なぜならば、均一性をあげるためにはテーブルやアンテナを回転させる方が良いが、回転動作に応じてマグネトロンから見た負荷インピーダンスも大きく変化するので、常に反射が少ない状態(マグネトロン側のインピーダンスと負荷側のインピーダンスを整合させた状態)でマグネトロンを動作させることができず、加熱効率が低下する傾向がある。   On the other hand, it is said that the heating efficiency is in a trade-off relationship with uniformity. This is because it is better to rotate the table or antenna in order to improve the uniformity, but the load impedance seen from the magnetron changes greatly according to the rotation operation, so there is always little reflection (impedance and load on the magnetron side) The magnetron cannot be operated in a state where the impedance on the side is matched), and the heating efficiency tends to decrease.

本発明は前記課題を解決するものであり、駆動部を用いないで、被加熱物を均一にかつ効率的に加熱できるマイクロ波加熱装置を提供することを目的とする。   The present invention solves the above-described problems, and an object thereof is to provide a microwave heating apparatus that can uniformly and efficiently heat an object to be heated without using a driving unit.

前記従来の課題を解決するために、本発明のマイクロ波加熱装置は、被加熱物を収納する加熱室と、マイクロ波を発生するマイクロ波発生手段と、マイクロ波を伝送する導波管と、前記加熱室内にマイクロ波を放射する複数のマイクロ波放射部とを有し、被加熱物を載置する加熱室底面中央部に庫内定在波の腹を生じさせる構成としている。   In order to solve the above-described conventional problems, a microwave heating apparatus of the present invention includes a heating chamber for storing an object to be heated, microwave generation means for generating microwaves, a waveguide for transmitting microwaves, The heating chamber has a plurality of microwave radiating portions that radiate microwaves, and a configuration is provided in which the antinode of the standing wave in the chamber is generated at the center of the bottom of the heating chamber on which the object to be heated is placed.

上記構成により、一般的に加熱室底面のほぼ中央部に載置される被加熱物に対して、複数のマイクロ波放射部からマイクロ波を放射することで駆動部を用いなくても加熱分布の均一性を確保しつつ、駆動部を用いないことでマイクロ波発生手段から見た負荷インピーダンスの変動を無くして反射を抑えるのに加えて、加熱室底面中央部に庫内定在波の腹を生じさせることで被加熱物を庫内定在波の腹に晒して効率的に加熱することができる。   With the above configuration, the heating distribution of the object to be heated placed generally at the substantially central portion of the bottom surface of the heating chamber is radiated from a plurality of microwave radiating units without using a driving unit. In addition to suppressing the reflection by eliminating the fluctuation of load impedance seen from the microwave generation means by ensuring that the drive unit is not used while ensuring uniformity, an antinode of the standing wave in the chamber is generated at the center of the bottom of the heating chamber. By doing so, the object to be heated can be efficiently heated by being exposed to the antinodes of the standing wave in the cabinet.

本発明のマイクロ波加熱装置は、一般的に加熱室底面のほぼ中央部に載置される被加熱物に対して、複数のマイクロ波放射部からマイクロ波を放射することで駆動部を用いなくても加熱分布の均一性を確保しつつ、駆動部を用いないことでマイクロ波発生手段から見た負荷インピーダンスの変動を無くして反射を抑えるのに加えて、加熱室底面中央部に庫内定在波の腹を生じさせることで被加熱物を庫内定在波の腹に晒して効率的に加熱することができる。   The microwave heating apparatus of the present invention generally does not use a driving unit by radiating microwaves from a plurality of microwave radiating units to an object to be heated that is placed substantially at the center of the bottom of the heating chamber. However, while ensuring the uniformity of the heating distribution, the use of the drive unit eliminates load impedance fluctuations seen from the microwave generation means and suppresses reflections. By generating the antinode of the wave, the object to be heated can be exposed to the antinode of the standing wave in the cabinet and heated efficiently.

本発明の実施の形態1におけるマイクロ波加熱装置の斜視図The perspective view of the microwave heating apparatus in Embodiment 1 of this invention 本発明の実施の形態1におけるマイクロ波加熱装置の断面図(a)平面断面図(b)正面断面図Sectional drawing (a) plane sectional view (b) front sectional view of microwave heating apparatus in Embodiment 1 of the present invention 本発明の実施の形態1におけるマイクロ波加熱装置の導波管を説明する模式図Schematic diagram illustrating a waveguide of a microwave heating apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態1におけるマイクロ波加熱装置の円筒形状の定在波安定手段を説明する模式図Schematic diagram illustrating cylindrical standing wave stabilizing means of the microwave heating apparatus according to the first embodiment of the present invention. 本発明の実施の形態1におけるマイクロ波加熱装置の半球状の定在波安定手段を説明する模式図Schematic diagram illustrating hemispherical standing wave stabilizing means of the microwave heating apparatus according to the first embodiment of the present invention. 本発明の実施の形態1におけるマイクロ波加熱装置の庫内定在波を説明する断面図(a)平面断面図(b)正面断面図Sectional drawing (a) plane sectional view (b) front sectional view explaining the standing wave in a warehouse of the microwave heating apparatus in Embodiment 1 of this invention 本発明の他の実施の形態におけるマイクロ波加熱装置の開口形状を説明する模式図The schematic diagram explaining the opening shape of the microwave heating apparatus in other embodiment of this invention 従来のX字型の開口で円偏波を発生させるマイクロ波加熱装置の構成図Configuration diagram of a microwave heating device that generates circularly polarized waves with a conventional X-shaped opening 従来の直交する二つの長方スリットで円偏波を発生させるマイクロ波加熱装置の構成図Configuration diagram of a conventional microwave heating device that generates circularly polarized waves with two orthogonal rectangular slits 従来のパッチアンテナで円偏波を発生させるマイクロ波加熱装置の構成図Configuration diagram of a microwave heating device that generates circularly polarized waves with a conventional patch antenna 従来の導波管と長方スリットの構成図Configuration of conventional waveguide and rectangular slit

第1の発明のマイクロ波加熱装置は、被加熱物を収納する加熱室と、マイクロ波を発生するマイクロ波発生手段と、マイクロ波を伝送する導波管と、前記加熱室内にマイクロ波を放射する複数のマイクロ波放射部とを有し、被加熱物を載置する加熱室底面中央部に庫内定在波の腹を生じさせる構成としている。   A microwave heating apparatus according to a first aspect of the present invention is a heating chamber for storing an object to be heated, a microwave generating means for generating microwaves, a waveguide for transmitting microwaves, and radiating microwaves into the heating chamber. And a plurality of microwave radiating portions that are configured to generate an antinode of standing waves in the center of the bottom of the heating chamber on which the object to be heated is placed.

上記構成により、一般的に加熱室底面のほぼ中央部に載置される被加熱物に対して、複数のマイクロ波放射部からマイクロ波を放射することで駆動部を用いなくても加熱分布の均一性を確保しつつ、駆動部を用いないことでマイクロ波発生手段から見た負荷インピーダンスの変動を無くして反射を抑えるのに加えて、加熱室底面中央部に庫内定在波の腹を生じさせることで被加熱物を庫内定在波の腹に晒して効率的に加熱することができる。   With the above configuration, the heating distribution of the object to be heated placed generally at the substantially central portion of the bottom surface of the heating chamber is radiated from a plurality of microwave radiating units without using a driving unit. In addition to suppressing the reflection by eliminating the fluctuation of load impedance seen from the microwave generation means by ensuring that the drive unit is not used while ensuring uniformity, an antinode of the standing wave in the chamber is generated at the center of the bottom of the heating chamber. By doing so, the object to be heated can be efficiently heated by being exposed to the antinodes of the standing wave in the cabinet.

第2の発明のマイクロ波加熱装置は、特に、第1の発明において、庫内定在波は、前記加熱室の幅方向と奥行き方向にそれぞれ奇数個の腹が生じる(奇数、奇数)モードとすることで、加熱室底面中央部に庫内定在波の腹を生じさせる構成としている。これにより、簡単な構成で確実に加熱室底面中央部に庫内定在波の腹を生じさせることで被加熱物を庫内定在波の腹に晒して効率的に加熱することができる。   In the microwave heating apparatus of the second invention, in particular, in the first invention, the standing wave in the cabinet is in a mode in which an odd number of antinodes are generated in the width direction and the depth direction of the heating chamber (odd number, odd number). In this way, the antinode of the standing wave inside the chamber is generated at the center of the bottom surface of the heating chamber. Accordingly, the object to be heated can be exposed to the antinode of the standing wave in the chamber and heated efficiently by reliably generating the antinode of the standing wave in the chamber at the center of the bottom of the heating chamber with a simple configuration.

第3の発明のマイクロ波加熱装置は、特に、第1または第2の発明において、導波管内に管内定在波を生じさせ、少なくとも管内定在波の腹の一つを加熱室底面中央部に対向させて配置する構成としている。そもそも導波管と加熱室はマイクロ波放射部と複数個所でつながっているので、導波管内の管内定在波の腹や節と、加熱室内の庫内定在波の腹や節とが一致しやすくなる。よって、管内定在波の腹を加熱室底面中央部に対向させることにより、庫内定在波も腹が生じやすく、簡単な構成で確実に加熱室底面中央部に庫内定在波の腹を生じさせることで被加熱物を庫内定在波の腹に晒して効率的に加熱することができる。   The microwave heating apparatus according to a third aspect of the invention is particularly the first or second aspect of the invention, wherein the standing wave in the tube is generated in the waveguide, and at least one of the antinodes of the standing wave in the tube is at the center of the bottom of the heating chamber. It is set as the structure arrange | positioned facing. In the first place, since the waveguide and the heating chamber are connected to the microwave radiation section at multiple locations, the antinodes and nodes of the standing wave inside the waveguide coincide with the antinodes and nodes of the standing wave inside the heating chamber. It becomes easy. Therefore, by making the antinode of the standing wave in the pipe face the center of the bottom of the heating chamber, the antistatic of the standing wave in the chamber is easily generated, and the antinode of the standing wave in the chamber is reliably generated in the center of the bottom of the heating chamber with a simple configuration. By doing so, the object to be heated can be efficiently heated by being exposed to the antinodes of the standing wave in the cabinet.

第4の発明のマイクロ波加熱装置は、特に、第1ないし第3のいずれか1つの発明において、マイクロ波放射部の少なくとも一つを加熱室底面中央部に配置する構成としている。そもそもマイクロ波放射部は導波管と加熱室をつなぐものであり、もしマイクロ波放射部が無ければ導波管に閉じ込められるはずのマイクロ波を加熱室へと放射するための出口である。このためマイクロ波放射部ではマイクロ波の電界が強くなりやすく、管内定在波の腹や庫内定在波の腹になりやすい。よって、加熱室底面中央部にマイクロ波放射部を配置することにより、簡単な構成で確実に加熱室底面中央部に庫内定在波の腹を生じさせることで被加熱物を庫内定在波の腹に晒して効率的に加熱することができる。   The microwave heating apparatus according to the fourth aspect of the invention is particularly configured in any one of the first to third aspects, in which at least one of the microwave radiating portions is arranged at the center of the bottom of the heating chamber. In the first place, the microwave radiating portion connects the waveguide and the heating chamber, and if there is no microwave radiating portion, it is an outlet for radiating the microwave that should be confined in the waveguide to the heating chamber. For this reason, in the microwave radiation part, the electric field of the microwave tends to become strong, and it tends to become an antinode of the standing wave in the tube and an antinode of the standing wave in the warehouse. Therefore, by arranging the microwave radiating part at the center of the bottom of the heating chamber, the object to be heated is placed in the center of the bottom of the chamber by reliably generating an antinode of the standing wave in the center of the bottom of the heating chamber with a simple configuration. It can be heated efficiently by exposure to the belly.

第5の発明のマイクロ波加熱装置は、特に、第1ないし第4のいずれか1つの発明において、マイクロ波放射部は円偏波を放射する構成としている。これにより、マイクロ波放射部を中心として円偏波特有の360度全方向に回転する電界を発生させ、中心から渦を巻くようにマイクロ波が放射され、円周方向を均一に加熱することができる。よって、複数のマイクロ波放射部から円偏波を放射することで加熱室全体に対しても均一にマイクロ波を放射でき、複数のマイクロ波放射部を並べるだけで駆動部を用いなくても加熱室内の被加熱物を均一に加熱することができる。   In the microwave heating apparatus according to the fifth aspect of the invention, in particular, in any one of the first to fourth aspects of the invention, the microwave radiating unit radiates circularly polarized waves. As a result, an electric field that rotates in a 360-degree omnidirectional characteristic of circularly polarized waves is generated around the microwave radiation part, and microwaves are radiated from the center so as to vortex, thereby heating the circumferential direction uniformly. Can do. Therefore, by radiating circularly polarized waves from a plurality of microwave radiating sections, microwaves can be radiated evenly to the entire heating chamber, and heating can be performed without using a drive section by simply arranging a plurality of microwave radiating sections. The object to be heated in the room can be heated uniformly.

第6の発明のマイクロ波加熱装置は、特に、第5の発明において、円偏波を放射するマイクロ波放射部は、二つの長孔が交差する略X字状の構成としている。これにより、簡単な構成で確実に導波管から円偏波を放射することができる。   In the microwave heating apparatus of the sixth invention, in particular, in the fifth invention, the microwave radiating portion that radiates circularly polarized waves has a substantially X-shaped configuration in which two long holes intersect. Thereby, circularly polarized waves can be reliably radiated from the waveguide with a simple configuration.

以下、本発明に係るマイクロ波加熱装置の好適な実施の形態について、添付の図面を参
照しながら説明する。なお、以下の実施の形態のマイクロ波加熱装置においては電子レンジについて説明するが、電子レンジは例示であり、本発明のマイクロ波加熱装置は電子レンジに限定されるものではなく、誘電加熱を利用した加熱装置、生ゴミ処理機、あるいは半導体製造装置などのマイクロ波加熱装置を含むものである。また、本発明は、以下の実施の形態の具体的な構成に限定されるものではなく、同様の技術的思想に基づく構成が本発明に含まれる。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a preferred embodiment of a microwave heating apparatus according to the invention will be described with reference to the accompanying drawings. In the microwave heating apparatus of the following embodiment, a microwave oven will be described. However, the microwave oven is an example, and the microwave heating apparatus of the present invention is not limited to the microwave oven, and uses dielectric heating. And a microwave heating device such as a garbage processing machine or a semiconductor manufacturing device. Further, the present invention is not limited to the specific configurations of the following embodiments, and configurations based on similar technical ideas are included in the present invention.

(実施の形態1)
図1、図2は、本発明の実施の形態1におけるマイクロ波加熱装置の説明図である。図1は全体構成を示す斜視図、図2(a)は上から見た断面図、図2(b)は正面から見た断面図である。
(Embodiment 1)
1 and 2 are explanatory diagrams of the microwave heating apparatus according to Embodiment 1 of the present invention. FIG. 1 is a perspective view showing the overall configuration, FIG. 2A is a sectional view seen from above, and FIG. 2B is a sectional view seen from the front.

代表的なマイクロ波加熱装置である電子レンジ101は、代表的な被加熱物である食品(図示せず)を収納可能な加熱室102と、マイクロ波を発生させる代表的なマイクロ波発生手段であるマグネトロン103と、マグネトロン103から放射されたマイクロ波を加熱室102に導く導波管104と、導波管104内のマイクロ波を加熱室102内に放射するマイクロ波放射部として導波管104の上面に設けた六つの開口105a,105b,105c,105d,105e,105fと、食品(図示せず)を載置する載置台106とを有している。   A microwave oven 101, which is a typical microwave heating apparatus, includes a heating chamber 102 that can store food (not shown) that is a typical object to be heated, and a typical microwave generation means that generates microwaves. A certain magnetron 103, a waveguide 104 that guides the microwave radiated from the magnetron 103 to the heating chamber 102, and the waveguide 104 as a microwave radiating unit that radiates the microwave in the waveguide 104 into the heating chamber 102. There are six openings 105a, 105b, 105c, 105d, 105e, and 105f provided on the upper surface of the, and a mounting table 106 on which food (not shown) is mounted.

加熱室102は横長の直方体で、載置台106は加熱室102の底面全体を覆う構成である。載置台106は、開口105a,105b,105c,105d,105e,105fが加熱室102庫内に露出しないように塞ぎつつ、上面をフラットにして使用者が食品(図示せず)の出し入れがしやすいとか、汚れがついたときにふき取りやすくしている。ここで載置台106は、開口105a,105b,105c,105d,105e,105fからのマイクロ波を加熱室102内に放射させるため、ガラスやセラミックなどマイクロ波が透過しやすい材料で構成する。   The heating chamber 102 is a horizontally long rectangular parallelepiped, and the mounting table 106 is configured to cover the entire bottom surface of the heating chamber 102. The mounting table 106 is closed so that the openings 105a, 105b, 105c, 105d, 105e, and 105f are not exposed in the heating chamber 102, and the user can easily take in and out food (not shown) by flattening the top surface. It is easy to wipe off when it gets dirty. Here, the mounting table 106 is made of a material that easily transmits microwaves, such as glass or ceramic, in order to radiate the microwaves from the openings 105a, 105b, 105c, 105d, 105e, and 105f into the heating chamber 102.

