JP4754120B2 - Rear body structure of the vehicle - Google Patents

Rear body structure of the vehicle Download PDF

Info

Publication number
JP4754120B2
JP4754120B2 JP2001262338A JP2001262338A JP4754120B2 JP 4754120 B2 JP4754120 B2 JP 4754120B2 JP 2001262338 A JP2001262338 A JP 2001262338A JP 2001262338 A JP2001262338 A JP 2001262338A JP 4754120 B2 JP4754120 B2 JP 4754120B2
Authority
JP
Japan
Prior art keywords
floor
rear frame
rear floor
cross member
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001262338A
Other languages
Japanese (ja)
Other versions
JP2003072595A (en
Inventor
明英 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP2001262338A priority Critical patent/JP4754120B2/en
Publication of JP2003072595A publication Critical patent/JP2003072595A/en
Application granted granted Critical
Publication of JP4754120B2 publication Critical patent/JP4754120B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、リヤフレームを上下に分割し、その間にリヤフロアの両側部を挟持させた車両の後部車体構造に関する。
【0002】
【従来の技術】
一般に、この種の後部車体構造として、図20の縦断面図に示すように、車幅方向両側に車体前後方向に沿って延在するリヤフレーム1を備えている。このリヤフレーム1は上部が開口する断面コの字状に形成されており、このリヤフレーム1の上辺に、リヤフロア3の両側部3aが接合されて、内部に閉断面が形成されている。又、リヤフロア3には、スペアタイヤを収納するタイヤ凹部3bが形成されている。このタイヤ凹部3bは、スペアタイヤの幅と同等、若しくはそれ以上の比較的大きい深さDに深絞り加工して形成されている。
【0003】
【発明が解決しようとする課題】
ところで、リヤフロア3にタイヤ凹部3bを深絞り加工する場合、このタイヤ凹部3bのコーナ部3c、3Dに亀裂を生じさせないようにするため、タイヤ凹部3bをリヤフレーム1との結合部まで戻し、成形する必要がある。そのため上端コーナ部3c,3dは大きな曲率で形成しなければならなくなり、タイヤ凹部3bの上下方向及び左右方向に大きなデッドスペースが形成される。
【0004】
又、タイヤ凹部3bにデッドスペースが形成されると、その分、リヤフレーム1を車幅方向外側へ湾曲する必要がある。そのため、後面衝突時にこの湾曲部分の角部を支点に早期に屈曲してまい後面衝突時の性能確保が困難となる。
【0005】
更に、リヤフレーム1の閉断面内には、フレーム断面変形を防止し、抗力を向上させるために、リンフォースメント4を配設する場合が多いが、このリンフォースメント4を必要とする分、部品点数が嵩み、製造が複雑化するばかりでなく、重量増の一因となっている。
【0006】
又、タイヤ凹部3bの深さDが大きいと、図20に示すように、タイヤ凹部3bは、リヤフレーム1の上面に接合されている両側部3aからタイヤ凹部3bの底面までS字状に曲げ形成されているため、車体後方からの衝突(以下、これを「後突」と称する)により、リヤフレームに左右方向の荷重がかかった場合、リヤフロア3がせん断面としてほとんど機能しない。つまり、リヤフレーム1からリヤフロア3に伝達される左右方向への荷重(面内荷重)とリヤフロア3の板方向が大きくずれているため、リヤフレーム1から伝達されるリヤフロア3の面内荷重を合理的に分散することができない。その結果、リヤフレーム1にオイラー座屈が生じ、リヤフレーム1が軸方向に安定して圧潰(軸圧潰)せず十分に衝撃エネルギを吸収することが困難となる。
【0007】
図21に後突時のリヤフレーム1とリヤフロア3の変形状態を示す。同図(a)に示す非後突状態から、同図(b)に示すように、後突が開始されると、リヤフレーム1は最初は軸圧潰するが、変形が進むにつれてリヤフレーム1の湾曲部分の各部を支点に屈曲し、次いで、同図(c)に示すように、この屈曲部分を中心にリヤフレーム1にオイラー座屈が生じる。つまり、後方からの衝撃荷重に対して、衝撃荷重が車体前方へ伝達されないため、リヤフレーム1が安定して軸圧潰せず、リヤフレーム1の衝撃エネルギの吸収性が悪化するという問題が生じる。
【0008】
これに対して、例えば特開平11−171048号公報に開示されているように、リヤフロアを平坦に形成し、このリヤフロアの下面にスペアタイヤを懸垂支持するものでは、リヤフロアがせん断面として機能しリヤフレーム間がリヤフロアにより強固に連結されるため、後突時の荷重が、リヤフロアのせん断面を伝わって車体前方へ流れ安定した圧潰性を得ることができる。
【0009】
しかし、この先行技術では、リヤフロアの両側部が、リヤフレームの上辺で接合されているので、リヤフロアとリヤフレームとの接合部と、リヤフレームの下部との距離が長くなり、従って、リヤフレーム下部に車幅方向への荷重が作用した場合、リヤフレームがリヤフロアとの接合部を支点として車幅方向へ揺動し易くなるため、リヤフレームがサスペンション等、床下に懸架する部品からの外力に対して弱く、補強構造を別途行なう必要があり、構造が複雑化するばかりでなく、車体重量が増加してしまう。
【0010】
本発明は、上記事情に鑑み、簡単な構造で、車体重量を増加させることなく、後突時の衝撃荷重を車体前方へ導くことで、安定した圧潰性を得ることで、良好な衝撃吸収性を得ることができると共に、リヤフレーム下部に懸架される部品から受ける車幅方向への曲げモーメントに対し、高い剛性を得ることのできる車両の後部車体構造を提供することを目的とする。
【0016】
【課題を解決するための手段】
上記目的を達成するため本発明は、車幅方向両側に車体前後方向に沿って延在する閉断面形状の一対のリヤフレームと、該両リヤフレーム間を連結するリヤフロアとを有する車両の後部車体構造において、上記リヤフロアが、前側リヤフロアと該前側リヤフロアより下方に位置する後側リヤフロアと、上記前側リヤフロアの後部と上記後側リヤフロアの前部とを接合するフロア傾斜部とを有し、上記一対のリヤフレーム間を連結するクロスメンバが、上記フロア傾斜部の下方に設けられた下部クロスメンバ部材と少なくとも上記フロア傾斜部を含む上記リヤフロアとで形成される下部クロスメンバ閉断面と、上記フロア傾斜部の上方の車室内に設けられた上部クロスメンバ部材と少なくとも上記フロア傾斜部を含む上記リヤフロアとで形成される上部クロスメンバ閉断面とを有すると共に、上記両クロスメンバ閉断面で略矩形断面を形成したことを特徴とする。
【0019】
【発明の実施の形態】
以下、図面に基づいて本発明の一実施の形態を説明する。図1〜図7に本発明の第1実施の形態を示す。図1に後部車体構造の要部斜視図を示す。
【0020】
同図の符号11はリヤフレームであり、車体後部の車幅方向両側に、車体の前後方向に沿って対向一対配設されている。尚、図示しないが左側のリヤフレームは右側のリヤフレームと対称形状をなしている。
【0021】
このリヤフレーム11は、下部リヤフレーム部材12と上部リヤフレーム部材13とを有している。下部リヤフレーム部材12は上方へ開口する断面溝型に形成されており、車体後部から前方へほぼ直線状に延在されている。この下部リヤフレーム部材12の内部縦壁面12aの上端にフランジ部12bが形成されており、又、外部縦壁面12cが内部縦壁面12aよりも上方へ垂立されている。
【0022】
このフランジ部12bの車体前後方向の中途で、本実施の形態ではリヤサスペンション(図示せず)が配設されている部位の近傍にフランジ傾斜部12dが設けられ、このフランジ傾斜部12dを挟んで、内部縦壁面12aの後段が前段よりも低い位置に形成され、前段の下部リヤフレーム部材12間に燃料タンクやリヤデファレンシャルケース等の床下部品15(図4参照)が配設される。又、下部リヤフレーム部材12の外部縦壁面12cの外面上部に、リヤホイールエプロン16が接合される。
【0023】
更に、車幅方向両側に配設された両下部リヤフレーム部材12のフランジ傾斜部12d間がクロスメンバ部材18を介して連結されている。図3、図4に示すように、このクロスメンバ部材18は上方へ開口する断面溝型に形成されており、その両端に下部リヤフレーム部材12の内部縦壁面12a及び底面に接合する接合代18aが形成されており、又、前部縦壁面18bと後部縦壁面18cとの上端にフランジ部18d,18eが形成され、更に、前部縦壁面18bの車幅方向中央部分にその必要に応じて、燃料タンクやリヤデファレンシャル等の床下部品15を逃げる凹部18fが形成されている。
【0024】
このクロスメンバ部材18のフランジ部18d、18eの両端には、下部リヤフレーム部材12に形成されているフランジ部12bの板厚分の段差部18gが形成されている。尚、フランジ部18eが下部リヤフレーム部材12のフランジ傾斜部12dの下端部側に接合され、又他方のフランジ部18dがフランジ傾斜部12dの上端部側に接合されている。
【0025】
又、対向一対の下部リヤフレーム部材12間の上面がリヤフロア19で連結され、このリヤフロア19の、下部リヤフレーム部材12に形成されたフランジ傾斜部12dに対応する部位にフロア傾斜部19aが形成されている。リヤフロア19は、フロア傾斜部19aを挟んで前側リヤフロア19bと後側リヤフロア19cとを有し、更に、このリヤフロア19の車幅方向両側に、下部リヤフレーム部材12の外部縦壁面12cの内面に接合する第2の結合部19dがフランジ状に曲げ形成されている。又、リヤフロア19の後側リヤフロア19cに、図示しないスペアタイヤを格納するタイヤ凹部19eが形成されている。
【0026】
尚、クロスメンバ部材18と、このクロスメンバ部材18の上面を閉塞する前側リヤフロア19bの後部とフロア傾斜部19aとでクロスメンバ閉断面17が形成されている。
【0027】
このフロア傾斜部19a及び後側リヤフロア19cの車幅方向両側の上面に上部リヤフレーム部材13が接合されている。この上部リヤフレーム部材13は断面L字状に曲げ形成され、下部リヤフレーム部材12の内部縦壁面12aに連続する内部縦壁面13aと前側リヤフロア19bに連続する上面13bとを有している。又、この内部縦壁面13aの下端に、下部リヤフレーム部材12のフランジ部12bに対応するフランジ部13cが形成され、この両フランジ部12b,13c間で、フロア傾斜部19a及び後側リヤフロア19cの上下面が接合され、このフロア傾斜部19a及び後側リヤフロア19cの、フランジ部12b,13cに結合されている部位が第1の結合部19fを構成している。更に、上部リヤフレーム部材13の上面13bの外端部に、下部リヤフレーム部材12の外部縦壁面12cの内面上部に接合するフランジ部13dが形成されている。
【0028】
図2(a)に示すように、リヤフレーム11はリヤフロア19の車幅方向両側部19gを境界に、上部リヤフレーム部材13側に上部閉断面20aが形成され、下部リヤフレーム部材12側に下部閉断面20bが形成されている。従って、このリヤフロア19の車幅方向両側部19gが、リヤフレーム11のリンフォースメントとして機能する。
【0029】
この場合、図2(b)に示すように、後側リヤフロア19cはほぼ完全にフラット化されていても良い。後側リヤフロア19cのフラット化が可能となる要因としては、スペアタイヤとして幅の狭いタイヤ(応急タイヤ等)を採用する場合、スペアタイヤレスの場合、或いは、後側リヤフロア19c上にスペアタイヤを設置できる場合、つまり、後側リヤフロア19cの上方には荷台として利用されるリヤフロアボードが前方リヤフロア19b及び上部リヤフレーム部材13の上面13bに連続するフラットな面として配設されるため、後側リヤフロア19cとリヤフロアボードとで形成されるスペースの高さが確保できれば、荷台高さを同一に保ってスペアタイヤを載置しつつ後側リヤフロア19cのフラット化が可能となる。
【0030】
このような構成によれば、リヤフレーム11を下部リヤフレーム部材12と上部リヤフレーム部材13とに分割し、この両者間に後側リヤフロア19c、及びフロア傾斜部19aの両側部19gを介装し、この両側部19gを境に、上部閉断面20aと下部閉断面20bとを形成したので、この両側部19gをリンフォースメントとして機能させることができ、構造の簡素化を図りつつ、後突に対する抗力を向上させることができると共に、リヤフロア19とリヤフレーム11との接合部と、リヤフレーム11下部との距離を短くすることができるため、リヤフレーム11下部にサスペンション等、床下に懸架する部品から車幅方向への荷重が作用した場合におけるリヤフレーム11断面の横倒れを抑制することができる。又、リヤフレーム11を下部リヤフレーム部材12と上部リヤフレーム部材13とに分割したことで衝突性能の対応を上部リヤフレーム部材13のバリエーションで容易に変更できる。
【0031】
又、車幅方向両側に配設されている下部リヤフレーム部材12にリヤフロア19の第1の結合部19fと第2の結合部19dとを接合して固定した後、この両側部19gの上面に上部リヤフレーム部材13を接合させるようにしたので、スポット溶接等を用いた組み立て作業が容易となり、安定した品質を得ることができる。
【0032】
又、後側リヤフロア19cの両側部19gをリヤフレーム11の中途に介装したので、図2(a)に一点鎖線で示すように、リヤフロアをリヤフレームの上面で接合する従来のタイヤ凹部の深さDに比し、スペアタイヤ収納スペースを確保しつつ、タイヤ凹部19eの深さDsを浅くする、若しくはなくすことができる。従って、タイヤ凹部19eのコーナ部19R、19Rを小さい曲率で曲げ形成する、若しくはタイヤ凹部19eを形成せず、リヤフロア19をフラット化することができるようになり、生産設備の大幅な変更をせずにリヤフロア19の成形性および生産性を向上することができる。
【0033】
又、タイヤ凹部19eを浅い深さDsで形成することができるため、リヤフレーム11を従来のリヤフレームよりも幅W分だけ車体幅方向内側へ移動させて接合させることが可能となる。その結果、図1に示すように、リヤフレーム11を車体前後方向へほぼ直線状に延在させることが可能となり、軽量化を図りつつ、後突時のリヤフレーム11の早期の屈曲変形を防止し、後突時の衝撃吸収性を向上させることができる。
【0034】
更に、リヤフレーム11のリンフォースメントとしても機能する後側リヤフロア19cがその両側部19gに設けた第1の結合部19fと第2の結合部19dとでリヤフレーム11と結合し、左右のリヤフレーム11間を連結すると共に、タイヤ凹部19eの深さDsを浅くする、若しくはなくすことができるので、従来構造と比較して後側リヤフロア19cの板方向をリヤフレーム11から伝達される左右方向への荷重に近づける、若しくは同一にすることができる。そのため、リヤフロア19をせん断面として機能させ、左右のリヤフレーム11間をリヤフロア19で強固に連結することができるので、後突時のリヤフレーム11に加わる衝撃荷重を車体前方へ伝達することができ、リヤフレーム11を安定して軸圧潰させることができるため、リヤフレーム11の衝撃エネルギの吸収性が向上する。又、リヤフレーム11下方からの荷重に対してもフロアがせん断面として機能し、高剛性化を図ることができるので、荷重を効率良く伝達でき、振騒性能も向上する。
【0035】
更に、タイヤ凹部19eの深さDsが浅いため、フロア傾斜部19a又はタイヤ凹部19eの前壁を車体後方へ移動させることができ、リヤフレーム11のリヤサスペンション取付部近傍に配置されるクロスメンバ部材18の後部縦壁面18cをフロア傾斜部19a又は、タイヤ凹部19eの前壁の下端まで拡張させることが可能となる、そのため、クロスメンバ部材18を左右のリヤフレーム11をストレートに連結しつつ、その断面積を大きく取ることができ、その分、高い剛性を得ることができるので、リヤサスペンションからの入力による振騒性能や走行性能の悪化を防止できる。
【0036】
又、相対的に、クロスメンバ部材18の前部縦壁面18bを車体後方へ移動させることで、車体下部に配設されている燃料タンクやリヤデフ等の床下部品15との干渉を回避するために形成する凹部18fを最小の大きさで形成し、或いはこの凹部18f自体を廃止することができ、高い剛性を確保しつつ成形性を向上させることができる。
【0037】
更に、クロスメンバ部材18を後側リヤフロア19cの前端部まで拡張することができるため、後突時の圧潰による変形をクロスメンバ部材18の後方で食い止めることができる。従って、燃料タンクやリヤデフ等の床下部品15等、クロスメンバ部材18よりも前方に配設されている部品類を後突時の衝撃荷重から有効に保護することができる。
【0038】
更に、タイヤ凹部19eのデッドスペースを極力排除し、コンパクトにできるため、リヤオーバーハングを縮小させることが可能でコンパクトな車体を形成できる。又、リヤフロア19をフラット化した場合、後列3列シートを可能にしたり、後側リヤフロア19c上にリヤフロアボートを配設した場合、スペアタイヤの周囲とリヤフロアボートとの間に形成される内部空間を、部品収納ポケットとして有効利用することができる。
【0039】
又、図5に後側リヤフロア19cをフラット化し、両側部19gをリヤフレーム11に挟み込んだ状態で、リヤフレーム11とリヤフロア19に後突時の荷重を矢印で示すように加えた場合の解析図を示す。ここで同図(a)は荷重を加える前の状態、(b)はリヤフレーム11とリヤフロア19が変形する過程の状態、(c)は変形終了時の状態がそれぞれ示されている。
【0040】
同図に示すように、本実施の形態のようなタイヤ凹部19eの深さDsをなくす、若しくは浅くすることでリヤフレーム11をほぼ直線状に延在させることができ、リヤフレーム11が屈曲変形することなく軸圧潰することができる。更にリヤフロア11もリヤフレーム11から伝達される荷重に対して、せん断面として機能するため、リヤフレーム11がオイラー座屈することなく安定して軸圧潰させることができ、リヤフレーム11の衝撃エネルギの吸収性が向上する。
【0041】
その結果、図6、図7に実線aで示すように、破線で示す従来の構造(図20参照)に比し、後突時の衝撃エネルギを、短いストロークで効率よく吸収することができ、又、従来の構造に比し後突時の抗力を大幅に向上させることができる。
【0042】
又、図8〜図16に本発明の第2実施の形態を示す。ここで、図8は後部車体構造の要部斜視図、図9は図8のIX−IX断面図、図10は図8のX−X断面図である。
【0043】
同図に示すように、本実施の形態によるリヤフロア19は、フロア傾斜部19aを一体に有する前側リヤフロア19bと後側リヤフロア19cとに分割されており、この後側リヤフロア19cの前部19hと、フロア傾斜部19aの下端に形成したフランジ部19jとが、クロスメンバ部材(以下「下部クロスメンバ部材」と称する)18の後部縦壁面18cの上端に形成したフランジ部18e上に接合されて一体化されている。
【0044】
更に、後側リヤフロア19cの両側部19gが、下部リヤフレーム部材12のフランジ部12bに接合する第1の結合部19fから斜め上方へ曲げ形成され、その端部に形成されている第2の結合部19dが、下部リヤフレーム部材12に形成された外部縦壁面12cの上端部に、上部リヤフレーム部材13に形成されたフランジ部13dと共に接合されている。リヤフレーム11内には、両側部19gを境界として、上部リヤフレーム部材13側に三角形状の上部閉断面20aが形成され、下部リヤフレーム部材12側に台形状の下部閉断面20bが形成される。従って、このリヤフロア19の斜め上方に曲げ形成された両側部19gが、リヤフレーム11のリンフォースメントとして機能する。
【0045】
次に、組み立て手順について説明する。先ず、図11に示すように車幅方向両側に配設されている一対の下部リヤフレーム部材12のフランジ傾斜部12dを下部クロスメンバ部材18で連結し、次いで、図12に示すように、後側リヤフロア19cの前部19hを、下部クロスメンバ部材18のフランジ部18eに接合させる。又、両側部19gの第1の結合部19fを下部リヤフレーム部材12に形成したフランジ部12bに接合する。更に、第2の結合部19dを下部リヤフレーム部材12の外部縦壁面12cの上端部に接合する。
【0046】
次いで、図13に示すように、前側リヤフロア19bの後端に曲げ形成されているフロア傾斜部19aの下端に形成されているフランジ部19jを後側リヤフロア19cの前部19h上に接合する。又、前側リヤフロア19bとフロア傾斜部19aとの両側部19g’に設けられた第1の結合部19f’と、第2の結合部19d’とを下部リヤフレーム部材12のフランジ部12b及びフランジ傾斜部12dと、外部縦壁面12cの上端部とに各々接合する。
【0047】
その後、図14に示すように、フロア傾斜部19a上に、上部クロスメンバ部材21を当接する。図15に示すように、この上部クロスメンバ部材21はL字状に曲げ形成されて、下方へ曲げ形成された後部縦壁面21aと上面21bと後部縦壁面21aの下端に形成したフランジ部21c、及び上面の車幅方向両端に曲げ形成したフランジ部21dとを有している。そして、フランジ部21cをフロア傾斜部19aの下端に形成したフランジ部19j上に接合し、更に、フランジ部21dを下部リヤフレーム部材12に形成した外部縦壁面12cの上端部に接合する。尚、フランジ部21cは後側リヤフロア19cに曲げ形成されている両端部19gの手前でカットされている。
【0048】
更に、上部クロスメンバ部材21の上面21bの前部21e(図15にハッチングで示す部位)を前側リヤフロア19bの後部に接合する。又、両側部19gの先端に形成したフランジ部19kを上部クロスメンバ部材21の後部縦壁面21aに接合する。その結果、下部クロスメンバ部材18と前側リヤフロア19bの後部と上部クロスメンバ部材21とで、略矩形断面のクロスメンバが形成される。
【0049】
そして、図16に示すように、上部リヤフレーム部材13を両側部19gを挟んで下部リヤフレーム部材12上に接合させる。この上部リヤフレーム部材13の前部には、上部クロスメンバ部材21の上面21b及び後部縦壁面21aに当接するフランジ部13e、及び接合部13f(図16にハッチングで示す部位)が形成されており、このフランジ部13e、及び接合部13fを上部クロスメンバ部材21に接合する。
【0050】
その結果、図10に示すように、フロア傾斜部19aと上部クロスメンバ部材21とで上部クロスメンバ閉断面22aが形成され、その下部に、下部クロスメンバ部材18と前側リヤフロア19b及びフロア傾斜部19aとで下部クロスメンバ閉断面22bが形成される。
【0051】
このように、本実施の形態によれば、両側部19gを斜め上方へ曲げ形成して、その端部に形成した第2の結合部19dを、下部リヤフレーム部材12に形成した外部縦壁面12cの上端部に接合したので、上部リヤフレーム部材13のフランジ部13dと共に接合させることで、溶接作業を1工程減少させることができ、作業性が向上する。又、この両端部19gがリヤフレーム11の断面変形を抑制するリンフォースメントとして機能させることができるため、剛性を向上させることができる。
【0052】
一方、上部クロスメンバ部材21を追加して、上部クロスメンバ閉断面22aと下部クロスメンバ閉断面22bとを形成したので、より高い剛性を得ることができる。
【0053】
又、図17に本発明の第3実施の形態による図10相当の断面図を示す。本実施の形態では、フロア傾斜部19aを下部クロスメンバ部材18の前部縦壁面18bと後部縦壁面18cとに亘って曲げ形成し、上部クロスメンバ部材21の前部21eとフランジ部21cとを、下部クロスメンバ部材18のフランジ部18d,18eに接合させて、フロア傾斜部19aを境界に形成される上部閉断面20aと下部閉断面20bとで略矩形閉断面を形成するようにしたものである。
【0054】
この様な構成によれば、下部クロスメンバ部材18の断面変形を抑制し、強固な構造とすることができる。
【0055】
又、図18に本発明の第4実施の形態による図17相当の断面図を示す。本実施の形態では、後側リヤフロア19cの前部19hに下部クロスメンバ部材18を一体形成したもので、一体化することで部品点数の削減を図ることができる。
その他の構成及び作用効果は、図17と同様である。
【0056】
又、図19に本発明の第5実施の形態による図17相当の断面図を示す。本実施の形態では、前側リヤフロア19bの後部に下部クロスメンバ部材18を一体形成し、更に、上部クロスメンバ部材21の後部縦壁面21aを傾斜させて、フロア傾斜部19aとすることで、構造の簡素化を実現するようにしたものである。
【0057】
【発明の効果】
以上、説明したように本発明によれば、リヤフロアの両側部を、各リヤフレームの内部縦壁面の上端と下端との間で内部縦壁面に結合する第1の結合部と、各リヤフレームの外部縦壁面に延在して、この外部縦壁面に結合する第2の結合部とでリヤフレームに結合させて、このリヤフロアの両側部をリヤフレームに対してリンフォースメントとして機能させるようにしたので、簡単な構造で、車体重量を増加させることがなく、後突に対する抗力を向上することができると共にリヤフレーム下部に懸架される部品から受ける車幅方向への曲げモーメントに対し、高い剛性を得ることができる。
【0058】
更に、リヤフレームをほぼ直線状に延在させることができると共に、リヤフロアをリヤフレームのせん断場として機能させることができるため、後突時の衝撃荷重を車体前方へ導くことで安定した圧潰性を得ることができ、良好な衝撃吸収性を得ることができる。
【図面の簡単な説明】
【図1】第1実施の形態による後部車体構造の要部斜視図
【図2】同、(a)図1のII-II断面図、(b)後側リヤフロアをフラットにした状態の(a)に相当する断面図
【図3】同、クロスメンバの要部斜視図
【図4】同、図1のIV-IV断面図
【図5】同、後突時のリヤフレーム及びリヤフロアの圧潰状態を示す説明図
【図6】同、後突時の内部エネルギとリヤフレーム及びリヤフロアの圧潰変形によるストロークとの関係を示す説明図
【図7】同、後突時のリヤフレーム及びリヤフロアの平均抗力と圧潰変形によるストロークとの関係を示す説明図
【図8】第2実施の形態による後部車体構造の要部斜視図
【図9】同、図8のIX-IX断面図
【図10】同、図8のX-X断面図
【図11】同、下部リヤフレーム部材にクロスメンバを接合した状態の要部斜視図
【図12】同、図11の状態に後側リヤフロアを接合した状態の要部斜視図
【図13】同、図12の状態に前側リヤフロアを接合した状態の要部斜視図
【図14】同、図13の状態に上部クロスメンバ部材を接合した状態の要部斜視図
【図15】同、上部クロスメンバ部材の部分斜視図
【図16】同、図14の状態に上部リヤフレーム部材を接合する状態の要部斜視図
【図17】第3実施の形態による図10に相当する断面図
【図18】第4実施の形態による図10に相当する断面図
【図19】第5実施の形態による図10に相当する断面図
【図20】従来の後部車体構造を示す縦断面図
【図21】同、後突時のリヤフレーム及びリヤフロアの圧潰変形状態を示す説明図
【符号の説明】
11 リヤフレーム
12 下部リヤフレーム部材
12a,13a 内部縦壁面
13 上部リヤフレーム部材
17 下部クロスメンバ閉断面
18 クロスメンバ部材(下部クロスメンバ部材)
19 リヤフロア
19a フロア傾斜部
19b 前側リヤフロア
19c 後側リヤフロア
19d 第2の結合部
19f 第1の結合部
20a 上部閉断面
20b 下部閉断面
22a 上部クロスメンバ閉断面
22b 下部クロスメンバ閉断面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rear vehicle body structure in which a rear frame is divided into upper and lower parts and both sides of a rear floor are sandwiched therebetween.
[0002]
[Prior art]
Generally, as a rear vehicle body structure of this type, as shown in a longitudinal sectional view of FIG. 20, a rear frame 1 extending along the vehicle longitudinal direction is provided on both sides in the vehicle width direction. The rear frame 1 is formed in a U-shape with an opening at the top, and both side portions 3a of the rear floor 3 are joined to the upper side of the rear frame 1 to form a closed cross section inside. The rear floor 3 is formed with a tire recess 3b for storing a spare tire. The tire recess 3b is formed by deep drawing to a relatively large depth D equal to or greater than the width of the spare tire.
[0003]
[Problems to be solved by the invention]
By the way, when the tire recess 3b is deep-drawn in the rear floor 3, the tire recess 3b is returned to the joint with the rear frame 1 so as not to cause cracks in the corner portions 3c and 3D of the tire recess 3b. There is a need to. Therefore, the upper end corner portions 3c and 3d must be formed with a large curvature, and a large dead space is formed in the vertical and horizontal directions of the tire recess 3b.
[0004]
Further, when a dead space is formed in the tire recess 3b, it is necessary to bend the rear frame 1 to the outside in the vehicle width direction accordingly. For this reason, it is difficult to ensure the performance at the time of rear face collision when the rear face is bent at an early stage with the corner portion of the curved portion as a fulcrum.
[0005]
Further, in order to prevent the frame cross-sectional deformation and improve the drag in the closed cross-section of the rear frame 1, there are many cases where the reinforcement 4 is disposed. Not only does the number of parts increase, the manufacturing process becomes complicated, but it also contributes to an increase in weight.
[0006]
