JP4666977B2 - Zoom lens and imaging apparatus having the same - Google Patents
Zoom lens and imaging apparatus having the same Download PDFInfo
- Publication number
- JP4666977B2 JP4666977B2 JP2004248229A JP2004248229A JP4666977B2 JP 4666977 B2 JP4666977 B2 JP 4666977B2 JP 2004248229 A JP2004248229 A JP 2004248229A JP 2004248229 A JP2004248229 A JP 2004248229A JP 4666977 B2 JP4666977 B2 JP 4666977B2
- Authority
- JP
- Japan
- Prior art keywords
- lens
- lens group
- zoom
- object side
- positive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Lenses (AREA)
Description
本発明はズームレンズに関し、特に小型のデジタルスチルカメラやビデオカメラの撮影光学系として好適なものである。 The present invention relates to a zoom lens, and is particularly suitable as a photographing optical system for a small digital still camera or video camera.
最近、CCDやCMOSセンサ等の固体撮像素子(光電変換素子)を用いたビデオカメラ、デジタルスチルカメラ等の撮像装置(カメラ)の高機能化にともない、それに用いる光学系には広い画角を包含した大口径比のズームレンズが求められている。 Recently, with the enhancement of functionality of imaging devices (cameras) such as video cameras and digital still cameras using solid-state imaging devices (photoelectric conversion devices) such as CCD and CMOS sensors, the optical system used for them includes a wide angle of view. There is a need for a zoom lens with a large aperture ratio.
この種のカメラには、撮影光学系のレンズ最後部と撮像素子との間に、ローパスフィルターや色補正フィルターなどの各種光学部材を配置する必要があるため、比較的バックフォーカスの長いレンズ系が要求される。さらに、カラー画像用の撮像素子を用いたカラーカメラの場合、色シェーディングを避けるため、それに用いる光学系には像側のテレセントリック特性の良いものが望まれている。 This type of camera requires a lens system with a relatively long back focus because various optical members such as a low-pass filter and a color correction filter must be arranged between the rearmost lens of the photographing optical system and the image sensor. Required. Furthermore, in the case of a color camera using an image pickup device for color images, in order to avoid color shading, an optical system with good telecentric characteristics on the image side is desired.
従来、負の屈折力の第1レンズ群と正の屈折力の第2レンズ群との2つのレンズ群より成り、双方のレンズ間隔を変えて変倍を行う、所謂ショートズームタイプの広画角の2群ズームレンズが種々提案されている。これらのショートズームタイプの光学系では、正の屈折力の第2レンズ群を移動することで変倍を行い、負の屈折力の第1レンズ群を移動することで変倍に伴う像位置の変動の補償を行っている。これらの2つのレンズ群より成るレンズ構成においては、ズーム倍率(ズーム比)は2倍程度である。 Conventionally, a so-called short zoom type wide angle of view that consists of two lens groups, a first lens group having a negative refractive power and a second lens group having a positive refractive power, and performing zooming by changing the distance between the two lenses. Various two-group zoom lenses have been proposed. In these short zoom type optical systems, zooming is performed by moving the second lens group having a positive refractive power, and image positions associated with zooming are moved by moving the first lens group having a negative refractive power. Compensation for fluctuations. In the lens configuration composed of these two lens groups, the zoom magnification (zoom ratio) is about twice.
さらに2倍以上の高いズーム比を有しつつ、レンズ全体をコンパクトな形状にまとめるため、2群ズームレンズの像側に負または正の屈折力の第3レンズ群を配置し、高ズーム比化に伴って発生する諸収差の補正を行う、所謂3群ズームレンズが提案されている(特許文献1,2)。
Furthermore, in order to bring the entire lens into a compact shape while having a high zoom ratio of 2 times or more, a third lens group having negative or positive refractive power is arranged on the image side of the second group zoom lens to increase the zoom ratio. A so-called three-group zoom lens that corrects various aberrations that accompany the above is proposed (
また、3群ズームレンズとしてバックフォーカスとテレセントリック特性を満足する広画角の3群ズームレンズ系も知られている(特許文献3,4)。 Further, as a three-group zoom lens, a wide-angle three-group zoom lens system that satisfies back focus and telecentric characteristics is also known (Patent Documents 3 and 4).
また、3群ズームレンズのコンパクト化のために、第1レンズ群を負・正の2枚のレンズ構成とし、第2レンズ群に接合レンズを効果的に配置した3群ズームレンズも知られている(特許文献5〜8)。 In order to make the three-group zoom lens compact, a three-group zoom lens in which the first lens group has two negative and positive lens configurations and a cemented lens is effectively arranged in the second lens group is also known. (Patent Documents 5 to 8).
また、3倍以上の高いズーム比を有する3群ズームレンズも知られている(例えば特許文献9,10)。 A three-group zoom lens having a high zoom ratio of 3 times or more is also known (for example, Patent Documents 9 and 10).
また、3倍以上の高いズーム比を有しながら、比較的少ないレンズ枚数にて構成した3群ズームレンズも知られている(特許文献11〜13)。
35mmフィルム写真用に設計されている上記した3群ズームレンズは、固体撮像素子を用いるカメラには、バックフォーカスが長すぎ、又テレセントリック特性が良くないため、固体撮像素子を用いるビデオカメラやデジタルスチルカメラにそのまま用いることが難しい。 The above-mentioned three-group zoom lens designed for 35 mm film photography has a too long back focus and poor telecentric characteristics for a camera using a solid-state image sensor. It is difficult to use as it is for a camera.
一方、近年カメラのコンパクト化とズームレンズの高ズーム比化を両立するために、非撮影時(カメラの電源オフ時)に各レンズ群の間隔を撮影状態と異なる間隔まで縮小し、カメラ本体からのレンズの突出量を少なくした所謂沈胴式のズームレンズが広く用いられている。 On the other hand, in recent years, in order to achieve both compactness of the camera and high zoom ratio of the zoom lens, the interval between the lens groups has been reduced to a different interval from the shooting state when not shooting (when the camera is turned off). A so-called collapsible zoom lens in which the protruding amount of the lens is reduced is widely used.
一般に、ズームレンズを構成する各レンズ群のレンズ枚数が多いと、各レンズ群の光軸上の長さが長くなり、又、各レンズ群のズーミング及びフォーカシングにおける移動量が大きいとレンズ全長が長くなり、所望の沈胴長が達成できなくなり、沈胴式のズームレンズに用いるのが難しくなる。 In general, if the number of lenses in each lens group constituting a zoom lens is large, the length of each lens group on the optical axis becomes long, and if the amount of movement of each lens group in zooming and focusing is large, the total lens length becomes long. Thus, the desired retractable length cannot be achieved, making it difficult to use the retractable zoom lens.
本発明は、上述した従来例を鑑みなされたもので、所望のズーム比、所望の光学性能を維持しつつ、構成レンズ枚数が少なく、コンパクトで新規なズームレンズの提供を目的とする。 The present invention has been made in view of the above-described conventional example. An object of the present invention is to provide a compact and novel zoom lens having a small number of constituent lenses while maintaining a desired zoom ratio and desired optical performance.
本発明のズームレンズは、物体側より像側へ順に、負の屈折力の第1レンズ群、正の屈折力の第2レンズ群、正の屈折力の第3レンズ群より構成され、ズーミングに際して各レンズ群の間隔が変化するズームレンズにおいて、前記第1レンズ群は、1枚の負レンズと1枚の正レンズから成り、前記第2レンズ群は、物体側より像側へ順に、1枚の正レンズと1枚の負レンズを接合した接合レンズから成る第2aレンズ群と、少なくとも1枚の正レンズを有する第2bレンズ群から成り、前記第3レンズ群は、少なくとも1枚の正レンズを有し、前記第2レンズ群の広角端と望遠端における結像倍率を各々β2w、β2t、前記第1レンズ群と前記第2レンズ群の広角端における間隔をL1w、前記第2レンズ群と第3レンズ群の望遠端における間隔をL2tとするとき、
5.0<(β2t・L2t)/(β2w・L1w)<10.0
なる条件を満足することを特徴としている。
The zoom lens according to the present invention includes, in order from the object side to the image side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a positive refractive power. In the zoom lens in which the distance between the lens groups is changed, the first lens group includes one negative lens and one positive lens, and the second lens group includes, in order from the object side to the image side, 1 A second lens group comprising a cemented lens in which one positive lens and one negative lens are cemented, and a second lens group having at least one positive lens. The third lens group comprises at least one positive lens. lens have a, the second lens group of each imaging magnification at the wide-angle end and the telephoto end .beta.2w,? 2t, the first lens group and L1w apart at the wide-angle end of the second lens group, the second lens group put the telephoto end of the third lens group When the interval between L2t,
5.0 <(β2t · L2t) / (β2w · L1w) <10.0
It is characterized by satisfying the following conditions.
このような構成により、所望のズーム比(例えば3倍以上)、所望の光学性能を維持しつつ、構成レンズ枚数が少なく、コンパクトなズームレンズが実現できる。 With such a configuration, it is possible to realize a compact zoom lens with a small number of constituent lenses while maintaining a desired zoom ratio (for example, three times or more) and desired optical performance.
以下に図面を用いて本発明のズームレンズの実施例について説明する。本実施形態のズームレンズは、ビデオカメラやデジタルスチルカメラ等の撮影光学系として用いられるものである。 Embodiments of the zoom lens according to the present invention will be described below with reference to the drawings. The zoom lens according to the present embodiment is used as a photographing optical system such as a video camera or a digital still camera.
図1,3,5は、それぞれ実施例1〜3のズームレンズのレンズ断面図である。図2,4,6は、それぞれ実施例1〜3のズームレンズの収差図であり、(a)が広角端の状態、(b)が中間のズーム位置の状態、(c)が望遠端の状態である。 1, 3 and 5 are lens cross-sectional views of the zoom lenses of Examples 1 to 3, respectively. 2, 4 and 6 are aberration diagrams of the zoom lenses of Examples 1 to 3, respectively. (A) is in the wide-angle end state, (b) is in the intermediate zoom position state, and (c) is in the telephoto end. State.
各レンズ断面図において、左方が被写体側(前方)で、右方が像側(後方)である。L1は負の屈折力(光学的パワー=焦点距離の逆数)の第1レンズ群、L2は正の屈折力の第2レンズ群、L3は正の屈折力の第3レンズ群である。L2aは第2レンズ群L2中の物体側に配置された第2aレンズ群であり、1枚の正レンズと1枚の負レンズで構成されている。L2bは第2aレンズ群L2aの像側に配置された少なくとも1枚の正レンズを有する第2bレンズ群である。SPは開口絞り(Fナンバー決定部材)、Gは光学的ローパスフィルター、赤外カットフィルター、カバーガラス等の光路中に存在する平行平板に対応して設計上設けたガラスブロック、IPはCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)の感光面が位置する像面である。開口絞りSPは開放時の軸上のFナンバー光線を決定する部材である。 In each lens cross-sectional view, the left side is the subject side (front), and the right side is the image side (rear). L1 is a first lens group having negative refractive power (optical power = reciprocal of focal length), L2 is a second lens group having positive refractive power, and L3 is a third lens group having positive refractive power. L2a is a second a lens unit disposed on the object side in the second lens unit L2, and is composed of one positive lens and one negative lens. L2b is a second b lens group having at least one positive lens disposed on the image side of the second a lens group L2a. SP is an aperture stop (F number determining member), G is an optical low-pass filter, an infrared cut filter, a glass block designed to correspond to a parallel plate existing in the optical path such as a cover glass, IP is a CCD sensor, This is an image plane on which a photosensitive surface of a solid-state imaging device (photoelectric conversion device) such as a CMOS sensor is located. The aperture stop SP is a member that determines the F-number light beam on the axis when opened.
各収差図において、d,gは各々d線及びg線、ΔM、ΔSはメリジオナル像面、サジタル像面、倍率色収差はg線によって表している。 In each aberration diagram, d and g are d-line and g-line, ΔM and ΔS are meridional image surfaces, sagittal image surfaces, and lateral chromatic aberration are represented by g-lines.
本実施形態のズームレンズでは、物体側より像側へ順に、第1レンズ群L1、第2レンズ群L2、第3レンズ群L3が配置されている。広角端から望遠端へのズーミングに際しては、第1レンズ群L1が像側に凸の軌跡でほぼ往復移動、第2レンズ群L2が物体側に移動、第3レンズ群L3が像側に移動することにより、各レンズ群の間隔を変化させている。 In the zoom lens of the present embodiment, a first lens group L1, a second lens group L2, and a third lens group L3 are arranged in order from the object side to the image side. During zooming from the wide-angle end to the telephoto end, the first lens unit L1 moves substantially reciprocally along a locus convex to the image side, the second lens unit L2 moves to the object side, and the third lens unit L3 moves to the image side. Thus, the interval between the lens groups is changed .
本実施形態のズームレンズは、ズーミングに際し、第2レンズ群L2の移動により主な変倍を行い、第1レンズ群L1の往復移動及び第3レンズ群L3による像側方向への移動によって変倍に伴う像位置の変動を補償している。 The zoom lens according to the present embodiment performs main zooming by moving the second lens unit L2 during zooming, and zooms by moving the first lens unit L1 back and forth and moving the third lens unit L3 in the image side direction. It compensates for the fluctuations in the image position that accompany.
本実施形態では、Fナンバー決定部材としての開口絞りSPを第2レンズ群L2の物体側に配置し、広角側での入射瞳と第1レンズ群L1との距離を縮めることで、第1レンズ群L1を構成するレンズの外径の増大を抑えると共に、開口絞りSPを挟んで第1レンズ群L1と第3レンズ群L3とで軸外の諸収差を打ち消させることで、構成レンズ枚数を増やさずに良好な光学性能を得ている。 In the present embodiment, an aperture stop SP as an F-number determining member is disposed on the object side of the second lens unit L2, and the distance between the entrance pupil on the wide angle side and the first lens unit L1 is shortened, whereby the first lens While suppressing an increase in the outer diameter of the lenses constituting the group L1, the number of constituent lenses is increased by canceling off-axis aberrations between the first lens group L1 and the third lens group L3 across the aperture stop SP. Good optical performance is obtained.
なお、図1,3,5に示すレンズ断面図から明らかなように、開口絞りSPは、光軸方向の座標で、第2レンズ群L2の最も物体側に配置されたレンズの物体側のレンズ面の頂点と、このレンズ面とレンズ端面(所謂コバ面)との交点の間に配置されている。開口絞りSPをこのように第2レンズ群L2の最も物体側に配置されたレンズの物体側頂点よりも像側に配置することで、レンズ沈胴長の短縮化を図っている。 As is clear from the lens cross-sectional views shown in FIGS. 1, 3, and 5, the aperture stop SP is the lens on the object side of the lens disposed closest to the object side of the second lens unit L2 in coordinates in the optical axis direction. It is arranged between the vertex of the surface and the intersection of this lens surface and the lens end surface (so-called edge surface). The lens aperture length is shortened by disposing the aperture stop SP closer to the image side than the object-side vertex of the lens disposed closest to the object side of the second lens unit L2.
このような開口絞りSPの配置により、レンズ沈胴長の短縮化が図れる理由について説明する。 The reason why the lens retractable length can be shortened by such an arrangement of the aperture stop SP will be described.