導波管104と加熱室102の接続は、導波管104のマイクロ波の伝送方向を加熱室102の幅方向に向けて接続する。開口105a,105b,105c,105d,105e,105fは、長孔を交差させたX字状の形状により円偏波を放射できる開口とし、導波管104の幅方向の中央(管軸)107にはかからないように幅方向に対称に配置している。また管軸107は加熱室102の加熱室底面108の前後方向の中心109とは一致せず、開口105a,105c,105eの中心が加熱室底面108の前後方向の中心109と一致している。さらに六つの開口105a,105b,105c,105d,105e,105fは加熱室102の加熱室底面108の左右方向の中心110に対して対称に配置し、以上により加熱室102の加熱室底面108に対して、開口105cが前後左右とも中心に配置される。また開口105a,105bと,105c,105dと,105e,105fは、導波管104の伝送方向に管内波長λgの略1/2の間隔で配置している。また導波管104内には管内定在波が生じるが、これはマグネトロン103の発振周波数と導波管104の形状によって決まる管内波長λgの1/2ごとに腹と節を繰り返すもので、導波管104の終端部111は必ず節となる。   The waveguide 104 and the heating chamber 102 are connected with the microwave transmission direction of the waveguide 104 directed in the width direction of the heating chamber 102. The openings 105 a, 105 b, 105 c, 105 d, 105 e, and 105 f are openings that can radiate circularly polarized waves by an X-shaped shape that intersects the long holes, and are formed at the center (tube axis) 107 in the width direction of the waveguide 104. They are arranged symmetrically in the width direction so as not to be applied. The tube axis 107 does not coincide with the center 109 in the front-rear direction of the heating chamber bottom surface 108 of the heating chamber 102, and the centers of the openings 105 a, 105 c, 105 e coincide with the center 109 in the front-rear direction of the heating chamber bottom surface 108. Further, the six openings 105a, 105b, 105c, 105d, 105e, and 105f are arranged symmetrically with respect to the center 110 in the left-right direction of the heating chamber bottom surface 108 of the heating chamber 102, and as described above, with respect to the heating chamber bottom surface 108 of the heating chamber 102. Thus, the opening 105c is arranged at the center in the front, rear, left, and right. Further, the openings 105a, 105b, 105c, 105d, 105e, 105f are arranged in the transmission direction of the waveguide 104 at an interval of approximately ½ of the guide wavelength λg. An in-tube standing wave is generated in the waveguide 104, which repeats the belly and node every 1/2 of the in-tube wavelength λg determined by the oscillation frequency of the magnetron 103 and the shape of the waveguide 104. The terminal portion 111 of the wave tube 104 is always a node.

ここで図2(b)には導波管104内に管内定在波のイメージを図示している。定在波安定手段112a,112b,112cは導波管104内に突出する導電性材料からなり、いわゆる整合素子として知られるスタブチューナーなどとよく似た構成であり、管内定在波の節の位置、即ち終端部111から管内波長λgの略1/2ずつの間隔で合計3個配置され、終端部111側から数えて第一の定在波安定手段112a,第二の定在波安定手段112b,第三の定在波安定手段112cである。開口105aおよび105bは終端部111と第一の定在波安定手段112aの中間に配置し、開口105cおよび105d
は第一の定在波安定手段112aと第二の定在波安定手段112bの中間に配置し、開口105eおよび105fは第二の定在波安定手段112bと第三の定在波安定手段112cの中間に配置されている。このとき加熱室底面108の左右方向の中心110に対して、第一の定在波安定手段112aと第二の定在波安定手段112bが対称になるように導波管104を構成しており、その結果、図2(b)のように開口直下の管内定在波の腹113a,113b,113cのうち113bが中心110に位置することになる。また開口105a,105bは終端部111と第一の定在波安定手段112aの間の管内定在波の腹113aに位置し、開口105c,105dは第一の定在波安定手段112aと第二の定在波安定手段112bの間の管内定在波の腹113bに位置し、開口105e,105fは第二の定在波安定手段112bと第三の定在波安定手段112cの間の管内定在波の腹113cに位置することになる。つまり、本実施の形態では、導波管104内に管内定在波を生じさせ、少なくとも管内定在波の腹の一つ113bを加熱室底面108の中央部に対向させて配置する構成としている。また図1のように、開閉可能なドア114を有し、ドア114を閉めることで、マイクロ波は導波管104と加熱室102で閉空間を形成し、閉じ込められたマイクロ波は必ず何らかの定在波を生じるものである。
Here, FIG. 2B shows an image of the standing wave in the waveguide 104. The standing wave stabilizing means 112a, 112b, and 112c are made of a conductive material protruding into the waveguide 104, and have a configuration similar to a stub tuner or the like known as a so-called matching element. That is, a total of three are arranged at intervals of approximately ½ each of the in-tube wavelength λg from the terminal end 111, and counted from the terminal end 111 side, the first standing wave stabilizing means 112a and the second standing wave stabilizing means 112b. , Third standing wave stabilizing means 112c. The openings 105a and 105b are arranged between the terminal end 111 and the first standing wave stabilizing means 112a, and the openings 105c and 105d are provided.
Is disposed between the first standing wave stabilizing means 112a and the second standing wave stabilizing means 112b, and the openings 105e and 105f are formed in the second standing wave stabilizing means 112b and the third standing wave stabilizing means 112c. It is arranged in the middle. At this time, the waveguide 104 is configured so that the first standing wave stabilizing means 112a and the second standing wave stabilizing means 112b are symmetrical with respect to the center 110 in the left-right direction of the bottom surface 108 of the heating chamber. As a result, 113b of antinodes 113a, 113b, 113c of the standing wave in the tube immediately below the opening is positioned at the center 110 as shown in FIG. The openings 105a and 105b are located at the antinode 113a of the in-tube standing wave between the end portion 111 and the first standing wave stabilizing means 112a, and the openings 105c and 105d are the first standing wave stabilizing means 112a and the second standing wave stabilizing means 112a. The standing wave antinode 113b between the standing wave stabilizing means 112b and the openings 105e and 105f are arranged in the pipe between the second standing wave stabilizing means 112b and the third standing wave stabilizing means 112c. It will be located at standing wave antinode 113c. That is, in the present embodiment, a standing wave in the tube is generated in the waveguide 104, and at least one antinode 113b of the standing wave in the tube is disposed to face the center portion of the heating chamber bottom surface 108. . In addition, as shown in FIG. 1, a door 114 that can be opened and closed is provided, and by closing the door 114, a microwave forms a closed space between the waveguide 104 and the heating chamber 102, and the confined microwave is always defined in some way. It will cause standing waves.

以上の構成をもとに動作を説明する。マグネトロン103から放射されたマイクロ波は、導波管104内を伝送されて一部は開口105a,105b,105c,105d,105e,105fから加熱室102内に放射されるが、残りは終端部111で反射される。また加熱室102は閉空間のため加熱室102内のマイクロ波の一部が逆に開口105a,105b,105c,105d,105e,105fから導波管104内に戻ることもわずかながらあると考えられる。その結果、導波管104内には管内定在波が、加熱室102内には庫内定在波が発生する。特に導波管104については、終端部111での反射が優位であれば管内波長λgによる定在波を生じやすいと考えられる。一般的に被加熱物が一定量以上あるとか、そこそこマイクロ波を吸収しやすい条件では、加熱室102から開口105a,105b,105c,105d,105e,105fを通じて導波管104内に戻るマイクロ波の量が少ないので定在波が安定する。逆に被加熱物がごく少量などのマイクロ波を吸収しにくいなどの条件では、開口105a,105b,105c,105d,105e,105fと加熱室102の連通により加熱室102から導波管104に戻ろうとするマイクロ波により管内定在波が乱されることもある。しかし本実施の形態では、導波管104内に定在波安定手段112a,112b,112cを配置しているので、管内定在波の節位置を固定させることができ、その結果それぞれの開口位置での振幅や位相も固定できる。また開口105a,105b,105c,105d,105e,105fの構成により、マイクロ波は加熱室102内に円偏波として放射される。円偏波は、開口105a,105b,105c,105d,105e,105fを中心として周方向に電界を回転させながら放射されるもので、周囲に均一に放射される。   The operation will be described based on the above configuration. The microwave radiated from the magnetron 103 is transmitted through the waveguide 104, and a part thereof is radiated into the heating chamber 102 from the openings 105a, 105b, 105c, 105d, 105e, and 105f. It is reflected by. In addition, since the heating chamber 102 is a closed space, it is considered that a part of the microwave in the heating chamber 102 may slightly return to the waveguide 104 from the openings 105a, 105b, 105c, 105d, 105e, and 105f. . As a result, an in-tube standing wave is generated in the waveguide 104 and an in-house standing wave is generated in the heating chamber 102. In particular, with respect to the waveguide 104, it is considered that a standing wave with an in-tube wavelength λg is likely to occur if the reflection at the terminal end 111 is dominant. In general, when there is a certain amount or more of an object to be heated, or under conditions where microwaves are easily absorbed, microwaves returning from the heating chamber 102 into the waveguide 104 through the openings 105a, 105b, 105c, 105d, 105e, and 105f. Because the amount is small, the standing wave is stabilized. On the other hand, under the condition that the object to be heated hardly absorbs a very small amount of microwaves, the heating chamber 102 returns to the waveguide 104 due to the communication between the openings 105a, 105b, 105c, 105d, 105e, and 105f and the heating chamber 102. The standing wave in the tube may be disturbed by the microwave to be tried. However, in the present embodiment, the standing wave stabilizing means 112a, 112b, and 112c are arranged in the waveguide 104, so that the node position of the in-tube standing wave can be fixed, and as a result, the respective opening positions. The amplitude and phase at can also be fixed. Further, the microwave is radiated into the heating chamber 102 as a circularly polarized wave by the configuration of the openings 105 a, 105 b, 105 c, 105 d, 105 e, and 105 f. Circularly polarized light is radiated while rotating an electric field in the circumferential direction around the openings 105a, 105b, 105c, 105d, 105e, and 105f, and is radiated uniformly around the periphery.

ここで円偏波について説明する。円偏波は、移動通信および衛星通信の分野で広く用いられている技術であり、身近な使用例としては、ETC(Electronic Toll Collection System)「ノンストップ自動料金収受システム」などが挙げられる。円偏波は、電界の偏波面が進行方向に対して時間に応じて回転するマイクロ波であり、円偏波を形成すると電界の方向が時間に応じて変化し続けて、電界強度の大きさは変化しないという特徴を有している。この円偏波をマイクロ波加熱装置に適用すれば、従来の直線偏波によるマイクロ波加熱と比較して、被加熱物を特に円偏波の周方向に対して均一に加熱することが期待される。なお、円偏波は回転方向から右旋偏波(CW:clockwise)と左旋偏波(CCW:counter clockwise)の2種類に分類されるが、加熱の分野では特に性能に違いはない。   Here, circular polarization will be described. Circular polarization is a technology widely used in the fields of mobile communication and satellite communication. Examples of familiar use include an ETC (Electronic Toll Collection System) “non-stop automatic toll collection system” and the like. Circular polarization is a microwave in which the polarization plane of the electric field rotates with respect to the traveling direction, and when the circular polarization is formed, the direction of the electric field continues to change with time, and the magnitude of the electric field strength Has the characteristic of not changing. If this circularly polarized wave is applied to a microwave heating device, it is expected that the object to be heated will be heated evenly, particularly in the circumferential direction of the circularly polarized wave, as compared with the conventional microwave heating by linearly polarized wave. The Note that circularly polarized waves are classified into two types, ie, right-handed polarization (CW: clockwise) and left-handed polarization (CCW: counterclockwise) from the rotational direction, but there is no particular difference in performance in the field of heating.

円偏波としては特許文献1や特許文献2のように導波管壁面の開口で構成するものや、特許文献3に示されたようなパッチアンテナで構成するものがあるが、本実施の形態の開
口105a,105b,105c,105d,105e,105fは、特許文献1に示されたものと同様に導波管104の上面(H面)に形成して円偏波を放射するものである。
As circularly polarized waves, there are those constituted by the opening of the waveguide wall surface as in Patent Literature 1 and Patent Literature 2, and those constituted by the patch antenna as shown in Patent Literature 3, but this embodiment The openings 105a, 105b, 105c, 105d, 105e, and 105f are formed on the upper surface (H surface) of the waveguide 104 and emit circularly polarized waves in the same manner as that disclosed in Patent Document 1.

円偏波はもともと通信の分野での利用が主なので、開放空間への放射を対象としていることから、反射波が戻ってこない、いわゆる進行波で論じられるのが一般的である。一方、本実施の形態のマイクロ波加熱装置は、導波管104と加熱室102によって外部とは遮蔽された閉空間への放射となり、反射波が戻ってきて合成される導波管内の定在波を論じているが、開口からマイクロ波が放射される瞬間には定在波のバランスがくずれ、再び安定した定在波に戻るまでの間は進行波が発生していると考えられる。したがって、開口を円偏波放射形状とすることで、前述の円偏波の特長を利用することが可能となり、加熱室102内の加熱分布をより均一化することができる。   Since circularly polarized waves are primarily used in the field of communications, they are generally discussed in terms of so-called traveling waves that do not return reflected waves because they are intended for radiation into open spaces. On the other hand, the microwave heating apparatus according to the present embodiment emits radiation into a closed space shielded from the outside by the waveguide 104 and the heating chamber 102, and the reflected wave returns and is synthesized in the waveguide. Although the wave is discussed, it is considered that the standing wave is out of balance at the moment when the microwave is radiated from the aperture, and the traveling wave is generated until it returns to the stable standing wave again. Therefore, by making the opening have a circularly polarized radiation shape, it is possible to utilize the above-described features of circularly polarized waves, and the heating distribution in the heating chamber 102 can be made more uniform.

なお、方形の導波管104に設けた開口から円偏波を出力するためには、図2に示す例のように、幅を持ったスリット2本を中央で交差させ、マイクロ波伝送方向に対し45度傾けた形状を、導波管104のマイクロ波伝送方向の管軸107を通らない位置に配置する構成が望ましい。   In order to output circularly polarized waves from the opening provided in the rectangular waveguide 104, two slits having a width are intersected at the center as shown in the example of FIG. A configuration in which the shape inclined by 45 degrees with respect to the waveguide 104 in the microwave transmission direction is disposed at a position that does not pass through the tube axis 107 is desirable.

ここで図3を用いて導波管について説明する。最も単純で一般的な導波管は、図3のように一定の長方形の断面(幅a、高さb)を伝送方向に伸ばした直方体からなる方形導波管で、マイクロ波の自由空間での波長をλ0としたときに、導波管の幅a(マイクロ波の波長λ0>a>λ0/2)、高さb(<λ0/2)の範囲に選ぶことにより、TE10モードでマイクロ波を伝送することが知られている。   Here, the waveguide will be described with reference to FIG. The simplest and most common waveguide is a rectangular waveguide made of a rectangular parallelepiped having a certain rectangular cross section (width a, height b) extended in the transmission direction as shown in FIG. Is selected in the range of the waveguide width a (microwave wavelength λ0> a> λ0 / 2) and height b (<λ0 / 2). Is known to transmit.

TE10モードとは、導波管104内において導波管の伝送方向には磁界成分のみが存在して電界成分のない、H波(TE波;電気的横波伝送 Transverse Electric Wave)における伝送モードのことを指す。なお、TE10モード以外の伝送モードがマイクロ波加熱装置101の導波管104に適用されることは殆どない。   The TE10 mode refers to a transmission mode in an H wave (TE wave; electrical transverse wave) that has only a magnetic field component in the waveguide transmission direction in the waveguide 104 and no electric field component. Point to. Note that transmission modes other than the TE10 mode are rarely applied to the waveguide 104 of the microwave heating apparatus 101.

ここで導波管内の管内波長λgの説明に先立って、自由空間の波長λ0について説明する。自由空間の波長λ0は、一般的な電子レンジのマイクロ波の場合は約120mmとして知られている。しかし正確には自由空間の波長λ0は、λ0 = c/fで求まり、cは速度で光の速度3.0*10^8[m/s]で一定であるものの、fは周波数で2.4〜2.5[GHz](ISMバンド)の幅がある。マグネトロンは、ばらつきや負荷条件によって発振周波数fが変化するので、結局は自由空間の波長λ0も変化し、最小120[mm](2.5GHz時)から最大125[mm](2.4GHz時)まで変化する。   Prior to the description of the guide wavelength λg in the waveguide, the free space wavelength λ0 will be described. The wavelength λ0 in free space is known as about 120 mm in the case of a microwave in a general microwave oven. However, to be precise, the wavelength λ0 of the free space is obtained by λ0 = c / f, and c is a speed and constant at the speed of light 3.0 * 10 ^ 8 [m / s], but f is a frequency of 2. There is a width of 4 to 2.5 [GHz] (ISM band). Since the oscillation frequency f of the magnetron changes depending on variations and load conditions, the wavelength λ0 of the free space also changes eventually, from a minimum of 120 [mm] (at 2.5 GHz) to a maximum of 125 [mm] (at 2.4 GHz). Change to.

導波管の話に戻ると、自由空間の波長λ0の範囲も考慮して、一般的には導波管の幅aを80〜100mm、高さbを15〜40mm程度に選ぶことが多い。このとき図3の上下の幅広面を磁界が平行に渦巻く面という意味でH面126と呼び、左右の幅狭面を電界に平行な面という意味でE面127と呼ぶ。ちなみにマイクロ波が導波管内を伝送されるときの波長は、管内波長λgとしてあらわされ、λg=λ0/√(1−(λ0/(2×a))^2)となり、導波管の幅a寸法によって変化するが、高さb寸法には無関係に決まる。ちなみにTE10モードでは、導波管の幅方向の両端(E面)127で電界が0、幅方向の中央で電界が最大となる。よってマグネトロン103は電界が最大となる導波管の幅方向の中央(図2で示した管軸107上)に結合させる構成となる。   Returning to the description of the waveguide, in consideration of the range of the wavelength λ0 in free space, the width a of the waveguide is generally selected to be 80 to 100 mm and the height b is often set to about 15 to 40 mm. At this time, the upper and lower wide surfaces in FIG. 3 are referred to as H surfaces 126 in the sense that the magnetic fields vortex in parallel, and the left and right narrow surfaces are referred to as E surfaces 127 in the sense that they are parallel to the electric field. Incidentally, the wavelength when the microwave is transmitted through the waveguide is expressed as the waveguide wavelength λg and becomes λg = λ0 / √ (1- (λ0 / (2 × a)) ^ 2), and the width of the waveguide It varies depending on the dimension a, but is determined regardless of the height b. Incidentally, in the TE10 mode, the electric field is zero at both ends (E plane) 127 in the width direction of the waveguide, and the electric field is maximum at the center in the width direction. Therefore, the magnetron 103 is coupled to the center in the width direction of the waveguide (on the tube axis 107 shown in FIG. 2) where the electric field is maximum.

ちなみに本実施の形態の開口105a,105b,105c,105d,105e,105fは、図2(a)のように、長孔を直交させてX字状を為す開口で、導波管104のH面の中央(管軸)107から片側に偏らせて配置することで円偏波を発生できる形状であり、H面のどちらに寄せるかで電界の回転方向が異なり、右旋偏波か左旋偏波に分かれ
ることになる。
Incidentally, the openings 105a, 105b, 105c, 105d, 105e, and 105f of the present embodiment are X-shaped openings with the long holes orthogonal to each other as shown in FIG. The shape is such that circular polarization can be generated by placing it on one side from the center (tube axis) 107, and the direction of rotation of the electric field differs depending on which of the H planes is approached. It will be divided into.

ここで、開放空間の通信分野と閉空間の加熱の分野では、いくつか異なる点があるので説明を加える。通信分野では、他のマイクロ波との混在を避けて必要な情報のみを送受信したいから、送信側は右旋偏波か左旋偏波のどちらかに限定して送信し、受信側もそれに合わせた最適な受信アンテナを選ぶことになる。一方、加熱の分野では、指向性を有する受信アンテナの代わりに特に指向性のない食品などの被加熱物がマイクロ波を受けるので、マイクロ波が被加熱物全体に均等に当たることのみが重要となる。よって加熱の分野では右旋偏波と左旋偏波が混在しても問題はないが、逆に被加熱物の置き位置や形状によって不均等な分布になるのをできるだけ防ぐ必要がある。たとえば特許文献1のように単一の開口だけしかない場合、被加熱物を開口の真上に置くと良いが、前後あるいは左右にずらして置くと、どうしても開口に近い部位が加熱されやすく、遠い部位は加熱されにくく、結果として加熱ムラが生じてしまう。よって円偏波開口を複数にするほうが望ましい。本実施の形態では、図2のように、六つの開口105a,105b,105c,105d,105e,105fを配置しているのは前述の通りである。   Here, there are some differences between the open space communication field and the closed space heating field, so a description will be added. In the communication field, we want to send and receive only the necessary information while avoiding mixing with other microwaves, so the transmitting side is limited to either right-handed polarization or left-handed polarization, and the receiving side also adjusts accordingly. The optimum receiving antenna will be selected. On the other hand, in the field of heating, an object to be heated such as food with no directivity is subjected to microwaves instead of a receiving antenna having directivity, so that it is only important that the microwaves uniformly strike the entire object to be heated. . Therefore, in the field of heating, there is no problem even if right-handed polarization and left-handed polarization are mixed, but conversely, it is necessary to prevent uneven distribution as much as possible depending on the position and shape of the object to be heated. For example, when there is only a single opening as in Patent Document 1, it is preferable to place the object to be heated directly above the opening. However, if the object to be heated is shifted back and forth or left and right, the part close to the opening is apt to be heated and far away. The site is difficult to be heated, resulting in uneven heating. Therefore, it is desirable to have a plurality of circularly polarized apertures. In the present embodiment, as shown in FIG. 2, the six openings 105a, 105b, 105c, 105d, 105e, and 105f are arranged as described above.

ここで図4、図5を用いて定在波安定手段について説明する。
図4は図3で説明した導波管104に、定在波安定手段134,135を配置したものである。定在波安定手段134,135は円筒形状でアルミやステンレスなどの導電性材料からなり、導波管104のH面126の幅方向の中央に溶接あるいはビス留め等により接続固定されるものである。このような構成の定在波安定手段134,135は、導波管104内の突出部としてマイクロ波の伝送を一部妨げるものと思われるが、結果として、定在波安定手段134,135の位置で定在波の節になりやすいとわかってきた。よって逆に、定在波の節にしたい位置に定在波安定手段134,135のような突出部を設けることで、定在波の位置を変化させず安定させる効果がある。この定在波安定手段134,135の構成は、いわゆる整合素子として知られるスタブチューナーなどとよく似た構成であり、形(特に高さ)と位置を微調整することで、定在波の節を確定させつつ整合もできるというような、二つの機能を併せ持つことも可能と思われる。
Here, the standing wave stabilizing means will be described with reference to FIGS.
FIG. 4 shows a structure in which standing wave stabilizing means 134 and 135 are arranged in the waveguide 104 described with reference to FIG. The standing wave stabilizing means 134 and 135 are cylindrical and made of a conductive material such as aluminum or stainless steel, and are connected and fixed to the center in the width direction of the H surface 126 of the waveguide 104 by welding or screwing. . The standing wave stabilizing means 134 and 135 having such a configuration is considered to partially prevent transmission of microwaves as a protruding portion in the waveguide 104, but as a result, the standing wave stabilizing means 134 and 135. It has been found that it is easy to become a standing wave node at a position. Therefore, conversely, by providing the protruding portions such as the standing wave stabilizing means 134 and 135 at the position where the standing wave is desired, there is an effect of stabilizing the standing wave without changing the position. The structures of the standing wave stabilizing means 134 and 135 are similar to those of a stub tuner known as a so-called matching element, and by adjusting the shape (particularly the height) and the position, the node of the standing wave can be adjusted. It seems that it is possible to have two functions that can be matched while confirming.

図4では定在波安定手段134のほうが定在波安定手135よりも高さが高い例を示しているが、特に限定されるものではなく形状については適宜最適化すればよい。また図4では、定在波安定手段134,135の距離を、管内波長λgを用いて(λg/2)×nとし、nは整数とすることで、二か所に節を作ることができ、特に定在波安定手段134,135の間にはきれいな定在波が存在する。たとえばn=1では、定在波安定手段134,135が節で両者の中央が腹となり、n=2では、定在波安定手段134,135が節で両者の中央も節となる。よってnを整数とすれば定在波安定手段134,135の間にきれいな定在波をたてることができる。   FIG. 4 shows an example in which the standing wave stabilizing means 134 is higher in height than the standing wave stabilizer 135, but there is no particular limitation, and the shape may be optimized as appropriate. In FIG. 4, the distance between the standing wave stabilizing means 134 and 135 is (λg / 2) × n using the guide wavelength λg, and n is an integer, so that nodes can be created in two places. In particular, a clean standing wave exists between the standing wave stabilizing means 134 and 135. For example, when n = 1, the standing wave stabilizing means 134 and 135 are nodes and the center of both is antinode, and when n = 2, the standing wave stabilizing means 134 and 135 is a node and the center of both is also a node. Therefore, if n is an integer, a beautiful standing wave can be created between the standing wave stabilizing means 134 and 135.

図5は他の定在波安定手段の例で、別部品ではなく導波管104のH面をプレス等によりしぼって導波管104の内部に突出させた半球状の定在波安定手段136の構成例である。この場合は定在波安定手段を導波管材料そのもので形成できるので、図4の例と比べて定在波安定用の別部品を不要とできる効果がある。   FIG. 5 shows another example of standing wave stabilizing means, which is not a separate component, but a hemispherical standing wave stabilizing means 136 in which the H surface of the waveguide 104 is squeezed by a press or the like and protruded into the waveguide 104. This is an example of the configuration. In this case, since the standing wave stabilizing means can be formed of the waveguide material itself, there is an effect that a separate component for stabilizing the standing wave is unnecessary compared with the example of FIG.

ここで図6を用いて加熱室に発生する庫内定在波について説明する。図6(a)は加熱室を上から見た図で天面上(底面上も同様だが)に生じた庫内定在波の腹を実線で、節を破線でイメージとして表している、図6(b)は加熱室を正面から見た断面図で、天面には図6(a)と同様の腹節を記載しているが、それと同時に腹節を半波のイメージとしても表している。前述の通り、本実施の形態のように撹拌するものがない場合は加熱室内にも庫内定在波が生じる。加熱室をほぼ直方体と考えると、直方体形上の空洞共振器の考え方があてはまる。各辺の長さがX,y,zで表される直方体形状の空洞共振器の定在波は
、一般的に自由空間の波長λ0を用いて下記の(数1)であらわされる。
Here, the internal standing wave generated in the heating chamber will be described with reference to FIG. FIG. 6A is a view of the heating chamber as viewed from above, and the antinodes of the standing waves generated on the top surface (the same applies to the bottom surface) are represented by solid lines and the nodes are represented by broken lines as images. (B) is a sectional view of the heating chamber as seen from the front, and the abdominal node similar to that of FIG. 6 (a) is shown on the top surface, but at the same time, the abdominal node is also represented as a half-wave image. . As described above, when there is nothing to stir as in this embodiment, a standing wave in the chamber is also generated in the heating chamber. If the heating chamber is considered to be a substantially rectangular parallelepiped, the concept of a cavity resonator on a rectangular parallelepiped shape applies. A standing wave of a rectangular parallelepiped cavity resonator in which the length of each side is represented by X, y, z is generally expressed by the following (Equation 1) using the wavelength λ0 of free space.

庫内定在波のモードm,n,pはX,y,zの方向にたつ定在波の数を示し、家庭用電子レンジぐらいの大きさになるとX,y,zは波長よりも大きいから、上記の(数1)を満たすm,n,pの組み合わせはいくつか共存する。ちなみに図6ではm,n,pをそれぞれ3,5,1として表してある。本実施の形態では、庫内定在波は、加熱室102の幅方向(X方向)と奥行き方向(y方向)にそれぞれ奇数個の腹が生じる(奇数、奇数)モード(本実施の形態では(3,5))となっている。特にマグネトロンの発振周波数は一定ではなく(温度によっても変わるし、マイクロ波の反射によっても変わる)、周波数に応じて波長も変化するので、これだけの情報ではどのモードが起こるかは確定しない。実際の庫内定在波がどうなっているかについては、壁面に微小な穴をあけて電界強度を実測するとか、CAE(たとえば有限要素法など)を用いて庫内の電磁界を表示して可視化するとよい。ただし庫内定在波を確定する方法の一つとして、どこから給電されるかという点がある。なぜなら給電部は、そこから電波を次々と放射する関係で、腹になりやすいからである。図6(b)では管内定在波の腹に開口141,142,143があり、そこは庫内定在波も腹となっている。特に開口142の真上の庫内定在波の腹144は加熱室底面の中央に位置し、庫内中央に置かれた被加熱物145が腹に位置するから、常に強い電界で効率的に加熱することができる。   The chamber standing wave modes m, n, and p indicate the number of standing waves in the X, y, and z directions. When the size is about the same as a microwave oven, X, y, and z are larger than the wavelength. Some combinations of m, n, and p satisfying the above (Formula 1) coexist. Incidentally, in FIG. 6, m, n, and p are represented as 3, 5, and 1, respectively. In the present embodiment, the standing wave in the cabinet is a mode (odd number, odd number) in which an odd number of antinodes occur in the width direction (X direction) and the depth direction (y direction) of the heating chamber 102 (in this embodiment ( 3, 5)). In particular, the oscillation frequency of the magnetron is not constant (it changes depending on the temperature and also changes due to the reflection of the microwave), and the wavelength also changes depending on the frequency. The actual standing wave inside the chamber can be visualized by drilling a minute hole on the wall surface and actually measuring the electric field strength, or by displaying the electromagnetic field inside the chamber using CAE (for example, the finite element method). Good. However, one of the methods for determining the standing wave in the cabinet is where power is supplied from. This is because the power supply unit tends to get hungry because it emits radio waves one after another. In FIG. 6 (b), there are openings 141, 142, and 143 on the antinodes of the standing waves in the tube, and the in-chamber standing waves are also antinodes. Particularly, the antinode 144 of the standing wave inside the chamber just above the opening 142 is located at the center of the bottom surface of the heating chamber, and the heated object 145 placed at the center of the chamber is located at the antinode, so that it is always efficiently heated with a strong electric field. can do.

以下に、本実施の形態における作用、効果を説明する。
本実施の形態の電子レンジ101は、被加熱物を収納する加熱室102と、マイクロ波を発生させるマイクロ波発生手段としてのマグネトロン103と、マグネトロン103で発生したマイクロ波を伝送する導波管104と、導波管104から加熱室102内にマイクロ波を放射する複数のマイクロ波放射部としての開口105a,105b,105c,105d,105e,105fを有し、被加熱物を載置する加熱室底面108の中央部に庫内定在波の腹144を生じさせる構成としている。
Below, the operation and effect of the present embodiment will be described.
A microwave oven 101 according to this embodiment includes a heating chamber 102 that stores an object to be heated, a magnetron 103 that serves as a microwave generation unit that generates a microwave, and a waveguide 104 that transmits the microwave generated by the magnetron 103. And heating chambers having openings 105a, 105b, 105c, 105d, 105e, and 105f serving as a plurality of microwave radiating portions that radiate microwaves from the waveguide 104 into the heating chamber 102, and on which an object to be heated is placed. The structure is such that an antinode 144 of the standing wave in the cabinet is generated at the center of the bottom surface 108.

これにより、一般的に加熱室底面108のほぼ中央部に載置される被加熱物に対して、複数のマイクロ波放射部としての開口105a,105b,105c,105d,105e,105fからマイクロ波を放射することで駆動部を用いなくても加熱分布の均一性を確保しつつ、駆動部を用いないことでマグネトロン103から見た負荷インピーダンスの変動を無くして反射を抑えるのに加えて、加熱室底面108の中央部に庫内定在波の腹144を生じさせることで被加熱物を庫内定在波の腹に晒して効率的に加熱することができる。   As a result, microwaves are generally applied from the openings 105a, 105b, 105c, 105d, 105e, and 105f as a plurality of microwave radiating portions to an object to be heated that is placed substantially at the center of the bottom surface 108 of the heating chamber. In addition to ensuring the uniformity of the heating distribution without using the drive unit by radiating, in addition to eliminating the fluctuation of the load impedance viewed from the magnetron 103 and suppressing reflection by using the drive unit, the heating chamber By generating the chamber standing-wave antinode 144 at the center of the bottom surface 108, the object to be heated can be exposed to the chamber standing-wave antinode and efficiently heated.

なお、通常、使用者は何か手持ちの皿に食品を載せることになるが、概ね皿の中央に食品を置きがちだし、その皿を加熱室底面のどこに置くかと言えば中央に置きがちである。また置き場所として推奨される位置として、載置台106の中央に円形のマーキングが印刷されていることも多い。その結果食品は加熱室底面の中央に置かれる確率が極めて高い。特に大きな皿を使用する場合は、中央にかかるようにしか置けないことも想定できる。よって加熱室底面108の中央部に庫内定在波の腹144を生じさせることで被加熱物を庫内定在波の腹に晒して効率的に加熱することができる。   In addition, usually the user will put food on something on hand, but it tends to place food in the center of the plate, and the place where the plate is placed on the bottom of the heating chamber tends to be in the center. . In many cases, a circular marking is printed at the center of the mounting table 106 as a recommended position. As a result, the food is very likely to be placed in the center of the bottom of the heating chamber. In particular, when a large plate is used, it can be assumed that it can be placed only in the center. Therefore, the object to be heated can be exposed to the antinode of the standing wave in the chamber and heated efficiently by generating the antinode 144 of the standing wave in the center of the bottom surface 108 of the heating chamber.

また、本実施の形態の電子レンジは、庫内定在波は、加熱室102の幅方向と奥行き方
向にそれぞれ奇数個の腹が生じる(奇数、奇数)モード(本実施の形態では(3,5))とすることで、加熱室底面108の中央部に庫内定在波の腹144を生じさせる構成としている。これにより、簡単な構成で確実に加熱室底面108の中央部に庫内定在波の腹144を生じさせることで被加熱物を庫内定在波の腹144に晒して効率的に加熱することができる。
Further, in the microwave oven of the present embodiment, the standing wave in the cabinet has an odd number of antinodes (odd number, odd number) in the width direction and depth direction of the heating chamber 102 (in this embodiment, (3, 5 )), An antinode 144 of the standing wave inside the chamber is generated at the center of the bottom surface 108 of the heating chamber. Thereby, the object to be heated is exposed to the antinode 144 of the standing wave in the chamber by efficiently generating the antinode 144 of the standing wave in the center at the center of the heating chamber bottom surface 108 with a simple configuration, and can be efficiently heated. it can.

また、本実施の形態の電子レンジは、導波管104内に管内定在波を生じさせ、少なくとも管内定在波の腹の一つ113bを加熱室底面108の中央部に対向させて配置する構成としている。そもそも導波管104と加熱室102はマイクロ波放射部としての開口105a,105b,105c,105d,105e,105fと複数個所でつながっているので、導波管104内の管内定在波の腹や節と、加熱室内の庫内定在波の腹や節とが一致しやすくなる。よって、管内定在波の腹113bを加熱室底面108の中央部に対向させることにより、庫内定在波も腹が生じやすく、簡単な構成で確実に加熱室底面108の中央部に庫内定在波の腹144を生じさせることで被加熱物145を庫内定在波の腹144に晒して効率的に加熱することができる。   In addition, the microwave oven according to the present embodiment generates an in-tube standing wave in the waveguide 104, and at least one antinode 113b of the in-tube standing wave is disposed to face the central portion of the heating chamber bottom surface 108. It is configured. In the first place, the waveguide 104 and the heating chamber 102 are connected to the openings 105 a, 105 b, 105 c, 105 d, 105 e, and 105 f as microwave radiation portions at a plurality of locations. The nodes and the antinodes and nodes of the standing wave in the heating chamber easily match. Therefore, by making the tube standing wave antinode 113b face the central portion of the heating chamber bottom surface 108, the chamber standing wave is likely to be antinoded, and the simple configuration ensures that the chamber standing wave is centrally located in the center portion of the heating chamber bottom surface 108. By generating the wave belly 144, the object to be heated 145 can be exposed to the antinode 144 of the internal standing wave and heated efficiently.

また、本実施の形態の電子レンジは、マイクロ波放射部としての開口の少なくとも一つ105cを加熱室底面108の中央部に配置する構成としている。そもそもマイクロ波放射部は導波管と加熱室をつなぐものであり、もしマイクロ波放射部が無ければ導波管104に閉じ込められるはずのマイクロ波を加熱室102へと放射するための出口である。このためマイクロ波放射部としての開口ではマイクロ波の電界が強くなりやすく、管内定在波の腹や庫内定在波の腹になりやすい。よって、加熱室底面108の中央部にマイクロ波放射部としての開口を配置することにより、簡単な構成で確実に加熱室底面108の中央部に庫内定在波の腹144を生じさせることで被加熱物145を庫内定在波の腹144に晒して効率的に加熱することができる。   In addition, the microwave oven according to the present embodiment has a configuration in which at least one opening 105c serving as a microwave radiating portion is arranged at the center of the heating chamber bottom surface 108. In the first place, the microwave radiating part connects the waveguide and the heating chamber, and if there is no microwave radiating part, it is an outlet for radiating the microwave that should be confined in the waveguide 104 to the heating chamber 102. . For this reason, the microwave electric field tends to become strong at the opening as the microwave radiating section, and it tends to become an antinode in the tube and an antinode in the chamber. Therefore, by arranging an opening as a microwave radiating portion at the center of the heating chamber bottom surface 108, the chamber standing wave antinode 144 is reliably generated at the center of the heating chamber bottom surface 108 with a simple configuration. The heated object 145 can be efficiently heated by being exposed to the antinode 144 of the standing wave in the cabinet.

また、本実施の形態の電子レンジは、マイクロ波放射部は円偏波を放射する構成としている。これにより、マイクロ波放射部としての六つの開口105a,105b,105c,105d,105e,105fを中心として円偏波特有の360度全方向に回転する電界を発生させ、中心から渦を巻くようにマイクロ波が放射され、円周方向を均一に加熱することができる。よって、六つものマイクロ波放射部から円偏波を放射することで加熱室102全体に対しても均一にマイクロ波を放射でき、駆動部を用いなくても加熱室102内の被加熱物を均一に加熱することができる。   In the microwave oven of the present embodiment, the microwave radiating unit radiates circularly polarized waves. As a result, an electric field rotating in all 360 ° directions specific to circular polarization is generated around the six openings 105a, 105b, 105c, 105d, 105e, and 105f as the microwave radiating section, and a vortex is wound from the center. Microwaves are radiated to the circumference, and the circumferential direction can be heated uniformly. Therefore, by radiating circularly polarized waves from as many as six microwave radiating portions, the entire heating chamber 102 can be radiated uniformly, and the object to be heated in the heating chamber 102 can be moved without using a drive portion. It can be heated uniformly.

さらに、本実施の形態の電子レンジは、円偏波を放射するマイクロ波放射部としての六つの開口105a,105b,105c,105d,105e,105fは、二つの長孔が交差する略X字状の構成としている。これにより、簡単な構成で確実に導波管104から円偏波を放射することができる。   Furthermore, in the microwave oven according to the present embodiment, the six openings 105a, 105b, 105c, 105d, 105e, and 105f serving as the microwave radiating portions that radiate circularly polarized waves have a substantially X shape in which two long holes intersect. The configuration is as follows. Thereby, circularly polarized waves can be reliably radiated from the waveguide 104 with a simple configuration.

なお、(奇数、奇数)モードを発生させるのに加熱室102の寸法X,y,zを選択することが可能であるが、実際は図2(b)のように壁面や天面に凹凸があるなど正確な直方体にできるとは限らない。ある程度凹凸をならして直方体に置き換えて推定する方法も有効である。そして実際に電界強度を測定したりCAEで一致度を確認して微調整するのがよい。   Note that the dimensions X, y, and z of the heating chamber 102 can be selected to generate the (odd, odd) mode, but actually, the wall surface and the top surface are uneven as shown in FIG. It is not always possible to make an accurate rectangular parallelepiped. It is also effective to use a method of estimating the unevenness to some extent and replacing it with a rectangular parallelepiped. Then, it is preferable to make fine adjustments by actually measuring the electric field strength or confirming the degree of coincidence by CAE.

なお、実際には加熱室102の庫内に被加熱物である食品があり、食品は誘電体からなってある程度誘電率が高いことが一般的である。マイクロ波の波長は、誘電体の中では誘電率のルートの逆数倍に圧縮されて見えることが知られているので、X,y,z寸法はそれを想定して少し小さめに設計する方が良いと考えられる。   Actually, there is a food that is an object to be heated inside the heating chamber 102, and the food is generally made of a dielectric and generally has a high dielectric constant. Since it is known that the microwave wavelength appears to be compressed to the inverse of the root of the dielectric constant in the dielectric, the X, y, and z dimensions are designed to be slightly smaller assuming that. Is considered good.

なお、図2(a)に示したように、本実施の形態では、開口105a,105b,105c,105d,105e,105fは、加熱室102の庫内の前後方向には対称に配置しておらず、やや前寄りに配置している。一般的に電子レンジは箱型で手前のドア114で開閉して食品を出し入れする構造のため、奥行きがわかりにくく中央に置こうとしてもやや手前に置いてしまう傾向がある。また、できるだけ加熱中に調理の進み具合を見たいと思う使用者の場合、ドアのパンチングを介してしか庫内を見られないので、見やすくするためにやや手前に置こうとする場合が出てくる。よって図2(a)程度にやや手前寄りに配置した開口で概ね均一に加熱できる。   As shown in FIG. 2A, in this embodiment, the openings 105a, 105b, 105c, 105d, 105e, and 105f are not symmetrically arranged in the front-rear direction in the heating chamber 102. It is arranged slightly forward. In general, a microwave oven is a box-type structure that opens and closes by a front door 114 and puts food in and out, so that the depth is difficult to understand and even if it is placed in the center, it tends to be placed slightly in front. Also, for users who want to see the progress of cooking during heating as much as possible, they can only see the inside of the cabinet through the punching of the door, so there are times when it is going to be placed slightly in front to make it easier to see. come. Therefore, it can be heated substantially uniformly at the opening disposed slightly closer to the front as shown in FIG.

図7は、本発明の他の実施の形態における開口形状を説明する模式図である。
特に、マイクロ波放射部として円偏波を放射する開口の形状について、少なくとも2本以上のスリットにより構成される開口について述べる。開口411〜417のように、2本以上のスリットにより構成されており、このうちの少なくとも1本のスリットの長辺をマイクロ波の伝送方向(矢線418)に対して傾いた形状となっていれば良い。よって、開口415および開口416のように交差していない形状や、開口414のように3本のスリットにより構成されている形状でも良い。
FIG. 7 is a schematic diagram for explaining an opening shape according to another embodiment of the present invention.
In particular, an aperture configured by at least two slits will be described as the shape of the aperture that radiates circularly polarized waves as the microwave radiation portion. Like the openings 411 to 417, the slits are composed of two or more slits, and the long side of at least one of these slits is inclined with respect to the microwave transmission direction (arrow line 418). Just do it. Therefore, a shape that does not intersect such as the opening 415 and the opening 416 or a shape that includes three slits such as the opening 414 may be used.

なお、2本のスリットにより構成されている開口の最良な形状の条件としては以下の3点が挙げられる。   In addition, the following 3 points | pieces are mentioned as conditions of the optimal shape of the opening comprised by two slits.

1点目は、各スリットの長辺の長さは導波管419内の管内波長λgの約1/4以上であることである。   The first point is that the length of the long side of each slit is about ¼ or more of the guide wavelength λg in the waveguide 419.

2点目は、2本のスリットはお互いに直交していることおよび伝送方向418に対して各スリットの長辺が45°傾いていることである。   The second point is that the two slits are orthogonal to each other and the long side of each slit is inclined 45 ° with respect to the transmission direction 418.

3点目は、導波管419の伝送方向418に平行かつ開口の中心を通る直線を軸として考えた時に、電界の分布が軸対称とならないことである。例えば、TE10モードでマイクロ波を伝送している場合においては、導波管419の幅方向420の中心線となる管軸421を対称軸として電界が対称に分布しているので、開口の形状が管軸421に対して軸対称とならないように(すなわち開口の中心が管軸421上にこないように)配置することが最良の条件となる。   The third point is that the electric field distribution is not axisymmetric when a straight line parallel to the transmission direction 418 of the waveguide 419 and passing through the center of the opening is considered as an axis. For example, in the case of transmitting microwaves in the TE10 mode, the electric field is symmetrically distributed with the tube axis 421 serving as the center line in the width direction 420 of the waveguide 419 being the axis of symmetry, so the shape of the opening is It is the best condition to arrange them so as not to be symmetric with respect to the tube axis 421 (that is, the center of the opening does not come on the tube axis 421).

また、図7には長孔が直交するものばかりを示したが、長孔を直交させずに傾斜させて構成することによりX字が押しつぶされたような形状とした場合でも、真円から変形し楕円となるものの、円偏波を放射することができる。   In addition, FIG. 7 shows only those in which the long holes are orthogonal, but even when the shape is such that the X shape is crushed by configuring the long holes to be inclined rather than orthogonal, they are deformed from a perfect circle. Although it becomes an ellipse, it can radiate circularly polarized waves.

また、図7の開口413のようなL字型、開口415のようなT字型の構成にすることで、特許文献2のように離して配置するときにも応用できる可能性がある。特許文献2によれば図9(b)のように、二つのスリット3,4は直交関係でなくても30度程度なら傾けても良いとも示されている。   In addition, by adopting an L-shaped configuration such as the opening 413 and a T-shaped configuration such as the opening 415 in FIG. According to Patent Document 2, as shown in FIG. 9B, the two slits 3 and 4 do not have to be orthogonal but may be tilted by about 30 degrees.

また、長孔とは言うものの、長方形に限定されるものではない。開口のコーナー部にRをつけるとか楕円状にするなどしても円偏波を発生することも可能である。基本的な円偏波開口の考え方としては、一方向に長めでその直角方向には短めである長細い形状のものを二つ組み合わせればよいと推察される。   Moreover, although it is a long hole, it is not limited to a rectangle. It is possible to generate circularly polarized waves by adding an R to the corner of the opening or making it elliptical. As a basic idea of circularly polarized aperture, it is presumed that two long and narrow shapes that are longer in one direction and shorter in the perpendicular direction may be combined.

以上のように、本発明のマイクロ波加熱装置は、マイクロ波を被加熱物に均一に照射することができるので、食品の加熱加工や殺菌などを行うマイクロ波加熱装置などに有効に
利用することができる。
As described above, since the microwave heating apparatus of the present invention can uniformly irradiate the object to be heated with microwaves, the microwave heating apparatus can be effectively used for a microwave heating apparatus that performs heating processing or sterilization of food. Can do.

101 電子レンジ(マイクロ波加熱装置)
102 加熱室
103 マグネトロン(マイクロ波発生手段)
104 導波管
105a、105b、105c、105d、105e、105f、141、142、143,411,412,413,414,415,416,417 開口(マイクロ波放射部)
108 加熱室底面
113a,113b,113c 管内定在波の腹
144 庫内定在波の腹
101 Microwave oven (microwave heating device)
102 Heating chamber 103 Magnetron (microwave generating means)
104 Waveguide 105a, 105b, 105c, 105d, 105e, 105f, 141, 142, 143, 411, 412, 413, 414, 415, 416, 417 Opening (microwave radiation part)
108 Heating chamber bottom surface 113a, 113b, 113c Intra-tube standing wave belly 144 In-chamber standing wave belly

Claims (6)

被加熱物を収納する加熱室と、
マイクロ波を発生するマイクロ波発生手段と、
マイクロ波を伝送する導波管と、
前記加熱室内にマイクロ波を放射する複数のマイクロ波放射部とを有し、
被加熱物を載置する加熱室底面中央部に庫内定在波の腹を生じさせる構成としたマイクロ波加熱装置。
A heating chamber for storing an object to be heated;
Microwave generation means for generating microwaves;
A waveguide for transmitting microwaves;
A plurality of microwave radiating portions for radiating microwaves in the heating chamber;
A microwave heating apparatus having a configuration in which an antinode of a standing wave is generated in the center of the bottom of a heating chamber on which an object to be heated is placed.
庫内定在波は、前記加熱室の幅方向と奥行き方向にそれぞれ奇数個の腹が生じる(奇数、奇数)モードとすることで、加熱室底面中央部に庫内定在波の腹を生じさせる構成とした請求項1記載のマイクロ波加熱装置。 The chamber standing wave is a mode in which an odd number of antinodes are generated in the width direction and the depth direction of the heating chamber (odd number, odd number), thereby generating an antinode chamber standing wave in the center of the heating chamber bottom. The microwave heating apparatus according to claim 1. 導波管内に管内定在波を生じさせ、少なくとも管内定在波の腹の一つを加熱室底面中央部に対向させて配置する構成とした請求項1または2に記載のマイクロ波加熱装置。 The microwave heating device according to claim 1 or 2, wherein an in-tube standing wave is generated in the waveguide, and at least one antinode of the in-tube standing wave is disposed to face the center of the bottom of the heating chamber. マイクロ波放射部の少なくとも一つを加熱室底面中央部に配置する構成とした請求項1ないし3のいずれか1項に記載のマイクロ波加熱装置。 The microwave heating device according to any one of claims 1 to 3, wherein at least one of the microwave radiating portions is arranged at the center of the bottom of the heating chamber. マイクロ波放射部は、円偏波を放射する構成とした請求項1ないし4のいずれか1項に記載のマイクロ波加熱装置。 The microwave heating device according to any one of claims 1 to 4, wherein the microwave radiating unit radiates circularly polarized waves. 円偏波を放射するマイクロ波放射部は、二つの長孔が交差する略X字状の構成とした請求項5記載のマイクロ波加熱装置。 The microwave heating apparatus according to claim 5, wherein the microwave radiating portion that radiates circularly polarized waves has a substantially X-shaped configuration in which two long holes intersect.
JP2012269054A 2012-12-10 2012-12-10 Microwave heating device Pending JP2014116175A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012269054A JP2014116175A (en) 2012-12-10 2012-12-10 Microwave heating device
CN201310659105.3A CN103868115A (en) 2012-12-10 2013-12-09 Microwave heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012269054A JP2014116175A (en) 2012-12-10 2012-12-10 Microwave heating device

Publications (1)

Publication Number Publication Date
JP2014116175A true JP2014116175A (en) 2014-06-26

Family

ID=50906932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012269054A Pending JP2014116175A (en) 2012-12-10 2012-12-10 Microwave heating device

Country Status (2)

Country Link
JP (1) JP2014116175A (en)
CN (1) CN103868115A (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4301347A (en) * 1980-08-14 1981-11-17 General Electric Company Feed system for microwave oven
JPS57124378A (en) * 1981-01-26 1982-08-03 Canon Inc Fixing device
KR100239513B1 (en) * 1997-04-03 2000-01-15 윤종용 Microwave oven
US6097018A (en) * 1998-04-06 2000-08-01 Lg Electronics Inc. Circular polarization generating system for microwave oven
JP3808791B2 (en) * 2001-08-27 2006-08-16 三菱電機株式会社 High frequency heating device
KR100448541B1 (en) * 2001-12-04 2004-09-13 삼성전자주식회사 Microwave Range
JP2005315487A (en) * 2004-04-28 2005-11-10 Matsushita Electric Ind Co Ltd Method and device for heating by microwave
JP2010139217A (en) * 2008-12-15 2010-06-24 Yamamoto Vinita Co Ltd Heating method and heating equipment
CN103477707B (en) * 2011-04-01 2016-03-02 松下电器产业株式会社 Microwave heating equipment
JP2014032744A (en) * 2012-08-01 2014-02-20 Panasonic Corp Microwave heating device

Also Published As

Publication number Publication date
CN103868115A (en) 2014-06-18

Similar Documents

Publication Publication Date Title
JP6016135B2 (en) Microwave heating device
JP2014135123A (en) Microwave heating device
WO2013018358A1 (en) Microwave heating device
JP6471906B2 (en) Microwave heating device
WO2013171990A1 (en) Microwave heating device
WO2016006249A1 (en) Microwave heating device
JP2014032744A (en) Microwave heating device
JP5816820B2 (en) Microwave heating device
JP6273598B2 (en) Microwave heating device
JP6179814B2 (en) Microwave heating device
WO2013005438A1 (en) Microwave heating device
JPWO2013001787A1 (en) Microwave heating device
JP2014120416A (en) Microwave heating device
JP2015015225A (en) Microwave heating device
JP2013098106A (en) Microwave heating device
JP2014116175A (en) Microwave heating device
WO2016103586A1 (en) Microwave heating device
JP2014229532A (en) Microwave heating apparatus
JP2013125670A (en) Microwave heating device
JP2013191349A (en) Microwave heating device
JP2014216071A (en) Microwave heating device
JP2014089942A (en) Microwave heating device
WO2016103585A1 (en) Microwave heating device
KR100304588B1 (en) Circular polarized wave antenna of microwave oven
JP5877304B2 (en) Microwave heating device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141006