JP2004061675A - Zoom lens - Google Patents

Zoom lens Download PDF

Info

Publication number
JP2004061675A
JP2004061675A JP2002217410A JP2002217410A JP2004061675A JP 2004061675 A JP2004061675 A JP 2004061675A JP 2002217410 A JP2002217410 A JP 2002217410A JP 2002217410 A JP2002217410 A JP 2002217410A JP 2004061675 A JP2004061675 A JP 2004061675A
Authority
JP
Japan
Prior art keywords
lens
lens group
positive
zoom
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002217410A
Other languages
Japanese (ja)
Inventor
Makoto Sekida
関田 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002217410A priority Critical patent/JP2004061675A/en
Publication of JP2004061675A publication Critical patent/JP2004061675A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a zoom lens suitable for a photographing system using a solid-state image pickup element, constituted of a small number of lenses, especially, suitable as a collapsible zoom lens and having excellent optical performance that a variable power ratio is about 3. <P>SOLUTION: In the zoom lens provided with three lens groups, that is, a 1st lens group having negative refractive power, a 2nd lens group having positive refractive power, and a 3rd lens group having positive refractive power in order from an object side and performing variable power by changing space between the respective groups, the 1st lens group is constituted of two lenses, that is, one negative lens and one positive lens, and the 2nd lens group is constituted of three lenses, that is, a positive lens whose both lens surfaces are convex and a doublet consisting of a negative lens and a positive lens in order from the object side, and the 3rd lens group has at least one positive lens. The zoom lens satisfies a condition: 1.5<f2/fw<2.5 when it is assumed that the focal distance of a wide angle end is fw and the focal distance of the 2nd lens group is f2. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はスチルカメラやビデオカメラ、そしてデジタルスチルカメラ等に好適なズームレンズに関するものである。
【0002】
【従来の技術】
最近、固体撮像素子を用いたビデオカメラ、デジタルスチルカメラ等、撮像装置(カメラ)の高機能化にともない、それに用いる光学系には広い画角を包含した大口径比のズームレンズが求められている。この種のカメラには、レンズ最後部と撮像素子との間に、ローパスフィルターや色補正フィルターなどの各種光学部材を配置する為、それに用いる光学系には、比較的バックフォーカスの長いレンズ系が要求される。さらに、カラー画像用の撮像素子を用いたカラーカメラの場合、色シェーディングを避けるため、それに用いる光学系には像側のテレセントリック特性の良いものが望まれている。
【0003】
従来より、負の屈折力の第1群と正の屈折力の第2群の2つのレンズ群より成り、双方のレンズ間隔を変えて変倍を行う。所謂ショートズームタイプの広角の2群ズームレンズが種々提案されている。これらのショートズームタイプの光学系では、正の屈折力の第2群を移動する事で変倍を行い、負の屈折力の第1群を移動する事で変倍に伴う像点位置の補正を行っている。これらの2つのレンズ群よりなるレンズ構成においては、ズーム倍率は2倍程度である。
【0004】
さらに2倍以上の高い変倍比を有しつつレンズ全体をコンパクトな形状にまとめるため、例えば特公平7−3507号公報や、特公平6−40170号公報等には2群ズームレンズの像側に負または正の屈折力の第3群を配置し、高倍化に伴って発生する諸収差の補正を行っている、所謂3群ズームレンズが提案されている。
【0005】
しかしながら、これらの3群ズームレンズは主として35mmフィルム写真用に設計されているため、固体撮像素子を用いた光学系に求められるバックフォーカスの長さと、良好なテレセントリック特性を両立したものとは言い難かった。
【0006】
【発明が解決しようとする課題】
バックフォーカスとテレセントリック特性を満足する広角の3群ズームレンズ系が、例えば、特開昭63−135913号公報や、特開平7−261083号公報等で提案されている。また、特開平3−288113号公報には、3群ズームレンズにおいて負の屈折力の第1群を固定とし、正の屈折力の第2群と正の屈折力の第3群を移動させて変倍を行う光学系も開示されている。
【0007】
ところが、これらの従来例においては、各レンズ群の構成枚数が比較的多く、レンズ全長が長い、製造コストが高いなどの欠点を有していた。
【0008】
さらに近年、カメラのコンパクト化とレンズの高倍化を両立する為に、非撮影時に各レンズ群の間隔を撮影状態と異なる間隔まで縮小し、カメラ本体からのレンズの突出量を少なくした所謂沈胴ズームレンズが広く用いられているが、上記従来例の様に各群の構成枚数が多く、結果的に各レンズ群の光軸上の長さが長くなる場合や、各レンズ群のズーミング及びフォーカシングにおける移動量が大きく、レンズ全長が長くなる場合においては、所望の沈胴長が達成出来ない場合がある。
【0009】
また、特開平7−261083号公報に記載される例では、負の屈折力の第1群の最も物体側に正レンズが配置されており、特に広角化した場合のレンズ外径の増大が避けられない欠点を有していた。さらに、この例では負の屈折力の第1レンズ群を移動させて近距離物体へのフォーカシングを行うため、ズーミングでの移動とあいまってメカ構造が複雑化する欠点があった。
【0010】
また、米国特許第4999007号には、3群ズームレンズにおいて、第1レンズ群、第2レンズ群をそれぞれ1枚の単レンズで構成したものも開示されている。
【0011】
ところが、広角端でのレンズ全長が比較的大きく、さらに広角端での第1群と絞りが大きく離れているため軸外光線の入射高が大きく第1群を構成するレンズの径が増大してしまうため、レンズ系全体が大きくなってしまう欠点を有していた。
【0012】
さらに、ズーム広角端での画角を大きくした場合の特有な問題として歪曲収差の補正不足の問題がある。また、比較的感度の低い高画素の撮影素子で用いるためには更なる大口径比化が求められる。
【0013】
また本出願人提案の特開2001−272602号公報の実施例3において、第1レンズ群を負レンズ・正レンズの2枚のレンズで構成し、第2レンズ群を正レンズと、正レンズと負レンズの接合レンズの3枚のレンズで構成し、第3レンズ群を正レンズ1枚で構成した、構成枚数の少ない3群構成のズームレンズが開示されているが、変倍比が2倍程度であり3倍程度の変倍比にて最適化されたものではなかった。
【0014】
本発明では、これら従来例の欠点に鑑み、特に固体撮像素子を用いた撮影系に好適で、構成レンズ枚数の少なく、特に沈胴ズームレンズに適し、変倍比が3倍程度の優れた光学性能を有するズームレンズの提供を目的とする。
【0015】
さらに、本発明では、次の事項のうち少なくとも1つを満足するズームレンズを得る事を目的としている。
【0016】
即ち、
・広画端の画角を大きくしながら、高性能、コンパクト化を図る事。
【0017】
・特に広角側での非点収差、歪曲収差を良好に補正する事。
【0018】
・最小のレンズ構成を取りつつ、移動するレンズ群の収差分担を減らし、製造誤差によるレンズ群相互の偏心等での性能劣化を少なくし、製造の容易なものとする事。
【0019】
・感度の低い高画素撮像素子に好適な大口径比化を図る事。
【0020】
・構成枚数を最小としながら、固体撮像素子を用いた撮影系に好適な良好な像側テレセントリック結像をもたせる事。
【0021】
・沈胴ズームレンズに要求される各レンズ群の光軸上の長さや各レンズ群のズーミング及びフォーカシングによる光軸上の移動量を短くする。
【0022】
・広角端のみならずズーム全域で歪曲収差を良好に補正する事。
【0023】
・像側テレセントリック結像のズームによる変動を小さくする事。
【0024】
・テレセントリック結像を保ったまま変倍レンズ群の移動量を減らし、さらなる小型化を達成する事。
【0025】
・近距離物体へのフォーカシング機構を簡素化する事。
等である。
【0026】
【課題を解決するための手段】
請求項1の発明は、物体側より順に、負の屈折力の第1レンズ群、正の屈折力の第2レンズ群、そして正の屈折力の第3レンズ群の3つのレンズ群を有し、各群の間隔を変化させて変倍を行うズームレンズにおいて、該第1レンズ群は1枚の負レンズと1枚の正レンズの2枚のレンズで構成し、該第2レンズ群は物体側より順に、両レンズ面が凸面の正レンズ、正レンズと負レンズの接合レンズの3枚のレンズで構成し、該第3レンズ群は少なくとも1枚の正レンズを有すると共に、広角端の焦点距離をfw、該第2レンズ群の焦点距離をf2としたときに、
1.5 < f2/fw < 2.5
なる条件を満足する事を特徴としている。
【0027】
請求項2の発明は請求項1の発明において、広角端から望遠端への変倍動作に際して、前記第1レンズ群は像側に凸状の軌跡で移動し、前記第2レンズ群は物体側に単調に移動し、前記第3レンズ群は像側に移動する事を特徴としている。
【0028】
請求項3の発明は請求項1又は2項の発明において、前記第2レンズ群中の最も物体側に配置した正レンズの材質の屈折率をnd21、アッベ数をνd21とした時に、
1.55 < nd21 < 1.75
νd21 > 45.0
なる条件を満足する事を特徴としている。
【0029】
請求項4の発明は請求項1〜3のいずれか1項に記載の発明において、前記第2レンズ群中の接合レンズにて、正レンズの材質の屈折率をnd22、アッベ数をνd22とした時に、
nd22 > 1.70
νd22 > 35.0
なる条件を満足する事を特徴としている。
【0030】
請求項5の発明は請求項1〜4のいずれか1項に記載の発明において、前記第1レンズ群を構成する各レンズの光軸上の厚みの合計をΣD1、前記第2レンズ群を構成する各レンズの光軸上の厚みの合計をΣD2、前記第3レンズ群を構成する各レンズの光軸上の厚みの合計をΣD3、広角端の焦点距離をfwとしたときに、
1.7 <(ΣD1+ΣD2+ΣD3)/fw < 2.1
なる条件を満足する事を特徴としている。
【0031】
請求項6の発明は請求項1〜5のいずれか1項に記載の発明において、前記第1レンズ群中に少なくとも非球面を1面有すると共に、前記第2レンズ群中にすくなくとも非球面を2面有する事を特徴としている。
【0032】
請求項7の発明は請求項1〜6のいずれか1項に記載の発明において、前記第3レンズ群は単一の正レンズにて構成している事を特徴としている。
【0033】
請求項8の発明は請求項1〜7のいずれか1項に記載の発明において、前記第3群を物体側に移動させて無限遠物体から近距離物体へのフォーカシングを行う事を特徴としている。
【0034】
【発明の実施の形態】
図1は本発明の後述する実施形態1のレンズ断面図である。図2〜図4は本発明の実施形態1の広角端,中間,望遠端の収差図である。
【0035】
図5は本発明の後述する実施形態2のレンズ断面図である。図6〜図8は本発明の実施形態2の広角端,中間,望遠端の収差図である。
【0036】
図9は本発明の後述する実施形態3のレンズ断面図である。図10〜図12は本発明の実施形態3の広角端,中間,望遠端の収差図である。
【0037】
レンズ断面図においてL1は負の屈折力の第1群(第1レンズ群)、L2は正の屈折力の第2群(第2レンズ群)、L3は正の屈折力の第3群(第3レンズ群)、SPは開口絞り、IPは像面である。Gは水晶ローパスフィルターや赤外カットフィルター等のガラスブロックである。
【0038】
次に本発明のズームレンズのレンズ構成について説明する。
【0039】
本発明のズームレンズでは、物体側より順に、負の屈折力の第1レンズ群L1、正の屈折力の第2レンズ群L2、そして正の屈折力の第3レンズ群L3の3つのレンズ群を有しており、広角端から望遠端へのズーミングに際して、第1レンズ群が像側に凸の往復移動、第2レンズ群が物体側に移動し、第3レンズ群は像側に移動している。
【0040】
本発明のズームレンズは、第2レンズ群の移動により主な変倍を行い、第1レンズ群の往復移動及び第3レンズ群による像側方向への移動によって変倍に伴う像点の移動を補正している。
【0041】
第3レンズ群は、撮像素子の小型化に伴う撮影レンズの屈折力の増大を分担し、第1、第2レンズ群で構成されるショートズーム系の屈折力を減らす事で特に第1レンズ群を構成するレンズでの収差の発生を抑え良好な光学性能を達成している。また、特に固体撮像素子等を用いた撮影装置に必要な像側のテレセントリックな結像を第3レンズ群にフィールドレンズの役割を持たせる事で達成している。
【0042】
また、絞りSPを第2レンズ群の最も物体側に置き、広角側での入射瞳と第1レンズ群との距離を縮める事で第1レンズ群を構成するレンズの外径の増大を抑えると共に、第2レンズ群の物体側に配置した絞りを挟んで第1レンズ群と第3レンズ群とで軸外の諸収差を打ち消す事で構成レンズ枚数を増やさずに良好な光学性能を得ている。
【0043】
本発明のズームレンズは、第1レンズ群は1枚の負レンズと1枚の正レンズの2枚のレンズで構成し、第2レンズ群は物体側より順に、両レンズ面が凸面の正レンズ、正レンズと負レンズの接合レンズの3枚のレンズで構成し、第3レンズ群は少なくとも1枚の正レンズを有する事を特徴としている。
【0044】
次に各実施形態のレンズ構成について説明する。
【0045】
本発明における各実施形態においては、負の屈折力の第1レンズ群を物体側から順に像側に凹面を向けたメニスカス状の負レンズ11、物体側に凸面を向けたメニスカス状の正レンズ12の2枚のレンズで構成している。
【0046】
また、正の屈折力の第2レンズ群を物体側から順に、物体側に強い凸面を向けた正レンズ21、像側に強い凸面を向けた正レンズ22、両レンズ面が凹面の負レンズ23の3枚のレンズで構成されている。
【0047】
さらに、正の屈折力の第3レンズ群を両レンズ面が凸面の正レンズ31で構成している。
【0048】
図5の実施形態2においては、負の屈折力の第1レンズ群を物体側から順に像側に凹面を向けたメニスカス状の負レンズ11、同じく像面側に凹面を向けたメニスカス状の負レンズ12、そして物体側に凸面を向けたメニスカス状の正レンズ13の3枚のレンズで構成している。
【0049】
以上のように各レンズ群を所望の屈折力配置と収差補正とを両立するレンズ構成とする事により、良好な性能を保ちつつ、レンズ系のコンパクト化を達成している。
【0050】
第1レンズ群は、軸外主光線を絞り中心に瞳結像させる役割を持っており、特に広角側においては軸外主光線の屈折量が大きいために軸外諸収差、特に非点収差と歪曲収差が発生し易い。
【0051】
そこで本実施形態では、通常の広角レンズと同様、最も物体側のレンズ径の増大が抑えられる負レンズと正レンズの構成としている。
