JP4759632B2 - Zoom lens and imaging apparatus having the same - Google Patents

Zoom lens and imaging apparatus having the same Download PDF

Info

Publication number
JP4759632B2
JP4759632B2 JP2009183430A JP2009183430A JP4759632B2 JP 4759632 B2 JP4759632 B2 JP 4759632B2 JP 2009183430 A JP2009183430 A JP 2009183430A JP 2009183430 A JP2009183430 A JP 2009183430A JP 4759632 B2 JP4759632 B2 JP 4759632B2
Authority
JP
Japan
Prior art keywords
lens
zoom
object side
image
lens group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009183430A
Other languages
Japanese (ja)
Other versions
JP2009294666A (en
Inventor
誠 関田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2009183430A priority Critical patent/JP4759632B2/en
Publication of JP2009294666A publication Critical patent/JP2009294666A/en
Application granted granted Critical
Publication of JP4759632B2 publication Critical patent/JP4759632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明はスチルカメラやビデオカメラ、そしてデジタルスチルカメラ等に好適なズームレンズ及びそれを有する撮像装置に関するものである。   The present invention relates to a zoom lens suitable for a still camera, a video camera, a digital still camera, and the like, and an imaging apparatus having the same.

最近、固体撮像素子を用いたビデオカメラ、デジタルスチルカメラ等、撮像装置(カメラ)の高機能化にともない、それに用いる光学系には広い画角を包含した大口径比のズームレンズが求められている。この種のカメラには、レンズ最後部と撮像素子との間に、ローパスフィルターや色補正フィルターなどの各種光学部材を配置する為、それに用いる光学系には、比較的バックフォーカスの長いレンズ系が要求される。さらに、カラー画像用の撮像素子を用いたカラーカメラの場合、色シェーディングを避けるため、それに用いる光学系には像側のテレセントリック特性の良いものが望まれている。   Recently, with the enhancement of functions of imaging devices (cameras) such as video cameras and digital still cameras using solid-state imaging devices, a zoom lens with a large aperture ratio that includes a wide angle of view is required for the optical system used therefor. Yes. In this type of camera, various optical members such as a low-pass filter and a color correction filter are arranged between the last lens part and the image sensor, so that the optical system used therefor has a lens system with a relatively long back focus. Required. Furthermore, in the case of a color camera using an image pickup device for color images, in order to avoid color shading, an optical system with good telecentric characteristics on the image side is desired.

従来より、負の屈折力の第1レンズ群と正の屈折力の第2レンズ群の2つのレンズ群より成り、双方のレンズ間隔を変えて変倍を行う、所謂ショートズームタイプの広画角の2群ズームレンズが種々提案されている。これらのショートズームタイプの光学系では、正の屈折力の第2レンズ群を移動する事で変倍を行い、負の屈折力の第1レンズ群を移動する事で変倍に伴う像点位置の変動の補正を行っている。これらの2つのレンズ群よりなるレンズ構成においては、ズーム倍率は2倍程度である。   Conventionally, a so-called short zoom type wide angle of view comprising two lens groups, a first lens group having a negative refractive power and a second lens group having a positive refractive power, in which the magnification is changed by changing the distance between the two lenses. Various two-group zoom lenses have been proposed. In these short zoom type optical systems, zooming is performed by moving the second lens unit having a positive refractive power, and image point positions associated with zooming are moved by moving the first lens unit having a negative refractive power. Correction of fluctuation is performed. In a lens configuration composed of these two lens groups, the zoom magnification is about twice.

さらに2倍以上の高い変倍比を有しつつレンズ全体をコンパクトな形状にまとめるため、2群ズームレンズの像側に負または正の屈折力の第3レンズ群を配置し、高倍化に伴って発生する諸収差の補正を行っている。これら所謂3群ズームレンズが知られている(例えば特許文献1、2)。3群ズームレンズとして長いバックフォーカスを有し、テレセントリック特性を満足する広画角の3群ズームレンズ系が知られている(例えば特許文献3、4)。又3群ズームレンズにおいて、負の屈折力の第1レンズ群を固定とし、正の屈折力の第2レンズ群と正の屈折力の第3レンズ群を移動させてズーミングを行うズームレンズが知られている(例えば特許文献5)。又、3群ズームレンズにおいて、ズーミングに際し、全てのレンズ群が移動し、第2レンズ群に効果的に接合レンズを使用して色収差を補正した構成レンズ枚数が比較的少ない3群ズームレンズが知られている(例えば特許文献6〜11)。又、3群ズームレンズにおいて第1レンズ群中の負の屈折力のレンズの物体側と像側の面を非球面形状とすることで、さらに構成レンズ枚数の減少を狙った3群ズームレンズが知られている(例えば特許文献12〜15)。   Furthermore, in order to bring the entire lens into a compact shape while having a high zoom ratio of 2 times or more, a third lens unit having a negative or positive refractive power is arranged on the image side of the two-unit zoom lens, and the magnification is increased. Various aberrations that occur are corrected. These so-called three-group zoom lenses are known (for example, Patent Documents 1 and 2). A wide-angle 3-group zoom lens system having a long back focus and satisfying telecentric characteristics is known as a 3-group zoom lens (for example, Patent Documents 3 and 4). In addition, in a three-group zoom lens, a zoom lens that performs zooming by moving the second lens group having a positive refractive power and the third lens group having a positive refractive power while fixing the first lens group having a negative refractive power is known. (For example, Patent Document 5). In addition, in a three-group zoom lens, there is a known three-group zoom lens in which all the lens groups move during zooming, and the number of lenses constituting the second lens group is effectively reduced by using a cemented lens to correct chromatic aberration. (For example, Patent Documents 6 to 11). In addition, in the three-group zoom lens, the object side and image side surfaces of the negative refractive power lens in the first lens group are made aspherical, thereby further reducing the number of constituent lenses. Known (for example, Patent Documents 12 to 15).

特公平7−3507号公報Japanese Patent Publication No. 7-3507 特公平6−40170号公報Japanese Patent Publication No. 6-40170 特開昭63−135913号公報JP-A 63-135913 特開平7−261083号公報Japanese Patent Laid-Open No. 7-261083 特開平3−288113号公報JP-A-3-288113 特開2001−272602号公報JP 2001-272602 A 特願2003−128261号公報Japanese Patent Application No. 2003-128261 特開2002−48975号公報JP 2002-48975 A 特開2003−5072号公報JP 2003-5072 A 特開2003−149555号公報JP 2003-149555 A 特開2003−149556号公報JP 2003-149556 A 特開平5−323190号公報JP-A-5-323190 特開平7−174971号公報Japanese Unexamined Patent Publication No. 7-174971 特開2002−55278公報JP 2002-55278 A 特開2002−365545号公報JP 2002-365545 A

35mmフィルム写真用に設計されている3群ズームレンズは、固体撮像素子を用いる撮像装置には、バックフォーカスが長すぎ、又テレセントリック特性が良くない為、固体撮像素子を用いる撮像装置に、そのまま用いることが難しい。一方近年、カメラのコンパクト化とズームレンズの高倍化の双方を両立する為に、非撮影時に各レンズ群の間隔を撮影状態と異なる間隔まで縮小し、カメラ本体からのレンズの突出量を少なくした所謂沈胴式のズームレンズが広く用いられている。   A three-group zoom lens designed for 35 mm film photography is used as it is for an imaging apparatus using a solid-state imaging element because the back focus is too long and the telecentric characteristics are not good for an imaging apparatus using a solid-state imaging element. It is difficult. On the other hand, in recent years, in order to achieve both compactness of the camera and high magnification of the zoom lens, the distance between the lens groups has been reduced to a different distance from the shooting state during non-shooting, and the amount of lens protrusion from the camera body has been reduced. A so-called retractable zoom lens is widely used.

一般に、ズームレンズを構成する各レンズ群のレンズ枚数が多いと、各レンズ群の光軸上の長さが長くなり、又、各レンズ群のズーミング及びフォーカシングにおける移動量が大きいとレンズ全長が長くなる。この結果、所望の沈胴長が達成出来なくなり、沈胴式のズームレンズに用いるのが難しくなる。   In general, if the number of lenses in each lens group constituting a zoom lens is large, the length of each lens group on the optical axis becomes long, and if the amount of movement of each lens group in zooming and focusing is large, the total lens length becomes long. Become. As a result, the desired retractable length cannot be achieved, making it difficult to use the retractable zoom lens.

本発明は構成レンズ枚数の少ない、コンパクトで、優れた光学性能を有するズームレンズ及びそれを有する撮像装置の提供を目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a zoom lens having a small number of constituent lenses, a compact zoom lens having excellent optical performance, and an image pickup apparatus having the zoom lens.

本発明のズームレンズは、物体側より像側に順に、負の屈折力の第1レンズ群、正の屈折力の第2レンズ群、正の屈折力の第3レンズ群より構成され、各レンズ群の間隔を変化させてズーミングを行うズームレンズにおいて、前記第1レンズ群の最も物体側のレンズG11及び前記第2レンズ群の最も物体側のレンズG21は、物体側と像側の少なくとも一方のレンズ面が非球面形状であり、前記レンズG11と前記レンズG21の材料の屈折率を各々n1n,n2p、前記レンズG11と前記レンズG21の焦点距離を各々f11、f21、前記第1レンズ群の最も物体側に配置されたレンズの物体側頂点から、該第1レンズ群の最も像側に配置されたレンズの像側頂点までの距離をDL1、前記第2レンズ群の最も物体側に配置されたレンズの物体側頂点から、該第2レンズ群の最も像側に配置されたレンズの像側頂点までの距離をDL2、前記第3レンズ群の最も物体側に配置されたレンズの物体側頂点から、該第3レンズ群の最も像側に配置されたレンズの像側頂点までの距離をDL3、前記第1レンズ群の焦点距離をf1、広角端における全系の焦点距離をfwとするとき、
1.85<n1n
1.85<n2p
−1.6<f11/f21<−0.9
−2.6<f1/fw<−1.6
1.3<(DL1+DL2+DL3)/fw<2.0
なる条件式を満足することを特徴としている。
The zoom lens according to the present invention includes, in order from the object side to the image side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a positive refractive power. In a zoom lens that performs zooming by changing the interval between groups, the most object side lens G11 of the first lens group and the most object side lens G21 of the second lens group are at least one of the object side and the image side. The lens surface has an aspherical shape, the refractive indexes of the materials of the lens G11 and the lens G21 are n1n and n2p, respectively, the focal lengths of the lens G11 and the lens G21 are f11 and f21, respectively, the most of the first lens group. The distance from the object-side apex of the lens arranged on the object side to the image-side apex of the lens arranged closest to the image side of the first lens group is DL1, and the distance is arranged closest to the object side of the second lens group Les The distance from the object-side vertex of the second lens group to the image-side vertex of the lens disposed closest to the image side of the second lens group is DL2, and from the object-side vertex of the lens disposed closest to the object side of the third lens group When the distance to the image side vertex of the lens arranged closest to the image side of the third lens group is DL3, the focal length of the first lens group is f1, and the focal length of the entire system at the wide angle end is fw,
1.85 <n1n
1.85 <n2p
−1.6 <f11 / f21 <−0.9
-2.6 <f1 / fw <-1.6
1.3 <(DL1 + DL2 + DL3) / fw <2.0
It satisfies the following conditional expression.

本発明によれば構成レンズ枚数の少ない、コンパクトで、優れた光学性能を有するズームレンズ及びそれを有する撮像装置が得られる。   According to the present invention, a zoom lens having a small number of constituent lenses, a compact zoom lens having excellent optical performance, and an image pickup apparatus having the zoom lens can be obtained.

実施例1のズームレンズの光学断面図Optical cross-sectional view of the zoom lens of Example 1 実施例1のズームレンズの広角端での収差図Aberration diagram at the wide-angle end of the zoom lens of Example 1 実施例1のズームレンズの中間のズーム位置での収差図Aberration diagram at the middle zoom position of the zoom lens of Example 1 実施例1のズームレンズの望遠端での収差図Aberration diagram at the telephoto end of the zoom lens of Example 1 実施例2のズームレンズの光学断面図Optical sectional view of the zoom lens of Example 2 実施例2のズームレンズの広角端での収差図Aberration diagram at the wide-angle end of the zoom lens of Example 2 実施例2のズームレンズの中間のズーム位置での収差図Aberration diagram at the intermediate zoom position of the zoom lens of Example 2 実施例2のズームレンズの望遠端での収差図Aberration diagram at the telephoto end of the zoom lens of Example 2 実施例3のズームレンズの光学断面図Optical sectional view of the zoom lens of Example 3 実施例3のズームレンズの広角端での収差図Aberration diagram at the wide-angle end of the zoom lens of Example 3 実施例3のズームレンズの中間のズーム位置での収差図Aberration diagram at the intermediate zoom position of the zoom lens of Example 3 実施例3のズームレンズの望遠端での収差図Aberration diagram at the telephoto end of the zoom lens of Example 3 本発明の撮像装置の要部概略図Schematic diagram of main parts of an imaging apparatus of the present invention

[実施例1]
以下、本発明のズームレンズ及びそれを有する撮像装置の実施例について説明する。図1は本発明の実施例1のズームレンズの広角端(短焦点距離端)におけるレンズ断面図、図2,図3,図4はそれぞれ実施例1のズームレンズの広角端、中間のズーム位置、望遠端(長焦点距離端)における収差図である。実施例1は変倍比2.9、開口比2.8〜5.1程度のズームレンズである。図5は本発明の実施例2のズームレンズの広角端におけるレンズ断面図、図6,図7,図8はそれぞれ実施例2のズームレンズの広角端、中間のズーム位置、望遠端における収差図である。実施例2は変倍比3.0、開口比2.8〜5.1程度のズームレンズである。図9は本発明の実施例3のズームレンズの広角端におけるレンズ断面図、図10,図11,図12はそれぞれ実施例3のズームレンズの広角端、中間のズーム位置、望遠端における収差図である。実施例3は変倍比3.0、開口比2.7〜5.1程度のズームレンズである。図13は本発明のズームレンズを備えるデジタルカメラ(撮像装置)要部概略図である。
[Example 1]
Embodiments of the zoom lens of the present invention and an image pickup apparatus having the same will be described below. FIG. 1 is a lens cross-sectional view at the wide-angle end (short focal length end) of the zoom lens according to Embodiment 1 of the present invention, and FIGS. 2, 3 and 4 are zoom positions at the wide-angle end and intermediate position of the zoom lens according to Embodiment 1, respectively. FIG. 6 is an aberration diagram at the telephoto end (long focal length end). Example 1 is a zoom lens having a zoom ratio of 2.9 and an aperture ratio of about 2.8 to 5.1. FIG. 5 is a lens cross-sectional view at the wide-angle end of the zoom lens according to Embodiment 2 of the present invention. FIGS. 6, 7, and 8 are aberration diagrams at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively. It is. The second embodiment is a zoom lens having a zoom ratio of 3.0 and an aperture ratio of about 2.8 to 5.1. 9 is a lens cross-sectional view at the wide-angle end of the zoom lens according to Embodiment 3 of the present invention. FIGS. 10, 11 and 12 are aberration diagrams at the wide-angle end, intermediate zoom position, and telephoto end of the zoom lens according to Embodiment 3, respectively. It is. Embodiment 3 is a zoom lens having a zoom ratio of 3.0 and an aperture ratio of about 2.7 to 5.1. FIG. 13 is a schematic diagram of a main part of a digital camera (imaging device) including the zoom lens of the present invention.

各実施例のズームレンズは撮像装置に用いられる撮影レンズ系であり、レンズ断面図において、左方が被写体側(前方)で、右方が像側(後方)である。図1,図5,図9のレンズ断面図において、L1は負の屈折力(光学的パワー=焦点距離の逆数)の第1レンズ群、L2は正の屈折力の第2レンズ群、L3は正の屈折力の第3レンズ群、SPは開口絞りであり、第2レンズ群L2の物体側に位置している。Gは光学フィルター、フェースプレート、水晶ローパスフィルター、赤外カットフィルター等に相当する光学ブロックである。IPは像面であり、ビデオカメラやデジタルスチルカメラの撮影光学系として使用する際にはCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)の撮像面が置かれる。また銀塩フィルム用カメラの撮影光学系として使用する際にはフィルム面に相当する感光面が置かれる。   The zoom lens of each embodiment is a photographing lens system used in an imaging apparatus. In the lens cross-sectional view, the left side is the subject side (front) and the right side is the image side (rear). In the lens cross-sectional views of FIGS. 1, 5, and 9, L1 is a first lens group having negative refractive power (optical power = reciprocal of focal length), L2 is a second lens group having positive refractive power, and L3 is A third lens unit SP having a positive refractive power, SP is an aperture stop, and is located on the object side of the second lens unit L2. G is an optical block corresponding to an optical filter, a face plate, a quartz low-pass filter, an infrared cut filter, or the like. IP is an image plane, and when used as a photographing optical system of a video camera or a digital still camera, an imaging plane of a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor is placed. When used as a photographing optical system for a silver salt film camera, a photosensitive surface corresponding to the film surface is placed.

収差図において、d,gは各々d線及びg線、M,Sはメリディオナル像面、サジタル像面、倍率色収差はg線によって表している。尚、以下の各実施例において広角端と望遠端は変倍用レンズ群が機構上、光軸上移動可能な範囲の両端に位置したときのズーム位置をいう。各実施例のズームレンズでは、広角端から望遠端のズーム位置へのズーミングに際して、第1レンズ群L1が像側に凸状の軌跡で往復移動、第2レンズ群L2が物体側に単調に移動し、第3レンズ群L3は像側に移動している。各実施例のズームレンズは、第2レンズ群L2の移動により主な変倍を行い、第1レンズ群L1の往復移動及び第3レンズ群L3による像側方向への移動によって変倍に伴う像点の移動を補正している。   In the aberration diagrams, d and g are d-line and g-line, respectively, M and S are meridional image plane, sagittal image plane, and lateral chromatic aberration are represented by g-line. In each of the following embodiments, the wide-angle end and the telephoto end are zoom positions when the zoom lens unit is positioned at both ends of the range in which the zoom lens unit can move on the optical axis. In the zoom lens of each embodiment, when zooming from the wide-angle end to the telephoto end zoom position, the first lens unit L1 reciprocates along a locus convex toward the image side, and the second lens unit L2 monotonously moves toward the object side. The third lens unit L3 moves to the image side. The zoom lens of each embodiment performs main zooming by movement of the second lens unit L2, and an image accompanying zooming by reciprocating movement of the first lens unit L1 and movement in the image side direction by the third lens unit L3. The movement of the point is corrected.

第3レンズ群L3は、撮像素子の小型化に伴う撮影レンズの屈折力の増大を分担し、第1、第2レンズ群L1,L2で構成されるショートズーム系の屈折力を減らす事で特に第1レンズ群L1を構成する各レンズでの収差の発生を抑え良好な光学性能を達成している。また、特に固体撮像素子等を用いた撮影装置に必要な像側のテレセントリックな結像を第3レンズ群L3にフィールドレンズの役割を持たせる事で達成している。また、絞りSPを第2レンズ群L2の物体側に置き、ズーミングに際して第2レンズ群L2と共に移動させて広角側での入射瞳と第1レンズ群L1との距離を縮めている。これにより第1レンズ群L1を構成するレンズの外径(有効径)の増大を抑えている。更に第2レンズ群L2の物体側に配置した絞りSPを挟んで第1レンズ群L1と第3レンズ群L3とで軸外の諸収差を打ち消す事で構成レンズ枚数を増やさずに良好な光学性能を得ている。   The third lens unit L3 shares the increase in the refractive power of the taking lens accompanying the downsizing of the image sensor, and particularly reduces the refractive power of the short zoom system composed of the first and second lens units L1 and L2. The generation of aberration in each lens constituting the first lens unit L1 is suppressed, and good optical performance is achieved. Further, telecentric imaging on the image side necessary for a photographing apparatus using a solid-state imaging device or the like is achieved by making the third lens unit L3 serve as a field lens. Further, the stop SP is placed on the object side of the second lens unit L2, and is moved together with the second lens unit L2 during zooming to reduce the distance between the entrance pupil on the wide angle side and the first lens unit L1. This suppresses an increase in the outer diameter (effective diameter) of the lenses constituting the first lens unit L1. Furthermore, good optical performance can be achieved without increasing the number of constituent lenses by canceling off-axis aberrations between the first lens unit L1 and the third lens unit L3 across the stop SP disposed on the object side of the second lens unit L2. Have gained.

各実施例のズームレンズは、物体側から像側へ順に、第1レンズ群L1は物体側の面が凸でメニスカス形状の負の屈折力のレンズG11と1枚の物体側の面が凸でメニスカス形状の正の屈折力のレンズG12の2枚のレンズを有している。第2レンズ群L2は物体側の面が凸でメニスカス形状の正の屈折力のレンズG21と像側の面が凹でメニスカス形状の負の屈折力のレンズG22とを接合した接合レンズと物体側と像側の面が凸形状の正の屈折力のレンズG23を有している。第3レンズ群L3は少なくとも1枚の正の屈折力のレンズG31を有している。各実施例では以上の様に、各レンズ群の屈折力配置とレンズ構成を特定する事により、良好な光学性能を保ちつつ、レンズ系のコンパクト化を達成している。   In the zoom lens of each embodiment, in order from the object side to the image side, the first lens unit L1 has a convex object-side surface, a meniscus-shaped negative-power lens G11, and a single object-side surface. It has two meniscus-shaped lenses G12 having a positive refractive power. The second lens unit L2 includes a cemented lens obtained by cementing a meniscus lens G21 having a positive refractive power on the object side and a meniscus lens G22 having a negative refractive power on the image side and an object side. And a lens G23 having a positive refractive power and a convex surface on the image side. The third lens unit L3 includes at least one lens G31 having a positive refractive power. In each embodiment, as described above, by specifying the refractive power arrangement and lens configuration of each lens group, the lens system can be made compact while maintaining good optical performance.

次に具体的に各レンズ群のレンズ構成の特徴について説明する。第1レンズ群L1は、軸外主光線を絞りSP中心に瞳結像させる役割を持っており、特に広角側のズーム領域においては軸外主光線の屈折量が大きいために軸外諸収差、特に非点収差と歪曲収差が発生し易い。そこで各実施例では、通常の広画角レンズと同様、第1レンズ群L1を最も物体側のレンズ径(有効径)の増大が抑えられるタイプの負の屈折力のレンズG11と正の屈折力のレンズG12のレンズ構成としている。そして、レンズG11をメニスカス形状とするとともに物体側のレンズ面をレンズ周辺で正の屈折力が強くなる非球面形状とし、像側のレンズ面をレンズ周辺で負の屈折力が弱くなる非球面形状としている。これにより非点収差と歪曲収差をバランス良く補正すると共に、2枚と言う少ないレンズ枚数で第1レンズ群L1を構成し、レンズ全体のコンパクト化に寄与している。また第1レンズ群L1を構成する各レンズG11,G12は、軸外主光線の屈折によって生じる軸外収差の発生を抑えるために絞りSPと光軸が交差する点を中心とする略同心球面に近い形状をとっている。   Next, the characteristics of the lens configuration of each lens group will be specifically described. The first lens unit L1 has a role of forming an off-axis chief ray at the center of the stop SP and forms a pupil image at the center of the stop SP. In particular, astigmatism and distortion are likely to occur. Therefore, in each of the embodiments, as with a normal wide-angle lens, the first lens unit L1 has a negative refractive power lens G11 and a positive refractive power that can suppress an increase in the lens diameter (effective diameter) closest to the object side. The lens configuration of the lens G12 of FIG. The lens G11 has a meniscus shape, the object-side lens surface has an aspherical shape with a strong positive refractive power around the lens, and the image-side lens surface has an aspherical shape with a negative refractive power weakened around the lens. It is said. As a result, astigmatism and distortion are corrected in a well-balanced manner, and the first lens unit L1 is configured with a small number of lenses, ie, two, which contributes to making the entire lens compact. The lenses G11 and G12 constituting the first lens unit L1 are substantially concentric spherical surfaces centering on a point where the stop SP and the optical axis intersect to suppress the occurrence of off-axis aberration caused by refraction of the off-axis principal ray. It has a close shape.

次に第2レンズ群L2は、物体側の面が凸のメニスカス形状の正の屈折力のレンズG21を配置し、第1レンズ群L1を射出した軸外主光線の屈折角を少なくし、軸外諸収差が多く発生しない様な形状としている。また、レンズG21は、最も軸上光線の通る高さが高いレンズであり、主に球面収差、コマ収差の補正に関与しているレンズである。そこで各実施例においては、レンズG21の物体側の面をレンズ周辺で正の屈折力が弱くなる非球面形状とすることにより球面収差、コマ収差を良好に補正している。   Next, in the second lens unit L2, a lens G21 having a positive refractive power having a meniscus shape whose surface on the object side is convex is disposed, and the refraction angle of the off-axis principal ray emitted from the first lens unit L1 is reduced. The shape is such that many external aberrations do not occur. The lens G21 is a lens with the highest height of the axial ray and is mainly involved in correcting spherical aberration and coma aberration. Therefore, in each embodiment, spherical aberration and coma aberration are favorably corrected by making the object side surface of the lens G21 an aspherical shape in which the positive refractive power becomes weak around the lens.

次に、レンズG21と接合したレンズG22の形状を、像面側の面が凹形状とすることで、レンズG21の物体側の面で発生した収差をキャンセルさせている。次に第3レンズ群L3は、物体側と像側の面が凸形状のレンズG31より構成し、像側テレセントリックにするためのフィールドレンズとしての役割をも有している。いま、バックフォーカスをsk’、第3レンズ群L3の焦点距離をf3、第3レンズ群L3の結像倍率をβ3とすると、
sk’=f3(1−β3)
の関係が成り立っている。但し、
0<β3<1.0
である。
Next, the lens G22 cemented with the lens G21 has a concave surface on the image plane side, so that the aberration generated on the object side surface of the lens G21 is cancelled. Next, the third lens unit L3 includes a lens G31 having convex surfaces on the object side and the image side, and also has a role as a field lens for making the image side telecentric. Assuming that the back focus is sk ′, the focal length of the third lens unit L3 is f3, and the imaging magnification of the third lens unit L3 is β3.
sk ′ = f3 (1-β3)
The relationship is established. However,
0 <β3 <1.0
It is.

ここで、広角端から望遠端のズーム位置へのズーミングに際して第3レンズ群L3を像側に移動するとバックフォーカスsk’が減少する事になり、第3レンズ群L3の結像倍率β3は望遠側のズーム領域で増大する。すると、結果的に第3レンズ群L3で変倍を分担できて第2レンズ群L2の移動量が減少し、そのためのスペースが節約できるためにレンズ系の小型化に寄与する。各実施例のズームレンズを用いて無限遠物体から近距離物体を撮影する場合には、第1レンズ群L1を物体側へ移動する事で良好な性能を得られるが、さらに望ましくは、第3レンズ群L3を物体側に移動した方が良い。これによれば、最も物体側に配置した第1レンズ群L1をフォーカシングさせた場合に生じる、前玉径の増大、レンズ重量が最も重い第1レンズ群L1を移動させる事によるアクチュエーターの負荷の増大を防ぐことができる。さらに第1レンズ群L1と第2レンズ群L2とをカム等で単純に連携してズーミング時に移動させる事が可能となり、メカ構造の簡素化及び精度向上を達成できる。尚、第3レンズ群L3のみでフォーカシングを行っても良い。   Here, when the third lens unit L3 is moved to the image side during zooming from the wide-angle end to the telephoto end zoom position, the back focus sk ′ decreases, and the imaging magnification β3 of the third lens unit L3 is set to the telephoto side. Increases in the zoom area. Then, as a result, the third lens unit L3 can share the variable magnification, and the amount of movement of the second lens unit L2 is reduced, and the space for this can be saved, contributing to the miniaturization of the lens system. In the case of photographing a short distance object from an infinite object using the zoom lens of each embodiment, good performance can be obtained by moving the first lens unit L1 to the object side. It is better to move the lens unit L3 to the object side. According to this, when the first lens unit L1 arranged closest to the object side is focused, the front lens diameter increases, and the load on the actuator increases by moving the first lens unit L1 having the heaviest lens weight. Can be prevented. Furthermore, the first lens unit L1 and the second lens unit L2 can be simply linked by a cam or the like and moved during zooming, and the mechanical structure can be simplified and the accuracy can be improved. Note that focusing may be performed only by the third lens unit L3.

また、第3レンズ群L3にてフォーカシングを行う場合、広角端から望遠端のズーム位置へのズーミングに際して第3レンズ群L3を像側に移動する。これにより、フォーカシングの為に移動させるレンズ群の移動量が大きい望遠端において、第3レンズ群L3を像面側に配置する事が出来る。この為、ズーミング及びフォーカシングで必要となる第3レンズ群L3の全ての移動量を最小とする事が可能となり、これによりレンズ系全体のコンパクト化を達成している。尚、各実施例のズームレンズにおいて、良好なる光学性能を得るため、又はレンズ系全体の小型化を図るに、次の諸条件のうちの1つ以上を満足するようにしている。これにより各条件式に相当する効果を得ている。   When performing focusing with the third lens unit L3, the third lens unit L3 is moved to the image side during zooming from the wide-angle end to the telephoto end zoom position. Accordingly, the third lens unit L3 can be disposed on the image plane side at the telephoto end where the moving amount of the lens unit to be moved for focusing is large. For this reason, it is possible to minimize the total amount of movement of the third lens unit L3 required for zooming and focusing, thereby achieving downsizing of the entire lens system. In the zoom lens of each embodiment, one or more of the following conditions are satisfied in order to obtain good optical performance or to reduce the size of the entire lens system. Thereby, the effect equivalent to each conditional expression is obtained.

◎広角端のズーム位置において軸外光線がレンズG11を通過する最大高さにおいて、レンズG11の物体側の面の近軸曲率半径からのサグ量をサグ量Δ球とする。ここでサグ量Δ球(面頂点から光軸に対して立てた垂直線からの距離、符号は垂直線から光の進行方向に測った量を正とし、その逆を負とする。)と該非球面形状のサグ量Δ非との差(Δ球−Δ非)をSag1とする。該レンズG11の像側の面の近軸曲率半径におけるサグ量と該非球面形状のサグ量との差をSag2とする。このとき、
0.05<|Sag1/Sag2|<1.0 ‥‥‥(1)
なる条件を満足している。但し、差Sag1及びSag2の符号は、近軸曲率半径の面形状が非球面形状より物体側にある場合はマイナス、その逆の場合はプラスとする。
The sag amount from the paraxial radius of curvature of the object-side surface of the lens G11 at the maximum height at which the off-axis ray passes through the lens G11 at the zoom position at the wide-angle end is defined as a sag amount Δsphere. Here, the sag amount Δ sphere (distance from the vertical line from the top of the surface with respect to the optical axis, the sign is positive when the amount measured in the light traveling direction from the vertical line is positive, and vice versa). The difference from the spherical shape sag amount Δnon (Δsphere−Δnon) is defined as Sag1. The difference between the sag amount at the paraxial radius of curvature of the image side surface of the lens G11 and the sag amount of the aspherical surface is defined as Sag2. At this time,
0.05 <| Sag1 / Sag2 | <1.0 (1)
Is satisfied. However, the signs of the differences Sag1 and Sag2 are negative if the surface shape of the paraxial radius of curvature is closer to the object side than the aspherical shape, and positive if the opposite is the case.

即ち、物体側の面においては、光軸から離れるに従い正の屈折力が強まる形状の場合はSag1の符号はマイナスの値となり、像側の面においては、光軸から離れるに従い負の屈折力が弱まる形状の場合はSag2の符号はプラスの値となる。条件式(1)の下限値を超えると、レンズG11の物体側の面の非球面形状における歪曲収差の補正分担が弱まる。これに伴いレンズG11の像側の面の非球面形状にて歪曲収差の補正分担が強まることにより、特に広角端での像面湾曲の補正が困難となり好ましくない。また、条件式(1)の上限値を超えると、第1レンズ群L1にて発生する歪曲収差、像面湾曲が補正過剰となり、ズームレンズ系全体としての収差補正が困難となり好ましくない。更に好ましくは、条件式(1)の数値範囲を次の如くするのが良い。   That is, on the object side surface, the sign of Sag1 is a negative value when the positive refractive power increases as the distance from the optical axis increases. On the image side surface, the negative refractive power decreases as the distance from the optical axis increases. In the case of a weakened shape, the sign of Sag2 is a positive value. When the lower limit of conditional expression (1) is exceeded, the correction of distortion aberration in the aspherical shape of the object-side surface of the lens G11 is weakened. Along with this, the aspherical shape of the surface on the image side of the lens G11 increases the share of distortion correction, which makes it difficult to correct curvature of field particularly at the wide-angle end. If the upper limit of conditional expression (1) is exceeded, distortion and field curvature that occur in the first lens unit L1 will be overcorrected, making it difficult to correct aberrations as a whole zoom lens system. More preferably, the numerical range of conditional expression (1) should be as follows.

0.1<|Sag1/Sag2|<0.7 ‥‥‥(1a)
◎第1レンズ群L1の最も物体側のレンズG11及び第2レンズ群L2の最も物体側のレンズG21は、各々物体側と像側の少なくとも一方のレンズ面が非球面形状であり、該レンズG11とレンズG21の材料の屈折率を各々n1n,n2pとする。このとき、
1.85< n1n ‥‥‥(2)
1.85< n2p ‥‥‥(3)
なる条件を満足している。
0.1 <| Sag1 / Sag2 | <0.7 (1a)
The lens G11 closest to the object side of the first lens unit L1 and the lens G21 closest to the object side of the second lens unit L2 each have at least one aspheric surface on the object side and the image side, and the lens G11 And the refractive indexes of the materials of the lens G21 are n1n and n2p, respectively. At this time,
1.85 <n1n (2)
1.85 <n2p (3)
Is satisfied.

条件式(2)及び条件式(3)の範囲をはずれると、ペッツバール和を一定値とするために、各レンズの面の曲率半径を小さくしなくてはならない。このためレンズとレンズの間隔及びレンズのコバ厚を確保する為には、レンズ間の間隔を広げ、レンズの肉厚を増やさなければならず、沈胴時のレンズ全長の短縮化を図るにはに対して好ましくない。   If the range of conditional expression (2) and conditional expression (3) is outside the range, the radius of curvature of the surface of each lens must be reduced in order to make the Petzval sum constant. Therefore, in order to secure the distance between the lenses and the lens edge thickness, the distance between the lenses must be increased to increase the thickness of the lens. On the other hand, it is not preferable.

◎第1レンズ群L1の最も物体側に配置されたレンズG11の焦点距離をf11、第2レンズ群L2の最も物体側に配置されたレンズG21の焦点距離をf21とするとき、
−1.6<f11/f21<−0.9 ‥‥‥(4)
の条件を満足している。条件式(4)は、焦点距離f11と焦点距離f21の絶対値が略等しくし、両方のレンズG11,G21の材料を同じ(同一)とすることで、ペッツバール和が小さい値となる様にしている。更に好ましくは条件式(4)の数値を次の如く設定するのが良い。
When the focal length of the lens G11 arranged closest to the object side of the first lens unit L1 is f11 and the focal length of the lens G21 arranged closest to the object side of the second lens unit L2 is f21,
−1.6 <f11 / f21 < −0.9 (4)
The conditions are satisfied. Conditional expression (4) is such that the absolute values of the focal length f11 and the focal length f21 are substantially equal, and the materials of both lenses G11 and G21 are the same (identical), so that the Petzval sum becomes a small value. Yes. More preferably, the numerical value of conditional expression (4) is set as follows.

−1.5<f11/f21<−0.9 ‥‥‥(4a)
◎第1レンズ群L1の焦点距離をf1、広角端のズーム位置における全系の焦点距離をfwとするとき、
−2.6< f1/fw <−1.6 ‥‥‥(5)
なる条件式を満足している。条件式(5)の上限値を超えると、光学系のレンズ全長は短くなるが、第1レンズ群L1の焦点距離が短くなることで、変倍域全体の収差補正、特に歪曲収差の補正が困難となり好ましくない。また、条件式(5)の下限値を超えると、ズーミング時の第1レンズ群L1の移動量が増大し、光学系のレンズ全長が長くなるので好ましくない。更に好ましくは、条件式(5)の数値範囲を次の如くするのが良い。
-1.5 <f11 / f21 <-0.9 (4a)
When the focal length of the first lens unit L1 is f1, and the focal length of the entire system at the zoom position at the wide angle end is fw,
-2.6 <f1 / fw <-1.6 (5)
The following conditional expression is satisfied. When the upper limit of conditional expression (5) is exceeded, the total lens length of the optical system is shortened, but the focal length of the first lens unit L1 is shortened, so that aberration correction of the entire zooming range, particularly distortion aberration correction, is achieved. It becomes difficult and undesirable. If the lower limit of conditional expression (5) is exceeded, the amount of movement of the first lens unit L1 during zooming increases and the total lens length of the optical system becomes longer, which is not preferable. More preferably, the numerical range of conditional expression (5) should be as follows.

−2.4< f1/fw <−1.8 ‥‥‥(5a)
◎第2レンズ群L2の焦点距離をf2、広角端のズーム位置における全系の焦点距離をfwとするとき、
1.2< f2/fw <2.0 ‥‥‥(6)
なる条件式を満足している。条件式(6)の上限値を超えると、ズーミング時の第2レンズ群L2の移動量が増大し、光学系の全長が長くなるので好ましくない。また、条件式(6)の下限値を超えると、光学系の全長は短くなるが、第2レンズ群L2の焦点距離が短くなることで、変倍域全体の収差補正が困難となり好ましくない。更に好ましくは、条件式(6)の数値範囲を次の如くするのが良い。
-2.4 <f1 / fw <-1.8 (5a)
When the focal length of the second lens unit L2 is f2, and the focal length of the entire system at the zoom position at the wide angle end is fw,
1.2 <f2 / fw <2.0 (6)
The following conditional expression is satisfied. Exceeding the upper limit of conditional expression (6) is not preferable because the amount of movement of the second lens unit L2 during zooming increases and the overall length of the optical system becomes longer. If the lower limit of conditional expression (6) is exceeded, the total length of the optical system is shortened, but the focal length of the second lens unit L2 is shortened, which makes it difficult to correct aberrations in the entire zooming range, which is not preferable. More preferably, the numerical range of conditional expression (6) should be as follows.

1.3< f2/fw <1.8 ‥‥‥(6a)
◎第1レンズ群L1の最も物体側に配置されたレンズの物体側頂点から、第1レンズ群L1の最も像側に配置されたレンズの像側頂点までの距離をDL1とする。第2レンズ群L2の最も物体側に配置されたレンズの物体側頂点から、第2レンズ群L2の最も像側に配置されたレンズの像側頂点までの距離をDL2とする。第3レンズ群L3の最も物体側に配置されたレンズの物体側頂点から、第3レンズ群L3の最も像側に配置されたレンズの像側頂点までの距離をDL3とする。広角端のズーム位置における全系の焦点距離をfwとする。このとき、
1.3< (DL1+DL2+DL3)/fw <2.0 ‥‥‥(7)
なる条件式を満足している。条件式(7)は光学系の全長短縮及び沈胴時のレンズ全長短縮を図る為のものである。条件式(7)の上限値を超えると、各レンズの厚みが相対的に厚くなる為、レンズ沈胴全長を短くする事が難しくなるので好ましくない。
1.3 <f2 / fw <1.8 (6a)
A distance from the object-side vertex of the lens disposed closest to the object side of the first lens unit L1 to the image-side vertex of the lens disposed closest to the image side of the first lens unit L1 is denoted as DL1. The distance from the object-side vertex of the lens disposed closest to the object side of the second lens unit L2 to the image-side vertex of the lens disposed closest to the image side of the second lens unit L2 is defined as DL2. The distance from the object-side vertex of the lens disposed closest to the object side of the third lens unit L3 to the image-side vertex of the lens disposed closest to the image side of the third lens unit L3 is defined as DL3. Let fw be the focal length of the entire system at the zoom position at the wide-angle end. At this time,
1.3 <(DL1 + DL2 + DL3) / fw <2.0 (7)
The following conditional expression is satisfied. Conditional expression (7) is for shortening the overall length of the optical system and shortening the overall length of the lens when retracted. Exceeding the upper limit value of conditional expression (7) is not preferable because the thickness of each lens becomes relatively large, and it becomes difficult to shorten the total length of the lens collapse.

条件式(7)の下限値を超えると、各レンズの厚みが薄くなり沈胴時のレンズ全長を短くする事が可能になるが、各レンズの厚みを薄くする為には各レンズの曲率を緩くしなければならず、この為に各レンズ群の焦点距離が長くなる。各レンズ群の焦点距離が長くなると、必然的に各レンズ群の変倍に伴う移動量が大きくなることで、各レンズ群を移動させるカム筒が長くなり、レンズの厚みが薄くなっても逆に沈胴長時のレンズ全長が長くなってしまい好ましくない。更に好ましくは、条件式(7)の数値範囲を次の如くするのが良い。   If the lower limit value of conditional expression (7) is exceeded, the thickness of each lens becomes thin and the total length of the lens when retracted can be shortened, but in order to reduce the thickness of each lens, the curvature of each lens is loosened. For this reason, the focal length of each lens group becomes long. As the focal length of each lens group becomes longer, the amount of movement accompanying the zooming of each lens group inevitably increases, and the cam cylinder that moves each lens group becomes longer. In addition, the total length of the lens when retracted is long, which is not preferable. More preferably, the numerical range of conditional expression (7) should be as follows.

1.5<(DL1+DL2+DL3)/fw<1.8 ‥‥‥(7a)
各実施例によれば以上の様に各要素を設定する事により、特に、固体撮像素子を用いた撮影系に好適な、構成レンズ枚数が少なくコンパクトで、特に沈胴式のズームレンズに適した、変倍比が2〜3倍程度の優れた光学性能を有するズームレンズを達成している。又、各実施例によればレンズ群中に効果的に非球面を導入し、特に第1レンズ群L1と第2レンズ群L2の屈折力を適切に設定することによって軸外諸収差、特に非点収差・歪曲収差および大口径比化した際の球面収差の補正を効果的に行っている。尚、以上の各実施例においては、ズーミングに際して各レンズ群の間隔が変化するように2つのレンズ群(例えば第1と第2レンズ群、又は第1と第3レンズ群又は第2と第3レンズ群)を移動させるズームタイプにも適用できる。又、第1レンズ群L1の物体側又は/及び第3レンズ群L3の像側に屈折力の小さなレンズ群を付加しても良い。
1.5 <(DL1 + DL2 + DL3) / fw <1.8 (7a)
According to each embodiment, by setting each element as described above, it is particularly suitable for an imaging system using a solid-state imaging device, is small in number of constituent lenses, and particularly suitable for a retractable zoom lens. The zoom lens has excellent optical performance with a zoom ratio of about 2 to 3 times. Further, according to each embodiment, an aspheric surface is effectively introduced into the lens group, and various aberrations, particularly non-axis aberrations, particularly by setting the refractive powers of the first lens group L1 and the second lens group L2 appropriately. It effectively corrects point aberration, distortion, and spherical aberration when the aperture ratio is increased. In each of the embodiments described above, two lens groups (for example, the first and second lens groups, the first and third lens groups, or the second and third lenses) are set so that the distance between the lens groups changes during zooming. It can also be applied to a zoom type that moves the lens group. Further, a lens unit having a small refractive power may be added to the object side of the first lens unit L1 and / or the image side of the third lens unit L3.

次に、本発明の数値実施例を示す。各数値実施例において、iは物体側からの面の順序を示し、Riはレンズ面の曲率半径、Diは第i面と第i+1面との間のレンズ肉厚および空気間隔、Ni、νiはそれぞれd線に対する屈折率、アッベ数を示す。また、最も像側の2つの面はフェースプレート等のガラス材である。また、k、B,Dは非球面係数である。非球面形状は光軸からの高さhの位置での光軸方向の変位を面頂点を基準にしてxとするとき
x=(h2/R)/[1+{1−(1+k)(h/R)21/2]+Bh4+Ch6+Dh8
で表される。但しRは曲率半径である。又「e−0X」は「×10−x」を意味している。fは焦点距離、FnoはFナンバー、ωは半画角を示す。又前述の各条件式と各数値実施例との関係を表1に示す。
Next, numerical examples of the present invention will be shown. In each numerical example, i indicates the order of the surfaces from the object side, Ri is the radius of curvature of the lens surface, Di is the lens thickness and air space between the i-th surface and the i + 1-th surface, Ni and νi are The refractive index and Abbe number for d line are shown. The two surfaces closest to the image side are glass materials such as face plates. K, B, and D are aspheric coefficients. In the aspherical shape, x = (h 2 / R) / [1+ {1− (1 + k) (h) where x is the displacement in the optical axis direction at the position of height h from the optical axis with respect to the surface vertex. / R) 2} 1/2] + Bh 4 + Ch 6 + Dh 8
It is represented by Where R is the radius of curvature. “E-0X” means “× 10 −x ”. f represents a focal length, Fno represents an F number, and ω represents a half angle of view. Table 1 shows the relationship between the above-described conditional expressions and numerical examples.

次に本発明のズームレンズを撮影光学系として用いたデジタルスチルカメラ(撮像装置)の実施例を図13を用いて説明する。図13において、20はカメラ本体、21は本発明のズームレンズによって構成された撮影光学系である。22はカメラ本体に内蔵され、撮影光学系21によって形成された被写体像を受光するCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)である。23は撮像素子22によって光電変換された被写体像に対応する情報を記録するメモリである。24は液晶ディスプレイパネル等によって構成され、固体撮像素子22上に形成された被写体像を観察するためのファインダーである。このように本発明のズームレンズをデジタルスチルカメラ等の撮像装置に適用することにより、小型で高い光学性能を有する撮像装置を実現している。   Next, an embodiment of a digital still camera (image pickup apparatus) using the zoom lens of the present invention as a photographing optical system will be described with reference to FIG. In FIG. 13, reference numeral 20 denotes a camera body, and 21 denotes a photographing optical system constituted by the zoom lens of the present invention. Reference numeral 22 denotes a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor that receives a subject image formed by the photographing optical system 21 and is built in the camera body. A memory 23 records information corresponding to the subject image photoelectrically converted by the image sensor 22. Reference numeral 24 is a finder for observing a subject image formed on the solid-state image sensor 22, which includes a liquid crystal display panel or the like. Thus, by applying the zoom lens of the present invention to an image pickup apparatus such as a digital still camera, a small image pickup apparatus having high optical performance is realized.

L1 第1レンズ群、L2 第2レンズ群、L3 第3レンズ群、L4 第4レンズ群、SP 絞り、IP 像面、G ガラスブロック、d d線、g g線、ΔS サジタル像面、ΔM メリディオナル像面 L1 first lens group, L2 second lens group, L3 third lens group, L4 fourth lens group, SP stop, IP image plane, G glass block, dd line, g g line, ΔS sagittal image plane, ΔM meridional Image plane

Claims (9)

物体側より像側に順に、負の屈折力の第1レンズ群、正の屈折力の第2レンズ群、正の屈折力の第3レンズ群より構成され、各レンズ群の間隔を変化させてズーミングを行うズームレンズにおいて、前記第1レンズ群の最も物体側のレンズG11及び前記第2レンズ群の最も物体側のレンズG21は、物体側と像側の少なくとも一方のレンズ面が非球面形状であり、前記レンズG11と前記レンズG21の材料の屈折率を各々n1n,n2p、前記レンズG11と前記レンズG21の焦点距離を各々f11、f21、前記第1レンズ群の最も物体側に配置されたレンズの物体側頂点から、該第1レンズ群の最も像側に配置されたレンズの像側頂点までの距離をDL1、前記第2レンズ群の最も物体側に配置されたレンズの物体側頂点から、該第2レンズ群の最も像側に配置されたレンズの像側頂点までの距離をDL2、前記第3レンズ群の最も物体側に配置されたレンズの物体側頂点から、該第3レンズ群の最も像側に配置されたレンズの像側頂点までの距離をDL3、前記第1レンズ群の焦点距離をf1、広角端における全系の焦点距離をfwとするとき、
1.85<n1n
1.85<n2p
−1.6<f11/f21<−0.9
−2.6<f1/fw<−1.6
1.3<(DL1+DL2+DL3)/fw<2.0
なる条件式を満足することを特徴とするズームレンズ。
In order from the object side to the image side, a first lens unit having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a positive refractive power are formed. The distance between the lens groups is changed. In the zoom lens that performs zooming, the most object side lens G11 of the first lens group and the most object side lens G21 of the second lens group have an aspherical shape on at least one of the object side and image side lens surfaces. The refractive indexes of the materials of the lens G11 and the lens G21 are n1n and n2p, respectively, the focal lengths of the lens G11 and the lens G21 are f11 and f21, respectively, and the lens disposed closest to the object side of the first lens group The distance from the object-side vertex of the first lens group to the image-side vertex of the lens disposed closest to the image side of the first lens group is DL1, and from the object-side vertex of the lens disposed closest to the object side of the second lens group, The DL2 is the distance to the image side vertex of the lens arranged closest to the image side of the two lens groups, and the most image of the third lens group from the object side vertex of the lens arranged closest to the object side of the third lens group When the distance to the image side vertex of the lens arranged on the side is DL3, the focal length of the first lens group is f1, and the focal length of the entire system at the wide angle end is fw,
1.85 <n1n
1.85 <n2p
−1.6 <f11 / f21 <−0.9
-2.6 <f1 / fw <-1.6
1.3 <(DL1 + DL2 + DL3) / fw <2.0
A zoom lens satisfying the following conditional expression:
前記レンズG11の材料と前記レンズG21の材料が同一であることを特徴とする請求項1のズームレンズ。 The zoom lens according to claim 1, wherein the material of the lens G11 and the material of the lens G21 are the same. 前記第1レンズ群は、物体側より像側に順に、物体側の面が凸でメニスカス形状の負の屈折力のレンズG11と物体側の面が凸でメニスカス形状の正の屈折力のレンズG12より成ることを特徴とする請求項1または2のズームレンズ。 The first lens group includes, in order from the object side to the image side, a lens G11 having a negative meniscus shape with a convex surface on the object side and a lens G12 having a positive meniscus shape with a convex surface on the object side. The zoom lens according to claim 1 or 2, further comprising: 前記第2レンズ群は、物体側より像側へ順に、正の屈折力のレンズG21と負の屈折力のレンズG22とを接合した接合レンズ、物体側と像側の面が凸形状のレンズG23より成ることを特徴とする請求項1〜3のいずれか1項のズームレンズ。 The second lens group includes, in order from the object side to the image side, a cemented lens in which a lens G21 having a positive refractive power and a lens G22 having a negative refractive power are cemented, and a lens G23 having convex surfaces on the object side and the image side. The zoom lens according to claim 1, further comprising: 広角端から望遠端へのズーミングに際して、前記第1レンズ群は像側に凸状の軌跡で移動し、前記第2レンズ群は物体側に単調に移動し、前記第3レンズ群は像側に移動することを特徴とする請求項1〜4のいずれか1項のズームレンズ。 During zooming from the wide-angle end to the telephoto end, the first lens unit moves along a convex locus toward the image side, the second lens unit moves monotonously toward the object side, and the third lens unit moves toward the image side. The zoom lens according to claim 1, wherein the zoom lens moves. 前記第2レンズ群の焦点距離をf2とするとき、
1.2<f2/fw<2.0
なる条件式を満足することを特徴とする請求項1〜のいずれか1項のズームレンズ。
When the focal length of the second lens group is f2,
1.2 <f2 / fw <2.0
Any one of the zoom lens according to claim 1-5, characterized by satisfying the conditional expression.
前記第3レンズ群を物体側に移動させて無限遠物体から近距離物体へのフォーカシングを行うことを特徴とする請求項1〜のいずれか1項のズームレンズ。 Any one of the zoom lens according to claim 1-6, characterized in that performing the focusing on the close range object the third lens group is moved toward the object side from infinity. 撮像素子に像を形成する為の光学系であることを特徴とする請求項1〜のいずれか1項のズームレンズ。 Any one of the zoom lens according to claim 1-7, characterized in that an optical system for forming an image on the imaging device. 請求項1〜のいずれか1項のズームレンズと該ズームレンズによって形成された像を受光する固体撮像素子を有することを特徴とする撮像装置。 Imaging apparatus characterized by having a solid-state imaging device for receiving the formed image by any one of the zoom lens and the zoom lens according to claim 1-8.
JP2009183430A 2009-08-06 2009-08-06 Zoom lens and imaging apparatus having the same Expired - Fee Related JP4759632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009183430A JP4759632B2 (en) 2009-08-06 2009-08-06 Zoom lens and imaging apparatus having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009183430A JP4759632B2 (en) 2009-08-06 2009-08-06 Zoom lens and imaging apparatus having the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004046453A Division JP4378188B2 (en) 2004-02-23 2004-02-23 Zoom lens and imaging apparatus having the same

Publications (2)

Publication Number Publication Date
JP2009294666A JP2009294666A (en) 2009-12-17
JP4759632B2 true JP4759632B2 (en) 2011-08-31

Family

ID=41542852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009183430A Expired - Fee Related JP4759632B2 (en) 2009-08-06 2009-08-06 Zoom lens and imaging apparatus having the same

Country Status (1)

Country Link
JP (1) JP4759632B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6554759B2 (en) * 2014-05-29 2019-08-07 株式会社ニコン Photographic lens, optical apparatus equipped with the photographic lens, and method of manufacturing photographic lens

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3988214B2 (en) * 1997-06-30 2007-10-10 株式会社ニコン Zoom lens
JP3845967B2 (en) * 1997-08-05 2006-11-15 株式会社ニコン Zoom lens
JP2001215409A (en) * 2000-02-07 2001-08-10 West Electric Co Ltd Zoom lens
JP4460734B2 (en) * 2000-05-23 2010-05-12 オリンパス株式会社 Electronic imaging device
JP2002014285A (en) * 2000-06-29 2002-01-18 Asahi Optical Co Ltd Endoscopic objective variable power optical system
JP4534389B2 (en) * 2001-06-14 2010-09-01 コニカミノルタホールディングス株式会社 Zoom lens
JP4112210B2 (en) * 2001-11-07 2008-07-02 オリンパス株式会社 Zoom lens and electronic imaging apparatus using the same
JP4426236B2 (en) * 2003-09-17 2010-03-03 Hoya株式会社 Endoscope objective optical system

Also Published As

Publication number Publication date
JP2009294666A (en) 2009-12-17

Similar Documents

Publication Publication Date Title
JP4378188B2 (en) Zoom lens and imaging apparatus having the same
JP4612823B2 (en) Zoom lens and imaging apparatus having the same
JP4669294B2 (en) Zoom lens and imaging apparatus having the same
JP4366109B2 (en) Zoom lens and optical apparatus having the same
JP5455572B2 (en) Zoom lens and imaging apparatus having the same
JP4773807B2 (en) Zoom lens and imaging apparatus having the same
KR102004988B1 (en) Zoom lens and photographing apparatus having the same
JP4909089B2 (en) Zoom lens and imaging apparatus having the same
JP5317669B2 (en) Zoom lens and imaging apparatus having the same
JP4666977B2 (en) Zoom lens and imaging apparatus having the same
JP4593971B2 (en) Zoom lens and imaging apparatus having the same
US20110026131A1 (en) Zoom lens and optical apparatus including the same
JP2003050352A (en) Zoom lens and optical equipment using the same
JP4827454B2 (en) Zoom lens and imaging apparatus having the same
JP2005092056A (en) Zoom lens and image pickup device having same
JP3710352B2 (en) Zoom lens and optical apparatus using the same
JP2004061675A (en) Zoom lens
JP3619117B2 (en) Zoom lens and optical apparatus using the same
JP2011145566A (en) Zoom lens and optical apparatus having the same
JPWO2013031180A1 (en) Zoom lens and imaging device
JP5084900B2 (en) Zoom lens and imaging apparatus having the same
JP4444625B2 (en) Zoom lens and imaging apparatus having the same
JP3706787B2 (en) Zoom lens and optical apparatus using the same
JP4838899B2 (en) Zoom lens and optical apparatus using the same
JP4928288B2 (en) Zoom lens and imaging apparatus having the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4759632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

LAPS Cancellation because of no payment of annual fees