When the depth D of the tire recess 3b is large, as shown in FIG. 20, the tire recess 3b is bent in an S shape from both side portions 3a joined to the upper surface of the rear frame 1 to the bottom surface of the tire recess 3b. Thus, the rear floor 3 hardly functions as a shearing surface when a load in the left-right direction is applied to the rear frame due to a collision from the rear of the vehicle body (hereinafter referred to as “rear collision”). That is, since the load in the left-right direction (in-plane load) transmitted from the rear frame 1 to the rear floor 3 and the plate direction of the rear floor 3 are greatly deviated, the in-plane load of the rear floor 3 transmitted from the rear frame 1 is rationalized. Cannot be dispersed. As a result, Euler buckling occurs in the rear frame 1, and it becomes difficult for the rear frame 1 to stably absorb in the axial direction and to sufficiently absorb impact energy.
[0007]
FIG. 21 shows a deformed state of the rear frame 1 and the rear floor 3 at the time of rear collision. When the rear impact is started from the non-rear impact state shown in FIG. 10A, the rear frame 1 is initially crushed, but as the deformation progresses, the rear frame 1 Each part of the curved portion is bent at a fulcrum, and then Euler buckling occurs in the rear frame 1 around the bent portion as shown in FIG. That is, since the impact load is not transmitted to the front of the vehicle body with respect to the impact load from the rear, there is a problem that the rear frame 1 is not stably crushed and the impact energy absorbability of the rear frame 1 is deteriorated.
[0008]
On the other hand, as disclosed in, for example, Japanese Patent Application Laid-Open No. 11-171048, when the rear floor is formed flat and the spare tire is suspended and supported on the lower surface of the rear floor, the rear floor functions as a shearing surface. Since the frames are firmly connected to each other by the rear floor, a load at the time of a rear impact flows along the shear surface of the rear floor and flows forward of the vehicle body, so that stable crushability can be obtained.
[0009]
However, in this prior art, since the both sides of the rear floor are joined at the upper side of the rear frame, the distance between the joint of the rear floor and the rear frame and the lower part of the rear frame becomes long, and therefore the lower part of the rear frame. When a load in the vehicle width direction is applied to the rear frame, the rear frame is likely to swing in the vehicle width direction with the joint with the rear floor as a fulcrum, so the rear frame is subject to external forces from parts suspended under the floor, such as a suspension. It is weak and requires a separate reinforcing structure, which not only complicates the structure but also increases the weight of the vehicle body.
[0010]
In view of the above circumstances, the present invention has a simple structure, and does not increase the weight of the vehicle body. An object of the present invention is to provide a rear body structure of a vehicle that can obtain high rigidity with respect to a bending moment in a vehicle width direction received from a part suspended at a lower part of a rear frame.
[0016]
[Means for Solving the Problems]
  In order to achieve the above object, the present invention provides a rear body of a vehicle having a pair of rear frames having a closed cross-sectional shape extending along the longitudinal direction of the vehicle body on both sides in the vehicle width direction, and a rear floor connecting the rear frames. In structureThe rear floor includes a front rear floor, a rear rear floor positioned below the front rear floor, a floor inclined portion that joins a rear portion of the front rear floor and a front portion of the rear rear floor, and the pair of rear frames A cross member that connects the lower cross member formed between a lower cross member member provided below the floor inclined portion and the rear floor including at least the floor inclined portion; and above the floor inclined portion. And an upper cross member closed section formed by the upper cross member member provided in the vehicle interior and the rear floor including at least the floor inclined portion, and a substantially rectangular cross section is formed by the both cross member closed sections. It is characterized by.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. 1 to 7 show a first embodiment of the present invention. FIG. 1 is a perspective view of a main part of the rear vehicle body structure.
[0020]
Reference numeral 11 in the figure denotes a rear frame, which is disposed on both sides of the rear portion of the vehicle body in the vehicle width direction so as to face each other along the longitudinal direction of the vehicle body. Although not shown, the left rear frame is symmetrical with the right rear frame.
[0021]
The rear frame 11 has a lower rear frame member 12 and an upper rear frame member 13. The lower rear frame member 12 is formed in a cross-sectional groove shape opening upward, and extends substantially linearly from the rear of the vehicle body to the front. A flange portion 12b is formed at the upper end of the internal vertical wall surface 12a of the lower rear frame member 12, and the external vertical wall surface 12c is suspended upward from the internal vertical wall surface 12a.
[0022]
In the present embodiment, in the middle of the flange portion 12b in the longitudinal direction of the vehicle body, a flange inclined portion 12d is provided in the vicinity of a portion where a rear suspension (not shown) is disposed, and the flange inclined portion 12d is sandwiched between the flange inclined portion 12d. The rear stage of the internal vertical wall surface 12a is formed at a lower position than the front stage, and the underfloor parts 15 (see FIG. 4) such as a fuel tank and a rear differential case are disposed between the lower rear frame members 12 of the front stage. A rear wheel apron 16 is joined to the upper part of the outer vertical wall surface 12 c of the lower rear frame member 12.
[0023]
Further, the flange inclined portions 12 d of both lower rear frame members 12 disposed on both sides in the vehicle width direction are connected via a cross member member 18. As shown in FIGS. 3 and 4, the cross member member 18 is formed in a cross-sectional groove shape that opens upward, and a joint allowance 18 a that joins the inner vertical wall surface 12 a and the bottom surface of the lower rear frame member 12 at both ends thereof. Further, flange portions 18d and 18e are formed at the upper ends of the front vertical wall surface 18b and the rear vertical wall surface 18c, and further, at the center portion in the vehicle width direction of the front vertical wall surface 18b as required. A recess 18f for escaping the underfloor component 15 such as a fuel tank or a rear differential is formed.
[0024]
On both ends of the flange portions 18d and 18e of the cross member member 18, step portions 18g corresponding to the plate thickness of the flange portion 12b formed on the lower rear frame member 12 are formed. The flange portion 18e is joined to the lower end portion side of the flange inclined portion 12d of the lower rear frame member 12, and the other flange portion 18d is joined to the upper end portion side of the flange inclined portion 12d.
[0025]
Further, the upper surface between the pair of opposed lower rear frame members 12 is connected by a rear floor 19, and a floor inclined portion 19a is formed at a portion of the rear floor 19 corresponding to the flange inclined portion 12d formed on the lower rear frame member 12. ing. The rear floor 19 has a front rear floor 19b and a rear rear floor 19c across a floor inclined portion 19a. Further, the rear floor 19 is joined to the inner surface of the external vertical wall surface 12c of the lower rear frame member 12 on both sides of the rear floor 19 in the vehicle width direction. The second connecting portion 19d is bent into a flange shape. A tire recess 19e for storing a spare tire (not shown) is formed in the rear rear floor 19c of the rear floor 19.
[0026]
A cross member closed section 17 is formed by the cross member member 18, the rear portion of the front rear floor 19b that closes the upper surface of the cross member member 18, and the floor inclined portion 19a.
[0027]
The upper rear frame member 13 is joined to the upper surfaces of the floor inclined portion 19a and the rear rear floor 19c on both sides in the vehicle width direction. The upper rear frame member 13 is bent to have an L-shaped cross section, and has an internal vertical wall surface 13a continuous with the internal vertical wall surface 12a of the lower rear frame member 12 and an upper surface 13b continuous with the front rear floor 19b. A flange portion 13c corresponding to the flange portion 12b of the lower rear frame member 12 is formed at the lower end of the internal vertical wall surface 13a. Between the flange portions 12b and 13c, the floor inclined portion 19a and the rear rear floor 19c are formed. The upper and lower surfaces are joined, and portions of the floor inclined portion 19a and the rear rear floor 19c that are coupled to the flange portions 12b and 13c constitute a first coupling portion 19f. Further, a flange portion 13 d is formed at the outer end portion of the upper surface 13 b of the upper rear frame member 13 to be joined to the inner surface upper portion of the outer vertical wall surface 12 c of the lower rear frame member 12.
[0028]
As shown in FIG. 2A, the rear frame 11 is formed with an upper closed section 20a on the upper rear frame member 13 side and a lower portion on the lower rear frame member 12 side, with both side portions 19g of the rear floor 19 in the vehicle width direction as a boundary. A closed cross section 20b is formed. Accordingly, both side portions 19 g of the rear floor 19 in the vehicle width direction function as reinforcements of the rear frame 11.
[0029]
In this case, as shown in FIG. 2B, the rear side rear floor 19c may be almost completely flattened. Factors that make it possible to flatten the rear rear floor 19c include the use of narrow tires (emergency tires, etc.) as spare tires, no spare tires, or installation of spare tires on the rear rear floor 19c. In other words, since the rear floor board used as a loading platform is disposed as a flat surface continuous with the front rear floor 19b and the upper surface 13b of the upper rear frame member 13 above the rear rear floor 19c, the rear rear floor 19c If the height of the space formed by the rear floor board can be ensured, the rear rear floor 19c can be flattened while the spare tire is placed while keeping the loading platform height the same.
[0030]
According to such a configuration, the rear frame 11 is divided into the lower rear frame member 12 and the upper rear frame member 13, and the rear rear floor 19c and both side portions 19g of the floor inclined portion 19a are interposed therebetween. Since the upper closed section 20a and the lower closed section 20b are formed with the both side portions 19g as a boundary, the both side portions 19g can function as reinforcements, and the structure can be simplified and The drag can be improved, and the distance between the joint between the rear floor 19 and the rear frame 11 and the lower part of the rear frame 11 can be shortened. When the load in the vehicle width direction acts, it is possible to suppress the side frame of the rear frame 11 from falling sideways. Further, since the rear frame 11 is divided into the lower rear frame member 12 and the upper rear frame member 13, the correspondence of the collision performance can be easily changed by the variation of the upper rear frame member 13.
[0031]
Further, after the first coupling portion 19f and the second coupling portion 19d of the rear floor 19 are joined and fixed to the lower rear frame member 12 disposed on both sides in the vehicle width direction, the upper surface of the both side portions 19g is fixed. Since the upper rear frame member 13 is joined, assembly work using spot welding or the like is facilitated, and stable quality can be obtained.
[0032]
Further, since both side portions 19g of the rear rear floor 19c are interposed in the middle of the rear frame 11, as shown by a one-dot chain line in FIG. Compared with the height D, the depth Ds of the tire recess 19e can be reduced or eliminated while securing a spare tire storage space. Accordingly, the corners 19R and 19R of the tire recess 19e can be bent with a small curvature, or the tire recess 19e can be formed without flattening the rear floor 19, without significantly changing the production equipment. In addition, the formability and productivity of the rear floor 19 can be improved.
[0033]
Further, since the tire recess 19e can be formed with a shallow depth Ds, the rear frame 11 can be joined by moving the rear frame 11 inward in the vehicle body width direction by a width W from the conventional rear frame. As a result, as shown in FIG. 1, it becomes possible to extend the rear frame 11 substantially linearly in the longitudinal direction of the vehicle body and prevent early bending deformation of the rear frame 11 at the time of rear-end collision while reducing the weight. In addition, the shock absorption at the time of rear impact can be improved.
[0034]
Further, a rear rear floor 19c that also functions as a reinforcement for the rear frame 11 is coupled to the rear frame 11 by a first coupling portion 19f and a second coupling portion 19d provided on both side portions 19g thereof, thereby Since the frames 11 can be connected to each other and the depth Ds of the tire recess 19e can be reduced or eliminated, the plate direction of the rear rear floor 19c is transmitted in the left-right direction transmitted from the rear frame 11 as compared with the conventional structure. The load can be close to or the same. Therefore, the rear floor 19 can function as a shearing surface, and the left and right rear frames 11 can be firmly connected to each other by the rear floor 19, so that an impact load applied to the rear frame 11 at the time of a rear collision can be transmitted to the front of the vehicle body. Since the rear frame 11 can be stably crushed, the impact energy absorbability of the rear frame 11 is improved. In addition, the floor functions as a shearing surface even when a load is applied from below the rear frame 11, and the rigidity can be increased. Therefore, the load can be transmitted efficiently and the vibration performance can be improved.
[0035]
Further, since the depth Ds of the tire recess 19e is shallow, the floor inclined portion 19a or the front wall of the tire recess 19e can be moved to the rear of the vehicle body, and the cross member member disposed near the rear suspension mounting portion of the rear frame 11 18, the rear vertical wall surface 18 c can be expanded to the floor inclined portion 19 a or the lower end of the front wall of the tire recess 19 e, so that while the cross member member 18 is connected to the left and right rear frames 11 straight, Since the cross-sectional area can be increased, and accordingly, high rigidity can be obtained, it is possible to prevent the deterioration of the vibration performance and running performance due to the input from the rear suspension.
[0036]
In order to avoid interference with the underfloor parts 15 such as the fuel tank and the rear differential disposed at the lower part of the vehicle body, the front vertical wall surface 18b of the cross member 18 is relatively moved rearward. The recessed portion 18f to be formed can be formed with a minimum size, or the recessed portion 18f itself can be eliminated, and the moldability can be improved while ensuring high rigidity.
[0037]
Furthermore, since the cross member member 18 can be expanded to the front end portion of the rear rear floor 19c, deformation due to crushing at the time of a rear collision can be stopped behind the cross member member 18. Therefore, the parts disposed in front of the cross member member 18 such as the underfloor part 15 such as the fuel tank and the rear differential can be effectively protected from the impact load at the time of the rear impact.
[0038]
Furthermore, since the dead space of the tire recess 19e is eliminated as much as possible, the rear overhang can be reduced and a compact vehicle body can be formed. Further, when the rear floor 19 is flattened, a rear row three-row seat is possible, or when a rear floor boat is disposed on the rear rear floor 19c, an internal space formed between the periphery of the spare tire and the rear floor boat is reduced. It can be effectively used as a component storage pocket.
[0039]
FIG. 5 is an analysis diagram when the rear rear floor 19c is flattened and the load at the time of a rear impact is applied to the rear frame 11 and the rear floor 19 as indicated by arrows with both side portions 19g sandwiched between the rear frames 11. Indicates. 4A shows a state before applying a load, FIG. 4B shows a state in the process of deforming the rear frame 11 and the rear floor 19, and FIG. 3C shows a state at the end of deformation.
[0040]
As shown in the figure, the rear frame 11 can be extended substantially linearly by eliminating or reducing the depth Ds of the tire recess 19e as in the present embodiment, and the rear frame 11 is bent and deformed. The shaft can be crushed without doing so. Furthermore, since the rear floor 11 also functions as a shearing surface against the load transmitted from the rear frame 11, the rear frame 11 can be stably crushed without Euler buckling, and the impact energy of the rear frame 11 can be absorbed. Improves.
[0041]
As a result, as shown by the solid line a in FIGS. 6 and 7, the impact energy at the time of rear impact can be efficiently absorbed in a short stroke, as compared to the conventional structure shown by the broken line (see FIG. 20). Further, the drag force at the time of rear impact can be greatly improved as compared with the conventional structure.
[0042]
8 to 16 show a second embodiment of the present invention. 8 is a perspective view of the main part of the rear vehicle body structure, FIG. 9 is a sectional view taken along line IX-IX in FIG. 8, and FIG. 10 is a sectional view taken along line XX in FIG.
[0043]
As shown in the figure, the rear floor 19 according to the present embodiment is divided into a front rear floor 19b and a rear rear floor 19c integrally having a floor inclined portion 19a, and a front portion 19h of the rear rear floor 19c, The flange portion 19j formed at the lower end of the floor inclined portion 19a is joined and integrated on the flange portion 18e formed at the upper end of the rear vertical wall surface 18c of the cross member member (hereinafter referred to as "lower cross member member") 18. Has been.
[0044]
Further, both side portions 19g of the rear rear floor 19c are formed to bend obliquely upward from a first coupling portion 19f joined to the flange portion 12b of the lower rear frame member 12, and a second coupling formed at the end thereof. The portion 19 d is joined to the upper end portion of the external vertical wall surface 12 c formed on the lower rear frame member 12 together with the flange portion 13 d formed on the upper rear frame member 13. In the rear frame 11, a triangular upper closed cross section 20a is formed on the upper rear frame member 13 side with both side portions 19g as a boundary, and a trapezoid lower closed cross section 20b is formed on the lower rear frame member 12 side. . Therefore, both side portions 19 g formed by bending obliquely above the rear floor 19 function as reinforcements for the rear frame 11.
[0045]
Next, the assembly procedure will be described. First, as shown in FIG. 11, flange inclined portions 12d of a pair of lower rear frame members 12 arranged on both sides in the vehicle width direction are connected by a lower cross member member 18, and then, as shown in FIG. The front portion 19 h of the side rear floor 19 c is joined to the flange portion 18 e of the lower cross member member 18. Further, the first coupling portion 19 f of both side portions 19 g is joined to the flange portion 12 b formed on the lower rear frame member 12. Further, the second connecting portion 19 d is joined to the upper end portion of the external vertical wall surface 12 c of the lower rear frame member 12.
[0046]
Next, as shown in FIG. 13, a flange portion 19j formed at the lower end of a floor inclined portion 19a formed by bending at the rear end of the front rear floor 19b is joined onto the front portion 19h of the rear rear floor 19c. Further, the first connecting portion 19f ′ and the second connecting portion 19d ′ provided on both side portions 19g ′ of the front rear floor 19b and the floor inclined portion 19a are connected to the flange portion 12b of the lower rear frame member 12 and the flange inclined portion. It joins to 12d and the upper end part of external vertical wall surface 12c, respectively.
[0047]
Thereafter, as shown in FIG. 14, the upper cross member member 21 is brought into contact with the floor inclined portion 19a. As shown in FIG. 15, the upper cross member member 21 is bent in an L shape, and is bent downward to form a rear vertical wall surface 21a, an upper surface 21b, and a flange portion 21c formed at the lower end of the rear vertical wall surface 21a. And flange portions 21d formed by bending at both ends of the upper surface in the vehicle width direction. Then, the flange portion 21c is joined to the flange portion 19j formed at the lower end of the floor inclined portion 19a, and the flange portion 21d is joined to the upper end portion of the external vertical wall surface 12c formed on the lower rear frame member 12. The flange portion 21c is cut in front of both end portions 19g formed by bending on the rear rear floor 19c.
[0048]
Further, the front portion 21e (the portion indicated by hatching in FIG. 15) of the upper surface 21b of the upper cross member member 21 is joined to the rear portion of the front rear floor 19b. Further, the flange portion 19k formed at the tip of both side portions 19g is joined to the rear vertical wall surface 21a of the upper cross member member 21. As a result, the lower cross member member 18, the rear portion of the front rear floor 19b, and the upper cross member member 21 form a cross member having a substantially rectangular cross section.
[0049]
And as shown in FIG. 16, the upper rear frame member 13 is joined on the lower rear frame member 12 on both sides 19g. A flange portion 13e that contacts the upper surface 21b and the rear vertical wall surface 21a of the upper cross member member 21 and a joint portion 13f (a portion indicated by hatching in FIG. 16) are formed at the front portion of the upper rear frame member 13. The flange portion 13e and the joint portion 13f are joined to the upper cross member member 21.
[0050]
As a result, as shown in FIG. 10, the upper cross member closed section 22a is formed by the floor inclined portion 19a and the upper cross member member 21, and the lower cross member member 18, the front rear floor 19b, and the floor inclined portion 19a are formed therebelow. Thus, the lower cross member closed section 22b is formed.
[0051]
Thus, according to the present embodiment, the both side portions 19g are formed to bend obliquely upward, and the second connecting portion 19d formed at the end portion thereof is formed into the external vertical wall surface 12c formed in the lower rear frame member 12. Therefore, by joining together with the flange portion 13d of the upper rear frame member 13, the welding work can be reduced by one step, and workability is improved. Further, since both end portions 19g can function as reinforcements that suppress the cross-sectional deformation of the rear frame 11, the rigidity can be improved.
[0052]
On the other hand, since the upper cross member member 21 is added to form the upper cross member closed section 22a and the lower cross member closed section 22b, higher rigidity can be obtained.
[0053]
FIG. 17 is a sectional view corresponding to FIG. 10 according to the third embodiment of the present invention. In the present embodiment, the floor inclined portion 19a is formed by bending over the front vertical wall surface 18b and the rear vertical wall surface 18c of the lower cross member member 18, and the front portion 21e and the flange portion 21c of the upper cross member member 21 are formed. The upper cross-section 20a and the lower closed cross-section 20b, which are joined to the flange portions 18d and 18e of the lower cross member member 18 and formed with the floor inclined portion 19a as a boundary, form a substantially rectangular closed cross-section. is there.
[0054]
According to such a configuration, the cross-sectional deformation of the lower cross member member 18 can be suppressed and a strong structure can be obtained.
[0055]
FIG. 18 is a sectional view corresponding to FIG. 17 according to the fourth embodiment of the present invention. In the present embodiment, the lower cross member member 18 is integrally formed with the front portion 19h of the rear rear floor 19c, and the number of components can be reduced by integrating the lower cross member member 18.
Other configurations and operational effects are the same as those in FIG.
[0056]
FIG. 19 is a sectional view corresponding to FIG. 17 according to the fifth embodiment of the present invention. In the present embodiment, the lower cross member member 18 is integrally formed at the rear portion of the front rear floor 19b, and the rear vertical wall surface 21a of the upper cross member member 21 is inclined to form the floor inclined portion 19a. Simplification is realized.
[0057]
【The invention's effect】
As described above, according to the present invention, the first coupling portion that couples the both side portions of the rear floor to the internal vertical wall surface between the upper end and the lower end of the internal vertical wall surface of each rear frame, Extending to the external vertical wall surface, it is connected to the rear frame with a second connecting part that is connected to the external vertical wall surface, so that both sides of the rear floor function as reinforcement for the rear frame. Therefore, with a simple structure, without increasing the weight of the vehicle body, it is possible to improve the resistance against rear impact, and at the same time, it has high rigidity against the bending moment in the vehicle width direction received from the parts suspended at the bottom of the rear frame Obtainable.
[0058]
In addition, the rear frame can be extended almost linearly, and the rear floor can function as a shearing field for the rear frame. Can be obtained, and good shock absorption can be obtained.
[Brief description of the drawings]
FIG. 1 is a perspective view of a main part of a rear vehicle body structure according to a first embodiment.
2A is a sectional view corresponding to FIG. 1A, taken along line II-II in FIG. 1, and FIG. 2B is a sectional view corresponding to FIG.
FIG. 3 is a perspective view of the main part of the cross member.
4 is a sectional view taken along the line IV-IV in FIG.
FIG. 5 is an explanatory view showing a collapsed state of the rear frame and the rear floor at the time of rear collision.
FIG. 6 is an explanatory diagram showing the relationship between the internal energy at the time of rear collision and the stroke due to the crushing deformation of the rear frame and the rear floor.
FIG. 7 is an explanatory diagram showing the relationship between the average drag of the rear frame and the rear floor and the stroke caused by crushing deformation at the time of rear collision.
FIG. 8 is a perspective view of a main part of a rear vehicle body structure according to a second embodiment.
9 is a cross-sectional view taken along the line IX-IX in FIG.
10 is a sectional view taken along line XX in FIG.
FIG. 11 is a perspective view of the main part in a state where a cross member is joined to the lower rear frame member.
12 is a perspective view of the main part in a state where the rear rear floor is joined to the state shown in FIG.
13 is a perspective view of the main part in a state where the front rear floor is joined to the state shown in FIG.
14 is a perspective view of the main part in a state where the upper cross member member is joined to the state shown in FIG. 13; FIG.
FIG. 15 is a partial perspective view of the upper cross member member.
FIG. 16 is a perspective view of the main part in a state where the upper rear frame member is joined to the state shown in FIG. 14;
17 is a cross-sectional view corresponding to FIG. 10 according to a third embodiment.
18 is a cross-sectional view corresponding to FIG. 10 according to a fourth embodiment.
19 is a cross-sectional view corresponding to FIG. 10 according to a fifth embodiment.
FIG. 20 is a longitudinal sectional view showing a conventional rear body structure.
FIG. 21 is an explanatory view showing a crushing deformation state of the rear frame and the rear floor at the time of rear collision.
[Explanation of symbols]
11 Rear frame
12 Lower rear frame member
12a, 13a Internal vertical wall
13 Upper rear frame member
17 Lower cross member closed section
18 Cross member (lower cross member)
19 Rear floor
19a Inclined floor
19b Front rear floor
19c Rear rear floor
19d 2nd coupling | bond part
19f 1st coupling part
20a Upper closed section
20b Lower closed section
22a Upper cross member closed section
22b Lower cross member closed section

Claims (4)

車幅方向両側に車体前後方向に沿って延在する閉断面形状の一対のリヤフレームと、該両リヤフレーム間を連結するリヤフロアとを有する車両の後部車体構造において、
上記リヤフロアが、前側リヤフロアと該前側リヤフロアより下方に位置する後側リヤフロアと、上記前側リヤフロアの後部と上記後側リヤフロアの前部とを接合するフロア傾斜部とを有し、
上記一対のリヤフレーム間を連結するクロスメンバが、上記フロア傾斜部の下方に設けられた下部クロスメンバ部材と少なくとも上記フロア傾斜部を含む上記リヤフロアとで形成される下部クロスメンバ閉断面と、上記フロア傾斜部の上方の車室内に設けられた上部クロスメンバ部材と少なくとも上記フロア傾斜部を含む上記リヤフロアとで形成される上部クロスメンバ閉断面とを有すると共に、上記両クロスメンバ閉断面で略矩形断面を形成したことを特徴とする車両の後部車体構造。
In a rear body structure of a vehicle having a pair of rear frames having a closed cross-sectional shape extending along the longitudinal direction of the vehicle body on both sides in the vehicle width direction, and a rear floor connecting the rear frames.
The rear floor has a front rear floor, a rear rear floor positioned below the front rear floor, and a floor inclined portion joining the rear portion of the front rear floor and the front portion of the rear rear floor;
A cross member connecting the pair of rear frames, a lower cross member closed section formed by a lower cross member member provided below the floor inclined portion and the rear floor including at least the floor inclined portion; An upper cross member member provided in a passenger compartment above the floor inclined portion and an upper cross member closed cross section formed by at least the rear floor including the floor inclined portion, and substantially rectangular in both the cross member closed cross sections. rear vehicle body structure of the vehicles you characterized in that the formation of the cross-section.
上記リヤフロアの両側部に、上記各リヤフレームの内部縦壁面の上端と下端との間で上記内部縦壁面に結合する第1の結合部と、上記各リヤフレームの外部縦壁面に延在して該外部縦壁面に結合する第2の結合部とが設けられていることを特徴とする請求項1記載の車両の後部車体構造。 A first coupling portion that is coupled to the internal vertical wall surface between the upper end and the lower end of the internal vertical wall surface of each rear frame, and extends to the external vertical wall surface of each rear frame, on both sides of the rear floor. The rear vehicle body structure according to claim 1, further comprising a second coupling portion coupled to the external vertical wall surface . 上記リヤフレームが、上記リヤフロアの両側部を境界に上記リヤフロア上方に設けられた上部リヤフレーム部材を有する上部閉断面と、上記リヤフロア下方に設けられた下部リヤフレーム部材を有する下部閉断面とで形成されていることを特徴とする請求項記載の車両の後部車体構造。 The rear frame is formed of an upper closed cross section having an upper rear frame member provided above the rear floor with both sides of the rear floor as a boundary, and a lower closed cross section having a lower rear frame member provided below the rear floor. rear vehicle body structure of a vehicle according to claim 1, characterized in that it is. 上記後側リヤフロアがフラットに形成されていることを特徴とする請求項記載の車両の後部車体構造。2. The rear body structure of a vehicle according to claim 1 , wherein the rear rear floor is formed flat.
JP2001262338A 2001-08-30 2001-08-30 Rear body structure of the vehicle Expired - Fee Related JP4754120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001262338A JP4754120B2 (en) 2001-08-30 2001-08-30 Rear body structure of the vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001262338A JP4754120B2 (en) 2001-08-30 2001-08-30 Rear body structure of the vehicle

Publications (2)

Publication Number Publication Date
JP2003072595A JP2003072595A (en) 2003-03-12
JP4754120B2 true JP4754120B2 (en) 2011-08-24

Family

ID=19089250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001262338A Expired - Fee Related JP4754120B2 (en) 2001-08-30 2001-08-30 Rear body structure of the vehicle

Country Status (1)

Country Link
JP (1) JP4754120B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4923508B2 (en) * 2005-10-14 2012-04-25 日産自動車株式会社 Car body rear structure
JP2007190935A (en) * 2006-01-17 2007-08-02 Toyota Auto Body Co Ltd Vehicle body rear part structure
JP6123506B2 (en) * 2013-06-10 2017-05-10 スズキ株式会社 Vehicle rear structure
WO2015072405A1 (en) * 2013-11-14 2015-05-21 本田技研工業株式会社 Vehicle body structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5937420Y2 (en) * 1979-06-26 1984-10-17 マツダ株式会社 Automobile rear body structure
JPS59137261A (en) * 1983-01-24 1984-08-07 Mazda Motor Corp Rear body construction of car

Also Published As

Publication number Publication date
JP2003072595A (en) 2003-03-12

Similar Documents

Publication Publication Date Title
US7500714B2 (en) Vehicle body floor structure
JP4272626B2 (en) Lower body structure
US7832795B2 (en) Vehicle front structure
JPH0750301Y2 (en) Front body structure of automobile
JP6252617B2 (en) Vehicle side body structure
JPH0872742A (en) Car body structure of center pillar bottom part of vehicle
US20120119542A1 (en) Car body with reinforcing structure
JP2019123343A (en) Lower vehicle body structure
JP5053406B2 (en) Auto body structure
JP4754120B2 (en) Rear body structure of the vehicle
JP6722144B2 (en) Vehicle cooling device mounting structure
JP2011194945A (en) Coupling part structure of vehicle side
JP4733762B2 (en) Body side structure
JP5144708B2 (en) Car floor structure
JP2006224702A (en) Jacking point stiffener
KR20120045894A (en) Sub-frame of vehicle
JP4341558B2 (en) Body structure
JP4529569B2 (en) Car body rear structure
JP4245895B2 (en) Car body side structure
JP3362572B2 (en) Car side body structure
JP5568825B2 (en) Car cowl structure
JP6221164B2 (en) Body structure
JP2009113568A (en) Front part structure for automobile
JP4083078B2 (en) Auto body front structure
JP6614702B2 (en) Vehicle rear body structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4754120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees