JP4669294B2 - Zoom lens and imaging apparatus having the same - Google Patents

Zoom lens and imaging apparatus having the same Download PDF

Info

Publication number
JP4669294B2
JP4669294B2 JP2005022561A JP2005022561A JP4669294B2 JP 4669294 B2 JP4669294 B2 JP 4669294B2 JP 2005022561 A JP2005022561 A JP 2005022561A JP 2005022561 A JP2005022561 A JP 2005022561A JP 4669294 B2 JP4669294 B2 JP 4669294B2
Authority
JP
Japan
Prior art keywords
lens
zoom
positive
image
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005022561A
Other languages
Japanese (ja)
Other versions
JP2006208890A5 (en
JP2006208890A (en
Inventor
大介 伊藤
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to JP2005022561A priority Critical patent/JP4669294B2/en
Publication of JP2006208890A publication Critical patent/JP2006208890A/en
Publication of JP2006208890A5 publication Critical patent/JP2006208890A5/ja
Application granted granted Critical
Publication of JP4669294B2 publication Critical patent/JP4669294B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/177Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a negative front lens or group of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • G02B15/1435Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative
    • G02B15/143507Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative arranged -++

Description

本発明はズームレンズに関し、例えば、デジタルスチルカメラ等の撮影光学系に好適なズームレンズに関するものである。   The present invention relates to a zoom lens, for example, a zoom lens suitable for a photographing optical system such as a digital still camera.
最近、固体撮像素子を用いたビデオカメラ、デジタルスチルカメラ等、撮像装置(カメラ)の高機能化にともない、それに用いる光学系には広い撮影画角を包含した大口径比のズームレンズが求められている。   Recently, with the enhancement of functions of image pickup apparatuses (cameras) such as video cameras and digital still cameras using solid-state image pickup devices, a zoom lens having a large aperture ratio including a wide shooting angle of view is required for an optical system used therefor. ing.
更にこの種のカメラには、レンズ最後部と撮像素子との間に、ローパスフィルターや色補正フィルターなどの各種光学部材を配置するため、それに用いる光学系には、比較的バックフォーカスの長いレンズ系が要求される。この他、カラー画像用の撮像素子を用いたカメラの場合、色シェーディングを避けるため、それに用いる光学系には像側のテレセントリック特性の良いものが望まれている。   Furthermore, in this type of camera, various optical members such as a low-pass filter and a color correction filter are arranged between the rearmost lens part and the image sensor, so that the optical system used therefor has a lens system with a relatively long back focus. Is required. In addition, in the case of a camera using a color image pickup device, in order to avoid color shading, an optical system having good image side telecentric characteristics is desired to be used.
従来、負の屈折力の第1レンズ群と正の屈折力の第2レンズ群の2つのレンズ群より成り、双方のレンズ間隔を変えてズーミングを行う、所謂ショートズームタイプの2群ズームレンズが種々提案されている。これらのショートズームタイプの光学系では、正の屈折力の第2レンズ群を移動することで変倍を行い、負の屈折力の第1レンズ群を移動することで変倍に伴って変動する像位置の補償を行っている。これらの2つのレンズ群よりなるレンズ構成においては、ズーム比は2倍程度である。   2. Description of the Related Art Conventionally, there is a so-called short zoom type two-group zoom lens that includes two lens groups, a first lens unit having a negative refractive power and a second lens group having a positive refractive power, and performs zooming by changing the distance between the two lenses. Various proposals have been made. In these short zoom type optical systems, zooming is performed by moving the second lens group having a positive refractive power, and fluctuations are caused by zooming by moving the first lens group having a negative refractive power. Image position compensation is performed. In the lens configuration including these two lens groups, the zoom ratio is about twice.
2倍以上のズーム比を有しつつ、レンズ全体をコンパクトな形状にまとめるため、2群ズームレンズの像側に負または正の屈折力の第3レンズ群を配置し、高ズーム比化を図った、所謂3群ズームレンズも提案されている(例えば特許文献1、2)。   In order to bring the entire lens into a compact shape while having a zoom ratio of 2 times or more, a third lens group having a negative or positive refractive power is arranged on the image side of the second group zoom lens to increase the zoom ratio. A so-called three-group zoom lens has also been proposed (for example, Patent Documents 1 and 2).
また、3群ズームレンズとして長いバックフォーカスを有し、かつテレセントリック特性を満足する3群ズームレンズ系も知られている(例えば特許文献3、4)。   A three-group zoom lens system having a long back focus and satisfying telecentric characteristics is also known as a three-group zoom lens (for example, Patent Documents 3 and 4).
又、負、正、正の屈折力のレンズ群より成る3群ズームレンズにおいて、負の屈折力の第1レンズ群をズーミングに際して、固定とし、正の屈折力の第2レンズ群と正の屈折力の第3レンズ群を移動させてズーミングを行う3群ズームレンズが知られている(例えば特許文献5)。   Further, in a three-group zoom lens composed of lens groups having negative, positive, and positive refractive powers, the first lens group having negative refractive power is fixed during zooming, and the second lens group having positive refractive power and positive refractive power. A three-group zoom lens that performs zooming by moving the third lens group of force is known (for example, Patent Document 5).
又、負、正、正の屈折力のレンズ群より成る3群ズームレンズにおいて、第2レンズ群を正レンズ、正レンズ、負レンズ、正レンズより構成した3群ズームレンズが知られている(例えば特許文献6〜13)。   In addition, in a three-group zoom lens composed of negative, positive, and positive refractive power lens groups, a three-group zoom lens is known in which the second lens group is composed of a positive lens, a positive lens, a negative lens, and a positive lens ( For example, Patent Documents 6 to 13).
又、負、正、正の屈折力のレンズ群より成る3群ズームレンズにおいて、ズーム比が3以上の高ズーム比のズームレンズが知られている(例えば特許文献14〜23)。
特公平7−3507号公報 特公平6−40170号公報 特開昭63−135913号公報 特開平7−261083号公報 特開平3−288113号公報 特開平9−258103号公報 特開平11−52246号公報 特開平11−174322号公報 特開平11−174322号公報 特開平11−194274号公報 特許第3466385号 特開2002−23053号公報 特開2002−196240号公報 特開平4−217219号公報 特開平10−039214号公報 特許平10−213745号公報 特開平11−119101号公報 特開平11−174322号公報 特開2001−42218号公報 特許2002−3655545号公報 特開2002−267930号公報 特開2003−156686号公報 特許第2895843号
In addition, a zoom lens having a high zoom ratio with a zoom ratio of 3 or more is known (for example, Patent Documents 14 to 23).
Japanese Patent Publication No. 7-3507 Japanese Patent Publication No. 6-40170 JP-A 63-135913 Japanese Patent Laid-Open No. 7-261083 JP-A-3-288113 JP-A-9-258103 JP 11-52246 A JP-A-11-174322 JP-A-11-174322 Japanese Patent Application Laid-Open No. 11-194274 Japanese Patent No. 3466385 JP 2002-23053 A JP 2002-196240 A JP-A-4-217219 Japanese Patent Laid-Open No. 10-039214 Japanese Patent No. 10-213745 JP-A-11-119101 JP-A-11-174322 JP 2001-42218 A Japanese Patent No. 2002-3655545 JP 2002-267930 A JP2003-156686A Japanese Patent No. 2895843
35mmフィルム写真用に設計されている3群ズームレンズは、固体撮像素子を用いる撮像装置に使用するには、バックフォーカスが長すぎ、またテレセントリック特性が良くないため、固体撮像素子を用いる撮像装置にそのまま用いることが難しい。   A three-group zoom lens designed for 35 mm film photography has an excessively long back focus and poor telecentric characteristics for use in an imaging device using a solid-state imaging device. It is difficult to use as it is.
一方、カメラのコンパクト化とズームレンズの高ズーム比化(高倍化)を両立するために、非撮影時に各レンズ群の間隔を撮影状態と異なる間隔まで縮小し、カメラ本体からのレンズの突出量を少なくした所謂沈胴式のズームレンズが広く用いられている。   On the other hand, in order to achieve both compactness of the camera and high zoom ratio (higher magnification) of the zoom lens, the distance between the lens groups is reduced to a different distance from the shooting state during non-shooting, and the amount of lens protrusion from the camera body A so-called collapsible zoom lens with a reduced number of lenses is widely used.
一般に、ズームレンズを構成する各レンズ群のレンズ枚数が多いと、各レンズ群の光軸上の長さが長くなり、また各レンズ群のズーミング及びフォーカシングにおける移動量が大きいとレンズ全長が長くなるため、所望の沈胴長が達成できなくなり、沈胴式のズームレンズに用いるのが難しくなる。   In general, if the number of lenses in each lens group constituting the zoom lens is large, the length of each lens group on the optical axis becomes long, and if the amount of movement of each lens group in zooming and focusing is large, the total lens length becomes long. Therefore, the desired retractable length cannot be achieved, and it becomes difficult to use the retractable zoom lens.
この傾向は、ズームレンズのズーム比が大きくなるほど顕著になる。   This tendency becomes more prominent as the zoom ratio of the zoom lens increases.
本発明は、構成レンズ枚数が比較的少なく、広角端で所望の画角で且つ、所望のズーム比を実現したズームレンズ及びそれを有する撮像装置の提供を目的とする。   An object of the present invention is to provide a zoom lens that has a relatively small number of constituent lenses, has a desired angle of view at the wide-angle end, and realizes a desired zoom ratio, and an imaging apparatus having the same.
本発明のズームレンズは、物体側より像側へ順に、負の屈折力の第1レンズ群、正の屈折力の第2レンズ群、正の屈折力の第3レンズ群からなり、ズーミングに際し各レンズ群の間隔が変化するズームレンズにおいて、広角端から望遠端へのズーミングにおける前記第2レンズ群の移動量をΔ2X、広角端における前記第2レンズ群と前記第3レンズ群との間隔をD23w、前記第1レンズ群と前記第2レンズ群の焦点距離を各々f1,f2、広角端での全系の焦点距離をfw、前記第1レンズ群を構成するレンズの材料の屈折率の平均値をn1aとするとき、
1.7<Δ2X/√|f1・f2|<2.3
0.5<D23w/fw<1.2
1.88<n1a
なる条件を満足することを特徴としている。
The zoom lens of the present invention includes, in order from the object side to the image side, a first lens unit having a negative refractive power, a second lens unit having a positive refractive power, a third lens unit having positive refractive power, hand during zooming in the zoom lens the distance of each lens group is changed, the wide-angle end from Δ2X the amount of movement of the second lens group during zooming to the telephoto end, the distance between the third lens group and the second lens group at the wide-angle end d23w, the first lens group and the focal length of the second lens group respectively f1, f2, the focal length of the entire system at the wide angle end fw, the average of the refractive index of the material of the lenses constituting the first lens group When the value is n1a ,
1.7 <Δ2X / √ | f1 · f2 | <2.3
0.5 <D23w / fw <1.2
1.88 <n1a
It is characterized by satisfying the following conditions.
この他、本発明のズームレンズは、物体側より像側へ順に、負の屈折力の第1レンズ群、正の屈折力の第2レンズ群、正の屈折力の第3レンズ群からなり、ズーミングに際し各レンズ群の間隔が変化するズームレンズにおいて、前記第1レンズ群は2枚のレンズより成り、広角端から望遠端へのズーミングにおける前記第2レンズ群の移動量をΔ2X、前記第1レンズ群と前記第2レンズ群の焦点距離を各々f1,f2、前記第1レンズ群を構成するレンズの材料の屈折率の平均値をn1aとするとき、
1.7<Δ2X/√|f1・f2|<2.3
1.88<n1a
なる条件を満足することを特徴としている。
In addition, the zoom lens of the present invention includes, in order from the object side to the image side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a positive refractive power. in the zoom lens hand spacing of each lens group is changed upon zooming, the first lens group consists of two lenses, Deruta2X the amount of movement of the second lens group during zooming to the telephoto end from the wide angle end, the first each one lens group is a focal length of the second lens group f1, f2, when an average value of the refractive index of the material of the lenses constituting the first lens group and n1a,
1.7 <Δ2X / √ | f1 · f2 | <2.3
1.88 <n1a
It is characterized by satisfying the following conditions.
この他、本発明のズームレンズは、物体側より像側へ順に、負の屈折力の第1レンズ群、正の屈折力の第2レンズ群、正の屈折力の第3レンズ群からなり、ズーミングに際し各レンズ群の間隔が変化するズームレンズにおいて、広角端から望遠端へのズーミングにおける前記第2レンズ群の移動量をΔ2X、広角端における前記第2レンズ群と前記第3レンズ群との間隔をD23w、前記第1レンズ群と前記第2レンズ群の焦点距離を各々f1,f2、広角端での全系の焦点距離をfw、前記第2レンズ群を構成する負レンズの材料の屈折率をn2bとするとき、
1.7<Δ2X/√|f1・f2|<2.3
0.5<D23w/fw<1.2
1.85<n2b
なる条件を満足することを特徴としている。
In addition, the zoom lens of the present invention includes, in order from the object side to the image side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a positive refractive power. in the zoom lens hand spacing of each lens group is changed upon zooming, Deruta2X the amount of movement of the second lens group during zooming from the wide-angle end to the telephoto end, and the second lens group at the wide-angle end and the third lens group D23w spacing, the first lens group and the focal length of the second lens group respectively f1, f2, the focal length of the entire system at the wide angle end fw, the material of the negative lens constituting the second lens group When the refractive index is n2b ,
1.7 <Δ2X / √ | f1 · f2 | <2.3
0.5 <D23w / fw <1.2
1.85 <n2b
It is characterized by satisfying the following conditions.
この他、本発明のズームレンズは、物体側より像側へ順に、負の屈折力の第1レンズ群、正の屈折力の第2レンズ群、正の屈折力の第3レンズ群からなり、ズーミングに際し各レンズ群の間隔が変化するズームレンズにおいて、前記第1レンズ群は2枚のレンズより成り、広角端から望遠端へのズーミングにおける前記第2レンズ群の移動量をΔ2X、前記第1レンズ群と前記第2レンズ群の焦点距離を各々f1,f2、前記第2レンズ群を構成する負レンズの材料の屈折率をn2bとするとき、
1.7<Δ2X/√|f1・f2|<2.3
1.85<n2b
なる条件を満足することを特徴としている。
In addition, the zoom lens of the present invention includes, in order from the object side to the image side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a positive refractive power. in the zoom lens hand spacing of each lens group is changed upon zooming, the first lens group consists of two lenses, Deruta2X the amount of movement of the second lens group during zooming to the telephoto end from the wide angle end, the first each one lens group is a focal length of the second lens group f1, f2, when the refractive index of the material of the negative lens constituting the second lens group and n2b,
1.7 <Δ2X / √ | f1 · f2 | <2.3
1.85 <n2b
It is characterized by satisfying the following conditions.
本発明によれば、構成レンズ枚数が比較的少なく、広画角でかつ高いズーム比のズームレンズが得られる。   According to the present invention, a zoom lens having a relatively small number of constituent lenses, a wide angle of view, and a high zoom ratio can be obtained.
以下、本発明のズームレンズ及びそれを有する撮像装置の実施例について説明する。   Embodiments of the zoom lens of the present invention and an image pickup apparatus having the same will be described below.
図1は本発明の実施例1のズームレンズの広角端(短焦点距離端)におけるレンズ断面図、図2,図3,図4はそれぞれ実施例1のズームレンズの広角端、中間のズーム位置、望遠端(長焦点距離端)における収差図である。実施例1はズーム比4.6、開口比2.6〜6.0程度のズームレンズである。   FIG. 1 is a lens cross-sectional view at the wide-angle end (short focal length end) of the zoom lens according to Embodiment 1 of the present invention, and FIGS. 2, 3 and 4 are zoom positions at the wide-angle end and intermediate position of the zoom lens according to Embodiment 1, respectively. FIG. 6 is an aberration diagram at the telephoto end (long focal length end). The first embodiment is a zoom lens having a zoom ratio of about 4.6 and an aperture ratio of about 2.6 to 6.0.
図5は本発明の実施例2のズームレンズの広角端におけるレンズ断面図、図6,図7,図8はそれぞれ実施例2のズームレンズの広角端、中間のズーム位置、望遠端における収差図である。実施例2はズーム比5.4、開口比2.7〜7.0程度のズームレンズである。   FIG. 5 is a lens cross-sectional view at the wide-angle end of the zoom lens according to Embodiment 2 of the present invention. FIGS. 6, 7, and 8 are aberration diagrams at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively. It is. The second embodiment is a zoom lens having a zoom ratio of 5.4 and an aperture ratio of about 2.7 to 7.0.
図9は本発明の実施例3のズームレンズの広角端におけるレンズ断面図、図10,図11,図12はそれぞれ実施例3のズームレンズの広角端、中間のズーム位置、望遠端における収差図である。実施例3はズーム比5.9、開口比2.5〜6.9程度のズームレンズである。   9 is a lens cross-sectional view at the wide-angle end of the zoom lens according to Embodiment 3 of the present invention. FIGS. 10, 11 and 12 are aberration diagrams at the wide-angle end, intermediate zoom position, and telephoto end of the zoom lens according to Embodiment 3, respectively. It is. The third exemplary embodiment is a zoom lens having a zoom ratio of 5.9 and an aperture ratio of about 2.5 to 6.9.
図13は本発明の実施例4のズームレンズの広角端におけるレンズ断面図、図14,図15,図16はそれぞれ実施例4のズームレンズの広角端、中間のズーム位置、望遠端における収差図である。実施例4はズーム比4.6、開口比2.5〜6.0程度のズームレンズである。   FIG. 13 is a lens cross-sectional view at the wide-angle end of the zoom lens according to Embodiment 4 of the present invention, and FIGS. 14, 15, and 16 are aberration diagrams at the wide-angle end, intermediate zoom position, and telephoto end, respectively. It is. Example 4 is a zoom lens having a zoom ratio of 4.6 and an aperture ratio of about 2.5 to 6.0.
図17は本発明の実施例5のズームレンズの広角端におけるレンズ断面図、図18,図19,図20はそれぞれ実施例5のズームレンズの広角端、中間のズーム位置、望遠端における収差図である。実施例5はズーム比4.6、開口比2.5〜6.0程度のズームレンズである。   FIG. 17 is a lens cross-sectional view at the wide-angle end of the zoom lens according to Embodiment 5 of the present invention. FIGS. 18, 19, and 20 are aberration diagrams at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively. It is. The fifth embodiment is a zoom lens having a zoom ratio of 4.6 and an aperture ratio of about 2.5 to 6.0.
図21は本発明のズームレンズを備えるデジタルスチルカメラ(撮像装置)要部概略図である。   FIG. 21 is a schematic diagram of a main part of a digital still camera (imaging device) including the zoom lens of the present invention.
各実施例のズームレンズは撮像装置に用いられる撮影レンズ系であり、レンズ断面図において、左方が物体側(前方)で、右方が像側(後方)である。   The zoom lens of each embodiment is a photographic lens system used in an imaging apparatus. In the lens cross-sectional view, the left side is the object side (front) and the right side is the image side (rear).
図1,図5,図9,図13、図17のレンズ断面図において、L1は負の屈折力(光学的パワー=焦点距離の逆数)の第1レンズ群、L2は正の屈折力の第2レンズ群、L3は正の屈折力の第3レンズ群、SPは開口絞りであり、第2レンズ群L2の物体側に配置している。   In the lens cross-sectional views of FIGS. 1, 5, 9, 13, and 17, L1 is a first lens unit having a negative refractive power (optical power = reciprocal of focal length), and L2 is a positive refractive power. Two lens units, L3 is a third lens unit having a positive refractive power, SP is an aperture stop, and is disposed on the object side of the second lens unit L2.
Gは光学フィルター、フェースプレート、水晶ローパスフィルター、赤外カットフィルター等に相当する光学ブロックである。IPは像面であり、ビデオカメラやデジタルスチルカメラの撮影光学系として使用する際にはCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)の撮像面に相当する感光面が置かれる。   G is an optical block corresponding to an optical filter, a face plate, a quartz low-pass filter, an infrared cut filter, or the like. IP is an image plane, and when used as a photographing optical system of a video camera or a digital still camera, a photosensitive surface corresponding to an imaging surface of a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor is placed.
収差図において、d,gは各々d線及びg線、ΔM,ΔSはメリディオナル像面、サジタル像面、倍率色収差はg線によって表している。   In the aberration diagrams, d and g are d-line and g-line, ΔM and ΔS are meridional image surface, sagittal image surface, and lateral chromatic aberration are represented by g-line.
尚、以下の各実施例において広角端と望遠端は変倍用レンズ群(第2レンズ群L2)が機構上、光軸上移動可能な範囲の両端に位置したときのズーム位置をいう。   In each of the following embodiments, the wide-angle end and the telephoto end refer to zoom positions when the zoom lens unit (second lens unit L2) is positioned at both ends of the range in which it can move on the optical axis due to the mechanism.
各実施例のズームレンズでは、広角端から望遠端へのズーミングに際して、第1レンズ群L1が像側に凸状の軌跡で略往復移動し、第2レンズ群L2が物体側に移動し、第3レンズ群L3は像側に移動している。   In the zoom lens of each embodiment, during zooming from the wide-angle end to the telephoto end, the first lens unit L1 moves substantially reciprocally along a locus convex to the image side, the second lens unit L2 moves to the object side, The three lens unit L3 moves to the image side.
各実施例のズームレンズは、第2レンズ群L2の移動により主な変倍を行い、第1レンズ群L1の往復移動及び第3レンズ群L3による像側方向への移動によって変倍に伴う像の移動を補正している。   The zoom lens of each embodiment performs main zooming by movement of the second lens unit L2, and an image accompanying zooming by reciprocating movement of the first lens unit L1 and movement in the image side direction by the third lens unit L3. The movement is corrected.
次に、レンズ構成の具体的な特徴について説明する。   Next, specific features of the lens configuration will be described.
第1レンズ群L1は、物体側から像側へ順に、物体側に凸面を向けたメニスカス形状の負レンズG11と、物体側に凸面を向けたメニスカス形状の正レンズG12の2枚のレンズで構成している。   The first lens unit L1 includes, in order from the object side to the image side, a meniscus negative lens G11 having a convex surface facing the object side and a meniscus positive lens G12 having a convex surface facing the object side. is doing.
第1レンズ群L1は、軸外主光線を開口絞りSP中心に瞳結像させる役割を持っており、特に広角側においては軸外主光線の屈折量が大きいために軸外諸収差、特に非点収差と歪曲収差が発生し易い。   The first lens unit L1 has a role of forming an off-axis chief ray at the center of the aperture stop SP and forms a pupil image. Especially on the wide-angle side, the off-axis chief ray has a large amount of refraction, and various off-axis aberrations, particularly non- Point aberration and distortion are likely to occur.
そこで各実施例では、通常の広角レンズと同様、最も物体側のレンズ径の増大が抑えられる負レンズと正レンズのレンズ構成としている。   Therefore, in each embodiment, as with a normal wide-angle lens, a lens configuration of a negative lens and a positive lens that can suppress an increase in the lens diameter closest to the object side is adopted.
そして、負レンズG11の像側のレンズ面をレンズ周辺で負の屈折力が弱くなる非球面形状とすることにより、非点収差と歪曲収差をバランス良く補正すると共に、2枚と言う少ないレンズ枚数で第1レンズ群L1を構成し、レンズ全体のコンパクト化を図っている。   Then, by making the lens surface on the image side of the negative lens G11 an aspherical shape in which the negative refractive power is weakened around the lens, astigmatism and distortion are corrected in a well-balanced manner and the number of lenses as small as two is reduced. The first lens unit L1 is configured to make the entire lens compact.
また第1レンズ群L1を構成する各レンズは、軸外主光線の屈折によって生じる軸外収差の発生を抑えるために開口絞りSPと光軸が交差する点を中心とする同心球面に近いレンズ形状としている。   Each lens constituting the first lens unit L1 has a lens shape close to a concentric sphere centered on the point where the aperture stop SP intersects the optical axis in order to suppress the occurrence of off-axis aberration caused by refraction of the off-axis principal ray. It is said.
第2レンズ群L2は、物体側から像側へ順に、物体側の面が凸形状の正レンズG21、両レンズ面が凸形状の正レンズG22と両レンズ面が凹形状の負レンズG23とを接合した接合レンズ、正レンズG24より構成している。   In order from the object side to the image side, the second lens unit L2 includes a positive lens G21 having a convex surface on the object side, a positive lens G22 having a convex shape on both lens surfaces, and a negative lens G23 having a concave shape on both lens surfaces. It is composed of a cemented cemented lens and a positive lens G24.
第2レンズ群L2は、物体側に正レンズG21と正レンズG22を配置し、第1レンズ群L1を射出した軸外主光線の屈折角を少なくし、軸外諸収差が発生しない様なレンズ形状としている。   The second lens unit L2 includes a positive lens G21 and a positive lens G22 disposed on the object side, reduces the refraction angle of the off-axis principal ray emitted from the first lens unit L1, and does not cause off-axis aberrations. It has a shape.
また、正レンズG21は、最も軸上光線の通る高さが高いレンズであり、主に球面収差、コマ収差の補正に関与しているレンズである。そこで各実施例においては、正レンズG21と正レンズG22を配置して、光束を徐々に屈折させることにより球面収差、コマ収差を良好に補正している。   Further, the positive lens G21 is a lens having the highest height of the on-axis light beam, and is a lens mainly involved in correction of spherical aberration and coma aberration. Therefore, in each embodiment, the positive lens G21 and the positive lens G22 are arranged, and the spherical aberration and the coma are corrected well by gradually refracting the light beam.
そして、正レンズG22と接合した負レンズG23の像側の面を、凹形状とするこ
とで、正レンズG21と正レンズG22で発生した収差をキャンセルさせている。
And the aberration which generate | occur | produced with the positive lens G21 and the positive lens G22 is canceled by making the image side surface of the negative lens G23 cemented with the positive lens G22 into a concave shape.
第3レンズ群L3は、少なくとも1枚の物体側の面が凸形状の正レンズG31より構成している。各実施例では、単一の正レンズより成っている。 The third lens unit L3 includes at least one positive lens G31 having a convex object-side surface. Each embodiment consists of a single positive lens.
第3レンズ群L3は、撮像素子の小型化に伴う各レンズ群の屈折力の増大を分担し、第1、第2レンズ群L1,L2で構成されるショートズーム系の屈折力を減らすことで、特に第1レンズ群L1を構成する各レンズでの収差の発生を抑え良好な光学性能を達成している。 また、特に固体撮像素子等を用いた撮影装置に必要な像側のテレセントリックな結像を第3レンズ群L3にフィールドレンズの役割を持たせることで達成している。   The third lens group L3 shares the increase in the refractive power of each lens group accompanying the downsizing of the image sensor, and reduces the refractive power of the short zoom system composed of the first and second lens groups L1 and L2. In particular, good optical performance is achieved by suppressing the occurrence of aberration in each lens constituting the first lens unit L1. Further, telecentric imaging on the image side necessary for a photographing apparatus using a solid-state imaging device or the like is achieved by making the third lens unit L3 serve as a field lens.
ここで、バックフォーカスをsk’、第3レンズ群L3の焦点距離をf3、第3レンズ群L3の結像倍率をβ3とすると、
sk’=f3(1−β3)
の関係が成り立っている。
Here, when the back focus is sk ′, the focal length of the third lens unit L3 is f3, and the imaging magnification of the third lens unit L3 is β3,
sk ′ = f3 (1-β3)
The relationship is established.
但し、
0<β3<1.0
である。
However,
0 <β3 <1.0
It is.
ここで、広角端から望遠端へのズーミングに際して第3レンズ群L3を像側に移動するとバックフォーカスsk’が減少することになり、第3レンズ群L3の結像倍率β3は望遠側のズーム領域で増大する。すると、結果的に第3レンズ群L3で変倍を分担することになり、第2レンズ群L2の移動量が減少し、そのためのスペースが節約できるためにレンズ系の小型化に寄与する。   Here, when the third lens unit L3 is moved to the image side during zooming from the wide-angle end to the telephoto end, the back focus sk ′ is decreased, and the imaging magnification β3 of the third lens unit L3 is a zoom region on the telephoto side. Increase with. Then, as a result, the third lens unit L3 shares the variable magnification, and the amount of movement of the second lens unit L2 is reduced, and the space for this can be saved, contributing to the miniaturization of the lens system.
各実施例のズームレンズを用いて無限遠物体から近距離物体への撮影をする場合には、第1レンズ群L1を物体側へ移動することで良好な性能を得ることもできるが、さらに望ましくは、第3レンズ群L3を物体側に移動させてフォーカスを行った方が良い。 When shooting from an object at infinity to an object at a short distance using the zoom lens of each embodiment, it is possible to obtain good performance by moving the first lens unit L1 to the object side, but it is more desirable. It is better to focus by moving the third lens unit L3 to the object side.
これは、最も物体側に配置した第1レンズ群L1をフォーカシングで移動させた場合に生じる、前玉径の増大や、レンズ重量が最も重い第1レンズ群L1を移動させることによるアクチュエーターの負荷の増大を防ぐことができるからである。また、フォーカスのために第1レンズ群L1を移動させないことで、第1レンズ群L1と第2レンズ群L2とをカム等で単純に連携してズーミング時に移動させることが可能となり、メカ構造の簡素化及び精度向上を達成できる。   This occurs when the first lens unit L1 arranged closest to the object side is moved by focusing. The increase of the front lens diameter and the load of the actuator by moving the first lens unit L1 having the heaviest lens weight are caused. This is because an increase can be prevented. In addition, by not moving the first lens unit L1 for focusing, the first lens unit L1 and the second lens unit L2 can be simply moved together by a cam or the like during zooming, and the mechanical structure is improved. Simplification and improved accuracy can be achieved.
また、第3レンズ群L3にてフォーカシングを行う場合、広角端から望遠端へのズーミングに際して第3レンズ群L3を像側に移動させることにより、フォーカシング移動量の大きい望遠端での第3レンズ群L3の位置を広角端に比して像側に配置することができるため、ズーミング及びフォーカシングで必要となる第3レンズ群L3の移動量の総和を最小とすることが可能となり、レンズ系のコンパクト化が容易になる。   When focusing is performed by the third lens unit L3, the third lens unit at the telephoto end having a large focusing movement amount is obtained by moving the third lens unit L3 to the image side during zooming from the wide-angle end to the telephoto end. Since the position of L3 can be arranged on the image side compared to the wide-angle end, the total amount of movement of the third lens unit L3 required for zooming and focusing can be minimized, and the lens system is compact. It becomes easy.
以上のように、各レンズ群を所望の屈折力配置と収差補正とを両立するレンズ構成とすることにより、良好な光学性能を保ちつつ、レンズ系全体のコンパクト化、高ズーム比化、そして沈胴長の短縮を達成している。   As described above, by making each lens group a lens configuration that achieves both desired refractive power arrangement and aberration correction, the entire lens system can be made compact, a high zoom ratio, and retracted while maintaining good optical performance. The length has been shortened.
尚、各実施例のズームレンズにおいて、良好なる光学性能を得るため、又はレンズ系全体の小型化を図るには、次の諸条件のうちの少なくとも1つ以上を満足させるようにしている。これによって、各条件式に相当する効果を得ている。   In the zoom lens of each embodiment, in order to obtain good optical performance or to reduce the size of the entire lens system, at least one of the following conditions is satisfied. As a result, an effect equivalent to each conditional expression is obtained.
広角端から望遠端へのズーミングにおける第2レンズ群L2の移動量をΔ2X(移動量Δ2Xの符号は、物体側への移動を正、その逆を負としている)、広角端における第2レンズ群L2と第3レンズ群L4との間隔をD23W、第1レンズ群L1、第2レンズ群L2、第3レンズ群L3の焦点距離を順にf1,f2,f3、広角端での全系の焦点距離をfw,第2レンズ群L2の広角端と、望遠端での結像倍率を各々β2w、β2t、第3レンズ群L3の広角端と、望遠端での結像倍率を各々β3w、β3t,第1レンズ群L1を構成するレンズの材料の屈折率の平均値をn1a,第2レンズ群L2は、負レンズを有し、該負レンズの材料屈折率をn2bとするとき、   The amount of movement of the second lens unit L2 during zooming from the wide-angle end to the telephoto end is Δ2X (the sign of the amount of movement Δ2X is positive for movement toward the object side, and vice versa), and the second lens unit at the wide-angle end The distance between L2 and the third lens unit L4 is D23W, the focal lengths of the first lens unit L1, the second lens unit L2, and the third lens unit L3 are sequentially f1, f2, and f3, and the focal length of the entire system at the wide angle end. , The imaging magnifications at the wide-angle end and the telephoto end of the second lens unit L2 are β2w and β2t, respectively, and the imaging magnifications at the wide-angle end and the telephoto end of the third lens unit L3 are β3w, β3t, When the average value of the refractive index of the lens material constituting one lens group L1 is n1a, the second lens group L2 has a negative lens, and the material refractive index of the negative lens is n2b,
0.5<D23w/fw<1.2・・・・(2)
3.8<(β2t・β3)/(β2・β3t)>5.2・・・・(3)
1.88<n1a・・・・(4)
1.85<n2b・・・・(5)
1.9<f3/f2<2.5・・・・(6)
5.2<f3/fw<6.4・・・・(7)
なる条件を満足している。
0.5 < D23w / fw < 1.2 (2)
3.8 <(β2t · β3 w ) / (β2 w · β3t)> 5.2 (3)
1.88 <n1a (4)
1.85 <n2b (5)
1.9 <f3 / f2 <2.5 (6)
5.2 <f3 / fw <6.4 (7)
Is satisfied.
条件式(1)の下限を超えてズーミングにおける第2レンズ群L2の移動量Δ2Xが小さくなると、第1レンズ群L1と第2レンズ群L2のパワーが緩くなり、所定のズーム比を確保するために各レンズ群の移動量が増し、全系のコンパクト化が難しくなってくる。   When the movement amount Δ2X of the second lens unit L2 during zooming becomes smaller than the lower limit of the conditional expression (1), the power of the first lens unit L1 and the second lens unit L2 becomes loose, and a predetermined zoom ratio is secured. In addition, the amount of movement of each lens group increases, making it difficult to make the entire system compact.
また、条件式(1)の上限値を超えると、第1レンズ群L1と第2レンズ群L2のパワーが強くなり、所定のズーム比を確保するための各レンズ群の移動量は減少するため全系のコンパクト化には有利ではあるが、第1レンズ群L1と第2レンズ群L2のパワーが強くなることにより非点収差、コマ収差等の諸収差の補正が困難になる。   When the upper limit value of conditional expression (1) is exceeded, the power of the first lens unit L1 and the second lens unit L2 becomes strong, and the amount of movement of each lens unit to ensure a predetermined zoom ratio decreases. Although advantageous for downsizing the entire system, correction of various aberrations such as astigmatism and coma becomes difficult due to the strong power of the first lens unit L1 and the second lens unit L2.
条件式(2)の上限を越えて間隔D23Wが大きくなると、第3レンズ群L3でフォーカスするときの広角端における至近物体へのフォーカシングは容易となるがレンズ全長が増大するため全系のコンパクト化が難しくなる。   If the distance D23W increases beyond the upper limit of conditional expression (2), focusing on the closest object at the wide-angle end when focusing with the third lens unit L3 becomes easy, but the overall length of the lens becomes compact because the total lens length increases. Becomes difficult.
条件式(2)の下限を越えて間隔D23Wが小さくなると、広角端において至近物体へのフォーカシングを第3レンズ群L3のみで行うのが難しくなり、例えば更に第1レンズ群L1をフォーカシングの為に移動させることとなり、メカ構造が複雑化し、又、第1レンズ群L1の移動による第1レンズ群の有効径が増大してくるので良くない。   If the distance D23W is reduced beyond the lower limit of conditional expression (2), it is difficult to focus on the closest object at the wide-angle end with only the third lens unit L3. For example, the first lens unit L1 is used for focusing. This is not good because the mechanical structure becomes complicated, and the effective diameter of the first lens unit increases due to the movement of the first lens unit L1.
条件式(3)の下限を超えると、第2レンズ群L2の変倍分担が不十分となり、4を越えるズーム比の実現が難しくなり、又、ズーミングにおける第3レンズ群L3の移動量が大きくなり、全長が拡大してくるので良くない。   If the lower limit of conditional expression (3) is exceeded, the variable magnification sharing of the second lens unit L2 will be insufficient, making it difficult to achieve a zoom ratio exceeding 4, and the amount of movement of the third lens unit L3 during zooming will be large. It is not good because the total length is enlarged.
また、条件式(3)の上限を超えると第2レンズ群L2の変倍分担が大きくなりすぎるため、第2レンズ群L2を構成するレンズの枚数を増やし、第2レンズ群L2内での収差の負荷を分散させなければならず、第2レンズ群L2の全長が長くなり好ましくない。   If the upper limit of conditional expression (3) is exceeded, the variable magnification share of the second lens unit L2 becomes too large. Therefore, the number of lenses constituting the second lens unit L2 is increased, and aberrations in the second lens unit L2 are increased. This is not desirable because the entire length of the second lens unit L2 becomes long.
条件式(4)の下限値を超えると、所定のズーム比を得るための第1レンズ群L1を構成する各レンズのパワーを大きくしなければならないためレンズ面の曲率、特に像側のレンズ面の曲率半径が小さくなり、レンズ成形が困難となること、また、曲率を緩くして所定のズーム比を得るためには第1レンズ群L1のレンズ枚数が増大し、全系が大型化してくるため好ましくない。   If the lower limit value of conditional expression (4) is exceeded, the power of each lens constituting the first lens unit L1 for obtaining a predetermined zoom ratio must be increased, so the curvature of the lens surface, particularly the lens surface on the image side. In order to obtain a predetermined zoom ratio by reducing the curvature, the number of lenses in the first lens unit L1 increases, and the entire system becomes larger. Therefore, it is not preferable.
また、条件式(5)の下限値を超えると、所定のズーム比を得るために第2レンズ群L2のレンズ構成枚数を増加、あるいは負レンズの肉厚を増大しなければならないため全系のコンパクト化が難しくなる。   If the lower limit of conditional expression (5) is exceeded, the number of lenses constituting the second lens unit L2 must be increased or the thickness of the negative lens must be increased in order to obtain a predetermined zoom ratio. It becomes difficult to make compact.
条件式(6)の上限を超えて第2レンズ群L2のパワーが弱くなると、所定のズーム比を確保するために第2レンズ群L2の移動量が増大し、コンパクト化には不利になる。   If the power of the second lens unit L2 becomes weaker than the upper limit of the conditional expression (6), the movement amount of the second lens unit L2 increases to secure a predetermined zoom ratio, which is disadvantageous for downsizing.
又、上限を超えて第3レンズ群L3のパワーが強くなると非点収差を補正するためにレンズ枚数を増大せねばならず全系のコンパクト化が難しくなる。   If the power of the third lens unit L3 is increased beyond the upper limit, the number of lenses must be increased in order to correct astigmatism, making it difficult to make the entire system compact.
条件式(6)の下限値を越えて第2レンズ群L2のパワーが強くなると、非点収差、コマ収差を補正するために第2レンズ群L2の枚数を増大せねばならず全系のコンパクト化が難しくなる。   When the power of the second lens unit L2 increases beyond the lower limit of conditional expression (6), the number of the second lens unit L2 must be increased in order to correct astigmatism and coma, and the entire system is compact. It becomes difficult.
条件式(7)の上限値を超えると、射出瞳距離が像面から近くなり、テレセントリック性が悪くなるため好ましくない。   Exceeding the upper limit of conditional expression (7) is not preferable because the exit pupil distance becomes closer to the image plane and the telecentricity becomes worse.
また、条件式(7)の下限を超えて第3レンズ群L3のパワーが強くなると、テレセントリック性は良好になるが非点収差が増大し、これを補正するのが困難となる。   Further, when the power of the third lens unit L3 is increased beyond the lower limit of the conditional expression (7), the telecentricity is improved, but the astigmatism is increased, and it is difficult to correct this.
収差補正上、及びレンズ系全体の小型化の為に更に好ましくは、前述の各条件式の数値範囲を次の如く設定するのが良い。   In order to correct aberrations and to reduce the size of the entire lens system, the numerical ranges of the conditional expressions described above are preferably set as follows.
0.6<D23/fw<1.1・・・・(2a)
3.9<(β2・β3)/(β2・β3)<5.1・・・・(3a)
1.90<n1a・・・・(4a)
1.90<n2b・・・・(5a)
2.0<f3/f2<2.4・・・・(6a)
5.3<f3/f<6.35・・・・(7a)
なる条件を満足することである。
0.6 <D23 w /fw<1.1 (2a)
3.9 <(β2 t · β3 w ) / (β2 w · β3 t ) <5.1 (3a)
1.90 <n1a (4a)
1.90 <n2b (5a)
2.0 <f3 / f2 <2.4 (6a)
5.3 <f3 / f w <6.35 ···· (7a)
To satisfy the following conditions.
各実施例は以上の様に各要素を設定する事により、特に、固体撮像素子を用いた撮影系に好適な、構成レンズ枚数が少なくコンパクトで、特に沈胴式に適した、ズーム比が4〜6倍程度の優れた光学性能を有するズームレンズが達成出来る。   In each embodiment, by setting each element as described above, it is particularly suitable for an imaging system using a solid-state imaging device, is compact with a small number of constituent lenses, and particularly suitable for a retractable type, with a zoom ratio of 4 to 4 A zoom lens having an excellent optical performance of about 6 times can be achieved.
又、各実施例によれば第1レンズ群L1中に効果的に非球面を導入することによって、特に第1レンズ群L1と第2レンズ群L2の屈折力を適切に設定することによって軸外諸収差、特に非点収差・歪曲収差および大口径比化した際の球面収差の補正が効果的に行える。   Further, according to each embodiment, by effectively introducing an aspheric surface into the first lens unit L1, in particular, by appropriately setting the refractive powers of the first lens unit L1 and the second lens unit L2, off-axis. Various aberrations, particularly astigmatism, distortion, and spherical aberration when the aperture ratio is increased can be effectively corrected.
尚、以上の各実施例においては、ズーミングに際して3つのレンズ群を移動させる代わ
りに、各レンズ群の間隔が変化するように2つのレンズ群(例えば第1と第2レンズ群、
又は第1と第3レンズ群又は第2と第3レンズ群)を移動させるズームタイプにも適用で
きる。
In each of the above embodiments, instead of moving the three lens groups during zooming, the two lens groups (for example, the first and second lens groups,
Alternatively, the present invention can also be applied to a zoom type in which the first and third lens groups or the second and third lens groups) are moved.
又、第1レンズ群L1の物体側又は/及び第3レンズ群L3の像側に屈折力の小さなレ
ンズ群を付加しても本発明で得られる効果には変わりがない。
Further, even if a lens unit having a small refractive power is added to the object side of the first lens unit L1 and / or the image side of the third lens unit L3, the effect obtained by the present invention remains unchanged.
次に、本発明の数値実施例を示す。各数値実施例において、iは物体側からの面の順序
を示し、Riはレンズ面の曲率半径、Diは第i面と第(i+1)面との間の間隔、Ni
,νiはそれぞれd線を基準とした屈折率、アッベ数を示す。
Next, numerical examples of the present invention will be shown. In each numerical example, i indicates the order of the surfaces from the object side, Ri is the radius of curvature of the lens surface, Di is the distance between the i-th surface and the (i + 1) -th surface, Ni
, Νi respectively indicate the refractive index and Abbe number with respect to the d-line.
また、最も像側の2つの面はフェースプレート等のガラス材である。   The two surfaces closest to the image side are glass materials such as face plates.
また、非球面形状は、光の進行方向を正とし、xを光軸方向の面頂点からの変位量、h
を光軸と垂直な方向の光軸からの高さ、Rを近軸曲率半径、kを円錐定数、B〜Eを非球
面係数とするとき、
x=(h2/R)/[1+{1−(1+k)(h/R)21/2
+Bh4+Ch6+Dh8+Eh10
なる式で表している。
The aspherical shape is such that the light traveling direction is positive, x is the amount of displacement from the surface vertex in the optical axis direction, h
Is the height from the optical axis in the direction perpendicular to the optical axis, R is the paraxial radius of curvature, k is the conic constant, and B to E are aspherical coefficients,
x = (h 2 / R) / [1+ {1− (1 + k) (h / R) 2 } 1/2 ]
+ Bh 4 + Ch 6 + Dh 8 + Eh 10
It is expressed by the following formula.
又「e−0X」は「×10−x」を意味している。fは焦点距離、FnoはFナンバー
、ωは半画角を示す。又前述の各条件式と各数値実施例との関係を表1に示す。
“E-0X” means “× 10 −x ”. f represents a focal length, Fno represents an F number, and ω represents a half angle of view. Table 1 shows the relationship between the above-described conditional expressions and numerical examples.

数値実施例1

f=4.69〜21.60 Fno=2.56〜5.97 2ω=65.5°〜15.9°

R 1 = 28.278 D 1 = 1.80 N 1 = 1.882997 ν 1 = 40.8
R 2 = 5.123 D 2 = 2.84
R 3 = 9.485 D 3 = 1.75 N 2 = 1.922860 ν 2 = 18.9
R 4 = 16.168 D 4 = 可変
R 5 = 絞り D 5 = 0.40
R 6 = 13.007 D 6 = 1.50 N 3 = 1.693501 ν 3 = 53.2
R 7 = 690.521 D 7 = 0.10
R 8 = 6.185 D 8 = 2.25 N 4 = 1.696797 ν 4 = 55.5
R 9 = -18.336 D 9 = 1.60 N 5 = 1.901355 ν 5 = 31.6
R10 = 5.092 D10 = 0.81
R11 = 23.853 D11 = 1.30 N 6 = 1.719995 ν 6 = 50.2
R12 = -17.457 D12 = 可変
R13 = 18.330 D13 = 1.60 N 7 = 1.487490 ν 7 = 70.2
R14 = -36.938 D14 = 可変
R15 = ∞ D15 = 1.00 N 8 = 1.516330 ν 8 = 64.1
R16 = ∞



焦点距離 4.69 12.90 21.60
可変間隔
D 4 20.33 5.16 1.80
D12 4.02 15.03 26.52
D14 4.33 4.08 3.36


非球面係数
R2 k=-1.57269e+00 B=9.31352e-04 C=-9.32116e-07 D=1.10249e-08
E=3.97985e-10
R8 k=-1.77870e-01 B=5.38565e-05 C=2.46566e-06







数値実施例2

f=4.50〜24.35 Fno=2.74〜7.00 2ω=67.7°〜14.1°

R 1 = 28.104 D 1 = 1.80 N 1 = 1.882997 ν1 = 40.8
R 2 = 5.326 D 2 = 2.67
R 3 = 9.520 D 3 = 1.75 N 2 = 1.922860 ν 2 = 18.9
R 4 = 16.301 D 4 = 可変
R 5 = 絞り D 5 = 0.20
R 6 = 10.497 D 6 = 1.50 N 3 = 1.620411 ν 3 = 60.3
R 7 = 91.154 D 7 = 0.10
R 8 = 6.413 D 8 = 2.05 N 4 = 1.788001 ν 4 = 47.4
R 9 = -27.354 D 9 = 1.50 N 5 = 2.003300 ν 5 = 28.3
R10 = 5.137 D10 = 0.50
R11 = 24.649 D11 = 1.20 N 6 = 1.834000 ν 6 = 37.2
R12 = -22.165 D12 = 可変
R13 = 15.118 D13 = 1.60 N 7 = 1.516330 ν 7 = 64.1
R14 = -112.010 D14 = 可変
R15 = ∞ D15 = 1.00 N 8 = 1.516330 ν 8 = 64.1
R16 = ∞



焦点距離 4.50 14.14 24.35
可変間隔
D 4 23.38 5.25 1.80
D12 3.95 16.12 28.69
D14 4.25 3.96 3.25


非球面係数
R2 k=-1.31424e+00 B=6.16883e-04 C=3.16840e-06 D=1.01182e-08
E=-3.58477e-10
R8 k=-2.76663e+00 B=1.25488e-03 C=-1.10959e-05 D=3.02464e-07







数値実施例3

f=4.29〜25.30 Fno=2.50〜6.90 2ω=70.2°〜13.6°

R 1 = 33.847 D 1 = 1.80 N 1 = 1.882997 ν 1 = 40.8
R 2 = 5.319 D 2 = 2.49
R 3 = 9.526 D 3 = 1.75 N 2 = 1.922860 ν 2 = 18.9
R 4 = 16.478 D 4 = 可変
R 5 = 絞り D 5 = 0.20
R 6 = 10.394 D 6 = 1.45 N 3 = 1.639999 ν 3 = 60.1
R 7 = 62.083 D 7 = 0.10
R 8 = 6.334 D 8 = 2.10 N 4 = 1.772499 ν 4 = 49.6
R 9 = -51.827 D 9 = 1.55 N 5 = 2.003300 ν 5 = 28.3
R10 = 5.096 D10 = 0.55
R11 = 22.577 D11 = 1.20 N 6 = 1.834000 ν 6 = 37.2
R12 = -21.511 D12 = 可変
R13 = 12.440 D13 = 1.60 N 7 = 1.516330 ν 7 = 64.1
R14 = 110.419 D14 = 可変
R15 = ∞ D15 = 1.00 N 8 = 1.516330 ν 8 = 64.1
R16 = ∞



焦点距離 4.29 14.31 25.30
可変間隔
D 4 22.31 4.94 1.78
D12 3.54 16.87 30.62
D14 4.16 3.50 2.42


非球面係数
R1 k=1.66792e+01 B=3.29890e-05 C=-3.75031e-06 D=7.54949e-08
E=-8.64945e-10
R2 k=-1.28756e+00 B=6.38450e-04 C=5.28748e-06 D=-1.07260e-07
E=7.71211e-10
R8 k=-3.00310e+00 B=1.38557e-03 C=-1.77869e-05 D=5.11304e-07






数値実施例4

f=4.69〜21.60 Fno=2.52〜5.97 2ω=65.5°〜15.9°

R 1 = 27.781 D 1 = 1.80 N 1 = 1.882997 ν 1 = 40.8
R 2 = 5.112 D 2 = 2.87
R 3 = 9.459 D 3 = 1.75 N 2 = 1.922860 ν 2 = 18.9
R 4 = 16.081 D 4 = 可変
R 5 = 絞り D 5 = 0.40
R 6 = 12.693 D 6 = 1.50 N 3 = 1.693501 ν 3 = 53.2
R 7 = 748.560 D 7 = 0.10
R 8 = 6.188 D 8 = 2.25 N 4 = 1.696797 ν 4 = 55.5
R 9 = -17.856 D 9 = 1.60 N 5 = 1.901355 ν 5 = 31.6
R10 = 5.062 D10 = 0.90
R11 = 24.749 D11 = 1.30 N 6 = 1.719995 ν 6 = 50.2
R12 = -17.554 D12 = 可変
R13 = 20.052 D13 = 1.60 N 7 = 1.487490 ν 7 = 70.2
R14 = -32.668 D14 = 可変
R15 = ∞ D15 = 1.00 N 8 = 1.516330 ν 8 = 64.1
R16 = ∞



焦点距離 4.69 17.55 21.60
可変間隔
D 4 19.84 5.11 1.80
D12 3.00 14.28 26.27
D14 4.99 4.58 3.48


非球面係数
R2 k=-1.55604e+00 B=9.15097e-04 C=-5.65375e-08 D=7.02344e-09
E=2.63734e-10
R8 k=-2.86351e-01 B=1.03856e-04 C=4.26746e-06

数値実施例5

f=4.69〜21.60 Fno=2.58〜5.97 2ω=65.5°〜15.9°

R 1 = 28.388 D 1 = 1.80 N 1 = 1.882997 ν 1 = 40.8
R 2 = 5.087 D 2 = 2.90
R 3 = 9.529 D 3 = 1.75 N 2 = 1.922860 ν 2 = 18.9
R 4 = 16.168 D 4 = 可変
R 5 = 絞り D 5 = 0.10
R 6 = 13.199 D 6 = 1.50 N 3 = 1.693501 ν 3 = 53.2
R 7 = 554.461 D 7 = 0.10
R 8 = 6.184 D 8 = 2.25 N 4 = 1.696797 ν 4 = 55.5
R 9 = -18.358 D 9 = 1.60 N 5 = 1.901355 ν 5 = 31.6
R10 = 5.115 D10 = 0.81
R11 = 22.733 D11 = 1.30 N 6 = 1.719995 ν 6 = 50.2
R12 = -16.955 D12 = 可変
R13 = 16.884 D13 = 1.60 N 7 = 1.487490 ν 7 = 70.2
R14 = -49.680 D14 = 可変
R15 = ∞ D15 = 1.00 N 8 = 1.516330 ν 8 = 64.1
R16 = ∞



焦点距離 4.69 12.98 21.60
可変間隔
D 4 20.79 5.40 1.96
D12 5.06 15.84 26.79
D14 3.58 3.27 2.80

非球面係数
R2 k=-1.49618e+00 B=8.75196e-04 C=-3.59972e-07 D=1.41022e-08
E=3.46972e-10
R8 k=-4.33552e-01 B=1.86343e-04 C=5.39556e-06

Numerical example 1

f = 4.69-21.60 Fno = 2.56-5.97 2ω = 65.5 ° -15.9 °

R 1 = 28.278 D 1 = 1.80 N 1 = 1.882997 ν 1 = 40.8
R 2 = 5.123 D 2 = 2.84
R 3 = 9.485 D 3 = 1.75 N 2 = 1.922860 ν 2 = 18.9
R 4 = 16.168 D 4 = Variable
R 5 = Aperture D 5 = 0.40
R 6 = 13.007 D 6 = 1.50 N 3 = 1.693501 ν 3 = 53.2
R 7 = 690.521 D 7 = 0.10
R 8 = 6.185 D 8 = 2.25 N 4 = 1.696797 ν 4 = 55.5
R 9 = -18.336 D 9 = 1.60 N 5 = 1.901355 ν 5 = 31.6
R10 = 5.092 D10 = 0.81
R11 = 23.853 D11 = 1.30 N 6 = 1.719995 ν 6 = 50.2
R12 = -17.457 D12 = variable
R13 = 18.330 D13 = 1.60 N 7 = 1.487490 ν 7 = 70.2
R14 = -36.938 D14 = variable
R15 = ∞ D15 = 1.00 N 8 = 1.516330 ν 8 = 64.1
R16 = ∞



Focal length 4.69 12.90 21.60
Variable interval
D 4 20.33 5.16 1.80
D12 4.02 15.03 26.52
D14 4.33 4.08 3.36


Aspheric coefficient
R2 k = -1.57269e + 00 B = 9.31352e-04 C = -9.32116e-07 D = 1.10249e-08
E = 3.97985e-10
R8 k = -1.77870e-01 B = 5.38565e-05 C = 2.46566e-06







Numerical example 2

f = 4.50〜24.35 Fno = 2.74〜7.00 2ω = 67.7 ° 〜14.1 °

R 1 = 28.104 D 1 = 1.80 N 1 = 1.882997 ν1 = 40.8
R 2 = 5.326 D 2 = 2.67
R 3 = 9.520 D 3 = 1.75 N 2 = 1.922860 ν 2 = 18.9
R 4 = 16.301 D 4 = Variable
R 5 = Aperture D 5 = 0.20
R 6 = 10.497 D 6 = 1.50 N 3 = 1.620411 ν 3 = 60.3
R 7 = 91.154 D 7 = 0.10
R 8 = 6.413 D 8 = 2.05 N 4 = 1.788001 ν 4 = 47.4
R 9 = -27.354 D 9 = 1.50 N 5 = 2.003300 ν 5 = 28.3
R10 = 5.137 D10 = 0.50
R11 = 24.649 D11 = 1.20 N 6 = 1.834000 ν 6 = 37.2
R12 = -22.165 D12 = variable
R13 = 15.118 D13 = 1.60 N 7 = 1.516330 ν 7 = 64.1
R14 = -112.010 D14 = variable
R15 = ∞ D15 = 1.00 N 8 = 1.516330 ν 8 = 64.1
R16 = ∞



Focal length 4.50 14.14 24.35
Variable interval
D 4 23.38 5.25 1.80
D12 3.95 16.12 28.69
D14 4.25 3.96 3.25


Aspheric coefficient
R2 k = -1.31424e + 00 B = 6.16883e-04 C = 3.16840e-06 D = 1.01182e-08
E = -3.58477e-10
R8 k = -2.76663e + 00 B = 1.25488e-03 C = -1.10959e-05 D = 3.02464e-07







Numerical Example 3

f = 4.29-25.30 Fno = 2.50-6.90 2ω = 70.2 ° -13.6 °

R 1 = 33.847 D 1 = 1.80 N 1 = 1.882997 ν 1 = 40.8
R 2 = 5.319 D 2 = 2.49
R 3 = 9.526 D 3 = 1.75 N 2 = 1.922860 ν 2 = 18.9
R 4 = 16.478 D 4 = Variable
R 5 = Aperture D 5 = 0.20
R 6 = 10.394 D 6 = 1.45 N 3 = 1.639999 ν 3 = 60.1
R 7 = 62.083 D 7 = 0.10
R 8 = 6.334 D 8 = 2.10 N 4 = 1.772499 ν 4 = 49.6
R 9 = -51.827 D 9 = 1.55 N 5 = 2.003300 ν 5 = 28.3
R10 = 5.096 D10 = 0.55
R11 = 22.577 D11 = 1.20 N 6 = 1.834000 ν 6 = 37.2
R12 = -21.511 D12 = variable
R13 = 12.440 D13 = 1.60 N 7 = 1.516330 ν 7 = 64.1
R14 = 110.419 D14 = variable
R15 = ∞ D15 = 1.00 N 8 = 1.516330 ν 8 = 64.1
R16 = ∞



Focal length 4.29 14.31 25.30
Variable interval
D 4 22.31 4.94 1.78
D12 3.54 16.87 30.62
D14 4.16 3.50 2.42


Aspheric coefficient
R1 k = 1.66792e + 01 B = 3.29890e-05 C = -3.75031e-06 D = 7.54949e-08
E = -8.64945e-10
R2 k = -1.28756e + 00 B = 6.38450e-04 C = 5.28748e-06 D = -1.07260e-07
E = 7.71211e-10
R8 k = -3.00310e + 00 B = 1.38557e-03 C = -1.77869e-05 D = 5.11304e-07






Numerical Example 4

f = 4.69〜21.60 Fno = 2.52〜5.97 2ω = 65.5 ° 〜15.9 °

R 1 = 27.781 D 1 = 1.80 N 1 = 1.882997 ν 1 = 40.8
R 2 = 5.112 D 2 = 2.87
R 3 = 9.459 D 3 = 1.75 N 2 = 1.922860 ν 2 = 18.9
R 4 = 16.081 D 4 = variable
R 5 = Aperture D 5 = 0.40
R 6 = 12.693 D 6 = 1.50 N 3 = 1.693501 ν 3 = 53.2
R 7 = 748.560 D 7 = 0.10
R 8 = 6.188 D 8 = 2.25 N 4 = 1.696797 ν 4 = 55.5
R 9 = -17.856 D 9 = 1.60 N 5 = 1.901355 ν 5 = 31.6
R10 = 5.062 D10 = 0.90
R11 = 24.749 D11 = 1.30 N 6 = 1.719995 ν 6 = 50.2
R12 = -17.554 D12 = variable
R13 = 20.052 D13 = 1.60 N 7 = 1.487490 ν 7 = 70.2
R14 = -32.668 D14 = variable
R15 = ∞ D15 = 1.00 N 8 = 1.516330 ν 8 = 64.1
R16 = ∞



Focal length 4.69 17.55 21.60
Variable interval
D 4 19.84 5.11 1.80
D12 3.00 14.28 26.27
D14 4.99 4.58 3.48


Aspheric coefficient
R2 k = -1.55604e + 00 B = 9.15097e-04 C = -5.65375e-08 D = 7.02344e-09
E = 2.63734e-10
R8 k = -2.86351e-01 B = 1.03856e-04 C = 4.26746e-06

Numerical Example 5

f = 4.69-21.60 Fno = 2.58-5.97 2ω = 65.5 ° -15.9 °

R 1 = 28.388 D 1 = 1.80 N 1 = 1.882997 ν 1 = 40.8
R 2 = 5.087 D 2 = 2.90
R 3 = 9.529 D 3 = 1.75 N 2 = 1.922860 ν 2 = 18.9
R 4 = 16.168 D 4 = Variable
R 5 = Aperture D 5 = 0.10
R 6 = 13.199 D 6 = 1.50 N 3 = 1.693501 ν 3 = 53.2
R 7 = 554.461 D 7 = 0.10
R 8 = 6.184 D 8 = 2.25 N 4 = 1.696797 ν 4 = 55.5
R 9 = -18.358 D 9 = 1.60 N 5 = 1.901355 ν 5 = 31.6
R10 = 5.115 D10 = 0.81
R11 = 22.733 D11 = 1.30 N 6 = 1.719995 ν 6 = 50.2
R12 = -16.955 D12 = variable
R13 = 16.884 D13 = 1.60 N 7 = 1.487490 ν 7 = 70.2
R14 = -49.680 D14 = variable
R15 = ∞ D15 = 1.00 N 8 = 1.516330 ν 8 = 64.1
R16 = ∞



Focal length 4.69 12.98 21.60
Variable interval
D 4 20.79 5.40 1.96
D12 5.06 15.84 26.79
D14 3.58 3.27 2.80

Aspheric coefficient
R2 k = -1.49618e + 00 B = 8.75196e-04 C = -3.59972e-07 D = 1.41022e-08
E = 3.46972e-10
R8 k = -4.33552e-01 B = 1.86343e-04 C = 5.39556e-06
次に本発明のズームレンズを撮影光学系として用いたデジタルスチルカメラ(撮像装置)の実施例を図21を用いて説明する。   Next, an embodiment of a digital still camera (imaging device) using the zoom lens of the present invention as a photographing optical system will be described with reference to FIG.
図21において、20はカメラ本体、21は本発明のズームレンズによって構成された撮影光学系、22はカメラ本体に内蔵され、撮影光学系21によって形成された被写体像を受光するCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)、23は撮像素子22によって光電変換された被写体像に対応する情報を記録するメモリ、24は液晶ディスプレイパネル等によって構成され、固体撮像素子22上に形成された被写体像を観察するためのファインダーである。   In FIG. 21, reference numeral 20 denotes a camera body, 21 denotes a photographing optical system constituted by the zoom lens of the present invention, 22 denotes a CCD sensor or CMOS sensor incorporated in the camera body and receiving a subject image formed by the photographing optical system 21. A solid-state image pickup device (photoelectric conversion device) such as 23, a memory 23 for recording information corresponding to the subject image photoelectrically converted by the image pickup device 22, and a liquid crystal display panel 24 are formed on the solid-state image pickup device 22. This is a viewfinder for observing the subject image.
このように本発明のズームレンズをデジタルスチルカメラ等の撮像装置に適用することにより、小型で高い光学性能を有する撮像装置を実現している。   Thus, by applying the zoom lens of the present invention to an image pickup apparatus such as a digital still camera, a small image pickup apparatus having high optical performance is realized.
実施例1のズームレンズの光学断面図Optical cross-sectional view of the zoom lens of Example 1 実施例1のズームレンズの広角端での収差図Aberration diagram at the wide-angle end of the zoom lens of Example 1 実施例1のズームレンズの中間のズーム位置での収差図Aberration diagram at the middle zoom position of the zoom lens of Example 1 実施例1のズームレンズの望遠端での収差図Aberration diagram at the telephoto end of the zoom lens of Example 1 実施例2のズームレンズの光学断面図Optical sectional view of the zoom lens of Example 2 実施例2のズームレンズの広角端での収差図Aberration diagram at the wide-angle end of the zoom lens of Example 2 実施例2のズームレンズの中間のズーム位置での収差図Aberration diagram at the intermediate zoom position of the zoom lens of Example 2 実施例2のズームレンズの望遠端での収差図Aberration diagram at the telephoto end of the zoom lens of Example 2 実施例3のズームレンズの光学断面図Optical sectional view of the zoom lens of Example 3 実施例3のズームレンズの広角端での収差図Aberration diagram at the wide-angle end of the zoom lens of Example 3 実施例3のズームレンズの中間のズーム位置での収差図Aberration diagram at the intermediate zoom position of the zoom lens of Example 3 実施例3のズームレンズの望遠端での収差図Aberration diagram at the telephoto end of the zoom lens of Example 3 実施例4のズームレンズの光学断面図Optical sectional view of the zoom lens of Example 4 実施例4のズームレンズの広角端での収差図Aberration diagram at the wide-angle end of the zoom lens of Example 4 実施例4のズームレンズの中間のズーム位置での収差図Aberration diagram at the intermediate zoom position of the zoom lens of Example 4 実施例4のズームレンズの望遠端での収差図Aberration diagram at the telephoto end of the zoom lens of Example 4 実施例5のズームレンズの光学断面図Optical sectional view of the zoom lens of Example 5 実施例5のズームレンズの広角端での収差図Aberration diagram at the wide-angle end of the zoom lens in Example 5 実施例5のズームレンズの中間のズーム位置での収差図Aberration diagram at the intermediate zoom position of the zoom lens of Example 5 実施例5のズームレンズの望遠端での収差図Aberration diagram at the telephoto end of the zoom lens of Example 5 本発明の撮像装置の要部概略図Schematic diagram of main parts of an imaging apparatus of the present invention
符号の説明Explanation of symbols
L1 第1レンズ群
L2 第2レンズ群
L3 第3レンズ群
SP 絞り
IP 像面
G ガラスブロック
d d線
g g線
ΔS サジタル像面
ΔM メリディオナル像面
L1 First lens group L2 Second lens group L3 Third lens group SP Aperture IP Image plane G Glass block d d line g g line ΔS Sagittal image plane ΔM Meridional image plane

Claims (17)

  1. 物体側より像側へ順に、負の屈折力の第1レンズ群、正の屈折力の第2レンズ群、正の屈折力の第3レンズ群からなり、ズーミングに際し各レンズ群の間隔が変化するズームレンズにおいて、広角端から望遠端へのズーミングにおける前記第2レンズ群の移動量をΔ2X、広角端における前記第2レンズ群と前記第3レンズ群との間隔をD23w、前記第1レンズ群と前記第2レンズ群の焦点距離を各々f1,f2、広角端での全系の焦点距離をfw、前記第1レンズ群を構成するレンズの材料の屈折率の平均値をn1aとするとき、
    1.7<Δ2X/√|f1・f2|<2.3
    0.5<D23w/fw<1.2
    1.88<n1a
    なる条件を満足することを特徴とするズームレンズ。
    In order from the object side to the image side, a first lens unit having a negative refractive power, a second lens unit having a positive refractive power and a positive third lens group refractive power, hand spacing of each lens group changes upon zooming in the zoom lens, Deruta2X the movement amount of the second lens group in zooming from the wide-angle end to the telephoto end, d23w the distance between the third lens group and the second lens group at the wide-angle end, the first lens group when the focal length of each of the f1 of the second lens group, f2, the focal length of the entire system at the wide angle end fw, the average value of the refractive index of the material of the lenses constituting the first lens group and n1a and,
    1.7 <Δ2X / √ | f1 · f2 | <2.3
    0.5 <D23w / fw <1.2
    1.88 <n1a
    A zoom lens that satisfies the following conditions:
  2. 物体側より像側へ順に、負の屈折力の第1レンズ群、正の屈折力の第2レンズ群、正の屈折力の第3レンズ群からなり、ズーミングに際し各レンズ群の間隔が変化するズームレンズにおいて、前記第1レンズ群は2枚のレンズより成り、広角端から望遠端へのズーミングにおける前記第2レンズ群の移動量をΔ2X、前記第1レンズ群と前記第2レンズ群の焦点距離を各々f1,f2、前記第1レンズ群を構成するレンズの材料の屈折率の平均値をn1aとするとき、
    1.7<Δ2X/√|f1・f2|<2.3
    1.88<n1a
    なる条件を満足することを特徴とするズームレンズ。
    In order from the object side to the image side, a first lens unit having a negative refractive power, a second lens unit having a positive refractive power and a positive third lens group refractive power, hand spacing of each lens group changes upon zooming in the zoom lens, the first lens group consists of two lenses, from the wide-angle end Δ2X the amount of movement of the second lens group during zooming to the telephoto end, the first lens group of the second lens group When the focal lengths are f1 and f2, respectively, and the average value of the refractive index of the materials of the lenses constituting the first lens group is n1a ,
    1.7 <Δ2X / √ | f1 · f2 | <2.3
    1.88 <n1a
    A zoom lens that satisfies the following conditions:
  3. 物体側より像側へ順に、負の屈折力の第1レンズ群、正の屈折力の第2レンズ群、正の屈折力の第3レンズ群からなり、ズーミングに際し各レンズ群の間隔が変化するズームレンズにおいて、広角端から望遠端へのズーミングにおける前記第2レンズ群の移動量をΔ2X、広角端における前記第2レンズ群と前記第3レンズ群との間隔をD23w、前記第1レンズ群と前記第2レンズ群の焦点距離を各々f1,f2、広角端での全系の焦点距離をfw、前記第2レンズ群を構成する負レンズの材料の屈折率をn2bとするとき、
    1.7<Δ2X/√|f1・f2|<2.3
    0.5<D23w/fw<1.2
    1.85<n2b
    なる条件を満足することを特徴とするズームレンズ。
    In order from the object side to the image side, a first lens unit having a negative refractive power, a second lens unit having a positive refractive power and a positive third lens group refractive power, hand spacing of each lens group changes upon zooming in the zoom lens, Deruta2X the movement amount of the second lens group in zooming from the wide-angle end to the telephoto end, d23w the distance between the third lens group and the second lens group at the wide-angle end, the first lens group when the focal length of each of the f1 of the second lens group, f2, the focal length of the entire system at the wide angle end fw, the refractive index of the material of the negative lens constituting the second lens group and n2b and,
    1.7 <Δ2X / √ | f1 · f2 | <2.3
    0.5 <D23w / fw <1.2
    1.85 <n2b
    A zoom lens that satisfies the following conditions:
  4. 物体側より像側へ順に、負の屈折力の第1レンズ群、正の屈折力の第2レンズ群、正の屈折力の第3レンズ群からなり、ズーミングに際し各レンズ群の間隔が変化するズームレンズにおいて、前記第1レンズ群は2枚のレンズより成り、広角端から望遠端へのズーミングにおける前記第2レンズ群の移動量をΔ2X、前記第1レンズ群と前記第2レンズ群の焦点距離を各々f1,f2、前記第2レンズ群を構成する負レンズの材料の屈折率をn2bとするとき、
    1.7<Δ2X/√|f1・f2|<2.3
    1.85<n2b
    なる条件を満足することを特徴とするズームレンズ。
    In order from the object side to the image side, a first lens unit having a negative refractive power, a second lens unit having a positive refractive power and a positive third lens group refractive power, hand spacing of each lens group changes upon zooming in the zoom lens, the first lens group consists of two lenses, from the wide-angle end Δ2X the amount of movement of the second lens group during zooming to the telephoto end, the first lens group of the second lens group When the focal lengths are f1 and f2, respectively, and the refractive index of the material of the negative lens constituting the second lens group is n2b ,
    1.7 <Δ2X / √ | f1 · f2 | <2.3
    1.85 <n2b
    A zoom lens that satisfies the following conditions:
  5. 前記第1レンズ群を構成するレンズの材料の屈折率の平均値をn1aとするとき、
    1.88<n1a
    なる条件を満足することを特徴とする請求項3または4に記載のズームレンズ。
    When the average value of the refractive index of the material of the lens constituting the first lens group is n1a,
    1.88 <n1a
    The zoom lens according to claim 3, wherein the following condition is satisfied.
  6. 前記第2レンズ群の広角端と望遠端での結像倍率を各々β2w、β2t、前記第3レンズ群の広角端と望遠端での結像倍率を各々β3w、β3tとするとき、
    3.8<(β2t・β3w)/(β2w・β3t)<5.2
    なる条件を満足することを特徴とする請求項1乃至5のいずれか1項に記載のズームレンズ。
    When the imaging magnifications at the wide-angle end and the telephoto end of the second lens group are β2w and β2t, respectively, and the imaging magnifications at the wide-angle end and the telephoto end of the third lens group are β3w and β3t, respectively.
    3.8 <(β2t · β3w) / (β2w · β3t) <5.2
    The zoom lens according to claim 1 , wherein the following condition is satisfied.
  7. 広角端から望遠端へのズーミングに際して、前記第1レンズ群は像側に凸状の軌跡で移動し、前記第2レンズ群は物体側に移動し、前記第3レンズ群は像側に移動することを特徴とする請求項1乃至6のいずれか1項に記載のズームレンズ。 During zooming from the wide-angle end to the telephoto end, the first lens group moves along a convex locus toward the image side, the second lens group moves toward the object side, and the third lens group moves toward the image side. The zoom lens according to claim 1 , wherein the zoom lens is a zoom lens.
  8. 前記第1レンズ群は負レンズと正レンズから成り、該負レンズの少なくとも1つの面は非球面形状であることを特徴とする請求項1乃至7のいずれか1項に記載のズームレンズ。 The zoom lens according to any one of claims 1 to 7, wherein the first lens group includes a negative lens and a positive lens, and at least one surface of the negative lens has an aspherical shape.
  9. 前記第1レンズ群は、像側の面が凹形状でメニスカス形状負レンズ、物体側の面が凸形状でメニスカス形状正レンズより成り、前記負レンズの像側の面は非球面形状であることを特徴とする請求項1乃至8のいずれか1項に記載のズームレンズ。 Wherein the first lens group, a negative lens on the image side surface is concave outcomes Nisukasu shape comprises a positive lens on the object side surface is convex outcomes Nisukasu shape, the image side surface of the negative lens is aspherical The zoom lens according to claim 1 , wherein the zoom lens has a shape.
  10. 前記第2レンズ群は、物体側より像側へ順に、正レンズ、正レンズ、負レンズ、正レンズから成ることを特徴とする請求項1乃至9のいずれか1項に記載のズームレンズ。 10. The zoom lens according to claim 1, wherein the second lens group includes a positive lens, a positive lens, a negative lens, and a positive lens in order from the object side to the image side.
  11. 前記第2レンズ群は、物体側より像側へ順に、物体側の面が凸形状の正レンズ、両レンズ面が凸形状の正レンズ、両レンズ面が凹形状の負レンズ、正レンズから成ることを特徴とする請求項1乃至10のいずれか1項に記載のズームレンズ。 The second lens group includes, in order from the object side to the image side, a positive lens having a convex surface on the object side, a positive lens having a convex shape on both lens surfaces, a negative lens having a concave shape on both lens surfaces, and a positive lens. The zoom lens according to claim 1 , wherein the zoom lens is a zoom lens.
  12. 前記第3レンズ群の焦点距離をf3とするとき、
    1.9<f3/f2<2.5
    なる条件を満足することを特徴とする請求項1乃至11のいずれか1項に記載のズームレンズ。
    When the focal length of the third lens group is f3,
    1.9 <f3 / f2 <2.5
    The zoom lens according to claim 1 , wherein the following condition is satisfied.
  13. 前記第3レンズ群の焦点距離をf3、広角端での全系の焦点距離をfwとするとき、
    5.2<f3/fw<6.4
    なる条件を満足することを特徴とする請求項1乃至12のいずれか1項に記載のズームレンズ。
    When the focal length of the third lens group is f3 and the focal length of the entire system at the wide angle end is fw ,
    5.2 <f3 / fw <6.4
    The zoom lens according to claim 1 , wherein the following condition is satisfied.
  14. 前記第3レンズ群は単一の正レンズより成ることを特徴とする請求項1乃至13のいずれか1項に記載のズームレンズ。 The zoom lens according to any one of claims 1 to 13, wherein the third lens group includes a single positive lens.
  15. 前記第3レンズ群を物体側に移動させて無限遠物体から近距離物体へのフォーカシングを行うことを特徴とする請求項1乃至14のいずれか1項に記載のズームレンズ。 The zoom lens according to claim 1, wherein the third lens group is moved toward the object side to perform focusing from an object at infinity to an object at a short distance.
  16. 固体撮像素子に像を形成することを特徴とする請求項1乃至15のいずれか1項に記載のズームレンズ。 The zoom lens according to claim 1 , wherein an image is formed on a solid-state image sensor.
  17. 請求項1乃至16のいずれか1項に記載のズームレンズと、該ズームレンズによって形成された像を受光する固体撮像素子とを有することを特徴とする撮像装置。 A zoom lens according to any one of claims 1 to 16, an imaging apparatus characterized by having a solid-state imaging device for receiving an image formed by the zoom lens.
JP2005022561A 2005-01-31 2005-01-31 Zoom lens and imaging apparatus having the same Active JP4669294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005022561A JP4669294B2 (en) 2005-01-31 2005-01-31 Zoom lens and imaging apparatus having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005022561A JP4669294B2 (en) 2005-01-31 2005-01-31 Zoom lens and imaging apparatus having the same

Publications (3)

Publication Number Publication Date
JP2006208890A JP2006208890A (en) 2006-08-10
JP2006208890A5 JP2006208890A5 (en) 2008-03-06
JP4669294B2 true JP4669294B2 (en) 2011-04-13

Family

ID=36965804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005022561A Active JP4669294B2 (en) 2005-01-31 2005-01-31 Zoom lens and imaging apparatus having the same

Country Status (1)

Country Link
JP (1) JP4669294B2 (en)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4870527B2 (en) * 2005-11-30 2012-02-08 パナソニック株式会社 Zoom lens system, imaging device and camera
JP4913634B2 (en) * 2006-03-09 2012-04-11 パナソニック株式会社 Zoom lens system, imaging device and camera
JP4917922B2 (en) * 2006-03-09 2012-04-18 パナソニック株式会社 Zoom lens system, imaging device and camera
JP4923764B2 (en) * 2006-06-12 2012-04-25 株式会社ニコン Zoom lens and optical apparatus having the same
JP5115834B2 (en) 2007-03-05 2013-01-09 株式会社ニコン Zoom lens, optical apparatus, and imaging method
JP5097444B2 (en) * 2007-05-29 2012-12-12 パナソニック株式会社 Zoom lens system, imaging device and camera
US7742235B2 (en) 2007-05-29 2010-06-22 Panasonic Corporation Zoom lens system, imaging device and camera
US7755847B2 (en) 2007-05-29 2010-07-13 Panasonic Corporation Zoom lens system, imaging device and camera
JP5097445B2 (en) * 2007-05-29 2012-12-12 パナソニック株式会社 Zoom lens system, imaging device and camera
US7593166B2 (en) 2007-05-29 2009-09-22 Panasonic Corporation Zoom lens system, imaging device and camera
JP5101167B2 (en) * 2007-05-29 2012-12-19 パナソニック株式会社 Zoom lens system, imaging device and camera
JP5115065B2 (en) 2007-07-12 2013-01-09 株式会社ニコン Zoom lens, optical equipment, zoom lens zooming method
JP5129824B2 (en) * 2008-01-28 2013-01-30 パナソニック株式会社 Zoom lens system, imaging device and camera
US8300318B2 (en) 2008-01-28 2012-10-30 Panasonic Corporation Zoom lens system, imaging device and camera
US8149514B2 (en) 2008-01-28 2012-04-03 Panasonic Corporation Zoom lens system, imaging device and camera
JP5129821B2 (en) * 2008-01-28 2013-01-30 パナソニック株式会社 Zoom lens system, imaging device and camera
JP5129822B2 (en) 2008-01-28 2013-01-30 パナソニック株式会社 Zoom lens system, imaging device and camera
US8559116B2 (en) * 2008-01-28 2013-10-15 Panasonic Corporation Zoom lens system, imaging device and camera
WO2009096152A1 (en) 2008-01-28 2009-08-06 Panasonic Corporation Zoom lens system, image picking-up device and camera
JP5207806B2 (en) 2008-04-09 2013-06-12 キヤノン株式会社 Zoom lens and imaging apparatus having the same
EP2312364A4 (en) * 2008-07-14 2014-05-14 Nikon Corp Zoom lens, optical device, and method of manufacturing zoom lens
JP5197248B2 (en) * 2008-09-04 2013-05-15 オリンパスイメージング株式会社 Zoom lens and image pickup apparatus having the same
JP2010061007A (en) 2008-09-05 2010-03-18 Sony Corp Zoom lens and image capturing apparatus
JP5333906B2 (en) * 2008-11-14 2013-11-06 株式会社ニコン Zoom lens and optical equipment
JP2010256417A (en) * 2009-04-21 2010-11-11 Sony Corp Zoom lens and imaging apparatus
US9182575B2 (en) 2009-07-02 2015-11-10 Panasonic Intellectual Property Management Co., Ltd. Zoom lens system, imaging device and camera
JP5495654B2 (en) 2009-07-31 2014-05-21 キヤノン株式会社 Zoom lens and optical apparatus having the same
JP5500382B2 (en) * 2010-09-22 2014-05-21 株式会社ニコン Photographic lens, optical apparatus having the photographic lens, and method of manufacturing the photographic lens
JP5344633B2 (en) 2010-11-10 2013-11-20 キヤノン株式会社 Imaging device
JP2012242739A (en) * 2011-05-23 2012-12-10 Canon Inc Zoom lens and imaging device including the same
KR20130013514A (en) 2011-07-28 2013-02-06 삼성전자주식회사 Zoom lens and photographing device having the same
WO2013027516A1 (en) * 2011-08-19 2013-02-28 コニカミノルタアドバンストレイヤー株式会社 Zoom lens and imaging device
KR101925056B1 (en) 2011-09-02 2018-12-04 삼성전자주식회사 Zoom lens and photographing apparatus
CN103176265A (en) * 2011-12-23 2013-06-26 鸿富锦精密工业(深圳)有限公司 Wide-angle zoom lens
JP5972076B2 (en) 2012-07-09 2016-08-17 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP6550700B2 (en) * 2013-08-09 2019-07-31 株式会社ニコン Zoom lens and optical apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04114116A (en) * 1990-09-04 1992-04-15 Minolta Camera Co Ltd Zoom lens
JPH04214517A (en) * 1990-10-22 1992-08-05 Nikon Corp Keplerian type zoom finder optical system
JPH0540221A (en) * 1991-08-07 1993-02-19 Nikon Corp Wide converter
JPH0784184A (en) * 1993-09-16 1995-03-31 Olympus Optical Co Ltd Real image type variable power finder optical system
JPH10104515A (en) * 1996-09-26 1998-04-24 Nikon Corp Keplerian variable power finder
JPH10104693A (en) * 1996-09-26 1998-04-24 Nikon Corp Keplerian finder
JPH11119101A (en) * 1997-10-17 1999-04-30 Minolta Co Ltd Zoom lens system
JP2001042218A (en) * 1999-08-03 2001-02-16 Nikon Corp Zoom lens

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04114116A (en) * 1990-09-04 1992-04-15 Minolta Camera Co Ltd Zoom lens
JPH04214517A (en) * 1990-10-22 1992-08-05 Nikon Corp Keplerian type zoom finder optical system
JPH0540221A (en) * 1991-08-07 1993-02-19 Nikon Corp Wide converter
JPH0784184A (en) * 1993-09-16 1995-03-31 Olympus Optical Co Ltd Real image type variable power finder optical system
JPH10104515A (en) * 1996-09-26 1998-04-24 Nikon Corp Keplerian variable power finder
JPH10104693A (en) * 1996-09-26 1998-04-24 Nikon Corp Keplerian finder
JPH11119101A (en) * 1997-10-17 1999-04-30 Minolta Co Ltd Zoom lens system
JP2001042218A (en) * 1999-08-03 2001-02-16 Nikon Corp Zoom lens

Also Published As

Publication number Publication date
JP2006208890A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
US7616386B2 (en) Zoom lens and image-pickup apparatus
US6862143B2 (en) Zoom lens and optical apparatus having the same
JP3253405B2 (en) Two-group zoom lens
JP4589231B2 (en) Zoom lens, imaging device, and camera equipped with imaging device
JP4898200B2 (en) Zoom lens and imaging apparatus having the same
JP3506691B2 (en) High magnification zoom lens
JP5816845B2 (en) Zoom lens system, interchangeable lens device and camera system
JP5026763B2 (en) Zoom lens, imaging device, and portable information terminal device
JP3709148B2 (en) Zoom lens system
US6972909B2 (en) Zoom lens and image pickup apparatus having the same
JP4959236B2 (en) High magnification zoom lens
US6671103B2 (en) Zoom lens and optical apparatus using the same
US7961409B2 (en) Zoom lens system, optical apparatus, and method for zooming
JP4374222B2 (en) Variable magnification optical system
JP4289958B2 (en) Zoom lens and imaging apparatus having the same
US8248708B2 (en) Zoom lens system and electronic imaging apparatus that uses the same
JP3862520B2 (en) Zoom lens and optical apparatus using the same
US7551367B2 (en) Wide-angle lens, optical apparatus and method for focusing
JP5458477B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system magnification method
JP4923764B2 (en) Zoom lens and optical apparatus having the same
JP4366109B2 (en) Zoom lens and optical apparatus having the same
JP5197242B2 (en) Zoom lens and imaging apparatus having the same
JP4902191B2 (en) Zoom lens and imaging apparatus having the same
JP2011013469A (en) Optical system and optical apparatus including the same
JP4738823B2 (en) Zoom lens and imaging apparatus having the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4669294

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03