従来のショートズームタイプの3群ズームレンズにおいては、第1レンズ群と第2レンズ群の間に開放Fナンバーの光束を決定するための絞り部材を配置することが一般的である。また、一般的にショートズームタイプの第1レンズ群の最も像側には、像側に凹面を向けたメニスカス正レンズが配置されている。 In a conventional short zoom type three-group zoom lens, it is common to dispose a diaphragm member for determining a light flux having an open F number between the first lens group and the second lens group. In general, a meniscus positive lens having a concave surface facing the image side is disposed closest to the image side of the first lens unit of the short zoom type.
レンズ沈胴時に第1レンズ群と第2レンズ群の間隔を撮影状態よりも縮小しようとした場合、第1レンズ群の最も像側のメニスカス正レンズは、像側に凹面を向けている関係で、このメニスカス正レンズのレンズ外周部と絞り部材が干渉してしまい、メニスカス正レンズの像側頂点からレンズ外周部までの間隔分はレンズ沈胴長を短くすることができない。 When trying to reduce the distance between the first lens group and the second lens group from the shooting state when the lens is retracted, the meniscus positive lens closest to the image side of the first lens group has a concave surface facing the image side. The lens outer peripheral portion of the meniscus positive lens interferes with the diaphragm member, and the distance from the image-side vertex of the meniscus positive lens to the lens outer peripheral portion cannot shorten the lens retractable length.
また、絞り部材と第2レンズ群の最も物体側に配置されたレンズの物体側頂点との間隔も、絞り部材を第1レンズ群と第2レンズ群の間に配置する場合は、ある程度の間隔を確保しなければならず、これもレンズ沈胴長を短くすることができない要因の一つである。 Further, the distance between the aperture member and the object side apex of the lens disposed closest to the object side of the second lens group is also a certain distance when the aperture member is disposed between the first lens group and the second lens group. This is another factor that makes it impossible to shorten the lens retractable length.
本実施形態においては、絞り部材としてのFナンバー決定部材(開口絞りSP)を、上述したように第2レンズ群L2の最も物体側に配置されたレンズの物体側頂点と、このレンズの物体側の面とレンズ端面との交点の間に配置することで、沈胴時に機械的に干渉が生じる部材を第1レンズ群L1と第2レンズ群L2の間からなくし、レンズ沈胴時に第1レンズ群L1と第2レンズ群L2との間隔を極限まで近づけることを可能としている。 In the present embodiment, as described above, the F-number determining member (aperture stop SP) serving as the diaphragm member includes the object-side vertex of the lens disposed closest to the object side of the second lens unit L2, and the object side of this lens. By disposing the lens between the first lens unit L1 and the lens end surface, a member that mechanically interferes when retracted is eliminated from between the first lens unit L1 and the second lens unit L2, and the first lens unit L1 when the lens is retracted. And the distance between the second lens unit L2 and the second lens unit L2.
次に各レンズ群の構成についてより詳しく説明する。 Next, the configuration of each lens group will be described in more detail.
第1レンズ群L1は、物体側から順に、物体側に凸面を向けたメニスカス負レンズ、物体側に凸面を向けたメニスカス正レンズの2枚のレンズで構成している。 The first lens unit L1 includes, in order from the object side, two lenses, a meniscus negative lens having a convex surface facing the object side and a meniscus positive lens having a convex surface facing the object side.
第1レンズ群L1は、軸外主光線を絞り中心に瞳結像させる役割を持っており、特に広角側においては軸外主光線の屈折量が大きいために軸外諸収差、特に非点収差と歪曲収差が発生し易い。 The first lens unit L1 has a role of focusing the off-axis chief ray on the center of the aperture, and especially on the wide-angle side, since the amount of refraction of the off-axis chief ray is large, various off-axis aberrations, particularly astigmatism. And distortion is likely to occur.
そこで本実施形態では、通常の広角レンズと同様、最も物体側のレンズ径の増大が抑えられる負レンズと正レンズの構成としている。 Therefore, in the present embodiment, as with a normal wide-angle lens, the negative lens and the positive lens are configured to suppress the increase in the lens diameter closest to the object side.
そして、メニスカス負レンズの物体側のレンズ面を周辺で正の屈折力が強くなる非球面とし、像側のレンズ面を周辺で負の屈折力が弱くなる非球面とすることにより、非点収差と歪曲収差をバランス良く補正すると共に、2枚と言う少ない枚数で第1レンズ群L1を構成し、レンズ全体のコンパクト化に寄与している。 Astigmatism is achieved by making the lens surface on the object side of the negative meniscus lens an aspheric surface that has a positive refractive power in the periphery and an aspheric surface on the image side that has a negative refractive power in the periphery. In addition, the distortion aberration is corrected in a well-balanced manner, and the first lens unit L1 is configured with a small number of two, which contributes to making the entire lens compact.
また第1レンズ群L1を構成する各レンズは、軸外主光線の屈折によって生じる軸外収差の発生を抑えるために、開口絞りSPと光軸が交差する点を中心とする同心球面に近い形状をとっている。 Each lens constituting the first lens unit L1 has a shape close to a concentric sphere centered on a point where the aperture stop SP intersects the optical axis in order to suppress the occurrence of off-axis aberration caused by refraction of the off-axis principal ray. Have taken.
第2レンズ群L2は、物体側から順に、物体側に凸面を向けた正レンズと像側に凹面を向けた負レンズとの接合レンズで構成された第2aレンズ群L2aと、物体側に凸面を向けたメニスカス負レンズと両面が凸形状の正レンズとの接合レンズで構成された、あるいは両面が凸形状の正レンズで構成された第2bレンズ群L2bの合計4枚又は3枚レンズで構成されている。 The second lens unit L2 includes, in order from the object side, a second lens unit L2a configured by a cemented lens of a positive lens having a convex surface facing the object side and a negative lens having a concave surface facing the image side, and a convex surface facing the object side Consists of a total of four or three lenses of the second b lens unit L2b composed of a cemented lens of a negative meniscus lens and a positive lens having convex surfaces on both sides, or a positive lens having convex surfaces on both surfaces Has been.
第2レンズ群L2は、最も物体側に正レンズを配置し、第1レンズ群L1を射出した軸外主光線の屈折角を少なくし、軸外諸収差が発生しないような形状としている。 The second lens unit L2 has a shape in which a positive lens is disposed closest to the object side, reduces the refraction angle of the off-axis principal ray emitted from the first lens unit L1, and does not cause off-axis aberrations.
また、最も物体側に配置された正レンズは、最も軸上光線の通る高さが高いレンズであり、主に球面収差、コマ収差の補正に関与しているレンズである。そこで本実施形態においては、最も物体側に配置された正レンズの物体側の面を周辺で正の屈折力が弱くなる非球面とすることにより球面収差、コマ収差を良好に補正している。 Further, the positive lens arranged closest to the object side is a lens having the highest height of the on-axis light beam, and is a lens mainly involved in correction of spherical aberration and coma aberration. Therefore, in the present embodiment, spherical aberration and coma are favorably corrected by making the object side surface of the positive lens disposed closest to the object side an aspherical surface in which the positive refractive power becomes weak in the periphery.
また、最も物体側に配置された正レンズの像側に配置した負レンズの像側の面形状を、像側に凹面を向けた形状とすることで、最も物体側に配置された正レンズの物体側の面で発生した収差をキャンセルさせている。 In addition, by making the image side surface shape of the negative lens arranged on the image side of the positive lens arranged closest to the object side with the concave surface facing the image side, the positive lens arranged closest to the object side Aberrations occurring on the object side surface are canceled.
更に、最も物体側に配置された正レンズと、その正レンズの像側に配置した負レンズは、レンズが光軸に対して偏心することによって生じる像面の倒れの敏感度が、ほぼ同等量でかつ異符号であるという点に着目し、この正レンズと負レンズを接合することで、接合レンズ全体として像面の倒れをキャンセルさせ、製造誤差に対して性能劣化が少ないレンズ構成としている。 Furthermore, the positive lens arranged closest to the object side and the negative lens arranged on the image side of the positive lens have approximately the same amount of sensitivity to the tilt of the image plane caused by the lens decentering with respect to the optical axis. In addition, focusing on the fact that the signs are different from each other, the positive lens and the negative lens are cemented to cancel the tilt of the image plane as the entire cemented lens, and the lens configuration has little performance deterioration with respect to manufacturing errors.
第3レンズ群L3は、両レンズ面が凸形状の正レンズ1枚で構成している。 The third lens unit L3 is composed of one positive lens whose both lens surfaces are convex.
第3レンズ群L3は、撮像素子の小型化に伴うズームレンズを構成する各レンズ群の屈折力の増大を分担し、第1、第2レンズ群L1,L2で構成されるショートズーム系の屈折力を減らすことで、特に第1レンズ群を構成するレンズでの収差の発生を抑え良好な光学性能を達成している。また、特に固体撮像素子等を用いた撮影装置に必要な像側テレセントリックな結像を第3レンズ群L3にフィールドレンズの役割を持たせることで達成している。 The third lens unit L3 shares the increase in the refractive power of each lens unit constituting the zoom lens accompanying the downsizing of the image sensor, and the refraction of the short zoom system configured by the first and second lens units L1 and L2. By reducing the force, it is possible to suppress the generation of aberrations particularly in the lenses constituting the first lens group and achieve good optical performance. In addition, image-side telecentric imaging necessary for a photographing apparatus using a solid-state imaging device or the like is achieved by making the third lens unit L3 serve as a field lens.
ここで、バックフォーカスをsk′、第3レンズ群L3の焦点距離をf3、第3レンズ群L3の結像倍率をβ3とすると、
sk′=f3(1−β3)
の関係が成り立っている。
Here, when the back focus is sk ′, the focal length of the third lens unit L3 is f3, and the imaging magnification of the third lens unit L3 is β3,
sk ′ = f3 (1-β3)
The relationship is established.
但し、
0<β3<1.0
である。
However,
0 <β3 <1.0
It is.
ここで、広角端から望遠端へのズーミングに際して、第3レンズ群L3を像側に移動させると、バックフォーカスsk′が減少することになり、第3レンズ群L3の結像倍率β3が望遠側で増大することになる。すると、結果的に第3レンズ群L3で変倍を分担することになり、第2レンズ群L2の移動量が減少し、そのためのスペースが節約できるためにレンズ系の小型化に寄与する。 Here, when zooming from the wide-angle end to the telephoto end, if the third lens unit L3 is moved to the image side, the back focus sk ′ is decreased, and the imaging magnification β3 of the third lens unit L3 is set to the telephoto side. Will increase. Then, as a result, the third lens unit L3 shares the variable magnification, and the amount of movement of the second lens unit L2 is reduced, and the space for this can be saved, contributing to the miniaturization of the lens system.
本実施形態のズームレンズを用いて近距離物体を撮影する場合には、第1レンズ群L1を物体側へ移動させてフォーカスを行うことで良好な性能を得ることもできるが、さらに望ましくは、第3レンズ群L3を物体側に移動させてフォーカスを行った方が良い。 When photographing a short-distance object using the zoom lens according to the present embodiment, it is possible to obtain good performance by moving the first lens unit L1 toward the object side and performing focusing. It is better to focus by moving the third lens unit L3 to the object side.
これは、最も物体側に配置した第1レンズ群L1をフォーカシングで移動させた場合に生じる、前玉径の増大や、レンズ重量が最も重い第1レンズ群L1を移動させることによるアクチュエータの負荷の増大を防ぐことができるからである。また、フォーカスのために第1レンズ群L1を移動させないことで、第1レンズ群L1と第2レンズ群L2とをカム等で単純に連携してズーミングに際して移動させることが可能となり、メカ構造の簡素化及び精度向上も達成できる。 This occurs when the first lens unit L1 arranged on the most object side is moved by focusing, the increase of the front lens diameter, and the load on the actuator by moving the first lens unit L1 with the heaviest lens weight. This is because an increase can be prevented. Further, since the first lens unit L1 is not moved for focusing, the first lens unit L1 and the second lens unit L2 can be simply linked by a cam or the like to move during zooming, and the mechanical structure is improved. Simplification and improved accuracy can also be achieved.
また、第3レンズ群L3にてフォーカシングを行う場合、広角端から望遠端へのズーミングに際して第3レンズ群L3を像側に移動させることにより、フォーカシング移動量の大きい望遠端での第3レンズ群L3の位置を広角端に比して像側に配置することができるため、ズーミング及びフォーカシングで必要となる第3レンズ群L3の移動量の総和を最小とすることが可能となり、レンズ系のコンパクト化に有効である。 When focusing is performed by the third lens unit L3, the third lens unit at the telephoto end having a large focusing movement amount is obtained by moving the third lens unit L3 to the image side during zooming from the wide-angle end to the telephoto end. Since the position of L3 can be arranged on the image side compared to the wide-angle end, the total amount of movement of the third lens unit L3 required for zooming and focusing can be minimized, and the lens system is compact. It is effective for conversion.
次に、本実施形態のズームレンズにおいて、良好なる光学性能を得るため、またはレンズ系全体の小型化を図るために、好ましい条件について説明する。 Next, in the zoom lens of the present embodiment, preferable conditions will be described in order to obtain good optical performance or to reduce the size of the entire lens system.
(a)レンズ沈胴長及びレンズ外径短縮のためには、以下の条件を満足するのが好ましい。
5.0<(β2t・L2t)/(β2w・L1w)<10.0 …(1)
ここで、β2wは第2レンズ群L2の広角端での結像倍率、β2tは第2レンズ群L2の望遠端での結像倍率、L1wは第1レンズ群L1と第2レンズ群L2の広角端での間隔、L2tは第2レンズ群L2と第3レンズ群L3の望遠端での間隔である。
(A) In order to shorten the lens retractable length and the lens outer diameter, it is preferable to satisfy the following conditions.
5.0 <(β2t · L2t) / (β2w · L1w) <10.0 (1)
Here, β2w is the imaging magnification at the wide-angle end of the second lens unit L2, β2t is the imaging magnification at the telephoto end of the second lens unit L2, and L1w is the wide-angle of the first lens unit L1 and the second lens unit L2. The distance at the end, L2t, is the distance between the second lens unit L2 and the third lens unit L3 at the telephoto end.
条件式(1)の下限値を越えると、広角端における第1レンズ群L1と第2レンズ群L2の間隔が相対的に広がることになり、第1レンズ群L1のレンズ径が増大するため好ましくない。また、条件式(1)の上限値を越えると、広角端に対して望遠端のレンズ全長が相対的に長くなり、沈胴長を十分短くすることができなくなる。 Exceeding the lower limit value of conditional expression (1) is preferable because the distance between the first lens unit L1 and the second lens unit L2 at the wide-angle end is relatively increased, and the lens diameter of the first lens unit L1 is increased. Absent. If the upper limit of conditional expression (1) is exceeded, the total lens length at the telephoto end is relatively long with respect to the wide-angle end, and the retractable length cannot be sufficiently shortened.
更に好ましくは、条件式(1)の数値範囲を次の如くするのが良い。
5.0<β2t・L2t/(β2w・L1w)<8.0 …(1a)
(b)レンズ沈胴長短縮のためには、以下の条件を満足するのが好ましい。
0.2< D2S/D2R <0.9 …(2)
ここで、D2Sは第2レンズ群L2の最も物体側に配置されたレンズの物体側頂点とFナンバー決定部材(開口絞りSP)との光軸方向の間隔、D2Rは第2レンズ群L2の最も物体側に配置されたレンズの物体側頂点と、そのレンズの物体側の面とレンズ端面(コバ面)との交点との光軸方向の間隔である。
More preferably, the numerical range of conditional expression (1) should be as follows.
5.0 <β2t · L2t / (β2w · L1w) <8.0 (1a)
(B) In order to shorten the lens retractable length, it is preferable to satisfy the following conditions.
0.2 <D2S / D2R <0.9 (2)
Here, D2S is the distance in the optical axis direction between the object-side vertex of the lens disposed closest to the object side of the second lens unit L2 and the F-number determining member (aperture stop SP), and D2R is the most of the second lens unit L2. This is the distance in the optical axis direction between the object-side apex of the lens arranged on the object side and the intersection of the object-side surface of the lens and the lens end surface (edge surface).
条件式(2)の下限値を超えると、第1レンズ群L1の最も像側に配置されたメニスカス正レンズの像側のレンズ面と第2レンズ群L2の鏡筒の物体側の面が干渉することとなり、十分な沈胴長の短縮を図ることができず好ましくない。また、条件式(2)の上限値を超えると、Fナンバー決定部材から第1レンズ群L1までの距離が長くなり、第1レンズ群L1のレンズ径が増大するため好ましくない。 If the lower limit value of conditional expression (2) is exceeded, the lens surface on the image side of the positive meniscus lens disposed closest to the image side of the first lens unit L1 and the object side surface of the lens barrel of the second lens unit L2 interfere with each other. Therefore, it is not preferable because a sufficient reduction in the retractable length cannot be achieved. If the upper limit value of conditional expression (2) is exceeded, the distance from the F-number determining member to the first lens unit L1 becomes long, and the lens diameter of the first lens unit L1 increases, which is not preferable.
更に好ましくは、条件式(2)の数値範囲を次の如くするのが良い。
0.3< D2S/D2R <0.8 …(2a)
(c)レンズ全長短縮のためには、以下の条件を満足するのが好ましい。
4.5<√(ft/L1t)<10.0 …(3)
ここで、ftは全系の望遠端での焦点距離、L1tは第1レンズ群L1と第2レンズ群L2の望遠端での間隔である。
More preferably, the numerical range of conditional expression (2) should be as follows.
0.3 <D2S / D2R <0.8 (2a)
(C) In order to shorten the total lens length, it is preferable that the following conditions are satisfied.
4.5 <√ (ft / L1t) <10.0 (3)
Here, ft is the focal length at the telephoto end of the entire system, and L1t is the distance between the first lens unit L1 and the second lens unit L2 at the telephoto end.
条件式(3)の下限値を越えると、望遠端における第1レンズ群L1と第2レンズ群L2の間隔が広がるため、レンズ全長が伸びるため好ましくない。また、条件式(3)の上限値を越えると、望遠端において第1レンズ群L1と第2レンズ群L2の間隔が近くなりすぎ、製造誤差により第1レンズ群L1と第2レンズ群L2とが機械的に干渉する可能性が生じるため好ましくない。 Exceeding the lower limit of conditional expression (3) is not preferable because the distance between the first lens unit L1 and the second lens unit L2 at the telephoto end increases, and the entire lens length increases. When the upper limit of conditional expression (3) is exceeded, the distance between the first lens unit L1 and the second lens unit L2 becomes too close at the telephoto end, and the first lens unit L1 and the second lens unit L2 are Is not preferable because of the possibility of mechanical interference.
更に好ましくは、条件式(3)の数値範囲を次の如くするのが良い。 More preferably, the numerical range of conditional expression (3) should be as follows.
5.0<√(ft/L1t)<8.0 …(3a)
(d)高ズーム比化及びレンズ沈胴長短縮のためには、以下の条件を満足するのが好ましい。
1.0<β3t/β3w<1.3 …(4)
ここで、β3wは第3レンズ群L3の広角端における結像倍率、β3tは第3レンズ群L3の望遠端における結像倍率である。なお、結像倍率は無限遠物体合焦時のものである。
5.0 <√ (ft / L1t) <8.0 (3a)
(D) In order to increase the zoom ratio and shorten the lens retractable length, it is preferable to satisfy the following conditions.
1.0 <β3t / β3w <1.3 (4)
Here, β3w is the imaging magnification at the wide-angle end of the third lens unit L3, and β3t is the imaging magnification at the telephoto end of the third lens unit L3. Note that the imaging magnification is that when an object at infinity is in focus.
条件式(4)の下限値を越えると、第3レンズ群L3によるズーム比の増倍効果が失われ、ズーム比の高倍化に対して不利な方向となるため好ましくない。また、条件式(4)の上限値を越えると、広角端から望遠端における第3レンズ群L3の移動量が増えるので、第3レンズ群L3の可動スペースを多く確保しなければならず、沈胴長の短縮に不利な方向となるため好ましくない。 Exceeding the lower limit value of conditional expression (4) is not preferable because the zoom ratio multiplication effect of the third lens unit L3 is lost and the zoom ratio is disadvantageous for higher magnification. If the upper limit of conditional expression (4) is exceeded, the amount of movement of the third lens unit L3 from the wide-angle end to the telephoto end increases. Since it becomes a disadvantageous direction for shortening the length, it is not preferable.
更に好ましくは、条件式(4)の数値範囲を次の如くするのが良い。
1.0<β3t/β3w<1.2 …(4a)
(e)レンズ全長短縮のためには、以下の条件を満足するのが好ましい。
−0.7<(R2f+R2r)/(R2f−R2r)<−0.35 …(5)
ここで、R2fは第2レンズ群L2の最も物体側に配置されたレンズの物体側の面の近軸曲率半径、R2rは第2レンズ群L2の最も像側に配置されたレンズの像側の近軸曲率半径である。
More preferably, the numerical range of conditional expression (4) should be as follows.
1.0 <β3t / β3w <1.2 (4a)
(E) In order to shorten the total lens length, it is preferable that the following conditions are satisfied.
−0.7 <(R2f + R2r) / (R2f−R2r) <− 0.35 (5)
Here, R2f is the paraxial radius of curvature of the object side surface of the lens disposed closest to the object side of the second lens unit L2, and R2r is the image side of the lens disposed closest to the image side of the second lens unit L2. The paraxial radius of curvature.
条件式(5)の下限値を越えると、球面収差が補正不足となり好ましくない。また、条件式(5)の上限値を越えると、特に望遠端でのバックフォーカスが確保できなくなるため好ましくない。 Exceeding the lower limit of conditional expression (5) is not preferable because spherical aberration is insufficiently corrected. If the upper limit value of conditional expression (5) is exceeded, it is not preferable because the back focus at the telephoto end cannot be secured.
更に好ましくは、条件式(5)の数値範囲を次の如くするのが良い。
−0.65<(R2f+R2r)/(R2f−R2r)<−0.4 …(5a)
以上のように、各レンズ群を所望の屈折力配置と収差補正とを両立するレンズ構成とすることにより、良好な性能を保ちつつ、レンズ系のコンパクト化を達成している。
More preferably, the numerical range of conditional expression (5) should be as follows.
−0.65 <(R2f + R2r) / (R2f−R2r) <− 0.4 (5a)
As described above, by making each lens group have a lens configuration that achieves both desired refractive power arrangement and aberration correction, the lens system can be made compact while maintaining good performance.
次に実施例1〜3に対応する数値実施例1〜3の数値データを示す。数値実施例において、fは焦点距離、FnoはFナンバー、ωは半画角である。iは物体側より数えた順序を示し、Riは第i番目の面の曲率半径、Diは第i番目の面と第(i+1)番目の面との軸上間隔、Niとνdiは各々第i番目の材料のd線を基準とした屈折率とアッベ数である。 Next, numerical data of numerical examples 1 to 3 corresponding to the first to third examples will be shown. In the numerical examples, f is a focal length, Fno is an F number, and ω is a half angle of view. i indicates the order counted from the object side, Ri is the radius of curvature of the i-th surface, Di is the axial distance between the i-th surface and the (i + 1) -th surface, and Ni and νdi are the i-th surface, respectively. The refractive index and the Abbe number based on the d-line of the second material.
非球面形状は、光の進行方向を正とし、Xを光軸方向の面頂点からの変位量、hを光軸と垂直な方向の光軸からの高さ、Rを近軸曲率半径、kを円錐定数、B〜Eを各々非球面係数とするとき、 In the aspherical shape, the traveling direction of light is positive, X is the amount of displacement from the surface vertex in the optical axis direction, h is the height from the optical axis in the direction perpendicular to the optical axis, R is the paraxial radius of curvature, k Is a conic constant, and B to E are aspherical coefficients, respectively.
又前述の各条件式と数値実施例の関係を第1表に示す。 Table 1 shows the relationship between the above-described conditional expressions and numerical examples.
(数値実施例1)
f=4.715〜16.774 Fno=2.85〜5.97 2ω=73.9°〜23.9°
R 1 = 50.030 D 1 = 1.35 N 1 = 1.88300 νd1 = 40.8
R 2 = 4.759 D 2 = 2.24
R 3 = 8.594 D 3 = 1.60 N 2 = 1.92286 νd2 = 18.9
R 4 = 16.681 D 4 = 可変
R 5 = 絞り D 5 = -0.50
R 6 = 4.338 D 6 = 2.00 N 3 = 1.77250 νd3 = 49.6
R 7 = 8.707 D 7 = 0.50 N 4 = 1.64769 νd4 = 33.8
R 8 = 3.832 D 8 = 0.48
R 9 = 9.572 D 9 = 0.50 N 5 = 1.76182 νd5 = 26.5
R10 = 3.897 D10 = 2.00 N 6 = 1.60311 νd6 = 60.6
R11 = -11.842 D11 = 可変
R12 = 12.540 D12 = 1.60 N 7 = 1.60311 νd7 = 60.6
R13 = 89.899 D13 = 可変
R14 = ∞ D14 = 1.40 N 8 = 1.51633 νd8 = 64.1
R15 = ∞
(Numerical example 1)
f = 4.715-16.774 Fno = 2.85-5.97 2ω = 73.9 ° -23.9 °
R 2 = 4.759 D 2 = 2.24
R 3 = 8.594 D 3 = 1.60 N 2 = 1.92286 νd2 = 18.9
R 4 = 16.681 D 4 = Variable
R 5 = Aperture D 5 = -0.50
R 6 = 4.338 D 6 = 2.00 N 3 = 1.77250 νd3 = 49.6
R 7 = 8.707 D 7 = 0.50 N 4 = 1.64769 νd4 = 33.8
R 8 = 3.832 D 8 = 0.48
R 9 = 9.572 D 9 = 0.50 N 5 = 1.76182 νd5 = 26.5
R10 = 3.897 D10 = 2.00 N 6 = 1.60311 νd6 = 60.6
R11 = -11.842 D11 = variable
R12 = 12.540 D12 = 1.60 N 7 = 1.60311 νd7 = 60.6
R13 = 89.899 D13 = variable
R14 = ∞ D14 = 1.40 N 8 = 1.51633 νd8 = 64.1
R15 = ∞
非球面係数
(第1面)
k=0.00000e+00
B=4.56667e-04 C=-7.14952e-06 D=4.76420e-08
(第2面)
k=-1.53849e+00
B=1.59706e-03 C=1.32234e-05 D=-3.93707e-07 E=1.11975e-09
(第6面)
k=-4.37828e-01
B=-2.86734e-06 C=8.92384e-06
(数値実施例2)
f=6.005〜21.002 Fno=2.62〜5.60 2w=61.2°〜19.2°
R 1 = 14.916 D 1 = 1.20 N 1 = 1.88300 νd1 = 40.8
R 2 = 4.222 D 2 = 1.34
R 3 = 6.744 D 3 = 1.90 N 2 = 1.84666 νd2 = 23.9
R 4 = 12.586 D 4 = 可変
R 5 = 絞り D 5 = -0.65
R 6 = 4.347 D 6 = 2.00 N 3 = 1.88300 νd3 = 40.8
R 7 = 63.098 D 7 = 0.60 N 4 = 1.80518 νd4 = 25.4
R 8 = 3.531 D 8 = 0.64
R 9 = 12.745 D 9 = 1.40 N 5 = 1.69680 νd5 = 55.5
R10 = -18.733 D10 = 可変
R11 = 17.228 D11 = 1.40 N 6 = 1.69680 νd6 = 55.5
R12 = -97.710 D12 = 可変
R13 = ∞ D13 = 1.90 N 7 = 1.51633 νd7 = 64.1
R14 = ∞
Aspheric coefficient (first surface)
k = 0.00000e + 00
B = 4.56667e-04 C = -7.14952e-06 D = 4.76420e-08
(Second side)
k = -1.53849e + 00
B = 1.59706e-03 C = 1.32234e-05 D = -3.93707e-07 E = 1.11975e-09
(Sixth surface)
k = -4.37828e-01
B = -2.86734e-06 C = 8.92384e-06
(Numerical example 2)
f = 6.005-21.002 Fno = 2.62-5.60 2w = 61.2 ° -19.2 °
R 2 = 4.222 D 2 = 1.34
R 3 = 6.744 D 3 = 1.90 N 2 = 1.84666 νd2 = 23.9
R 4 = 12.586 D 4 = Variable
R 5 = Aperture D 5 = -0.65
R 6 = 4.347 D 6 = 2.00 N 3 = 1.88300 νd3 = 40.8
R 7 = 63.098 D 7 = 0.60 N 4 = 1.80518 νd4 = 25.4
R 8 = 3.531 D 8 = 0.64
R 9 = 12.745 D 9 = 1.40 N 5 = 1.69680 νd5 = 55.5
R10 = -18.733 D10 = variable
R11 = 17.228 D11 = 1.40 N 6 = 1.69680 νd6 = 55.5
R12 = -97.710 D12 = variable
R13 = ∞ D13 = 1.90 N 7 = 1.51633 νd7 = 64.1
R14 = ∞
非球面係数
(第1面)
k=0.00000e+00
B=-5.40012e-04 C=1.51938e-05 D=-1.52986e-07
(第2面)
k=-1.34784e+00
B=6.88013e-04 C=1.50185e-05 D=5.06277e-07
(第6面)
k=-2.84476e-01
B=-6.29759e-05 C=-8.41757e-06
(数値実施例3)
f=6.048〜21.255 Fno=2.71〜5.74 2w=73.2°〜23.9°
R 1 = 71.340 D 1 = 1.60 N 1 = 1.88300 νd1 = 40.8
R 2 = 5.719 D 2 = 2.75
R 3 = 10.800 D 3 = 1.70 N 2 = 1.92286 νd2 = 18.9
R 4 = 22.275 D 4 = 可変
R 5 = 絞り D 5 = -0.50
R 6 = 5.049 D 6 = 2.30 N 3 = 1.80610 νd3 = 40.7
R 7 = -60.222 D 7 = 0.50 N 4 = 1.69895 νd4 = 30.1
R 8 = 4.267 D 8 = 0.70
R 9 = 10.417 D 9 = 0.50 N 5 = 1.76182 νd5 = 26.5
R10 = 5.329 D10 = 2.20 N 6 = 1.51633 νd6 = 64.1
R11 = -12.663 D11 = 可変
R12 = 12.931 D12 = 1.80 N 7 = 1.60311 νd7 = 60.6
R13 = 58.859 D13 = 可変
R14 = ∞ D14 = 1.40 N 8 = 1.51633 νd8 = 64.1
R15 = ∞
Aspheric coefficient (first surface)
k = 0.00000e + 00
B = -5.40012e-04 C = 1.51938e-05 D = -1.52986e-07
(Second side)
k = -1.34784e + 00
B = 6.88013e-04 C = 1.50185e-05 D = 5.06277e-07
(Sixth surface)
k = -2.84476e-01
B = -6.29759e-05 C = -8.41757e-06
(Numerical Example 3)
f = 6.048-21.255 Fno = 2.71-5.74 2w = 73.2 ° -23.9 °
R 2 = 5.719 D 2 = 2.75
R 3 = 10.800 D 3 = 1.70 N 2 = 1.92286 νd2 = 18.9
R 4 = 22.275 D 4 = Variable
R 5 = Aperture D 5 = -0.50
R 6 = 5.049 D 6 = 2.30 N 3 = 1.80610 νd3 = 40.7
R 7 = -60.222 D 7 = 0.50 N 4 = 1.69895 νd4 = 30.1
R 8 = 4.267 D 8 = 0.70
R 9 = 10.417 D 9 = 0.50 N 5 = 1.76182 νd5 = 26.5
R10 = 5.329 D10 = 2.20 N 6 = 1.51633 νd6 = 64.1
R11 = -12.663 D11 = variable
R12 = 12.931 D12 = 1.80 N 7 = 1.60311 νd7 = 60.6
R13 = 58.859 D13 = Variable
R14 = ∞ D14 = 1.40 N 8 = 1.51633 νd8 = 64.1
R15 = ∞
非球面係数
(第1面)
k=0.00000e+00
B=2.58911e-04 C=-2.62258e-06 D=1.30274e-08
(第2面)
k=-1.21325e+00
B=6.70859e-04 C=5.95470e-06 D=-5.54523e-08 E=1.33713e-10
(第6面)
k=-3.46473e-01 B=-8.50982e-05 C=4.56506e-07
Aspheric coefficient (first surface)
k = 0.00000e + 00
B = 2.58911e-04 C = -2.62258e-06 D = 1.30274e-08
(Second side)
k = -1.21325e + 00
B = 6.70859e-04 C = 5.95470e-06 D = -5.54523e-08 E = 1.33713e-10
(Sixth surface)
k = -3.46473e-01 B = -8.50982e-05 C = 4.56506e-07
本実施形態のズームレンズは、以上説明したように各要素を設定することにより、特に、固体撮像素子を用いた撮影系に好適な、構成レンズ枚数が少なくコンパクトで、特に沈胴ズームレンズに適した、ズーム比が3倍以上の優れた光学性能を有するズームレンズが達成できる。 As described above, the zoom lens according to the present embodiment is compact with a small number of constituent lenses, particularly suitable for an imaging system using a solid-state imaging device, and particularly suitable for a retractable zoom lens. A zoom lens having excellent optical performance with a zoom ratio of 3 times or more can be achieved.
また、レンズ群中に効果的に非球面を導入することによって、軸外諸収差、特に非点収差・歪曲収差および大口径比化した際の球面収差の補正が効果的に行える。 Further, by effectively introducing an aspheric surface into the lens group, it is possible to effectively correct off-axis aberrations, particularly astigmatism / distortion aberration and spherical aberration when the aperture ratio is increased.
次に本発明のズームレンズを撮影光学系として用いたデジタルスチルカメラ(撮像装置)の実施形態を、図7を用いて説明する。 Next, an embodiment of a digital still camera (imaging device) using the zoom lens of the present invention as a photographing optical system will be described with reference to FIG.
図7において、20はカメラ本体、21は実施例1〜3で説明したいずれかのズームレンズによって構成された撮影光学系、22はカメラ本体に内蔵され、撮影光学系21によって形成された被写体像を受光するCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)、23は固体撮像素子22によって光電変換された被写体像に対応する情報を記録するメモリ、24は液晶ディスプレイパネル等によって構成され、固体撮像素子22上に形成された被写体像を観察するためのファインダである。
In FIG. 7,
このように本発明のズームレンズをデジタルスチルカメラ等の撮像装置に適用することにより、小型で高い光学性能を有する撮像装置が実現できる。 In this way, by applying the zoom lens of the present invention to an imaging apparatus such as a digital still camera, a compact imaging apparatus having high optical performance can be realized.
L1 第1レンズ群
L2 第2レンズ群
L3 第3レンズ群
L2a 第2aレンズ群
L2a 第2bレンズ群
SP 開口絞り(Fナンバー決定部材)
IP 像面
G ガラスブロック
d d線
g g線
S サジタル像面
M メリジオナル像面
L1 1st lens group L2 2nd lens group L3 3rd lens group L2a 2a lens group L2a 2b lens group SP Aperture stop (F-number determining member)
IP image plane G glass block d d line g g line S sagittal image plane M meridional image plane
Claims (11)
5.0<(β2t・L2t)/(β2w・L1w)<10.0
なる条件を満足することを特徴とするズームレンズ。 In order from the object side to the image side, a first lens unit having a negative refractive power, a second lens unit having a positive refractive power, a third lens unit having positive refractive power, hand spacing of each lens group during zooming In the changing zoom lens, the first lens group includes one negative lens and one positive lens, and the second lens group includes one positive lens and one positive lens in order from the object side to the image side. a first 2a lens group composed of a cemented lens obtained by cementing a negative lens made of the 2b lens group having at least one positive lens, the third lens group have at least one positive lens, the second The imaging magnifications at the wide-angle end and the telephoto end of the two lens groups are β2w and β2t , respectively, the distance at the wide-angle end of the first lens group and the second lens group is L1w, and the telephoto of the second lens group and the third lens group when the gap at the end and L2t
5.0 <(β2t · L2t) / (β2w · L1w) <10.0
A zoom lens that satisfies the following conditions:
0.2<D2S/D2R<0.9
なる条件を満足することを特徴とする請求項2に記載のズームレンズ。 The object side apex of the positive lens disposed on the most object side of the second lens group, the D2S apart in the optical axis direction of the F-number determining member, positive disposed closest to the object side of the second lens group when the object side apex of the lens, the distance between the optical axis of the intersection between the end face of the object-side surface and said positive lens of said positive lens and D2R,
0.2 <D2S / D2R <0.9
The zoom lens according to claim 2, wherein the following condition is satisfied.
4.5<√(ft/L1t)<10.0
なる条件を満足することを特徴とする請求項1乃至5のいずれか1項に記載のズームレンズ。 When the focal length at the telephoto end of the entire system ft, and L1t apart at the telephoto end of the second lens group and the third lens group,
4.5 <√ (ft / L1t) <10.0
The zoom lens according to any one of claims 1 to 5, characterized by satisfying the following condition.
1.0<β3t/β3w<1.3
なる条件を満足することを特徴とする請求項1乃至6のいずれか1項に記載のズームレンズ。 When the imaging magnifications at the wide-angle end and the telephoto end of the third lens group are β3w and β3t, respectively .
1.0 <β3t / β3w <1.3
The zoom lens according to any one of claims 1 to 6, characterized by satisfying the following condition.
−0.7<(R2f+R2r)/(R2f−R2r)<−0.35
なる条件を満足することを特徴とする請求項1乃至7のいずれか1項に記載のズームレンズ。 Wherein R2f paraxial curvature radius of the object side of a lens disposed on the most object side of the second lens group, the paraxial curvature radius of the image side of the second lens closest to the image side in the lens disposed in the group and R2r and when,
−0.7 <(R2f + R2r) / (R2f−R2r) <− 0.35
The zoom lens according to any one of claims 1 to 7, characterized by satisfying the following condition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004248229A JP4666977B2 (en) | 2004-08-27 | 2004-08-27 | Zoom lens and imaging apparatus having the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004248229A JP4666977B2 (en) | 2004-08-27 | 2004-08-27 | Zoom lens and imaging apparatus having the same |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2006065034A JP2006065034A (en) | 2006-03-09 |
JP2006065034A5 JP2006065034A5 (en) | 2007-09-20 |
JP4666977B2 true JP4666977B2 (en) | 2011-04-06 |
Family
ID=36111583
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004248229A Expired - Fee Related JP4666977B2 (en) | 2004-08-27 | 2004-08-27 | Zoom lens and imaging apparatus having the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4666977B2 (en) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006139164A (en) * | 2004-11-15 | 2006-06-01 | Konica Minolta Photo Imaging Inc | Variable power optical system |
JP4870527B2 (en) * | 2005-11-30 | 2012-02-08 | パナソニック株式会社 | Zoom lens system, imaging device and camera |
JP4917922B2 (en) * | 2006-03-09 | 2012-04-18 | パナソニック株式会社 | Zoom lens system, imaging device and camera |
JP4913634B2 (en) * | 2006-03-09 | 2012-04-11 | パナソニック株式会社 | Zoom lens system, imaging device and camera |
JP4928288B2 (en) | 2007-01-30 | 2012-05-09 | キヤノン株式会社 | Zoom lens and imaging apparatus having the same |
US7742235B2 (en) | 2007-05-29 | 2010-06-22 | Panasonic Corporation | Zoom lens system, imaging device and camera |
JP5097449B2 (en) * | 2007-05-29 | 2012-12-12 | パナソニック株式会社 | Zoom lens system, imaging device and camera |
JP5097450B2 (en) * | 2007-05-29 | 2012-12-12 | パナソニック株式会社 | Zoom lens system, imaging device and camera |
JP5097448B2 (en) * | 2007-05-29 | 2012-12-12 | パナソニック株式会社 | Zoom lens system, imaging device and camera |
US7593166B2 (en) | 2007-05-29 | 2009-09-22 | Panasonic Corporation | Zoom lens system, imaging device and camera |
US7755847B2 (en) | 2007-05-29 | 2010-07-13 | Panasonic Corporation | Zoom lens system, imaging device and camera |
US7738183B2 (en) | 2007-12-19 | 2010-06-15 | Canon Kabushiki Kaisha | Zoom lens and image pickup apparatus having the same |
US8004772B2 (en) | 2008-01-28 | 2011-08-23 | Panasonic Corporation | Zoom lens system, imaging device and camera |
US8223438B2 (en) | 2008-01-28 | 2012-07-17 | Panasonic Corporation | Zoom lens system, imaging device and camera |
JP5129821B2 (en) | 2008-01-28 | 2013-01-30 | パナソニック株式会社 | Zoom lens system, imaging device and camera |
US8559116B2 (en) | 2008-01-28 | 2013-10-15 | Panasonic Corporation | Zoom lens system, imaging device and camera |
US8300318B2 (en) | 2008-01-28 | 2012-10-30 | Panasonic Corporation | Zoom lens system, imaging device and camera |
US8395848B2 (en) | 2008-01-28 | 2013-03-12 | Panasonic Corporation | Zoom lens system, imaging device and camera |
US8149514B2 (en) | 2008-01-28 | 2012-04-03 | Panasonic Corporation | Zoom lens system, imaging device and camera |
JP5377032B2 (en) | 2009-04-02 | 2013-12-25 | キヤノン株式会社 | Zoom lens and imaging apparatus having the same |
KR101925056B1 (en) | 2011-09-02 | 2018-12-04 | 삼성전자주식회사 | Zoom lens and photographing apparatus |
JP5939788B2 (en) * | 2011-12-21 | 2016-06-22 | キヤノン株式会社 | Zoom lens and imaging apparatus having the same |
CN108508571B (en) * | 2017-02-28 | 2021-01-12 | 宁波舜宇车载光学技术有限公司 | Imaging system lens group |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003149556A (en) * | 2001-11-16 | 2003-05-21 | Olympus Optical Co Ltd | Zoom lens and electronic image pickup device using the same |
JP2003344897A (en) * | 2002-05-30 | 2003-12-03 | Olympus Optical Co Ltd | Imaging optical system |
JP2004012505A (en) * | 2002-06-03 | 2004-01-15 | Canon Inc | Zoom lens and optical equipment having the same |
JP2005107284A (en) * | 2003-09-30 | 2005-04-21 | Nikon Corp | Zoom lens |
-
2004
- 2004-08-27 JP JP2004248229A patent/JP4666977B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003149556A (en) * | 2001-11-16 | 2003-05-21 | Olympus Optical Co Ltd | Zoom lens and electronic image pickup device using the same |
JP2003344897A (en) * | 2002-05-30 | 2003-12-03 | Olympus Optical Co Ltd | Imaging optical system |
JP2004012505A (en) * | 2002-06-03 | 2004-01-15 | Canon Inc | Zoom lens and optical equipment having the same |
JP2005107284A (en) * | 2003-09-30 | 2005-04-21 | Nikon Corp | Zoom lens |
Also Published As
Publication number | Publication date |
---|---|
JP2006065034A (en) | 2006-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4612823B2 (en) | Zoom lens and imaging apparatus having the same | |
JP4669294B2 (en) | Zoom lens and imaging apparatus having the same | |
JP4666977B2 (en) | Zoom lens and imaging apparatus having the same | |
JP4773807B2 (en) | Zoom lens and imaging apparatus having the same | |
JP4817699B2 (en) | Zoom lens and imaging apparatus having the same | |
JP5455572B2 (en) | Zoom lens and imaging apparatus having the same | |
JP4914136B2 (en) | Zoom lens and imaging apparatus having the same | |
JP5317669B2 (en) | Zoom lens and imaging apparatus having the same | |
JP5465000B2 (en) | Zoom lens and imaging apparatus having the same | |
JP4909089B2 (en) | Zoom lens and imaging apparatus having the same | |
JP4366109B2 (en) | Zoom lens and optical apparatus having the same | |
JP5495654B2 (en) | Zoom lens and optical apparatus having the same | |
JP5006514B2 (en) | Zoom lens and imaging apparatus having the same | |
JP2011252962A (en) | Imaging optical system and imaging apparatus having the same | |
JP4593971B2 (en) | Zoom lens and imaging apparatus having the same | |
JP4708734B2 (en) | Zoom lens and imaging apparatus having the same | |
JP2006337793A (en) | Zoom lens and imaging apparatus using same | |
JP5522988B2 (en) | Zoom lens and imaging apparatus using the same | |
JP5084900B2 (en) | Zoom lens and imaging apparatus having the same | |
JP3706787B2 (en) | Zoom lens and optical apparatus using the same | |
JP4585796B2 (en) | Zoom lens and imaging apparatus having the same | |
JP5179518B2 (en) | Zoom lens system, imaging device and camera | |
JP4537114B2 (en) | Zoom lens | |
JP4928288B2 (en) | Zoom lens and imaging apparatus having the same | |
JP4027343B2 (en) | Zoom lens and imaging apparatus using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070801 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070801 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20100201 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20100630 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101006 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101019 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101213 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110105 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140121 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4666977 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |