JP2008226510A - Microwave heating apparatus - Google Patents

Microwave heating apparatus Download PDF

Info

Publication number
JP2008226510A
JP2008226510A JP2007059360A JP2007059360A JP2008226510A JP 2008226510 A JP2008226510 A JP 2008226510A JP 2007059360 A JP2007059360 A JP 2007059360A JP 2007059360 A JP2007059360 A JP 2007059360A JP 2008226510 A JP2008226510 A JP 2008226510A
Authority
JP
Japan
Prior art keywords
waveguide
short
cylindrical tube
magnetron
long side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007059360A
Other languages
Japanese (ja)
Inventor
Tetsuo Kubota
哲男 窪田
Hideyuki Kimura
秀行 木村
Michiyuki Sano
理志 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007059360A priority Critical patent/JP2008226510A/en
Publication of JP2008226510A publication Critical patent/JP2008226510A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To carry out a continuous heating treatment of a flowing fluid load in a waveguide efficiently in a short time. <P>SOLUTION: In the apparatus provided with a waveguide 1 transmitting a TE10 mode with its either end blocked by a short-circuiting plate, a matching element 3 fitted at a side of the center inner wall face of a long side of the waveguide 1, a magnetron 4 fitted to an end of the waveguide for supplying microwave energy, a cylindrical tube 5 fitted at one end side of the waveguide 1 in penetration through top and bottom wall faces of the long side at an up-and-down center of the long side of the waveguide 1, and a fluid load 6 freely flowing in the cylindrical tube 5, a distance S between the cylindrical tube 5 and the waveguide short-circuiting plate 2 is to be (λg/4)+(n×λg/2), (provided, λg is an inner-tube wavelength, and n denotes 0, 1, 2, 3, ...). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、流動する液体状負荷を導波管内で連続加熱処理するマイクロ波加熱装置に関するものである。   The present invention relates to a microwave heating apparatus that continuously heats a flowing liquid load in a waveguide.

従来のこの種のマイクロ波加熱装置は、負荷に効率よくマイクロ波エネルギーを照射して加熱するために、導波管終端部の負荷近傍に設置されている短絡板を管軸方向に移動し短絡板挿入位置を調整して、マグネトロンで発生した負荷方向に入射するマイクロ波エネルギーと、短絡板で反射して戻ってくるマイクロ波エネルギーの位相が、負荷位置で同相になるように調整して液体状負荷を加熱しようとするものである。(例えば特許文献1,2)。この短絡板を調整用することが知られ、フランジ部を導波管終端開口部のフランジ部にネジ止めで連結して設置し、短絡板の調整は短絡板に連結されたスクリューネジを手動やモータなどの動力源を用いて回転させて管軸に沿って前後に移動するようにしている。   This type of conventional microwave heating apparatus moves the short-circuit plate installed near the load at the end of the waveguide in the tube axis direction and short-circuits in order to efficiently irradiate and heat the load with microwave energy. Adjust the plate insertion position and adjust the phase so that the microwave energy incident in the load direction generated by the magnetron and the microwave energy reflected back from the short-circuit plate are in phase at the load position. Trying to heat the load. (For example, Patent Documents 1 and 2). It is known to adjust this short-circuit plate, and the flange portion is connected to the flange portion of the waveguide terminal opening by screwing, and the adjustment of the short-circuit plate is carried out manually by using a screw screw connected to the short-circuit plate. It is rotated using a power source such as a motor so as to move back and forth along the tube axis.

特開2006−181533号公報JP 2006-181533 A 特開平11−225007号公報JP-A-11-225007

上記の従来技術においては短絡板の調整はマグネトロンで発生したマイクロ波エネルギーの入射波と反射波の位相調整が主目的で、負荷を短時間に効率よく加熱するためには短絡板の位相調整と並行して最も重要なのはマグネトロン自身が出力最大で発振するようにさせることである。マグネトロンが出力最大で発振するには、マグネトロンから負荷側を見たインピーダンスが、マグネトロンの動作特性を示すリーケ線図上の出力最大領域で発振動作するように、容量性や誘導性の特性を持つ絞りやスタブなどを整合素子として用いて位相と反射を調整して、負荷との整合を取らなければならない。すなわち、短絡板のみの調整ではマイクロ波加熱装置でいう整合は困難であった。   In the above prior art, the adjustment of the short-circuit plate is mainly aimed at the phase adjustment of the incident wave and the reflected wave of the microwave energy generated by the magnetron, and in order to efficiently heat the load in a short time, the phase adjustment of the short-circuit plate In parallel, the most important thing is to make the magnetron itself oscillate at the maximum output. In order for the magnetron to oscillate at the maximum output, the impedance viewed from the load side from the magnetron has capacitive and inductive characteristics so that it oscillates in the maximum output region on the Reike diagram showing the operating characteristics of the magnetron. It is necessary to adjust the phase and reflection by using a diaphragm or a stub as a matching element to achieve matching with the load. That is, it is difficult to achieve matching with the microwave heating device by adjusting only the short-circuit plate.

マイクロ波加熱装置で整合をとるというのは、負荷からの反射波を抑えマグネトロンで放射されたマイクロ波エネルギーを負荷に効率よく吸収させると同時に、異常発振やアンテナスパーク、陽極の異常加熱などを生じることなく、安定して最大出力が放射されるように加熱したい負荷との間を調整することであり、一般的にマイクロ波工学で述べられている伝送路や負荷からの反射を(位相にはあまり関係なく)最小限小さく調整して発振器に戻ってくる反射波を抑えるのとは異なっている。すなわちマイクロ波加熱装置の整合では、伝送路や負荷からの反射波を小さくするのに加えて、マグネトロンの出力が最大となるように(位相に重きをおき)調整するところに違いがある。   Matching with the microwave heating device suppresses the reflected wave from the load and efficiently absorbs the microwave energy radiated by the magnetron, while also causing abnormal oscillation, antenna spark, abnormal heating of the anode, etc. Without adjusting the load to be heated so that the maximum output is stably radiated, and the reflection from the transmission line and load generally described in microwave engineering (in the phase It is different from (unless much) adjusting the minimum to suppress the reflected wave returning to the oscillator. That is, in the matching of the microwave heating device, in addition to reducing the reflected wave from the transmission path and the load, there is a difference in adjusting so that the output of the magnetron is maximized (weighting on the phase).

また、マイクロ波加熱装置では加熱毎に液体状負荷の種類が変化することはほとんどなく、同じ種類の液体を加熱する場合が多いので食品を加熱する電子レンジのように食品の種類毎に誘電率εや誘電体損失角tanδ が大きく変化することはない。したがって、液体状負荷に対して一度短絡板を調整して電界強度が大きくなるように調整しておけばよく、加熱毎の調整はほとんどの場合必要なく従来方式は時間と労力,費用の無駄であった。さらには大電力のマイクロ波エネルギーが伝送される導波管内に短絡板のような可動部を設けることは、短絡板と接触する導波管内壁隙間でのマイクロ波漏洩や異常加熱,スパークなどが発生する恐れがある。   Also, in microwave heating devices, the type of liquid load rarely changes with each heating, and the same type of liquid is often heated, so the dielectric constant for each type of food, such as a microwave oven that heats food. ε and dielectric loss angle tanδ do not change greatly. Therefore, it is only necessary to adjust the short-circuit plate once for the liquid load so as to increase the electric field strength, and adjustment for each heating is unnecessary in most cases, and the conventional method is a waste of time, labor and cost. there were. Furthermore, providing a movable part such as a short-circuit plate in a waveguide through which high-power microwave energy is transmitted can cause microwave leakage, abnormal heating, sparks, etc. in the gap between the inner walls of the waveguide in contact with the short-circuit plate. May occur.

本発明の目的は、上記従来技術の課題を解決し、マイクロ波漏洩や異常加熱、スパークなどの発生がなく安全で高効率短時間加熱を実現することにある。   An object of the present invention is to solve the above-mentioned problems of the prior art and realize safe and highly efficient short-time heating without occurrence of microwave leakage, abnormal heating, sparks and the like.

本発明は上記の問題を解決するためになされたものであり、マグネトロンが出力最大で発振するために、マグネトロンから液体状負荷側を見た動作インピーダンスがリーケ線図上の出力最大領域で発振動作するように導波管長辺の中心内壁面側に整合素子を設け、位相と反射を調整するようにして液体状負荷との整合をとった。さらに導波管終端に短絡板を固定し液体状負荷位置で入射波と反射波が同相となる、すなわち液体状負荷での電界強度が最大となるよう円筒管管軸と短絡板の距離Sを(λg/4)+(n×λg/2)、(ただしλgは管内波長、nは0,1,2,3……)にした。また、導波管の長辺上,下の中心で上記長辺上下壁面を貫通して設けた液体状負荷の入った円筒管の管軸と導波管管軸間の傾き角度αを反射が最小となる14度から18度に傾けた。   The present invention has been made to solve the above problems, and since the magnetron oscillates at the maximum output, the operating impedance when the liquid load side is viewed from the magnetron oscillates in the maximum output region on the Reike diagram. Thus, a matching element is provided on the inner wall surface side of the long side of the waveguide, and matching with the liquid load is performed by adjusting the phase and reflection. Furthermore, the shorting plate is fixed to the end of the waveguide, and the distance S between the cylindrical tube axis and the shorting plate is set so that the incident wave and the reflected wave are in phase at the liquid load position, that is, the electric field strength at the liquid load is maximized. (Λg / 4) + (n × λg / 2) (where λg is the guide wavelength, n is 0, 1, 2, 3,...). In addition, the angle α between the tube axis of the cylindrical tube containing the liquid load and the waveguide tube axis that passes through the upper and lower wall surfaces of the long side at the upper and lower centers of the waveguide is reflected. It was tilted from the minimum 14 degrees to 18 degrees.

本発明のマイクロ波加熱装置は、上記のようにマグネトロンから液体状負荷側を見たインピーダンスが出力最大領域で動作するように導波管長辺の中心内壁面側に整合素子を設け、位相と反射を調整することにより液体状負荷との整合をとるとともに、短絡板は導波管終端部で固定し液体状負荷の詰まった円筒管管軸までの距離Sを(λg/4)+(n×λg/2)、(ただしλgは管内波長、nは0,1,2,3……)に選ぶことで電界最大位置に液体状負荷が設置されるようにした。また導波管の長辺上,下の中心で上記長辺上下壁面を貫通して設けられた円筒管の管軸と導波管管軸間との傾き角度αを14度から18度に傾けたことにより、反射が小さくなり液体状負荷にマイクロ波エネルギーが効率よく吸収されるようになった。そのためにマイクロ波漏洩や異常加熱,スパークなどの発生がなく安全で高効率短時間加熱が実現できる。   The microwave heating device of the present invention is provided with a matching element on the inner wall surface side of the long side of the waveguide so that the impedance when the liquid load side is viewed from the magnetron operates in the maximum output region as described above, and the phase and reflection are provided. Is adjusted to match the liquid load, and the short-circuit plate is fixed at the end of the waveguide, and the distance S to the cylindrical tube axis clogged with the liquid load is set to (λg / 4) + (n × (λg / 2), where λg is the guide wavelength and n is 0, 1, 2, 3,..., so that the liquid load is installed at the maximum electric field position. In addition, the inclination angle α between the tube axis of the cylindrical tube provided through the long side upper and lower wall surfaces at the upper and lower centers of the waveguide and the waveguide tube axis is inclined from 14 degrees to 18 degrees. As a result, the reflection is reduced and the microwave energy is efficiently absorbed by the liquid load. Therefore, there is no occurrence of microwave leakage, abnormal heating, sparks, etc., and safe and highly efficient heating can be realized in a short time.

以下、本発明の一実施例を図1〜図5を参照して説明する。   An embodiment of the present invention will be described below with reference to FIGS.

図1は本発明の一実施例を示すマイクロ波加熱装置の要部縦断面図で、図2は図1においてa−a′から見た断面図である。図3は一実施例を示す整合素子の外観図である。図4はマグネトロンの動作特性を示すリーケ線図である。図5は導波管内で液体状負荷を傾けた場合の反射係数Γを解析により求めたものである。   FIG. 1 is a longitudinal sectional view of an essential part of a microwave heating apparatus showing an embodiment of the present invention, and FIG. 2 is a sectional view as seen from aa ′ in FIG. FIG. 3 is an external view of a matching element showing one embodiment. FIG. 4 is a Reike diagram showing the operating characteristics of the magnetron. FIG. 5 shows the analysis of the reflection coefficient Γ when the liquid load is tilted in the waveguide.

1は両端が短絡板2で塞がれたTE10モードを伝送する導波管である。上記導波管1長辺の中心内壁面側にはアルミニウムなどの導体からなる整合素子3が設けられている。導波管1の一端にはマイクロ波エネルギーを供給するマグネトロン4が設けられ、上記導波管1のもう一方端側には導波管1の長辺上,下の中心で上記長辺上下壁面を貫通して例えば石英などの誘電体損失の少ない材料からなる円筒管5が設けられている。円筒管5内には液体状負荷6が満たされている。なお本図には記載されていないが、実際には円筒管5と連結してポンプが設けられて上記液体状負荷6が円筒管5内を流れるようになっている。   Reference numeral 1 denotes a waveguide that transmits a TE10 mode in which both ends are closed by a short-circuit plate 2. A matching element 3 made of a conductor such as aluminum is provided on the inner wall surface side of the long side of the waveguide 1. A magnetron 4 for supplying microwave energy is provided at one end of the waveguide 1, and the other side of the waveguide 1 has upper and lower walls on the long side and at the center below the long side of the waveguide 1. A cylindrical tube 5 made of a material having a small dielectric loss such as quartz is provided. The cylindrical tube 5 is filled with a liquid load 6. Although not shown in this figure, a pump is actually provided in connection with the cylindrical tube 5 so that the liquid load 6 flows through the cylindrical tube 5.

上記液体状負荷6が満たされている円筒管5は円筒管5管軸中心と導波管1に固定されている短絡板2との距離Sが(λg/4)+(n×λg/2)、(ただしλgは管内波長、nは0,1,2,3……)となるように設置されている。4′は上記マグネトロン4で発生したマイクロ波エネルギーを導波管1内に放射するためのアンテナである。なお本実施例では前記円筒管5管軸と導波管1管軸間の傾き角度αは90度の場合を示しているがこの傾き角度αを14度から18度に選ぶこともできるようになっている。   In the cylindrical tube 5 filled with the liquid load 6, the distance S between the center of the cylindrical tube 5 and the short-circuit plate 2 fixed to the waveguide 1 is (λg / 4) + (n × λg / 2). ) (Where λg is the guide wavelength, and n is 0, 1, 2, 3,...). Reference numeral 4 ′ denotes an antenna for radiating the microwave energy generated by the magnetron 4 into the waveguide 1. In this embodiment, the inclination angle α between the tube axis of the cylindrical tube 5 and the tube axis of the waveguide 1 is 90 degrees. However, the inclination angle α can be selected from 14 degrees to 18 degrees. It has become.

次に、以上の構成による作用を説明する。   Next, the effect | action by the above structure is demonstrated.

マグネトロン4から発生したマイクロ波エネルギーは、導波管1を伝播し液体状負荷6に照射され液体状負荷6を通過したマイクロ波エネルギーは短絡板2で反射され再び液体状負荷6に照射される。このとき整合素子3によりマグネトロン4の発振出力が最大となるようにあらかじめ液体状負荷6との整合がとられている。具体的にはマグネトロン4のアンテナ4′に対応する擬似アンテナプローブ部をアンテナ4′の代わりに導波管1に取り付けて、マグネトロン4に代わって数ミリワットの低パワーのマイクロ波エネルギーを出力する発振器をつなぐ。なお擬似アンテナプローブ部はマグネトロンメーカから提供されている。   The microwave energy generated from the magnetron 4 propagates through the waveguide 1 and is irradiated to the liquid load 6, and the microwave energy that has passed through the liquid load 6 is reflected by the short-circuit plate 2 and irradiated to the liquid load 6 again. . At this time, the matching element 3 is previously matched with the liquid load 6 so that the oscillation output of the magnetron 4 is maximized. Specifically, a pseudo antenna probe portion corresponding to the antenna 4 ′ of the magnetron 4 is attached to the waveguide 1 instead of the antenna 4 ′, and an oscillator that outputs microwave power of low power of several milliwatts instead of the magnetron 4 is output. Connect. The pseudo antenna probe unit is provided by a magnetron manufacturer.

次に、ネットワークアナライザを用いて上記整合素子3の高さ,直径、さらには導波管1で管軸方向に移動させて位相と反射を観察しながらマグネトロン4のリーケ線図上で出力最大が得られる領域に入るように調整する。リーケ線図は図4に示すように電気回路などのインピーダンスの計算などで用いるスミス図上にマグネトロンの等出力線や等周波数線を記載したもので、同心円状の中心で反射が0(電圧定在波比ρ=1)で完全整合、最も外側の円周は反射が無限大の完全反射を示しており、位相は時計でいう12時の位置にアンテナ4′の基準をとり時計回りに(負荷側に向かって)一周して半波長(λg/2)となっている。   Next, the maximum output on the Reike diagram of the magnetron 4 is observed while observing the phase and reflection by moving the height and diameter of the matching element 3 in the tube axis direction with the waveguide 1 using a network analyzer. Adjust to get into the resulting area. As shown in Fig. 4, the Reike diagram is a Smith diagram used to calculate the impedance of an electric circuit or the like, and the magnetron iso-output lines and iso-frequency lines are described. The reflection is zero at the concentric center. Perfect matching at a standing wave ratio ρ = 1), the outermost circumference shows perfect reflection with infinite reflection, and the phase is clockwise with the reference of the antenna 4 'at the 12 o'clock position (clockwise) A half wavelength (λg / 2) is obtained by making a round around the load side.

なおリーケ線図では反射の状態を反射係数Γで示さず電圧定在波比ρで示しているが換算式を用いて反射係数Γに容易に変換できる。また、ここでλgは発振周波数fと導波管1の長辺寸法から求まる管内波長である。長辺寸法とは矩形型の導波管1を管軸方向に対して垂直な平面で切った場合の断面図で上下壁面の横幅で、これに対して短辺寸法は左右側壁面の高さである。次に整合素子の作用であるが、例えば整合素子3を設けない場合は図4上でのインピーダンスがP′の位置であるとすると,整合素子3を導波管内に設置し整合させた場合はP点となる。これから分かるようにP′点ではマグネトロンの出力は650Wであるのに対して、整合をとったP点では900Wと250Wもの出力差が整合素子の有無で生じている。すなわち整合素子3自身では主として反射が、整合素子3の導波管1内での取り付け位置で位相が調整できるマイクロ波立体回路の一種であり、所望の領域にインピーダンスを移動することができる。   In the Reike diagram, the state of reflection is not shown by the reflection coefficient Γ but by the voltage standing wave ratio ρ, but it can be easily converted to the reflection coefficient Γ using a conversion formula. Here, λg is an in-tube wavelength obtained from the oscillation frequency f and the long side dimension of the waveguide 1. The long side dimension is a cross-sectional view of the rectangular waveguide 1 taken along a plane perpendicular to the tube axis direction, and is the horizontal width of the upper and lower wall surfaces, while the short side dimension is the height of the left and right side wall surfaces. It is. Next, regarding the operation of the matching element, for example, when the matching element 3 is not provided, assuming that the impedance in FIG. 4 is at the position P ′, the matching element 3 is placed in the waveguide and matched. P points. As can be seen, the output of the magnetron is 650 W at the point P ′, whereas an output difference of 900 W and 250 W is caused by the presence or absence of the matching element at the point P where matching is achieved. In other words, the matching element 3 itself is a kind of microwave three-dimensional circuit whose reflection can be adjusted mainly at the position where the matching element 3 is installed in the waveguide 1, and the impedance can be moved to a desired region.

整合素子3は本実施例ではアルミニウム製の円柱を用いたが直方体など高さと断面積が取れるものなら円柱である必要はないし材質もマイクロ波損失の少ない導体でよい。液体状負荷6はマグネトロン4で発生した液体状負荷6に入射するマイクロ波エネルギーと、短絡板2で反射して戻ってくるマイクロ波エネルギーの位相が、液体状負荷6位置で同相になるように短絡板2との距離Sを(λg/4)+(n×λg/2)、(ただしλgは管内波長、nは0,1,2,3……)に選んで固定設置されているために、入射波と反射両方のマイクロ波エネルギーが液体状負荷6に照射されるので加熱が促進される。このように整合素子3の付加と固定の短絡板2とすることにより、マグネトロン4の最大出力が引き出され液体状負荷6の電界強度が増し短時間で効率よく加熱が行われ安価でしかも省エネルギー効果のある安全,信頼性の高い装置となっている。   In this embodiment, the matching element 3 is made of an aluminum cylinder. However, the matching element 3 need not be a cylinder and can be made of a conductor having a low microwave loss if it has a rectangular shape such as a rectangular parallelepiped. The liquid load 6 is such that the phase of the microwave energy incident on the liquid load 6 generated by the magnetron 4 and the microwave energy reflected back from the short-circuit plate 2 is in phase at the position of the liquid load 6. Because the distance S to the short-circuit plate 2 is (λg / 4) + (n × λg / 2) (where λg is the wavelength in the tube, n is 0, 1, 2, 3,...) And is fixedly installed. In addition, since the liquid load 6 is irradiated with both incident wave and reflected microwave energy, heating is promoted. By adding the matching element 3 and using the fixed short-circuit plate 2 as described above, the maximum output of the magnetron 4 is extracted, the electric field strength of the liquid load 6 is increased, the heating is performed efficiently in a short time, and it is inexpensive and energy saving. It is a safe and reliable device.

次に導波管1管軸と円筒管5管軸間の傾き角度αの作用を述べる。図5は導波管1管軸と導波管の長辺上,下の中心で上記長辺上下壁面を貫通して設けられた円筒管5管軸間との傾き角度αを可変して反射係数Γを磁界解析により求めたものである。円筒管5は本実施例では導波管1の管軸間に対して垂直(90度)に設置しているが、この解析結果から分かるように、傾き角度αが16度のとき反射が最も小さくその前後では反射が次第に大きくなっていることが確認できる。マイクロ波が負荷に照射されるときに反射が最小となる入射角度(光学でいうブリュースター角)があり、本実施例においては解析の結果αが14度から18度の間にあることが分かった。そこで、この角度範囲内に液体状負荷6を傾けることにより反射が小さくなり液体状負荷6にマイクロ波エネルギー効率よく吸収されることが期待される。   Next, the action of the inclination angle α between the waveguide 1 tube axis and the cylindrical tube 5 tube axis will be described. FIG. 5 shows reflection by varying the inclination angle α between the tube axis of the waveguide and the tube axis of the cylindrical tube provided through the upper and lower wall surfaces at the upper and lower sides of the waveguide. The coefficient Γ is obtained by magnetic field analysis. In this embodiment, the cylindrical tube 5 is installed perpendicularly (90 degrees) to the tube axis of the waveguide 1. As can be seen from the analysis result, the reflection is the highest when the inclination angle α is 16 degrees. It can be confirmed that the reflection is gradually small before and after that. There is an incident angle (Brewster angle in terms of optics) that minimizes reflection when the microwave is applied to the load. In this embodiment, the analysis results show that α is between 14 degrees and 18 degrees. It was. Therefore, by tilting the liquid load 6 within this angular range, it is expected that reflection is reduced and the liquid load 6 is efficiently absorbed by microwave energy.

本発明の一実施例を示すマイクロ波加熱装置の要部縦断面図である。It is a principal part longitudinal cross-sectional view of the microwave heating apparatus which shows one Example of this invention. 図1においてa−a′から見た断面図である。It is sectional drawing seen from aa 'in FIG. 整合素子の一実施例を示す外観図である。It is an external view which shows one Example of a matching element. マグネトロンの動作特性を示すリーケ線図である。It is a Reike diagram which shows the operational characteristic of a magnetron. 導波管内で液体状負荷を傾けた場合の反射係数Γを解析した結果である。It is the result of analyzing the reflection coefficient Γ when the liquid load is tilted in the waveguide.

符号の説明Explanation of symbols

1 導波管
2 短絡板
3 整合素子
4 マグネトロン
5 円筒管
6 液体状負荷
1 Waveguide 2 Short-circuit plate 3 Matching element 4 Magnetron 5 Cylindrical tube 6 Liquid load

Claims (2)

両端が短絡板で塞がれたTE10モードを伝送する導波管と、この導波管長辺の中心内壁面側に設けた整合素子と、導波管の一端に設けられマイクロ波エネルギーを供給するマグネトロンと、前記導波管の一方端側に導波管の長辺上,下の中心で長辺上下壁面を貫通して設けられた円筒管と、前記円筒管内を自在に流れる液体状負荷とを具備したものにおいて、前記円筒管と導波管短絡板の距離Sを(λg/4)+(n×λg/2)、(ただしλgは管内波長、nは0,1,2,3……)としたことを特徴とするマイクロ波加熱装置。   A waveguide that transmits a TE10 mode with both ends closed by a short-circuit plate, a matching element provided on the inner wall surface of the long side of the waveguide, and microwave energy provided at one end of the waveguide. A magnetron, a cylindrical tube provided on one end side of the waveguide through the long side upper and lower wall surfaces at the upper and lower sides of the waveguide, and a liquid load freely flowing in the cylindrical tube; The distance S between the cylindrical tube and the waveguide short-circuit plate is (λg / 4) + (n × λg / 2), where λg is the wavelength in the tube, n is 0, 1, 2, 3,. ...) A microwave heating apparatus characterized by that. 請求項1において、前記円筒管4管軸と導波管1管軸間の傾き角度αを14度から18度に傾けたことを特徴とするマイクロ波加熱装置。   2. The microwave heating apparatus according to claim 1, wherein an inclination angle α between the tube axis of the cylindrical tube and the tube axis of the waveguide is inclined from 14 degrees to 18 degrees.
JP2007059360A 2007-03-09 2007-03-09 Microwave heating apparatus Pending JP2008226510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007059360A JP2008226510A (en) 2007-03-09 2007-03-09 Microwave heating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007059360A JP2008226510A (en) 2007-03-09 2007-03-09 Microwave heating apparatus

Publications (1)

Publication Number Publication Date
JP2008226510A true JP2008226510A (en) 2008-09-25

Family

ID=39844891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007059360A Pending JP2008226510A (en) 2007-03-09 2007-03-09 Microwave heating apparatus

Country Status (1)

Country Link
JP (1) JP2008226510A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108834245A (en) * 2015-07-31 2018-11-16 山东科朗特微波设备有限公司 Universal microwave occurrence of equipment
CN108924981A (en) * 2018-07-14 2018-11-30 深圳市星聚工业自动化有限公司 A kind of lateral arrangement High-Power Microwave single mode processor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62165894A (en) * 1986-01-16 1987-07-22 ミクロ電子株式会社 Microwave heater for high pressure fluid
JPH04109587A (en) * 1990-08-29 1992-04-10 Toshiba Corp Microwave heating device
JPH08288061A (en) * 1995-04-12 1996-11-01 Nec Corp Electromagnetic wave heating device
JPH08330065A (en) * 1995-05-30 1996-12-13 New Japan Radio Co Ltd Microwave thawing/heating device
JP2000133435A (en) * 1998-10-20 2000-05-12 Toshiyuki Takamatsu Liquid heating device
JP2002538580A (en) * 1999-02-26 2002-11-12 ソシエテ デ プロデユイ ネツスル ソシエテ アノニム On-demand source or beverage heating system and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62165894A (en) * 1986-01-16 1987-07-22 ミクロ電子株式会社 Microwave heater for high pressure fluid
JPH04109587A (en) * 1990-08-29 1992-04-10 Toshiba Corp Microwave heating device
JPH08288061A (en) * 1995-04-12 1996-11-01 Nec Corp Electromagnetic wave heating device
JPH08330065A (en) * 1995-05-30 1996-12-13 New Japan Radio Co Ltd Microwave thawing/heating device
JP2000133435A (en) * 1998-10-20 2000-05-12 Toshiyuki Takamatsu Liquid heating device
JP2002538580A (en) * 1999-02-26 2002-11-12 ソシエテ デ プロデユイ ネツスル ソシエテ アノニム On-demand source or beverage heating system and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108834245A (en) * 2015-07-31 2018-11-16 山东科朗特微波设备有限公司 Universal microwave occurrence of equipment
CN108834245B (en) * 2015-07-31 2021-05-28 山东科朗特微波设备有限公司 Universal microwave generating equipment
CN108924981A (en) * 2018-07-14 2018-11-30 深圳市星聚工业自动化有限公司 A kind of lateral arrangement High-Power Microwave single mode processor

Similar Documents

Publication Publication Date Title
JP4572213B2 (en) Microwave irradiation device
TWI584340B (en) Microwave radiation mechanism, microwave plasma source and surface wave plasma processing device
JP4759668B2 (en) Microwave heating device
WO2018090618A1 (en) Microwave transmission apparatus and semiconductor processing device
JP2011034795A (en) Microwave irradiation system
EP2469975B1 (en) Control of microwave source efficiency in a microwave heating apparatus
US2433011A (en) Ultra high frequency energy coupling
KR100638716B1 (en) Plasma Processor And Plasma Processing Method
US10912165B2 (en) Microwave heating device
JP2008226510A (en) Microwave heating apparatus
RU2324305C2 (en) Microwave heating device
WO2013005438A1 (en) Microwave heating device
US20190090317A1 (en) Microwave heating apparatus
WO2000003564A1 (en) Variable-impedance unit, microwave device using the unit, and microwave heater
JP2007157518A (en) Microwave device
WO2018003546A1 (en) High-frequency heating device
JPWO2018037696A1 (en) High frequency heating device
RU2274963C2 (en) Ultra high-frequency plasmatron
RU2614925C1 (en) Microwave noise generator
JPH02155194A (en) Microwave oven
JP4759870B2 (en) High frequency heating device
RU2085057C1 (en) Superhigh-frequency oven
JP2015162321A (en) Radio frequency heating device
JPH08330065A (en) Microwave thawing/heating device
CN1792119A (en) Microwave heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20081105

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

A131 Notification of reasons for refusal

Effective date: 20110510

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20111011

Free format text: JAPANESE INTERMEDIATE CODE: A02