【0052】
そして、メニスカス状の負レンズ11の像側のレンズ面を周辺で負の屈折力が弱くなる非球面とする事により、非点収差と歪曲収差をバランス良く補正すると共に、2枚と言う少ない枚数で第1レンズ群を構成し、レンズ全体のコンパクト化に寄与している。
【0053】
また第1レンズ群を構成する各レンズは、軸外主光線の屈折によって生じる軸外収差の発生を抑えるために絞りと光軸が交差する点を中心とする同心球面に近い形状をとっている。
【0054】
次に第2レンズ群は、物体側に強い凸面を向けた両レンズ面が凸面の正レンズ21を配置し、第1レンズ群を射出した軸外主光線の屈折角を少なくし、軸外諸収差が発生しない様な形状としている。
【0055】
また、正レンズ21は、最も軸上光線の通る高さが高いレンズであり、主に球面収差、コマ収差の補正に関与しているレンズである。
【0056】
そこで本発明においては、正レンズ21の物体側の面を周辺で正の屈折力が弱くなる非球面とすることにより球面収差、コマ収差を良好に補正している。
【0057】
さらに実施形態1においては、正レンズ21の両側のレンズ面を非球面とすることにより、球面収差、コマ収差をより良好に補正している。
【0058】
次に、正レンズ21の像面側に、正レンズ22と負レンズ23とを接合した接合レンズを配置する事で、CCD等の固体撮像素子の高画素化及びセルピッチの微細化に伴って要求される、色収差の縮小化に対応している。
【0059】
さらに実施形態2及び3においては、正レンズ22の物体側の面を周辺で正の屈折力が弱くなる非球面とすることにより、正レンズ21と収差補正を分担することで、球面収差、コマ収差をより良好に補正している。
【0060】
次に第3レンズ群は、両レンズ面が凸面の正レンズ31より構成し、像側テレセントリックにするためのフィールドレンズとしての役割をも有している。
【0061】
いま、バックフォーカスをsk’、第3レンズ群の焦点距離をf3、第3レンズ群の結像倍率をβ3とすると、
sk’=f3(1−β3)
の関係が成り立っている。
【0062】
但し、
0 < β3 < 1.0
である。
【0063】
ここで、広角端から望遠端への変倍に際して第3レンズ群を像側に移動するとバックフォーカスsk’が減少する事になり、第3レンズ群の結像倍率β3は望遠側で増大する。
【0064】
すると、結果的に第3レンズ群で変倍を分担できて第2レンズ群の移動量が減少し、そのためのスペースが節約できるためにレンズ系の小型化に寄与する。
【0065】
本実施形態のズームレンズを用いて近距離物体を撮影する場合には、第1レンズ群を物体側へ移動する事で良好な性能を得られるが、さらに望ましくは、第3レンズ群を物体側に移動した方が良い。
【0066】
これは、最も物体側に配置した第1レンズ群をフォーカシングさせた場合に生じる、前玉径の増大、レンズ重量が最も重い第1レンズ群を移動させる事によるアクチュエーターの負荷の増大を防ぎ、さらに第1レンズ群と第2レンズ群とをカム等で単純に連携してズーミング時に移動させる事が可能となり、メカ構造の簡素化及び精度向上を達成できるためである。
【0067】
また、第3レンズ群にてフォーカシングを行う場合、広角端から望遠端への変倍に際して第3レンズ群を像側に移動する事により、フォーカシング移動量の大きい望遠端を像面側に配置する事が出来る為、ズーミング及びフォーカシングで必要となる第3レンズ群の全ての移動量を最小とする事が可能となり、レンズ系のコンパクト化を達成している。
【0068】
尚、本発明のズームレンズにおいて、良好なる光学性能を得るため、又はレンズ系全体の小型化を図るには、次の諸条件のうちの少なくとも1つを満足させるのが良い。
【0069】
(ア−1)光学系の全長短縮及び沈胴時のレンズ全長短縮の為に、以下の条件を満足するのが好ましい。
【0070】
1.5 < f2/fw < 2.5 ‥‥‥(1)
ここで、f2は第2レンズ群の焦点距離、fwは広角端の焦点距離である。
【0071】
条件式(1)の上限値を超えると、変倍時の第2レンズ群の移動量が増大し、光学系の全長が長くなるので好ましくない。
【0072】
また、条件式(1)の下限値を超えると、光学系の全長は短くなるが、第2レンズ群の焦点距離が短くなることで、変倍域全体の収差補正が困難となり好ましくない。
【0073】
(ア−2)第2レンズ群中の最も物体側に配置した正レンズ21の材質の屈折率及びアッベ数については、以下の条件を満足するのが好ましい。
【0074】
1.55 < nd21 < 1.75 ‥‥‥(2)
νd21 > 45.0 ‥‥‥(3)
条件式(2)の上限値を超えるとペッツバール和が正の方向に増大し像面彎曲補正が困難となる。
【0075】
逆に、条件式(2)の下限値を超えると像面彎曲補正が困難になると共に、コマ収差の補正も困難となり好ましくない。
【0076】
また条件式(3)の下限値を超えると望遠端での軸上色収差補正が困難となり好ましくない。
【0077】
(ア−3)第2レンズ群中の接合レンズにて、正レンズ22の材質の屈折率及びアッベ数については、以下の条件を満足するのが好ましい。
【0078】
nd22 > 1.70 ‥‥‥(4)
νd22 > 35.0 ‥‥‥(5)
条件式(4)の下限値を超えるとペッツバール和が負の方向に増大し像面彎曲補正が困難となる。
【0079】
また条件式(5)の下限値を超えると望遠端での軸上色収差補正が困難となり好ましくない。
【0080】
(ア−4)光学系の全長短縮及び沈胴時のレンズ全長短縮の為に、さらに以下の条件を満足させるのが良い。
【0081】
1.7 <(ΣD1+ΣD2+ΣD3)/fw < 2.1 ‥‥‥(6)
ここで、ΣD1は第1レンズ群を構成する各レンズの光軸上の厚みの合計、ΣD2は第2レンズ群を構成する各レンズの光軸上の厚みの合計を、ΣD3は第3レンズ群を構成する各レンズの光軸上の厚みの合計、fwは広角端の焦点距離である。
【0082】
条件式(6)の上限値を超えると、各レンズの厚みが相対的に厚くなる為、レンズ沈胴全長を短くする事が難しくなるので好ましくない。
【0083】
条件式(6)の下限値を超えると、各レンズの厚みが薄くなり沈胴時のレンズ全長を短くする事が可能になるが、各レンズの厚みを薄くする為には各レンズの曲率を緩くしなければならず、この為に各レンズ群の焦点距離が長くなる。各レンズ群の焦点距離が長くなると、必然的に各レンズ群の変倍に伴う移動量が大きくなることで、各レンズ群を移動させるカム筒が長くなり、レンズの厚みが薄くなっても逆に沈胴長時のレンズ全長が長くなってしまい好ましくない。
【0084】
図1に本発明の実施形態2の光学断面図を示す。実施形態1は変倍比2.8倍、開口比2.9〜5.4程度のズームレンズである。図2〜図4に収差図を示す。
【0085】
本実施形態においては、広角端から望遠端へのズーミングに際して、第1レンズ群が像側に凸の往復移動、第2レンズ群が物体側に移動し、第3レンズ群は単調に像側に移動している。
【0086】
図5に本発明の実施形態2の光学断面図を示す。実施形態2は変倍比2.8倍、開口比2.9〜5.4程度のズームレンズである。図6〜図8に収差図を示す。
【0087】
本実施形態においては、広角端から望遠端へのズーミングに際して、第1レンズ群が像側に凸の往復移動、第2レンズ群が物体側に移動し、第3レンズ群は物体側に移動している。
【0088】
図9の実施形態3は変倍比2.9倍、開口比2.9〜5.5程度のズームレンズである。図10〜図12に収差図を示す。
【0089】
本実施形態においては、実施形態1と同様に、広角端から望遠端へのズーミングに際して、第1レンズ群が像側に凸の往復移動、第2レンズ群が物体側に移動し、第3レンズ群は単調に像側に移動している。
【0090】
(数値実施例)
次に、本発明の実施形態1〜3に各々対応する数値実施例1〜3を示す。各数値実施例においてiは物体側からの光学面の順序を示し、riは第i番目の光学面(第i面)の曲率半径、diは第i面と第i+1面との間の間隔、niとνiはそれぞれd線に対する第i番目の光学部材の屈折率、アッベ数を示す。fは焦点距離、FnoはFナンバー、ωは半画角である。また、最も像側の2面はフエースプレート等のガラス材である。またkを離心率、B,C,Dを非球面係数、光軸からの高さhの位置での光軸方向の変位を面頂点を基準にしてxとするとき、非球面形状は、
x=(h/R)/[1+[1−(1+k)(h/R)1/2]+Bh+Ch+Dh
で表示される。但しRは曲率半径である。また、例えば「e−Z」の表示は「10−Z」を意味する。又、各数値実施例における上述した条件式との対応を表1に示す。
【0091】
【外1】

Figure 2004061675
【0092】
【外2】
Figure 2004061675
【0093】
【外3】
Figure 2004061675
【0094】
【表1】
Figure 2004061675
【0095】
【発明の効果】
本発明は以上の様に各要素を設定する事により、特に、固体撮像素子を用いた撮影系に好適な、構成レンズ枚数が少なくコンパクトで、特に沈胴ズームレンズに適した、変倍比が3倍程度の優れた光学性能を有するズームレンズが達成出来る。
【0096】
又、本発明によればレンズ群中に効果的に非球面を導入する事、特に第2レンズ群に2面以上の非球面レンズを導入することによって軸外諸収差、特に非点収差・歪曲収差および大口径比化した際の球面収差の補正が効果的に行える。
などの効果が得られる。
【図面の簡単な説明】
【図1】本発明の実施形態1のレンズ断面図
【図2】本発明の実施形態1の広角端の収差図
【図3】本発明の実施形態1の中間の収差図
【図4】本発明の実施形態1の望遠端の収差図
【図5】本発明の実施形態2のレンズ断面図
【図6】本発明の実施形態2の広角端の収差図
【図7】本発明の実施形態2の中間の収差図
【図8】本発明の実施形態2の望遠端の収差図
【図9】本発明の実施形態3のレンズ断面図
【図10】本発明の実施形態3の広角端の収差図
【図11】本発明の実施形態3の中間の収差図
【図12】本発明の実施形態3の望遠端の収差図
【符号の説明】
L1 第1群
L2 第2群
L3 第3群
SP 絞り
IP 像面
d  d線
g  g線
S  サジタル像面
M  メリディオナル像面[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a zoom lens suitable for a still camera, a video camera, a digital still camera, and the like.
[0002]
[Prior art]
2. Description of the Related Art Recently, a zoom lens having a large aperture ratio including a wide angle of view has been demanded for an optical system used for the imaging system (camera) such as a video camera and a digital still camera using a solid-state imaging device. I have. In this type of camera, various optical members such as a low-pass filter and a color correction filter are arranged between the rearmost part of the lens and the image sensor. Required. Furthermore, in the case of a color camera using an image pickup device for a color image, in order to avoid color shading, an optical system used therefor is desired to have good image-side telecentric characteristics.
[0003]
Conventionally, the zoom lens system includes two lens units, a first lens unit having a negative refractive power and a second lens unit having a positive refractive power. Various so-called short zoom type wide-angle two-unit zoom lenses have been proposed. In these short zoom type optical systems, zooming is performed by moving the second unit having positive refractive power, and correction of the image point position accompanying zooming is performed by moving the first group having negative refractive power. It is carried out. In a lens configuration including these two lens groups, the zoom magnification is about twice.
[0004]
Further, in order to combine the entire lens into a compact shape while having a high zoom ratio of 2 or more, for example, Japanese Patent Publication No. 7-3507 and Japanese Patent Publication No. 6-40170 disclose the image side of the two-unit zoom lens. A so-called three-unit zoom lens has been proposed in which a third unit having a negative or positive refractive power is disposed in order to correct various aberrations that occur with increasing magnification.
[0005]
However, since these three-unit zoom lenses are mainly designed for 35 mm film photography, it is hard to say that the back focus length required for an optical system using a solid-state imaging device and good telecentric characteristics are compatible. Was.
[0006]
[Problems to be solved by the invention]
A wide-angle three-unit zoom lens system that satisfies the back focus and telecentric characteristics has been proposed in, for example, JP-A-63-135913 and JP-A-7-261803. Japanese Patent Application Laid-Open No. 3-288113 discloses a three-unit zoom lens in which a first lens unit having a negative refractive power is fixed and a second lens unit having a positive refractive power and a third lens unit having a positive refractive power are moved. An optical system for performing zooming is also disclosed.
[0007]
However, these conventional examples have disadvantages such as a relatively large number of components in each lens group, a long overall lens length, and a high manufacturing cost.
[0008]
Furthermore, in recent years, in order to achieve both compactness of the camera and high magnification of the lens, the so-called collapsible zoom, in which the distance between each lens group is reduced to a distance different from the shooting state during non-photographing, and the amount of projection of the lens from the camera body is reduced. Although lenses are widely used, as in the above-described conventional example, the number of components in each group is large, and as a result, the length of each lens group on the optical axis becomes long, or in zooming and focusing of each lens group. When the moving distance is large and the total lens length is long, a desired retractable length may not be achieved.
[0009]
Further, in the example described in Japanese Patent Application Laid-Open No. Hei 7-261083, a positive lens is disposed closest to the object side of the first lens unit having a negative refractive power. Had disadvantages that could not be achieved. Furthermore, in this example, since the first lens group having a negative refractive power is moved to perform focusing on a short-distance object, there is a disadvantage that the mechanical structure is complicated together with the movement during zooming.
[0010]
U.S. Pat. No. 4,999,007 discloses a three-unit zoom lens in which a first lens unit and a second lens unit are each configured by one single lens.
[0011]
However, the overall length of the lens at the wide-angle end is relatively large, and since the stop is far away from the first group at the wide-angle end, the incident height of off-axis rays is large and the diameter of the lens constituting the first group increases. Therefore, there is a disadvantage that the entire lens system becomes large.
[0012]
Further, as a specific problem when the angle of view at the zoom wide-angle end is increased, there is a problem of insufficient correction of distortion. Further, in order to use a high-sensitivity imaging element having relatively low sensitivity, a further large aperture ratio is required.
[0013]
Further, in Example 3 of Japanese Patent Application Laid-Open No. 2001-272602 proposed by the present applicant, the first lens group is composed of two lenses, a negative lens and a positive lens, and the second lens group is composed of a positive lens and a positive lens. A three-group zoom lens having a small number of constituent lenses is disclosed, in which the zoom lens is configured by three lenses of a cemented lens of a negative lens and the third lens group is configured by one positive lens. It was not optimized at a zoom ratio of about 3 times.
[0014]
In view of the drawbacks of the conventional examples, the present invention is particularly suitable for a photographing system using a solid-state imaging device, has a small number of constituent lenses, is particularly suitable for a retractable zoom lens, and has excellent optical performance with a zoom ratio of about 3 times. It is an object of the present invention to provide a zoom lens having:
[0015]
Still another object of the present invention is to obtain a zoom lens satisfying at least one of the following items.
[0016]
That is,
・ Achieve high performance and compactness while increasing the angle of view at the wide-angle end.
[0017]
-To properly correct astigmatism and distortion, especially on the wide-angle side.
[0018]
Reduce the aberration sharing of the moving lens group while minimizing the lens configuration, reduce the performance deterioration due to eccentricity between the lens groups due to manufacturing errors, and make the manufacturing easy.
[0019]
-To achieve a large aperture ratio suitable for a high-sensitivity high-pixel image sensor.
[0020]
To provide good image-side telecentric imaging suitable for a photographing system using a solid-state imaging device while minimizing the number of components.
[0021]
The length of each lens unit on the optical axis required for the retractable zoom lens and the amount of movement of each lens unit on the optical axis due to zooming and focusing are shortened.
[0022]
• Correctly correct distortion not only at the wide-angle end but throughout the zoom range.
[0023]
-To reduce fluctuations caused by zooming of the image side telecentric imaging.
[0024]
・ Achieve further miniaturization by reducing the amount of movement of the variable power lens unit while maintaining telecentric imaging.
[0025]
・ Simplify the focusing mechanism for near objects.
And so on.
[0026]
[Means for Solving the Problems]
The invention according to claim 1 includes, in order from the object side, three lens groups: a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a positive refractive power. In a zoom lens that changes magnification by changing the distance between the respective groups, the first lens group includes two lenses, one negative lens and one positive lens, and the second lens group includes an object. In order from the side, the third lens group includes at least one positive lens and a focal point at the wide-angle end. The third lens group includes at least one positive lens having both convex surfaces and a cemented lens of a positive lens and a negative lens. When the distance is fw and the focal length of the second lens group is f2,
1.5 <f2 / fw <2.5
It is characterized by satisfying certain conditions.
[0027]
According to a second aspect of the present invention, in the first aspect of the present invention, upon zooming from the wide-angle end to the telephoto end, the first lens group moves along a locus convex toward the image side, and the second lens group moves toward the object side. And the third lens group moves to the image side.
[0028]
The invention according to claim 3 is the invention according to claim 1 or 2, wherein the refractive index of the material of the positive lens disposed closest to the object side in the second lens group is nd21, and the Abbe number is νd21.
1.55 <nd21 <1.75
νd21> 45.0
It is characterized by satisfying certain conditions.
[0029]
According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, in the cemented lens in the second lens group, the refractive index of the material of the positive lens is nd22, and the Abbe number is νd22. Sometimes
nd22> 1.70
νd22> 35.0
It is characterized by satisfying certain conditions.
[0030]
According to a fifth aspect of the present invention, in the first aspect of the present invention, the sum of the thicknesses on the optical axis of each lens constituting the first lens group is ΔD1, and the second lens group is constituted. ΣD2, the sum of the thicknesses on the optical axis of the lenses constituting the third lens group is ΣD3, and the focal length at the wide-angle end is fw.
1.7 <(ΣD1 + ΣD2 + ΣD3) / fw <2.1
It is characterized by satisfying certain conditions.
[0031]
The invention according to claim 6 is the invention according to any one of claims 1 to 5, wherein the first lens group has at least one aspherical surface, and the second lens group has at least two aspherical surfaces. It is characterized by having a surface.
[0032]
According to a seventh aspect of the present invention, in the first aspect of the present invention, the third lens group includes a single positive lens.
[0033]
According to an eighth aspect of the present invention, in the first aspect of the present invention, the third lens unit is moved to the object side to perform focusing from an object at infinity to an object at a short distance. .
[0034]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a sectional view of a lens according to a first embodiment of the present invention described later. 2 to 4 are aberration diagrams at the wide-angle end, a middle position, and a telephoto end according to the first embodiment of the present invention.
[0035]
FIG. 5 is a sectional view of a lens according to a second embodiment of the present invention, which will be described later. 6 to 8 are aberration diagrams at a wide angle end, a middle position, and a telephoto end according to the second embodiment of the present invention.
[0036]
FIG. 9 is a sectional view of a lens according to a third embodiment of the present invention, which will be described later. 10 to 12 are aberration diagrams at the wide-angle end, at the middle, and at the telephoto end according to the third embodiment of the present invention.
[0037]
In the lens cross-sectional view, L1 is a first group (first lens group) having a negative refractive power, L2 is a second group (second lens group) having a positive refractive power, and L3 is a third group (second lens group) having a positive refractive power. 3 is a lens group), SP is an aperture stop, and IP is an image plane. G is a glass block such as a quartz low-pass filter or an infrared cut filter.
[0038]
Next, the lens configuration of the zoom lens of the present invention will be described.
[0039]
In the zoom lens of the present invention, in order from the object side, there are three lens groups, a first lens group L1 having a negative refractive power, a second lens group L2 having a positive refractive power, and a third lens group L3 having a positive refractive power. When zooming from the wide-angle end to the telephoto end, the first lens group moves reciprocally convex toward the image side, the second lens group moves toward the object side, and the third lens group moves toward the image side. ing.
[0040]
The zoom lens according to the present invention performs main zooming by moving the second lens group, and moves the image point due to zooming by reciprocating movement of the first lens group and movement in the image side direction by the third lens group. It has been corrected.
[0041]
The third lens group shares the increase in the refractive power of the photographing lens with the downsizing of the image pickup device, and reduces the refractive power of the short zoom system composed of the first and second lens groups, and particularly the first lens group. And suppresses the occurrence of aberration in the lens that constitutes the optical element, thereby achieving good optical performance. Particularly, telecentric imaging on the image side required for a photographing apparatus using a solid-state image sensor or the like is achieved by giving the third lens group the role of a field lens.
[0042]
In addition, the stop SP is placed closest to the object side of the second lens group, and the distance between the entrance pupil and the first lens group on the wide-angle side is reduced, thereby suppressing an increase in the outer diameter of the lens constituting the first lens group. By canceling various off-axis aberrations in the first lens unit and the third lens unit with the stop arranged on the object side of the second lens unit, good optical performance is obtained without increasing the number of constituent lenses. .
[0043]
In the zoom lens according to the present invention, the first lens group includes two negative lenses and one positive lens, and the second lens group includes, in order from the object side, a positive lens having both lens surfaces convex. , A third lens group having at least one positive lens.
[0044]
Next, a lens configuration of each embodiment will be described.
[0045]
In each of the embodiments of the present invention, the first lens group having a negative refractive power includes a meniscus negative lens 11 having a concave surface facing the image side and a meniscus positive lens 12 having a convex surface facing the object side in order from the object side. It consists of two lenses.
[0046]
The second lens group having a positive refractive power is arranged in order from the object side, a positive lens 21 having a strong convex surface facing the object side, a positive lens 22 having a strong convex surface facing the image side, and a negative lens 23 having both lens surfaces concave. And three lenses.
[0047]
Further, the third lens unit having a positive refractive power is constituted by a positive lens 31 having both convex surfaces.
[0048]
In the second embodiment shown in FIG. 5, the first lens group having a negative refractive power has a meniscus negative lens 11 having a concave surface facing the image side in order from the object side, and a meniscus negative lens having a concave surface facing the image surface side. It comprises three lenses: a lens 12 and a meniscus-shaped positive lens 13 with the convex surface facing the object side.
[0049]
As described above, by making each lens group a lens configuration that achieves both a desired refractive power arrangement and aberration correction, a compact lens system is achieved while maintaining good performance.
[0050]
The first lens group has a role of focusing the off-axis chief ray on the center of the stop, and has a large amount of refraction of the off-axis chief ray on the wide-angle side. Distortion is likely to occur.
[0051]
Therefore, in the present embodiment, similarly to a normal wide-angle lens, the negative lens and the positive lens are configured to suppress an increase in the lens diameter closest to the object.
[0052]
By making the lens surface on the image side of the meniscus-shaped negative lens 11 an aspheric surface in which the negative refractive power is weak in the periphery, the astigmatism and the distortion are corrected in a well-balanced manner, and the number of the lenses is as small as two. Constitute the first lens group, and contribute to downsizing of the entire lens.
[0053]
Further, each lens constituting the first lens group has a shape close to a concentric spherical surface centered on a point where the aperture and the optical axis intersect in order to suppress the occurrence of off-axis aberration caused by the refraction of the off-axis principal ray. .
[0054]
Next, in the second lens group, the positive lens 21 whose both lens surfaces are convex with the strong convex surface facing the object side is arranged, the refraction angle of the off-axis chief ray emitted from the first lens group is reduced, and The shape is such that no aberration occurs.
[0055]
The positive lens 21 is a lens having the highest height for passing on-axis rays, and is a lens mainly involved in correcting spherical aberration and coma.
[0056]
Therefore, in the present invention, the spherical aberration and coma are favorably corrected by making the object-side surface of the positive lens 21 an aspheric surface having a weak positive refractive power in the periphery.
[0057]
Further, in the first embodiment, spherical aberration and coma are corrected more favorably by making the lens surfaces on both sides of the positive lens 21 aspherical.
[0058]
Next, by disposing a cemented lens in which a positive lens 22 and a negative lens 23 are cemented on the image plane side of the positive lens 21, the requirement for higher pixel density and finer cell pitch of a solid-state imaging device such as a CCD is required. Chromatic aberration is reduced.
[0059]
Further, in the second and third embodiments, the object side surface of the positive lens 22 is formed as an aspheric surface having a weak positive refractive power in the periphery. Aberrations are better corrected.
[0060]
Next, the third lens group is constituted by a positive lens 31 having both lens surfaces convex, and also has a role as a field lens for making the image side telecentric.
[0061]
Now, assuming that the back focus is sk ′, the focal length of the third lens group is f3, and the imaging magnification of the third lens group is β3,
sk '= f3 (1-β3)
The relationship holds.
[0062]
However,
0 <β3 <1.0
It is.
[0063]
Here, when zooming from the wide-angle end to the telephoto end, if the third lens group is moved to the image side, the back focus sk 'decreases, and the imaging magnification β3 of the third lens group increases on the telephoto side.
[0064]
Then, as a result, the zooming can be shared by the third lens group, the moving amount of the second lens group is reduced, and the space for the movement can be saved, which contributes to downsizing of the lens system.
[0065]
When photographing a close-range object using the zoom lens of the present embodiment, good performance can be obtained by moving the first lens group to the object side. More preferably, the third lens group is moved to the object side. Better to move to.
[0066]
This prevents an increase in the diameter of the front lens and an increase in the load on the actuator caused by moving the first lens group having the heaviest lens weight, which occurs when the first lens group disposed closest to the object is focused. This is because the first lens group and the second lens group can be moved simply during zooming by simply cooperating with a cam or the like, and simplification of the mechanical structure and improvement in accuracy can be achieved.
[0067]
When focusing is performed by the third lens group, the telephoto end having a large focusing movement amount is arranged on the image plane side by moving the third lens group toward the image side when zooming from the wide-angle end to the telephoto end. Therefore, it is possible to minimize the entire moving amount of the third lens unit required for zooming and focusing, thereby achieving a compact lens system.
[0068]
In the zoom lens of the present invention, in order to obtain good optical performance or to reduce the size of the entire lens system, it is preferable to satisfy at least one of the following conditions.
[0069]
(A-1) In order to reduce the total length of the optical system and the total length of the lens upon collapsing, it is preferable to satisfy the following conditions.
[0070]
1.5 <f2 / fw <2.5 ‥‥‥ (1)
Here, f2 is the focal length of the second lens group, and fw is the focal length at the wide angle end.
[0071]
Exceeding the upper limit of conditional expression (1) is not preferable because the amount of movement of the second lens unit during zooming increases and the overall length of the optical system increases.
[0072]
If the lower limit of conditional expression (1) is exceeded, the total length of the optical system will be short, but the focal length of the second lens group will be short, making it difficult to correct aberrations over the entire zoom range.
[0073]
(A-2) The refractive index and Abbe number of the material of the positive lens 21 disposed closest to the object side in the second lens group preferably satisfy the following conditions.
[0074]
1.55 <nd21 <1.75 (2)
νd21> 45.0 ‥‥‥ (3)
When the value exceeds the upper limit of conditional expression (2), the Petzval sum increases in the positive direction, and it becomes difficult to correct the field curvature.
[0075]
Conversely, if the lower limit value of the conditional expression (2) is exceeded, correction of curvature of field becomes difficult, and correction of coma becomes difficult, which is not preferable.
[0076]
If the lower limit of conditional expression (3) is exceeded, it is difficult to correct axial chromatic aberration at the telephoto end, which is not preferable.
[0077]
(A-3) In the cemented lens in the second lens group, the refractive index and Abbe number of the material of the positive lens 22 preferably satisfy the following conditions.
[0078]
nd22> 1.70 ‥‥‥ (4)
νd22> 35.0 ‥‥‥ (5)
If the lower limit of conditional expression (4) is exceeded, the Petzval sum increases in the negative direction, making it difficult to correct the field curvature.
[0079]
If the lower limit of conditional expression (5) is exceeded, it is difficult to correct axial chromatic aberration at the telephoto end, which is not preferable.
[0080]
(A-4) In order to reduce the overall length of the optical system and the overall length of the lens when retracted, it is preferable to further satisfy the following conditions.
[0081]
1.7 <(ΣD1 + ΣD2 + ΣD3) / fw <2.1 ‥‥‥ (6)
Here, ΣD1 is the total thickness on the optical axis of each lens constituting the first lens group, ΣD2 is the total thickness on the optical axis of each lens constituting the second lens group, and ΣD3 is the third lens group. Fw is the focal length at the wide-angle end of the lens on the optical axis.
[0082]
Exceeding the upper limit of conditional expression (6) is not preferable because the thickness of each lens becomes relatively large, and it becomes difficult to shorten the overall length of the lens retracted lens.
[0083]
If the lower limit value of the conditional expression (6) is exceeded, the thickness of each lens is reduced and the overall length of the lens when collapsed can be reduced. However, in order to reduce the thickness of each lens, the curvature of each lens is reduced. Therefore, the focal length of each lens group becomes long. When the focal length of each lens group becomes longer, the amount of movement accompanying zooming of each lens group inevitably increases, so that the cam barrel for moving each lens group becomes longer, and even if the thickness of the lens becomes thinner, the reverse occurs. However, the overall length of the lens at the time of the collapsing length is undesirably increased.
[0084]
FIG. 1 shows an optical sectional view of Embodiment 2 of the present invention. Embodiment 1 is a zoom lens having a zoom ratio of 2.8 and an aperture ratio of about 2.9 to 5.4. 2 to 4 show aberration diagrams.
[0085]
In the present embodiment, during zooming from the wide-angle end to the telephoto end, the first lens group moves reciprocally convex toward the image side, the second lens group moves toward the object side, and the third lens group moves monotonously toward the image side. I'm moving.
[0086]
FIG. 5 shows an optical sectional view of Embodiment 2 of the present invention. Embodiment 2 is a zoom lens having a zoom ratio of 2.8 and an aperture ratio of about 2.9 to 5.4. 6 to 8 show aberration diagrams.
[0087]
In the present embodiment, during zooming from the wide-angle end to the telephoto end, the first lens group moves reciprocally convex toward the image side, the second lens group moves toward the object side, and the third lens group moves toward the object side. ing.
[0088]
Embodiment 3 in FIG. 9 is a zoom lens having a zoom ratio of 2.9 times and an aperture ratio of about 2.9 to 5.5. 10 to 12 show aberration diagrams.
[0089]
In the present embodiment, as in the first embodiment, during zooming from the wide-angle end to the telephoto end, the first lens group moves reciprocally convex toward the image side, the second lens group moves toward the object side, and the third lens group moves. The group moves monotonically to the image side.
[0090]
(Numerical example)
Next, Numerical Examples 1 to 3 respectively corresponding to Embodiments 1 to 3 of the present invention will be described. In each numerical example, i indicates the order of the optical surface from the object side, ri is the radius of curvature of the i-th optical surface (i-th surface), di is the distance between the i-th surface and the (i + 1) -th surface, ni and νi represent the refractive index and Abbe number of the i-th optical member with respect to the d-line, respectively. f is the focal length, Fno is the F number, and ω is the half angle of view. The two surfaces closest to the image are glass materials such as face plates. When k is an eccentricity, B, C, and D are aspherical surface coefficients, and a displacement in the optical axis direction at a height h from the optical axis is x with respect to a surface vertex, the aspherical shape is
x = (h 2 / R) / [1+ [1- (1 + k) (h / R) 2] 1/2] + Bh 4 + Ch 6 + Dh 8
Displayed with. Here, R is a radius of curvature. Further, for example, "e-Z" means "10 -Z". Table 1 shows the correspondence between the numerical expressions and the conditional expressions described above.
[0091]
[Outside 1]
Figure 2004061675
[0092]
[Outside 2]
Figure 2004061675
[0093]
[Outside 3]
Figure 2004061675
[0094]
[Table 1]
Figure 2004061675
[0095]
【The invention's effect】
By setting each element as described above, the present invention is particularly suitable for an imaging system using a solid-state imaging device, has a small number of constituent lenses, is compact, and is particularly suitable for a retractable zoom lens. A zoom lens having an optical performance about twice as high can be achieved.
[0096]
Further, according to the present invention, by introducing an aspherical surface effectively into the lens unit, in particular, by introducing two or more aspherical lenses into the second lens unit, various off-axis aberrations, particularly astigmatism and distortion, can be obtained. It is possible to effectively correct aberration and spherical aberration when the aperture ratio is increased.
And the like.
[Brief description of the drawings]
FIG. 1 is a sectional view of a lens according to a first embodiment of the present invention. FIG. 2 is an aberration diagram at a wide-angle end according to the first embodiment of the present invention. FIG. 3 is an intermediate aberration diagram of the first embodiment of the present invention. FIG. 5 is an aberration diagram at the telephoto end of the first embodiment of the invention. FIG. 5 is a lens cross-sectional view of the second embodiment of the invention. FIG. 6 is an aberration diagram at the wide-angle end of the second embodiment of the invention. FIG. 8 is an aberration diagram at the telephoto end according to the second embodiment of the present invention. FIG. 9 is a sectional view of a lens according to the third embodiment of the present invention. FIG. FIG. 11 is an aberration diagram in the middle of Embodiment 3 of the present invention. FIG. 12 is an aberration diagram at the telephoto end of Embodiment 3 of the present invention.
L1 First unit L2 Second unit L3 Third unit SP Aperture IP Image plane d d-line g g-line S Sagittal image plane M Meridional image plane

Claims (8)

物体側より順に、負の屈折力の第1レンズ群、正の屈折力の第2レンズ群、そして正の屈折力の第3レンズ群の3つのレンズ群を有し、各群の間隔を変化させて変倍を行うズームレンズにおいて、該第1レンズ群は1枚の負レンズと1枚の正レンズの2枚のレンズで構成し、該第2レンズ群は物体側より順に、両レンズ面が凸面の正レンズ、正レンズと負レンズの接合レンズの3枚のレンズで構成し、該第3レンズ群は少なくとも1枚の正レンズを有すると共に、広角端の焦点距離をfw、該第2レンズ群の焦点距離をf2としたときに、
1.5 < f2/fw < 2.5
なる条件を満足する事を特徴とするズームレンズ。
In order from the object side, there are three lens groups, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a positive refractive power. In a zoom lens that performs zooming by performing zooming, the first lens group includes two lenses, one negative lens and one positive lens, and the second lens group includes two lens surfaces in order from the object side. Is composed of three lenses, a positive lens having a convex surface and a cemented lens of a positive lens and a negative lens. The third lens group has at least one positive lens, a focal length at the wide-angle end is fw, and a second lens is When the focal length of the lens group is f2,
1.5 <f2 / fw <2.5
A zoom lens characterized by satisfying certain conditions.
広角端から望遠端への変倍動作に際して、前記第1レンズ群は像側に凸状の軌跡で移動し、前記第2レンズ群は物体側に単調に移動し、前記第3レンズ群は像側に移動する事を特徴とする請求項1のズームレンズ。During zooming from the wide-angle end to the telephoto end, the first lens group moves along a locus convex toward the image side, the second lens group moves monotonically toward the object side, and the third lens group moves toward the object side. The zoom lens according to claim 1, wherein the zoom lens moves to the side. 前記第2レンズ群中の最も物体側に配置した正レンズの材質の屈折率をnd21、アッベ数をνd21とした時に、
1.55 < nd21 < 1.75
νd21 > 45.0
なる条件を満足する事を特徴とする請求項1又は2に記載のズームレンズ。
When the refractive index of the material of the positive lens disposed closest to the object side in the second lens group is nd21 and the Abbe number is νd21,
1.55 <nd21 <1.75
νd21> 45.0
3. The zoom lens according to claim 1, wherein the following condition is satisfied.
前記第2レンズ群中の接合レンズにて、正レンズの材質の屈折率をnd22、アッベ数をνd22とした時に、
nd22 > 1.70
νd22 > 35.0
なる条件を満足する事を特徴とする請求項1〜3のいずれか1項に記載のズームレンズ。
In the cemented lens in the second lens group, when the refractive index of the material of the positive lens is nd22 and the Abbe number is νd22,
nd22> 1.70
νd22> 35.0
The zoom lens according to any one of claims 1 to 3, wherein the following condition is satisfied.
前記第1レンズ群を構成する各レンズの光軸上の厚みの合計をΣD1、前記第2レンズ群を構成する各レンズの光軸上の厚みの合計をΣD2、前記第3レンズ群を構成する各レンズの光軸上の厚みの合計をΣD3、広角端の焦点距離をfwとしたときに、
1.7 <(ΣD1+ΣD2+ΣD3)/fw < 2.1
なる条件を満足する事を特徴とする請求項1〜4のいずれか1項に記載のズームレンズ。
The sum of the thicknesses on the optical axis of each lens constituting the first lens group is ΔD1, the sum of the thicknesses on the optical axis of each lens constituting the second lens group is ΔD2, and constitutes the third lens group. When the sum of the thicknesses on the optical axis of each lens is ΔD3 and the focal length at the wide-angle end is fw,
1.7 <($ D1 + $ D2 + $ D3) / fw <2.1
The zoom lens according to any one of claims 1 to 4, wherein the following condition is satisfied.
前記第1レンズ群中に少なくとも非球面を1面有すると共に、前記第2レンズ群中にすくなくとも非球面を2面有する事を特徴とする請求項1〜5のいずれか1項に記載のズームレンズ。The zoom lens according to any one of claims 1 to 5, wherein the first lens group has at least one aspherical surface, and the second lens group has at least two aspherical surfaces. . 前記第3レンズ群は単一の正レンズにて構成している事を特徴とする請求項1〜6のいずれか1項に記載のズームレンズ。The zoom lens according to claim 1, wherein the third lens group includes a single positive lens. 前記第3群を物体側に移動させて無限遠物体から近距離物体へのフォーカシングを行う事を特徴とする請求項1〜7のいずれか1項に記載のズームレンズ。The zoom lens according to any one of claims 1 to 7, wherein the third lens unit is moved to an object side to perform focusing from an object at infinity to an object at a short distance.
JP2002217410A 2002-07-26 2002-07-26 Zoom lens Pending JP2004061675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002217410A JP2004061675A (en) 2002-07-26 2002-07-26 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002217410A JP2004061675A (en) 2002-07-26 2002-07-26 Zoom lens

Publications (1)

Publication Number Publication Date
JP2004061675A true JP2004061675A (en) 2004-02-26

Family

ID=31938855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002217410A Pending JP2004061675A (en) 2002-07-26 2002-07-26 Zoom lens

Country Status (1)

Country Link
JP (1) JP2004061675A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274662A (en) * 2004-03-23 2005-10-06 Fujinon Corp Zoom lens having cemented lens
JP2005316333A (en) * 2004-04-30 2005-11-10 Olympus Corp Zoom lens and imaging apparatus
JP2006194975A (en) * 2005-01-11 2006-07-27 Olympus Corp Zoom lens and imaging apparatus using the same
JP2006227516A (en) * 2005-02-21 2006-08-31 Olympus Corp Zoom lens and electronic equipment equipped therewith
KR100673961B1 (en) 2005-04-30 2007-01-24 삼성테크윈 주식회사 Compact zoom lens
JP2007017638A (en) * 2005-07-06 2007-01-25 Tamron Co Ltd Zoom lens
US7193786B2 (en) 2005-05-26 2007-03-20 Konica Minolta Photo Imaging, Inc. Zoom optical system and image pickup apparatus
US7277233B2 (en) 2005-01-11 2007-10-02 Olympus Imaging Corp. Zoom lens and imaging system incorporating it
US7339749B2 (en) 2005-02-08 2008-03-04 Olympus Corporation And Olympus Imaging Corp. Zoom lens and imaging system incorporating it
WO2008075566A1 (en) * 2006-12-20 2008-06-26 Konica Minolta Opto, Inc. Zooming optical system, imaging device, and digital apparatus
US7486448B2 (en) 2006-09-13 2009-02-03 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus
US7612949B2 (en) 2006-12-27 2009-11-03 Sony Corporation Zoom lens and imaging apparatus
US7773312B2 (en) 2008-04-09 2010-08-10 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus having the same
US7978420B2 (en) 2008-12-12 2011-07-12 Sony Corporation Zoom lens and imaging apparatus
US8045274B2 (en) 2008-10-23 2011-10-25 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus using the same
US8085478B2 (en) 2009-03-31 2011-12-27 Canon Kabushiki Kaisha Zoom lens system and image pickup apparatus including the same
US8134783B2 (en) 2009-03-31 2012-03-13 Canon Kabushiki Kaisha Zoom lens system and image pickup apparatus including the zoom lens system
US8243370B2 (en) 2009-04-02 2012-08-14 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus
JP2020027252A (en) * 2018-08-14 2020-02-20 エーエーシー テクノロジーズ ピーティーイー リミテッド Image capturing optical lens

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274662A (en) * 2004-03-23 2005-10-06 Fujinon Corp Zoom lens having cemented lens
JP4540387B2 (en) * 2004-04-30 2010-09-08 オリンパス株式会社 Zoom lens and imaging device
JP2005316333A (en) * 2004-04-30 2005-11-10 Olympus Corp Zoom lens and imaging apparatus
JP2006194975A (en) * 2005-01-11 2006-07-27 Olympus Corp Zoom lens and imaging apparatus using the same
US7277233B2 (en) 2005-01-11 2007-10-02 Olympus Imaging Corp. Zoom lens and imaging system incorporating it
US7339749B2 (en) 2005-02-08 2008-03-04 Olympus Corporation And Olympus Imaging Corp. Zoom lens and imaging system incorporating it
US7529037B2 (en) 2005-02-08 2009-05-05 Olympus Corporation Zoom lens and imaging system incorporating it
JP2006227516A (en) * 2005-02-21 2006-08-31 Olympus Corp Zoom lens and electronic equipment equipped therewith
JP4718204B2 (en) * 2005-02-21 2011-07-06 オリンパス株式会社 Zoom lens and electronic device including the same
KR100673961B1 (en) 2005-04-30 2007-01-24 삼성테크윈 주식회사 Compact zoom lens
US7193786B2 (en) 2005-05-26 2007-03-20 Konica Minolta Photo Imaging, Inc. Zoom optical system and image pickup apparatus
JP2007017638A (en) * 2005-07-06 2007-01-25 Tamron Co Ltd Zoom lens
US7486448B2 (en) 2006-09-13 2009-02-03 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus
US7859764B2 (en) 2006-12-20 2010-12-28 Konica Minolta Opto, Inc. Variable-power optical system, image pickup device, and digital apparatus
WO2008075566A1 (en) * 2006-12-20 2008-06-26 Konica Minolta Opto, Inc. Zooming optical system, imaging device, and digital apparatus
US7612949B2 (en) 2006-12-27 2009-11-03 Sony Corporation Zoom lens and imaging apparatus
US7773312B2 (en) 2008-04-09 2010-08-10 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus having the same
US8045274B2 (en) 2008-10-23 2011-10-25 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus using the same
US7978420B2 (en) 2008-12-12 2011-07-12 Sony Corporation Zoom lens and imaging apparatus
US8085478B2 (en) 2009-03-31 2011-12-27 Canon Kabushiki Kaisha Zoom lens system and image pickup apparatus including the same
US8134783B2 (en) 2009-03-31 2012-03-13 Canon Kabushiki Kaisha Zoom lens system and image pickup apparatus including the zoom lens system
US8243370B2 (en) 2009-04-02 2012-08-14 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus
JP2020027252A (en) * 2018-08-14 2020-02-20 エーエーシー テクノロジーズ ピーティーイー リミテッド Image capturing optical lens

Similar Documents

Publication Publication Date Title
JP4822512B2 (en) Zoom lens system, lens barrel, imaging device and camera
JP4366109B2 (en) Zoom lens and optical apparatus having the same
JP5455572B2 (en) Zoom lens and imaging apparatus having the same
JP4378188B2 (en) Zoom lens and imaging apparatus having the same
JP5317669B2 (en) Zoom lens and imaging apparatus having the same
JP2006208890A (en) Zoom lens and imaging apparatus having the same
JP4666977B2 (en) Zoom lens and imaging apparatus having the same
JP2007206544A (en) Zoom lens system, lens barrel, imaging apparatus and camera
JP2007206545A (en) Zoom lens system, lens barrel, imaging apparatus and camera
JP4289958B2 (en) Zoom lens and imaging apparatus having the same
JP2004061675A (en) Zoom lens
JP2003050352A (en) Zoom lens and optical equipment using the same
JP4593971B2 (en) Zoom lens and imaging apparatus having the same
JP2002107624A (en) Zoom lens and optical equipment using the same
JP3710352B2 (en) Zoom lens and optical apparatus using the same
JP3619117B2 (en) Zoom lens and optical apparatus using the same
JP2004109653A (en) Zoom lens and camera with same
JP4847091B2 (en) Zoom lens and imaging apparatus having the same
JP2010160243A (en) Zoom lens, and imaging device having the same
JP2001066503A (en) Zoom lens
JP5084900B2 (en) Zoom lens and imaging apparatus having the same
JP3706787B2 (en) Zoom lens and optical apparatus using the same
JP2006139187A (en) Zoom lens
JP2006284753A (en) Zoom lens, and optical apparatus having same
JP4838899B2 (en) Zoom lens and optical apparatus using the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Effective date: 20050525

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A621 Written request for application examination

Effective date: 20050630

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20080307

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Effective date: 20080507

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080603