JP4754519B2 - Regeneration method of reforming catalyst - Google Patents

Regeneration method of reforming catalyst Download PDF

Info

Publication number
JP4754519B2
JP4754519B2 JP2007081741A JP2007081741A JP4754519B2 JP 4754519 B2 JP4754519 B2 JP 4754519B2 JP 2007081741 A JP2007081741 A JP 2007081741A JP 2007081741 A JP2007081741 A JP 2007081741A JP 4754519 B2 JP4754519 B2 JP 4754519B2
Authority
JP
Japan
Prior art keywords
catalyst
steam
mass
hydrocarbon fuel
steam reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007081741A
Other languages
Japanese (ja)
Other versions
JP2008238043A (en
Inventor
康嗣 橋本
貴美香 石月
拓弥 新妻
淳 秋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to JP2007081741A priority Critical patent/JP4754519B2/en
Publication of JP2008238043A publication Critical patent/JP2008238043A/en
Application granted granted Critical
Publication of JP4754519B2 publication Critical patent/JP4754519B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Description

本発明は、炭化水素系燃料から水蒸気改質反応によって水素を生成するための改質触媒の再生方法に関する。   The present invention relates to a method for regenerating a reforming catalyst for producing hydrogen from a hydrocarbon fuel by a steam reforming reaction.

炭化水素系燃料から水蒸気改質反応によって水素を生成するための水蒸気改質触媒は、コーク(炭素)析出によってその性能が劣化することが知られている。析出したコークを、水蒸気を用いて除去し、水蒸気改質触媒を再生することが知られている。   It is known that the performance of a steam reforming catalyst for producing hydrogen from a hydrocarbon-based fuel by a steam reforming reaction deteriorates due to coke (carbon) deposition. It is known to remove the precipitated coke using steam to regenerate the steam reforming catalyst.

特許文献1には、一日一回の駆動停止毎に改質触媒の再生モード運転を行う家庭用燃料電池システムの改質触媒再生方法が開示される。この再生モード運転は、システムの駆動停止信号を受けて、改質反応器温度を改質触媒の耐熱温度以下の所定温度に設定し、改質反応器に入る水の流量を所定流量に保持したまま、炭化水素燃料の流量を徐々に低下させて高S/C比とさせ、燃料流量がゼロになってからも、更に水だけを流入させ一定時間運転した後、改質反応器温度を低下させて全停止させる。これにより、駆動停止を利用して駆動停止前に常に改質触媒を再生する再生モード運転を行うので、改質触媒の寿命が大幅に延びると共に、効率の良い改質反応が行え、しかも常にリフレッシュした状態で運転が開始され良好な運転が行われるとされる。
特開2004−247212号公報
Patent Document 1 discloses a reforming catalyst regeneration method for a domestic fuel cell system in which the reforming catalyst is operated in a regeneration mode every time driving is stopped once a day. In this regeneration mode operation, in response to the system drive stop signal, the reforming reactor temperature is set to a predetermined temperature lower than the heat resistance temperature of the reforming catalyst, and the flow rate of water entering the reforming reactor is maintained at a predetermined flow rate. The flow rate of the hydrocarbon fuel is gradually decreased to a high S / C ratio, and even after the fuel flow rate becomes zero, only the water is allowed to flow and the reforming reactor temperature is lowered after operating for a certain period of time. To stop it all. As a result, the regeneration mode operation in which the reforming catalyst is always regenerated before stopping the driving by using the driving stop is performed, so that the life of the reforming catalyst is greatly extended, an efficient reforming reaction can be performed, and the refresh is always refreshed. It is assumed that the operation is started in a state in which the vehicle has been operated and a good operation is performed.
Japanese Patent Laid-Open No. 2004-247212

特許文献1記載の技術は、いわゆるDSS(デイリースタートアップアンドシャットダウン)運転に好適とされている。しかし、特許文献1では、再生モード運転において、炭化水素燃料の流量を徐々に低下させなければならない。そのため、再生モード運転に要する時間が比較的長時間かかってしまう。また、再生モード運転において炭化水素燃料を消費してしまい、この分の燃料が無駄になる可能性もある。特にDSS運転では、起動停止に要する時間は極力短いことが要求され、また無駄な燃料消費は抑えるべきである。   The technique described in Patent Document 1 is suitable for so-called DSS (Daily Startup and Shutdown) operation. However, in Patent Document 1, in the regeneration mode operation, the flow rate of the hydrocarbon fuel must be gradually reduced. Therefore, it takes a relatively long time for the regeneration mode operation. Further, hydrocarbon fuel may be consumed in the regeneration mode operation, and this amount of fuel may be wasted. Particularly in DSS operation, the time required for starting and stopping is required to be as short as possible, and wasteful fuel consumption should be suppressed.

本発明の目的は、より短時間で、かつ余分な燃料消費を抑えつつ、水蒸気改質触媒を再生することのできる改質触媒の再生方法を提供することである。   An object of the present invention is to provide a reforming catalyst regeneration method capable of regenerating a steam reforming catalyst in a shorter time and while suppressing excessive fuel consumption.

本発明により、炭化水素系燃料を水蒸気改質して水素を生成させるための水蒸気改質触媒を再生する、改質触媒の再生方法であって、
水蒸気改質触媒が、αアルミナあたり2質量%以上25質量%以下の希土類元素酸化物と0.1質量%以上15質量%以下のアルカリ土類元素酸化物とをαアルミナに担持した担体に、活性金属としてルテニウムを該担体に対して0.3質量%以上5質量%以下担持した触媒であって、
炭化水素系燃料と水蒸気を該触媒に供給して水蒸気改質反応を行った後、炭化水素系燃料の供給を瞬時に停止する一方、水蒸気の供給を継続し、水蒸気のみを該触媒に供給して該触媒を再生する改質触媒の再生方法が提供される。
According to the present invention, there is provided a reforming catalyst regeneration method for regenerating a steam reforming catalyst for steam reforming a hydrocarbon fuel to produce hydrogen,
A steam reforming catalyst is a carrier in which α-alumina carries 2 to 25% by mass of a rare earth element oxide and 0.1 to 15% by mass of an alkaline earth element oxide per α-alumina, A catalyst carrying ruthenium as an active metal in an amount of 0.3% by mass to 5% by mass with respect to the carrier,
After the hydrocarbon fuel and steam are supplied to the catalyst to perform the steam reforming reaction, the supply of hydrocarbon fuel is stopped instantaneously, while the supply of steam is continued and only steam is supplied to the catalyst. Thus, a method for regenerating the reforming catalyst for regenerating the catalyst is provided.

前記炭化水素系燃料が灯油であると本発明の効果が特に顕著である。   The effect of the present invention is particularly remarkable when the hydrocarbon fuel is kerosene.

本発明により、より短時間で、かつ余分な燃料を消費せずに、水蒸気改質触媒を再生することのできる水蒸気改質触媒の運転方法が提供される。   The present invention provides a method for operating a steam reforming catalyst that can regenerate the steam reforming catalyst in a shorter time and without consuming excess fuel.

〔水蒸気改質触媒〕
本発明で用いる水蒸気改質触媒は、αアルミナベースの担体に、活性金属としてルテニウムを担持したものである。αアルミナ自体は表面積が比較的低いものの機械的強度が高く、水蒸気改質触媒の担体として一般的に用いられている。
[Steam reforming catalyst]
The steam reforming catalyst used in the present invention is obtained by supporting ruthenium as an active metal on an α-alumina-based support. Although α alumina itself has a relatively low surface area, it has high mechanical strength and is generally used as a support for steam reforming catalysts.

この担体は、αアルミナに、αアルミナあたり2質量%以上25質量%以下の希土類元素酸化物と0.1質量%以上15質量%以下のアルカリ土類元素酸化物とを担持したものである。   This support is obtained by loading 2% by mass or more and 25% by mass or less of a rare earth element oxide and 0.1% by mass or more and 15% by mass or less of an alkaline earth element oxide on α alumina.

希土類元素は、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Tb、Luからなる群から選ばれる一つ以上であり、なかでも触媒活性の観点からLaおよびCeが好ましい。   The rare earth element is one or more selected from the group consisting of Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Tb, and Lu. However, La and Ce are preferable from the viewpoint of catalytic activity.

希土類元素酸化物は、上記希土類元素の酸化物であって、触媒活性の観点から、LaO2およびCeO2、が好ましい。 The rare earth element oxide is an oxide of the above rare earth element, and LaO 2 and CeO 2 are preferable from the viewpoint of catalytic activity.

アルカリ土類元素は、Mg、Ca、Sr、Ba、Raからなる群から選ばれる一つ以上であり、なかでも触媒活性の観点からMg、Sr、Baが好ましい。   The alkaline earth element is at least one selected from the group consisting of Mg, Ca, Sr, Ba, and Ra, and Mg, Sr, and Ba are particularly preferable from the viewpoint of catalytic activity.

アルカリ土類元素酸化物は、上記アルカリ土類元素の酸化物であって、触媒活性の観点から、MgO、SrO、BaOが好ましい。   The alkaline earth element oxide is an oxide of the above alkaline earth element, and MgO, SrO, and BaO are preferable from the viewpoint of catalytic activity.

活性金属としては、希土類元素酸化物およびアルカリ土類元素酸化物を特定量担持して得られる担体に対して0.3質量%以上5質量%以下担持させる。   As the active metal, 0.3% by mass or more and 5% by mass or less are supported on a support obtained by supporting a specific amount of rare earth element oxide and alkaline earth element oxide.

触媒担体中における希土類元素の含有量は、希土類元素酸化物として、αアルミナに対して、外率(αアルミナ質量基準)で、2〜25質量%であることが必要であり、好ましくは5〜20質量%、さらに好ましくは10〜15質量%である。希土類元素酸化物の含有量が25質量%より多い場合、凝集が多くなり表面に出る金属の割合が極度に減少する。一方、2質量%より少ない場合には希土類元素の炭素析出抑制効果が不十分である。   The rare earth element content in the catalyst carrier must be 2 to 25% by mass with respect to α alumina as the rare earth element oxide, preferably 5 to 25% by mass, preferably 5 to 5% by mass. It is 20 mass%, More preferably, it is 10-15 mass%. When the content of the rare earth element oxide is more than 25% by mass, agglomeration increases and the ratio of the metal appearing on the surface is extremely reduced. On the other hand, if it is less than 2% by mass, the effect of suppressing the precipitation of rare earth elements by carbon is insufficient.

触媒担体中におけるアルカリ土類元素の含有量は、アルカリ土類元素酸化物として、αアルミナに対して、外率(αアルミナ質量基準)で、0.1〜15質量%であることが必要であり、好ましくは0.5〜12質量%、さらに好ましくは1〜10質量%である。アルカリ土類元素酸化物の含有量が15質量%より多い場合、凝集が多くなり表面に出る活性金属の割合が極度に減少する。一方、0.1質量%より少ない場合にはアルカリ土類元素の炭素析出抑制効果および活性向上効果が不十分となる。   The content of the alkaline earth element in the catalyst carrier is required to be 0.1 to 15% by mass as an alkaline earth element oxide with respect to α-alumina in an external ratio (α-alumina mass standard). Yes, preferably 0.5 to 12 mass%, more preferably 1 to 10 mass%. When the content of the alkaline earth element oxide is more than 15% by mass, agglomeration increases and the ratio of the active metal that appears on the surface is extremely reduced. On the other hand, when the amount is less than 0.1% by mass, the effect of suppressing the carbon precipitation and the activity of the alkaline earth element are insufficient.

本発明の触媒中におけるルテニウムの含有量は、αアルミナに希土類元素酸化物とアルカリ土類元素酸化物を担持して得られる担体に対して、外率(担体重量基準)で、ルテニウム原子として、0.3〜5質量%であることが必要であり、好ましくは1〜4質量%、さらに好ましくは2〜3質量%である。ルテニウムの含有量が5質量%より多い場合、活性金属の凝集が多くなり表面に出る金属の割合が極度に減少する。一方、0.3質量%より少ない場合には十分な活性を示すことが出来ないため多量の担持触媒が必要となり、反応器を必要以上に大きくする必要が出るなどの問題が生じる。   The content of ruthenium in the catalyst of the present invention is such that the ruthenium atom has an external ratio (based on the weight of the carrier) with respect to the support obtained by supporting the rare earth element oxide and the alkaline earth element oxide on α alumina. It is necessary to be 0.3 to 5% by mass, preferably 1 to 4% by mass, and more preferably 2 to 3% by mass. When the content of ruthenium is more than 5% by mass, the active metal agglomerates more and the ratio of the metal appearing on the surface is extremely reduced. On the other hand, when the amount is less than 0.3% by mass, sufficient activity cannot be exhibited, so that a large amount of supported catalyst is required, and there is a problem that it is necessary to enlarge the reactor more than necessary.

本発明で用いる水蒸気改質触媒は、ルテニウムの高分散触媒である。この触媒を用いることにより、後に詳述するように瞬時に炭化水素系燃料の供給を停止して水蒸気のみ触媒に供給しても、金属(ルテニウム)の凝集は起こらず、触媒は劣化しない。   The steam reforming catalyst used in the present invention is a highly dispersed ruthenium catalyst. By using this catalyst, as will be described in detail later, even if the supply of hydrocarbon fuel is stopped instantaneously and only steam is supplied to the catalyst, the metal (ruthenium) does not aggregate and the catalyst does not deteriorate.

触媒は希土類元素酸化物、アルカリ土類元素酸化物およびルテニウムをαアルミナに担持して得られる。   The catalyst is obtained by supporting rare earth element oxide, alkaline earth element oxide and ruthenium on α-alumina.

希土類元素酸化物およびアルカリ土類元素酸化物をαアルミナに担持する方法に関しては含浸法、ポアフィル法など公知の担持方法を採用できる。通常、金属塩もしくは錯体として水、エタノール、もしくはアセトンなどの溶媒に溶解させ、担体に含浸させる。担持させる金属塩もしくは金属錯体は、塩化物、硝酸塩、硫酸塩、酢酸塩、アセト酢酸塩などが好適に用いられる。   As for the method of supporting the rare earth element oxide and the alkaline earth element oxide on the α-alumina, a known supporting method such as an impregnation method or a pore fill method can be adopted. Usually, it is dissolved in a solvent such as water, ethanol, or acetone as a metal salt or complex, and impregnated on a carrier. As the metal salt or metal complex to be supported, chloride, nitrate, sulfate, acetate, acetoacetate and the like are preferably used.

担持工程に関しても特に制限はなく、同時または逐次的に含浸することができる。   There is no restriction | limiting in particular also about a carrying | support process, It can impregnate simultaneously or sequentially.

担持後、乾燥により水分をあらかた除去するが、この乾燥工程においても特に制限はなく、例えば、空気下もしくは不活性ガス下で温度100〜150℃で乾燥する方法が好適に用いられる。乾燥工程後、希土類元素およびアルカリ土類元素を担持した担体は350〜1000℃の温度で焼成することが好ましい。350℃以上で焼成することにより、担持元素の担体への固定化を良好にすることが容易である。また、1000℃以下とすることにより、担持元素の凝集を抑制することが容易である。焼成雰囲気は空気下が好ましく、ガス流量については特に制限はない。焼成時間は2時間以上が好ましい。2時間以上とすることにより担持元素の担体への固定化を良好にすることが容易である。   After the loading, moisture is removed by drying, but there is no particular limitation in this drying process, and for example, a method of drying at a temperature of 100 to 150 ° C. under air or inert gas is preferably used. After the drying step, the carrier carrying the rare earth element and the alkaline earth element is preferably fired at a temperature of 350 to 1000 ° C. By firing at 350 ° C. or higher, it is easy to improve the immobilization of the supported element on the carrier. Further, by setting the temperature to 1000 ° C. or lower, it is easy to suppress the aggregation of the supported elements. The firing atmosphere is preferably in the air, and the gas flow rate is not particularly limited. The firing time is preferably 2 hours or more. By making it 2 hours or longer, it is easy to improve the immobilization of the supported element on the carrier.

焼成した担体を冷却後、次いでルテニウムの担持を行う。担持方法に関しては、含浸法、ポアフィル法など公知の担持方法を採用できる。通常、金属塩もしくは錯体として水、エタノール、もしくはアセトンなどの溶媒に溶解させ、担体に含浸させる。担持させる金属塩もしくは金属錯体は、塩化物、硝酸塩、硫酸塩、酢酸塩、アセト酢酸塩などが好適に用いられる。担持回数に関しても特に制限はなく一度または数度にわけて含浸することができる。   After cooling the calcined carrier, ruthenium is then supported. Regarding the loading method, a known loading method such as an impregnation method or a pore fill method can be employed. Usually, it is dissolved in a solvent such as water, ethanol, or acetone as a metal salt or complex, and impregnated on a carrier. As the metal salt or metal complex to be supported, chloride, nitrate, sulfate, acetate, acetoacetate and the like are preferably used. The number of times of loading is not particularly limited, and the impregnation can be performed once or several times.

担持後、乾燥により水分をあらかた除去するが、この乾燥工程においても特に制限はなく、例えば、空気下もしくは不活性ガス下で温度100〜150℃で乾燥する方法が好適に用いられる。   After the loading, moisture is removed by drying, but there is no particular limitation in this drying process, and for example, a method of drying at a temperature of 100 to 150 ° C. under air or inert gas is preferably used.

こうして得られた担持触媒は、必要に応じて還元処理や金属固定化処理を行うことにより活性化される。処理方法は特に制限はなく、水素流通下での気相還元や液相還元が好適に用いられる。   The supported catalyst thus obtained is activated by performing reduction treatment or metal immobilization treatment as necessary. The treatment method is not particularly limited, and gas phase reduction or liquid phase reduction under a hydrogen flow is preferably used.

触媒担体成分として用いられるαアルミナとしては、孔径50〜10,000nmのマクロポアをもったαアルミナが好ましい。孔径50〜10,000nmの細孔容積は0.2〜1.0ml/gであることが好ましい。この細孔容積が0.2ml/g以上であれば良好な触媒活性が容易に得られる。一方、細孔容積が1.0ml/g以下であれば良好な触媒強度が容易に得られる。この細孔容積は水銀圧入法により測定することができる。   The α-alumina used as the catalyst carrier component is preferably α-alumina having macropores with a pore diameter of 50 to 10,000 nm. The pore volume with a pore diameter of 50 to 10,000 nm is preferably 0.2 to 1.0 ml / g. If this pore volume is 0.2 ml / g or more, good catalytic activity can be easily obtained. On the other hand, if the pore volume is 1.0 ml / g or less, good catalyst strength can be easily obtained. This pore volume can be measured by mercury porosimetry.

〔水蒸気改質〕
水蒸気改質では、炭化水素系燃料とスチームを水蒸気改質触媒に供給して水蒸気改質反応を行い、水素を生成させる。
[Steam reforming]
In steam reforming, hydrocarbon fuel and steam are supplied to a steam reforming catalyst to perform a steam reforming reaction to generate hydrogen.

水蒸気改質反応は、例えば450℃〜1000℃、好ましくは500℃〜850℃、さらに好ましくは550℃〜800℃の範囲で行うことができる。   The steam reforming reaction can be performed, for example, in the range of 450 ° C to 1000 ° C, preferably 500 ° C to 850 ° C, more preferably 550 ° C to 800 ° C.

反応系に導入するスチームの量は、炭化水素系燃料に含まれる炭素原子モル数に対する水分子モル数の比(スチーム/カーボン比)として定義され、この値は好ましくは1〜10、より好ましくは1.5〜7、さらに好ましくは2〜5とされる。   The amount of steam introduced into the reaction system is defined as the ratio of the number of moles of water molecules to the number of moles of carbon atoms contained in the hydrocarbon fuel (steam / carbon ratio), and this value is preferably 1 to 10, more preferably 1.5-7, more preferably 2-5.

炭化水素系燃料が液体の場合、この時の空間速度(LHSV)は炭化水素系燃料の液体状態での流速をA(L/h)、触媒層体積をB(L)とした場合A/Bで表すことができ、この値は好ましくは0.05〜10h-1、より好ましくは0.1〜5h-1、さらに好ましくは0.2〜3h-1の範囲で設定される。 When the hydrocarbon fuel is liquid, the space velocity (LHSV) at this time is A / B when the flow rate in the liquid state of the hydrocarbon fuel is A (L / h) and the catalyst layer volume is B (L). This value is preferably set in the range of 0.05 to 10 h −1 , more preferably 0.1 to 5 h −1 , still more preferably 0.2 to 3 h −1 .

なお、炭化水素系燃料が液体の場合は、これを予め気化したうえで改質触媒に供給すればよい。   In addition, what is necessary is just to supply this to a reforming catalyst, after vaporizing this beforehand, when hydrocarbon fuel is a liquid.

改質反応の圧力は、好ましくは大気圧〜20MPa、より好ましくは大気圧〜5MPa、さらに好ましくは大気圧〜1MPaの範囲で実施されるが、必要であれば大気圧以下で実施することも可能である。   The pressure of the reforming reaction is preferably from atmospheric pressure to 20 MPa, more preferably from atmospheric pressure to 5 MPa, and even more preferably from atmospheric pressure to 1 MPa, but if necessary, it can also be performed at atmospheric pressure or lower. It is.

〔改質器〕
水蒸気改質を行うための改質器の構造としては、水蒸気改質を行うことが可能な公知の改質器構造を採用することができる。ただし、改質器には前述の特定の水蒸気改質触媒を収容させる。例えば、反応管に前述の水蒸気改質触媒を充填して触媒層を設け、水蒸気改質反応(吸熱反応)を行うための熱を供給するために、その反応管を外部から加熱するためのバーナーを設けた構造を採用することができる。
[Reformer]
As a reformer structure for performing steam reforming, a known reformer structure capable of performing steam reforming can be employed. However, the above-mentioned specific steam reforming catalyst is accommodated in the reformer. For example, a burner for heating the reaction tube from the outside in order to supply heat for performing the steam reforming reaction (endothermic reaction) by filling the above-mentioned steam reforming catalyst into the reaction tube and providing a catalyst layer. A structure provided with can be adopted.

〔触媒の再生〕
本発明では、水蒸気改質を停止する際に、炭化水素系燃料の供給を瞬時に停止する一方、水蒸気の供給を継続し、水蒸気のみを水蒸気改質触媒に供給してこの触媒を再生する。
[Catalyst regeneration]
In the present invention, when the steam reforming is stopped, the supply of the hydrocarbon fuel is stopped instantaneously, while the supply of the steam is continued, and only the steam is supplied to the steam reforming catalyst to regenerate the catalyst.

定格運転を行っている状態(定格流量の炭化水素系燃料を改質している状態)から停止しても良いし、部分負荷運転を行っている状態(定格流量に満たない炭化水素系燃料を改質している状態)から停止してもよい。   It may be stopped from the state where rated operation is being performed (the state where hydrocarbon fuel of the rated flow rate is being reformed), or the state where partial load operation is being performed (hydrocarbon fuel which is less than the rated flow rate) It may be stopped from the state of reforming.

炭化水素系燃料の供給を瞬時に停止するには、一度に炭化水素系燃料の供給量をゼロにする供給停止操作を行えばよい。ただし、この操作の後も、用いる装置内部に残留する炭化水素系燃料が水蒸気改質触媒に供給されることは許容される。供給停止操作後も、例えば10分程度、残留する炭化水素系燃料が水蒸気改質触媒に供給されることがあるが、これは許容される。   In order to stop the supply of hydrocarbon fuel instantaneously, a supply stop operation for reducing the supply amount of hydrocarbon fuel to zero at a time may be performed. However, even after this operation, the hydrocarbon-based fuel remaining inside the apparatus to be used is allowed to be supplied to the steam reforming catalyst. Even after the supply stop operation, the remaining hydrocarbon fuel may be supplied to the steam reforming catalyst for about 10 minutes, for example, but this is allowed.

水蒸気改質触媒の再生に際して、触媒を加熱する必要はない。触媒が改質温度から400℃程度まで温度低下する間に、コークが除去される。触媒の温度が400℃程度になったら水蒸気の供給を停止してよい。   When regenerating the steam reforming catalyst, it is not necessary to heat the catalyst. Coke is removed while the catalyst cools down from the reforming temperature to around 400 ° C. When the temperature of the catalyst reaches about 400 ° C., the supply of water vapor may be stopped.

再生時間は5〜180分が好ましい、5分以上とすることで良好な再生効果が容易に得られる。一方、180分以下とすることで金属の凝集を抑制し触媒活性の低下を防止することが容易である。また、燃料を停止した後も加熱することにより再生効率を高めることも可能である。その時の触媒温度は400〜800℃が好ましい、400℃以上とすることにより良好な再生効果が容易に得られる。一方、800℃以下とすることにより金属の凝集を抑制し触媒活性の低下を防止することが容易である。   The reproduction time is preferably 5 to 180 minutes, and a good reproduction effect can be easily obtained by setting it to 5 minutes or more. On the other hand, by setting it to 180 minutes or less, it is easy to suppress agglomeration of metal and prevent a decrease in catalytic activity. It is also possible to increase the regeneration efficiency by heating after stopping the fuel. The catalyst temperature at that time is preferably 400 to 800 ° C., and a good regeneration effect can be easily obtained by setting the catalyst temperature to 400 ° C. or higher. On the other hand, by setting the temperature to 800 ° C. or lower, it is easy to suppress metal aggregation and prevent a decrease in catalytic activity.

具体的な改質器の運転方法について述べる。改質器(特には触媒層)には炭化水素燃料と水蒸気とが供給され、水蒸気改質が行われている状態にある。このとき、炭化水素系燃料は予め脱硫、気化、予熱などを行っておくことができる。また水蒸気は適宜、気化(水の)、予熱を行っておくことができる。触媒層は、適宜改質反応が進行可能な温度に加熱される。改質を停止する際に、炭化水素系燃料の供給を瞬時に停止する。このために、例えば、炭化水素系燃料を改質器に供給するラインをバルブによって閉止したり、炭化水素系燃料を改質器に供給するためのポンプや圧縮機を停止したりすることができる。水蒸気の改質器への供給は継続する。このような操作により、水蒸気による水蒸気改質触媒の再生を行うことができる。   A specific reformer operation method will be described. Hydrocarbon fuel and steam are supplied to the reformer (particularly the catalyst layer), and steam reforming is being performed. At this time, the hydrocarbon fuel can be subjected to desulfurization, vaporization, preheating and the like in advance. The water vapor can be appropriately vaporized (water) and preheated. The catalyst layer is appropriately heated to a temperature at which the reforming reaction can proceed. When the reforming is stopped, the supply of hydrocarbon fuel is stopped instantaneously. For this purpose, for example, a line for supplying hydrocarbon fuel to the reformer can be closed by a valve, or a pump or a compressor for supplying hydrocarbon fuel to the reformer can be stopped. . The supply of steam to the reformer continues. By such an operation, the steam reforming catalyst can be regenerated by steam.

また、再生効率を高めるために再生時に触媒の加熱を続ける場合は、炭化水素系燃料の供給を停止した後も触媒層を加熱することができる。このために例えば、触媒層が所定温度になるように、改質器に備わるバーナーへの燃料供給を継続することができる。   In addition, in the case where heating of the catalyst is continued during regeneration in order to increase the regeneration efficiency, the catalyst layer can be heated even after the supply of hydrocarbon fuel is stopped. For this purpose, for example, the fuel supply to the burner provided in the reformer can be continued so that the catalyst layer has a predetermined temperature.

〔炭化水素系燃料〕
改質器で改質する炭化水素系燃料としては、改質ガスの原料として高温型燃料電池システムの分野で公知の、分子中に炭素と水素を含む(酸素など他の元素を含んでもよい)化合物もしくはその混合物を適宜用いることができ、炭化水素類、アルコール類など分子中に炭素と水素を有する化合物を用いることができる。例えばメタン、エタン、プロパン、ブタン、天然ガス、LPG(液化石油ガス)、都市ガス、ガソリン、ナフサ、灯油、軽油等の炭化水素燃料、また、メタノール、エタノール等のアルコール、ジメチルエーテル等のエーテル等である。
[Hydrocarbon fuel]
As a hydrocarbon fuel reformed by a reformer, carbon and hydrogen are contained in a molecule known in the field of a high-temperature fuel cell system as a raw material of reformed gas (may contain other elements such as oxygen). A compound or a mixture thereof can be used as appropriate, and compounds having carbon and hydrogen in the molecule such as hydrocarbons and alcohols can be used. For example, hydrocarbon fuels such as methane, ethane, propane, butane, natural gas, LPG (liquefied petroleum gas), city gas, gasoline, naphtha, kerosene, light oil, etc., alcohols such as methanol and ethanol, ethers such as dimethyl ether, etc. is there.

本発明の効果は、炭化水素燃料として灯油を用いる場合に特に顕著である。灯油はコークの生成が大きい傾向にあるからである。   The effect of the present invention is particularly remarkable when kerosene is used as the hydrocarbon fuel. This is because kerosene tends to generate coke.

本発明によれば、特定の水蒸気改質触媒を用い、炭化水素系燃料の供給を瞬時に停止して水蒸気による触媒再生を行うことができ、従って、より短い時間で触媒再生を行うことが可能となり、また、余分な燃料の消費を抑えることができる。よって本発明は、特にDSS運転を行う発電システムにおいて用いられる水蒸気改質器において、触媒を再生するために好適に用いられる。   According to the present invention, using a specific steam reforming catalyst, it is possible to instantaneously stop the supply of hydrocarbon fuel and perform catalyst regeneration with steam, and therefore it is possible to perform catalyst regeneration in a shorter time. In addition, the consumption of excess fuel can be suppressed. Therefore, the present invention is suitably used for regenerating a catalyst, particularly in a steam reformer used in a power generation system that performs DSS operation.

以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these Examples.

[触媒調製]
(触媒A)
細孔容積0.4ml/g、BET表面積5m2/gのαアルミナを用意した。細孔容積とBET表面積は一般的な窒素吸着法より求めた。
[Catalyst preparation]
(Catalyst A)
Α-alumina having a pore volume of 0.4 ml / g and a BET surface area of 5 m 2 / g was prepared. The pore volume and BET surface area were determined by a general nitrogen adsorption method.

硝酸セリウムと硝酸マグネシウムを上記αアルミナに、担持酸化セリウム量が外率で13質量%、担持酸化マグネシウム量が外率で5重量%になる量を含浸担持した。これを、150℃で8時間以上乾燥後、800℃で8時間空気焼成して、触媒担体を得た。   Cerium nitrate and magnesium nitrate were impregnated and supported on the α-alumina in such an amount that the amount of supported cerium oxide was 13% by mass in the external ratio and the amount of supported magnesium oxide was 5% by weight in the external ratio. This was dried at 150 ° C. for 8 hours or more and then air calcined at 800 ° C. for 8 hours to obtain a catalyst carrier.

塩化ルテニウムを上記触媒担体に、担持ルテニウム量が外率で3質量%となる量を含浸担持し、120℃で12時間以上乾燥後、500℃で1時間水素還元した。これを触媒Aとする。   Ruthenium chloride was impregnated and supported on the above catalyst carrier so that the amount of supported ruthenium was 3% by mass in an external ratio, dried at 120 ° C. for 12 hours or more, and then hydrogen reduced at 500 ° C. for 1 hour. This is referred to as catalyst A.

(触媒B)
担持酸化セリウム量を1質量%とした以外は触媒Aの製造と同様にして、触媒Bを得た。
(Catalyst B)
Catalyst B was obtained in the same manner as in the manufacture of Catalyst A, except that the amount of supported cerium oxide was 1% by mass.

(触媒C)
担持酸化マグネシウム量を0.08質量%とした以外は触媒Aの製造と同様にして、触媒Cを得た。
(Catalyst C)
A catalyst C was obtained in the same manner as in the production of the catalyst A except that the amount of supported magnesium oxide was 0.08% by mass.

(触媒D)
αアルミナに替えて、細孔容積0.4ml/g、BET比表面積170m2/gのγアルミナを用いた以外は触媒Aの製造と同様にして触媒Dを得た。
(Catalyst D)
Catalyst D was obtained in the same manner as in the preparation of Catalyst A, except that γ-alumina having a pore volume of 0.4 ml / g and a BET specific surface area of 170 m 2 / g was used instead of α-alumina.

[実施例1]
上記触媒を水蒸気改質反応で評価した。反応は固定床のマイクロリアクターを用いた。触媒充填量は50cm3である。炭化水素系原料として脱硫灯油(密度0.793g/cm3、硫黄分0.05質量ppm)を用いた。反応条件は以下の通りである。触媒層入口反応温度500℃、触媒層出口反応温度700℃、反応圧力0.1MPa、スチーム/カーボン比3.0mol/mol、LHSV2.0h-1。前記条件で起動・8時間運転・停止のサイクルを30回繰り返した。
[Example 1]
The catalyst was evaluated by a steam reforming reaction. The reaction used a fixed bed microreactor. The catalyst loading is 50 cm 3 . Desulfurized kerosene (density 0.793 g / cm 3 , sulfur content 0.05 mass ppm) was used as the hydrocarbon raw material. The reaction conditions are as follows. Catalyst layer inlet reaction temperature 500 ° C., catalyst layer outlet reaction temperature 700 ° C., reaction pressure 0.1 MPa, steam / carbon ratio 3.0 mol / mol, LHSV 2.0 h −1 . Under the above conditions, the start-up / 8-hour operation / stop cycle was repeated 30 times.

この際、触媒としては触媒Aを用い、水蒸気改質反応停止時にマイクロリアクター加熱用の加熱器停止とともに燃料供給を瞬時に停止させ、触媒層出口温度が400℃以下になった時点で水の供給を停止させた。   At this time, the catalyst A is used as the catalyst, and when the steam reforming reaction is stopped, the fuel supply is stopped at the same time as the heater for microreactor heating is stopped, and when the catalyst layer outlet temperature becomes 400 ° C. or less, the water is supplied. Was stopped.

[実施例2]
触媒Aを用い、水蒸気改質反応停止時に燃料供給を瞬時に停止させた後も、加熱器停止をおこなわず、触媒層入口温度500℃、触媒層出口温度700℃に保ちながら水を15分間流通させた。その後、水の供給を停止し加熱器停止を実施した。
[Example 2]
Even after the fuel supply was stopped instantaneously when the steam reforming reaction was stopped using catalyst A, water was circulated for 15 minutes while maintaining the catalyst layer inlet temperature 500 ° C. and the catalyst layer outlet temperature 700 ° C. without stopping the heater. I let you. Thereafter, the water supply was stopped and the heater was stopped.

これ以外は実施例1と同様にして水蒸気改質器の起動停止を30回繰り返した。   Except for this, the start and stop of the steam reformer was repeated 30 times in the same manner as in Example 1.

[比較例1]
触媒Aを用い水蒸気改質反応停止時に加熱器停止とともに燃料と水の供給を同時に停止させた。
[Comparative Example 1]
When the steam reforming reaction was stopped using the catalyst A, the supply of fuel and water was stopped at the same time as the heater was stopped.

これ以外は実施例1と同様にして起動停止を30回繰り返した。   Except for this, starting and stopping were repeated 30 times in the same manner as in Example 1.

[比較例2]
触媒Aに替えて触媒Bを用いた以外は実施例1と同様にして起動停止を30回繰り返した。
[Comparative Example 2]
Starting and stopping were repeated 30 times in the same manner as in Example 1 except that the catalyst B was used instead of the catalyst A.

[比較例3]
触媒Aに替えて触媒Cを用いた以外は実施例1と同様にして起動停止を30回繰り返した。
[Comparative Example 3]
Starting and stopping were repeated 30 times in the same manner as in Example 1 except that the catalyst C was used instead of the catalyst A.

[比較例4]
触媒Aに替えて触媒Dを用いた以外は実施例1と同様にして起動停止を30回繰り返した。
[Comparative Example 4]
Starting and stopping were repeated 30 times in the same manner as in Example 1 except that the catalyst D was used instead of the catalyst A.

反応ガスはガスクロマトグラフを用いて定量分析した。反応後の生成ガスH4およびCOの組成よりもとめた原料の転化率を表1に示す。ここで表1の転化率は原料がCO、C2の何れかに転化した割合であり、炭素を基準に計算したものである。 The reaction gas was quantitatively analyzed using a gas chromatograph. Table 1 shows the conversion rates of the raw materials determined from the composition of the product gas H 4 and CO after the reaction. Here, the conversion rate in Table 1 is the ratio of the raw material converted into either CO or C 2 , and is calculated based on carbon.

また反応終了後、触媒を反応装置から抜き出し触媒に付着したカーボン量を測定した。この結果を表1に示す。   Further, after the reaction was completed, the catalyst was extracted from the reactor and the amount of carbon attached to the catalyst was measured. The results are shown in Table 1.

表1から明らかなように、燃料供給を瞬時に停止させた後も水の供給をつづけた実施例1、2は比較例1に比べコーク堆積量が少なく高い灯油転化率を示している。また、燃料供給を瞬時に停止させた後も水の供給をつづけた場合でも触媒B〜Dは触媒Aに比べて、灯油転化率が低くなっている。   As is apparent from Table 1, Examples 1 and 2 in which the water supply was continued even after the fuel supply was stopped instantaneously showed a high kerosene conversion rate with a smaller amount of coke deposition than Comparative Example 1. Further, even when the water supply is continued even after the fuel supply is stopped instantaneously, the catalysts B to D have a kerosene conversion rate lower than that of the catalyst A.

Figure 0004754519
Figure 0004754519

本発明は、民生用もしくは自動車用燃料電池システムなど、DSS運転を行う発電システムに備わる改質器において特に好適に実施される。   The present invention is particularly preferably implemented in a reformer provided in a power generation system that performs DSS operation, such as a consumer or automobile fuel cell system.

Claims (2)

炭化水素系燃料を水蒸気改質して水素を生成させるための水蒸気改質触媒を再生する、改質触媒の再生方法であって、
水蒸気改質触媒が、αアルミナあたり2質量%以上25質量%以下の希土類元素酸化物と0.1質量%以上15質量%以下のアルカリ土類元素酸化物とをαアルミナに担持した担体に、活性金属としてルテニウムを該担体に対して0.3質量%以上5質量%以下担持した触媒であって、
炭化水素系燃料と水蒸気を該触媒に供給して水蒸気改質反応を行った後、炭化水素系燃料の供給を瞬時に停止する一方、水蒸気の供給を継続し、水蒸気のみを該触媒に供給して該触媒を再生する改質触媒の再生方法。
A reforming catalyst regeneration method for regenerating a steam reforming catalyst for steam reforming a hydrocarbon fuel to generate hydrogen,
A steam reforming catalyst is a carrier in which α-alumina carries 2 to 25% by mass of a rare earth element oxide and 0.1 to 15% by mass of an alkaline earth element oxide per α-alumina, A catalyst carrying ruthenium as an active metal in an amount of 0.3% by mass to 5% by mass with respect to the carrier,
After the hydrocarbon fuel and steam are supplied to the catalyst to perform the steam reforming reaction, the supply of hydrocarbon fuel is stopped instantaneously, while the supply of steam is continued and only steam is supplied to the catalyst. A method for regenerating a reforming catalyst for regenerating the catalyst.
前記炭化水素系燃料が灯油である請求項1記載の方法。   The method according to claim 1, wherein the hydrocarbon fuel is kerosene.
JP2007081741A 2007-03-27 2007-03-27 Regeneration method of reforming catalyst Expired - Fee Related JP4754519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007081741A JP4754519B2 (en) 2007-03-27 2007-03-27 Regeneration method of reforming catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007081741A JP4754519B2 (en) 2007-03-27 2007-03-27 Regeneration method of reforming catalyst

Publications (2)

Publication Number Publication Date
JP2008238043A JP2008238043A (en) 2008-10-09
JP4754519B2 true JP4754519B2 (en) 2011-08-24

Family

ID=39910018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007081741A Expired - Fee Related JP4754519B2 (en) 2007-03-27 2007-03-27 Regeneration method of reforming catalyst

Country Status (1)

Country Link
JP (1) JP4754519B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110144398A1 (en) 2009-12-11 2011-06-16 Basf Se Process for regenerating a ruthenium-containing supported hydrogenation catalyst
EP2512658A2 (en) 2009-12-15 2012-10-24 Basf Se Catalyst and method for hydrogenating aromates
JP5593106B2 (en) * 2010-03-30 2014-09-17 Jx日鉱日石エネルギー株式会社 Hydrogen production method, hydrogen production apparatus and fuel cell system
WO2012154042A1 (en) 2011-05-10 2012-11-15 Biomethanol Chemie Nederland B.V. A process for catalytic steam reforming of a feedstock comprising an oxygenated hydrocarbon and a hydrocarbon

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN151189B (en) * 1978-03-23 1983-03-05 Union Carbide Corp
JPS55157328A (en) * 1979-05-28 1980-12-08 Jgc Corp Regeneration of low temp. steam reforming catalyst
JP3698971B2 (en) * 2000-09-14 2005-09-21 東京瓦斯株式会社 Method for starting and stopping a reformer for a polymer electrolyte fuel cell
JP4648566B2 (en) * 2001-05-11 2011-03-09 Jx日鉱日石エネルギー株式会社 Autothermal reforming catalyst and method for producing fuel gas for fuel cell
JP4186498B2 (en) * 2002-04-10 2008-11-26 トヨタ自動車株式会社 Steam reforming and fuel cell system
JP4203326B2 (en) * 2003-01-09 2008-12-24 千代田化工建設株式会社 Operation method of synthesis gas production
JP2007000703A (en) * 2005-06-21 2007-01-11 Mitsubishi Heavy Ind Ltd Reforming catalyst, method of manufacturing reforming catalyst and fuel cell system
JP4783240B2 (en) * 2006-08-29 2011-09-28 Jx日鉱日石エネルギー株式会社 Steam reforming catalyst, hydrogen production apparatus and fuel cell system

Also Published As

Publication number Publication date
JP2008238043A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
JP5072841B2 (en) Steam reforming catalyst, hydrogen production apparatus and fuel cell system
JP2006346598A (en) Steam reforming catalyst
JP4648567B2 (en) Autothermal reforming catalyst and method for producing fuel gas for fuel cell
JP2009254929A (en) Reforming catalyst for manufacturing hydrogen suitable for hydrogen manufacture at low temperature, and hydrogen manufacturing method using the catalyst
WO2007094457A1 (en) Catalyst for liquefied petroleum gas production
JP4754519B2 (en) Regeneration method of reforming catalyst
JP4648566B2 (en) Autothermal reforming catalyst and method for producing fuel gas for fuel cell
JP2005169236A (en) Fuel reforming catalyst
JP5378148B2 (en) Reforming catalyst, reformer, and hydrogen production device
JP5340681B2 (en) Reforming catalyst for hydrogen production suitable for hydrogen production at a low temperature, and hydrogen production method using the catalyst
JP2011083685A (en) Reforming catalyst for use in producing hydrogen, method of producing the same, and method of producing hydrogen using the same
JP5759922B2 (en) Method for producing hydrogen
JP4783240B2 (en) Steam reforming catalyst, hydrogen production apparatus and fuel cell system
JP5603120B2 (en) Steam reforming catalyst, hydrogen production apparatus and fuel cell system
JP2005238025A (en) Fuel reforming catalyst and fuel reforming system using the same
JP4418063B2 (en) Method for producing hydrogen
KR101392996B1 (en) Mesoporous nickel-alumina-zirconia xerogel catalyst and production method of hydrogen by steam reforming of ethanol using said catalyst
JP5107046B2 (en) Hydrocarbon steam reforming catalyst
JP2005044651A (en) Method of manufacturing hydrogen rich gas
JP4514419B2 (en) Hydrocarbon partial oxidation catalyst, method for producing the same, and method for producing hydrogen-containing gas
JP2011167595A (en) Reforming catalyst for producing hydrogen, method for producing the same, and method for producing hydrogen using the catalyst
JP2001172651A (en) Fuel oil for fuel cell
JP5788352B2 (en) Reforming catalyst for hydrogen production, hydrogen production apparatus and fuel cell system using the catalyst
JP2010064037A (en) Method of producing reforming catalyst for hydrogen production suitable for producing hydrogen at low temperature
JP5809413B2 (en) Fuel cell desulfurization system, fuel cell hydrogen production system, fuel cell system, and hydrocarbon fuel desulfurization method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees