JP4753977B2 - Alignment mechanism - Google Patents

Alignment mechanism Download PDF

Info

Publication number
JP4753977B2
JP4753977B2 JP2008174323A JP2008174323A JP4753977B2 JP 4753977 B2 JP4753977 B2 JP 4753977B2 JP 2008174323 A JP2008174323 A JP 2008174323A JP 2008174323 A JP2008174323 A JP 2008174323A JP 4753977 B2 JP4753977 B2 JP 4753977B2
Authority
JP
Japan
Prior art keywords
curved surface
concave curved
bearing member
cap
aligning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008174323A
Other languages
Japanese (ja)
Other versions
JP2009052737A (en
Inventor
渉 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOK Bearing Co Ltd
Original Assignee
TOK Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOK Bearing Co Ltd filed Critical TOK Bearing Co Ltd
Priority to JP2008174323A priority Critical patent/JP4753977B2/en
Publication of JP2009052737A publication Critical patent/JP2009052737A/en
Application granted granted Critical
Publication of JP4753977B2 publication Critical patent/JP4753977B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/02Sliding-contact bearings
    • F16C23/04Sliding-contact bearings self-adjusting
    • F16C23/043Sliding-contact bearings self-adjusting with spherical surfaces, e.g. spherical plain bearings
    • F16C23/045Sliding-contact bearings self-adjusting with spherical surfaces, e.g. spherical plain bearings for radial load mainly, e.g. radial spherical plain bearings
    • F16C23/046Sliding-contact bearings self-adjusting with spherical surfaces, e.g. spherical plain bearings for radial load mainly, e.g. radial spherical plain bearings with split outer rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/082Ball or roller bearings self-adjusting by means of at least one substantially spherical surface
    • F16C23/084Ball or roller bearings self-adjusting by means of at least one substantially spherical surface sliding on a complementary spherical surface

Description

この発明は、軸受部材に支持される軸部材の自動調心を行なうための調心機構に関する。   The present invention relates to an alignment mechanism for automatically aligning a shaft member supported by a bearing member.

従来からこの種の調心機構として、例えば、特許文献1,2に示すものが知られている。この調心機構は、外周に凸曲面を形成した金属製の軸受部材と、内周に凹曲面を形成した金属製の調心部材とを嵌め合わせ、それら両凸及び凹曲面が直接摺動して、軸受部材と調心部材とが相対的に回動可能な構成にしている。
そして、軸部材を調心する際の調心動作時には、相対的に回動する軸受部材と調心部材との摺動面における摩擦力が摺動抵抗となり、調心動作の起動トルクとして作用する。
Conventionally, as this type of alignment mechanism, for example, those shown in Patent Documents 1 and 2 are known. This aligning mechanism fits a metal bearing member with a convex curved surface on the outer periphery and a metal aligning member with a concave curved surface on the inner periphery, and the both convex and concave curved surfaces slide directly. Thus, the bearing member and the alignment member are configured to be relatively rotatable.
During the aligning operation when aligning the shaft member, the frictional force on the sliding surface between the relatively rotating bearing member and the aligning member becomes a sliding resistance, which acts as a starting torque for the aligning operation. .

上記のようにした従来の調心機構は、軸受部材と調心部材とが相対的に回動する際に、上記凹曲面と凸曲面とが摺動するようにしているが、上記凹曲面と凸曲面とが摺動するといっても、両曲面同士がぴったり一致していたのでは、相対回動はできないので、厳密には、両曲面間には僅かな隙間が存在する。この隙間が存在する従来の調心機構について、図14を用いて説明する。   In the conventional aligning mechanism as described above, the concave curved surface and the convex curved surface slide when the bearing member and the aligning member relatively rotate. Even if the convex curved surface slides, if the two curved surfaces are exactly coincident with each other, the relative rotation is not possible. Strictly speaking, there is a slight gap between the two curved surfaces. A conventional alignment mechanism in which this gap exists will be described with reference to FIG.

図14は、上記した従来の調心機構において、軸部材1の軸心に直交する面での断面図である。すなわち、この調心機構は、軸部材1を軸受部材2で回転自在に支持するとともに、この軸受部材2の外側に調心部材3を嵌め合わせている。また、調心部材3の内周面を凹曲面3aとし、軸受部材2の外周面を凸曲面2aとしている。但し、これら凹曲面3a及び凸曲面2aは、それぞれ軸部材1の軸方向、すなわち、図面の紙面に直交する方向に湾曲しているので、図14にはその湾曲は表われていない。   FIG. 14 is a cross-sectional view taken along a plane orthogonal to the axis of the shaft member 1 in the conventional alignment mechanism described above. That is, this alignment mechanism supports the shaft member 1 rotatably with the bearing member 2 and fits the alignment member 3 to the outside of the bearing member 2. The inner peripheral surface of the aligning member 3 is a concave curved surface 3a, and the outer peripheral surface of the bearing member 2 is a convex curved surface 2a. However, since the concave curved surface 3a and the convex curved surface 2a are respectively curved in the axial direction of the shaft member 1, that is, in a direction orthogonal to the paper surface of the drawing, the curvature is not shown in FIG.

さらに、図14では、軸部材1に図の矢印方向に荷重Fがかかり、軸受部材2と調心部材3との間の微少隙間に偏りが生じた状態を表わしている。このように、軸部材1に荷重Fが作用すると、軸受部材2と調心部材3との間の微少隙間は偏り、軸受部材2は、その下側の僅かな接触部分Aのみが調心部材3に接触し、その他の部分は調心部材3と接触しない状態となる。   Further, FIG. 14 shows a state in which a load F is applied to the shaft member 1 in the direction of the arrow in the figure, and the minute gap between the bearing member 2 and the alignment member 3 is biased. Thus, when the load F acts on the shaft member 1, the minute gap between the bearing member 2 and the alignment member 3 is biased, and the bearing member 2 has only a slight contact portion A below the alignment member. 3, and the other parts are not in contact with the aligning member 3.

図14では、軸受部材2と調心部材3との間の隙間を極端に大きく示しているが、実際には、軸受部材2外周と調心部材3の内周との間に、このように大きな隙間ができるわけではなく、全体に僅かな隙間である。しかし、軸部材1に荷重が作用していない状態で、軸受部材2の外周に均一に微小隙間があったとしても、その隙間が荷重Fによって偏って形成された場合には、軸部材1の荷重方向の接触部分Aでは隙間ゼロとなり、その反対側では、隙間が大きくなって、調心部材3と軸受部材2とはほとんど接触せず、摺動抵抗が発生しない状態となる。   In FIG. 14, the gap between the bearing member 2 and the aligning member 3 is shown to be extremely large, but in actuality, in this way, between the outer periphery of the bearing member 2 and the inner periphery of the aligning member 3. A large gap is not created, but a small gap as a whole. However, even if a minute gap is uniformly formed on the outer periphery of the bearing member 2 in a state where no load is applied to the shaft member 1, if the gap is formed unevenly by the load F, the shaft member 1 In the contact portion A in the load direction, the gap is zero, and on the opposite side, the gap is large, and the alignment member 3 and the bearing member 2 are hardly in contact with each other, and no sliding resistance is generated.

このような状態で、この調心機構が調心動作し、軸受部材2と調心部材3とが相対的に回動すれば、上記部分Aにおける両部材2,3の摺動面での摩擦力が回動の抵抗力となって、調心動作時の起動トルクとして作用する。
つまり、軸受部材2と調心部材3との間の摺動抵抗が調心動作の起動トルクとなるといっても、実際には、荷重方向に応じた、非常に狭い両部材の接触部分のみでの摺動抵抗が起動トルクを支配していることになる。
In this state, if the aligning mechanism performs aligning operation and the bearing member 2 and the aligning member 3 rotate relative to each other, the friction on the sliding surfaces of the members 2 and 3 in the portion A will be described. The force becomes a resistance force of the rotation, and acts as a starting torque during the alignment operation.
That is, even if the sliding resistance between the bearing member 2 and the aligning member 3 becomes the starting torque for the aligning operation, actually, only the contact portion between the two very narrow members corresponding to the load direction is used. This means that the sliding resistance dominates the starting torque.

一方、環境温度の変化によって、各部材が伸縮し、軸受部材2や調心部材3の寸法が変化した場合には、上記軸受部材2と調心部材3との間の微小隙間が大きくなったり、小さくなったりすることがある。
例えば、環境温度変化によって微小隙間が小さくなった場合、軸受部材2が調心部材3に強く押し付けられる部分Aの接触範囲が大きくなり、その分、摺動抵抗が大きくなる。つまり、調心時の起動トルクが大きくなる。
反対に、微小隙間が大きくなった場合には、軸受部材2と調心部材3との接触部分が小さくなり、摺動抵抗が小さくなり、その結果、調心時の起動トルクが小さくなる。
特開2002−310139号公報 特開2006−125460号公報
On the other hand, when each member expands and contracts due to a change in environmental temperature and the dimensions of the bearing member 2 and the aligning member 3 change, a minute gap between the bearing member 2 and the aligning member 3 becomes large. , May get smaller.
For example, when the minute gap becomes small due to environmental temperature change, the contact range of the portion A where the bearing member 2 is strongly pressed against the aligning member 3 increases, and the sliding resistance increases accordingly. That is, the starting torque at the time of alignment increases.
On the contrary, when the minute gap becomes large, the contact portion between the bearing member 2 and the aligning member 3 becomes small, and the sliding resistance becomes small. As a result, the starting torque at the time of aligning becomes small.
JP 2002-310139 A JP 2006-125460 A

このように、従来の調心機構では、環境温度変化によって調心時の起動トルクが大きく変化してしまうという問題があった。
この発明の課題は、環境温度が変化しても、起動トルクの変動が少ない調心機構を実現することである。
As described above, the conventional aligning mechanism has a problem that the starting torque at the time of aligning greatly changes due to the environmental temperature change.
An object of the present invention is to realize a self-aligning mechanism in which the variation in the starting torque is small even when the environmental temperature changes.

第1の発明は、軸受部材の外周側に調心部材を嵌め合わせ、軸受部材と調心部材とが凸曲面及び凹曲面を介して相対的に回動することによって調心機能を発揮する調心機構であって、上記軸受部材または調心部材のうちいずれか一方を、本体とキャップとで構成するとともに、上記本体であって、上記軸受部材または調心部材のうちいずれか他方の部材の嵌め合わせ面に対向する面には、軸受部材で支持される軸部材の軸方向に湾曲した第1凹曲面と、この第1凹曲面に隣接し、第1凹曲面の最大径部よりも大径にした挿入穴とを形成し、上記挿入穴の開口側には位置決め用段部を形成するとともに、上記挿入穴と第1凹曲面との境界部分に挟持用段部を備え、上記キャップには、その外側に形成したフランジ部と、当該キャップの先端側に形成した環状凸部と、上記第1凹曲面に連続し、上記第1凹曲面と曲率を同じにした第2凹曲面とを備え、上記第1,2の凹曲面の境界部分であって上記環状凸部と挟持用段部との対向部間に、ゴム製のOリングを組み込む弾性部材保持部を備える一方、上記軸受部材または調心部材のうち他方の部材における嵌め合わせ面には、上記第1及び第2凹曲面と曲率をほぼ同じにした凸曲面を形成し、上記挟持用段部に上記Oリングを突き当て、キャップの環状凸部を挿入穴に挿入するとともに、上記Oリングと上記環状凸部の先端との間に隙間を設けた状態でフランジ部を位置決め用段部に対向配置させる一方、上記本体とキャップとの対向面に溶着部を設け、このキャップに超音波振動を与えることによって溶着部が溶融するとともに、その溶融にともなってキャップを本体の内部に進入させ、フランジ部を位置決め用段部に当接させて、環状凸部と挟持用段部との間に上記Oリングを挟持させ、上記凸曲面と凹曲面との間に弾性力を保持した上記Oリングを介在させた点に特徴を有する。 The first invention, the outer peripheral side of the bearing member so Awa fitted with a centering member, exert centering function by the shaft receiving member and the aligning member is relatively rotated via the convex surface and concave surface An alignment mechanism, wherein either one of the bearing member or the alignment member is constituted by a main body and a cap, and the main body is the other of the bearing member or the alignment member. On the surface facing the fitting surface of the member, the first concave curved surface curved in the axial direction of the shaft member supported by the bearing member, and adjacent to the first concave curved surface, the maximum diameter portion of the first concave curved surface And a positioning step on the opening side of the insertion hole, and a clamping step at the boundary between the insertion hole and the first concave curved surface. The cap has a flange formed on the outside and a tip of the cap. An annular convex portion, and a second concave curved surface that is continuous with the first concave curved surface and has the same curvature as the first concave curved surface, and is a boundary portion between the first and second concave curved surfaces, While provided with an elastic member holding part that incorporates a rubber O-ring between the opposed parts of the annular convex part and the clamping step part, the fitting surface of the other member of the bearing member or the aligning member has the above-mentioned A convex curved surface having substantially the same curvature as the first and second concave curved surfaces is formed, the O-ring is abutted against the clamping step, the annular convex portion of the cap is inserted into the insertion hole, and the O-ring While the flange portion is disposed opposite the positioning step portion with a gap between the tip of the annular convex portion, a welding portion is provided on the facing surface between the main body and the cap, and ultrasonic vibration is applied to the cap. As the welded part melts, Along with melting, the cap enters the inside of the main body, the flange portion is brought into contact with the positioning step portion, the O-ring is sandwiched between the annular convex portion and the clamping step portion, and the convex curved surface and the concave portion are It is characterized in that the O-ring holding elastic force is interposed between the curved surface .

なお、上記ゴムには、天然ゴムのほか、樹脂ゴム、エラストマーなどを含む The rubber includes natural rubber, resin rubber, elastomer and the like .

なお、上記第1凹曲面と第2凹曲面とが「曲率を同じにした」とは、第1凹曲面と第2凹曲面とが滑らかに連続し、一つのカーブとみなせる状態にすることである。
また、第1及び第2凹曲面の曲率と凸曲面の曲率とを「ほぼ同じにした」とは、上記凹曲面と凸曲面とが完全に一致するのではなく、両部材間に弾性部材を介在させるとともに両部材を相対回動可能にする僅かな隙間を保持した状態で、凹曲面の曲率と凸曲面の曲率とが僅かに違う状態のことである。
In addition, the said 1st concave curved surface and the 2nd concave curved surface are "making the curvature the same" means that the 1st concave curved surface and the 2nd concave curved surface are made into the state which can be regarded as one curve smoothly. is there.
In addition, the phrase “the curvatures of the first and second concave curved surfaces and the curvature of the convex curved surfaces are made substantially the same” means that the concave curved surface and the convex curved surface do not completely coincide with each other, but an elastic member is provided between the two members. It is a state in which the curvature of the concave curved surface and the curvature of the convex curved surface are slightly different in a state in which a slight gap that allows both members to rotate relative to each other is held.

の発明では、調心部材と軸受部材の嵌め合わせ面間に弾性力を発揮する弾性部材を介在させているので、たとえ、軸受部材と調心部材との間の微小隙間が変化したとしても、弾性部材の弾性力の範囲内で、当該弾性部材が、凸曲面及び凹曲面に接触することになる。従って、環境温度が変化して、凸曲面と凹曲面との間の隙間が変化したとしても、調心動作時の起動トルクは、弾性部材の弾性力で決まることになる。このように調心時の起動トルクは、凸曲面と凹曲面との間の隙間の大きさではなく、弾性部材の弾性力に起因する摩擦力で決まるので、たとえ環境温度が変化しても、調心動作の起動トルクの変動は少ない。 In the first invention, since an elastic member that exerts an elastic force is interposed between the fitting surfaces of the aligning member and the bearing member, it is assumed that the minute gap between the bearing member and the aligning member has changed. However, the elastic member comes into contact with the convex curved surface and the concave curved surface within the range of the elastic force of the elastic member. Therefore, even if the environmental temperature changes and the gap between the convex curved surface and the concave curved surface changes, the starting torque during the alignment operation is determined by the elastic force of the elastic member. Thus, the starting torque at the time of alignment is determined not by the size of the gap between the convex curved surface and the concave curved surface but by the frictional force resulting from the elastic force of the elastic member, so even if the environmental temperature changes, There is little fluctuation in the starting torque of the aligning operation.

また、凹曲面を形成する部材を本体とキャップとの2部材で構成しているので、弾性部材を組み込みやすくなる。しかも、本体にキャップを取り付ける前に、他方の部材の凸曲面を凹曲面内に嵌め合わせることができるので、調心部材に軸受部材を嵌め合わせる際に、一方の部材を他方の部材に強引に押し込むようなことをする必要がなく、嵌め合わせ作業が容易になる。 Moreover , since the member which forms a concave curved surface is comprised by two members, a main body and a cap, it becomes easy to incorporate an elastic member. In addition, since the convex curved surface of the other member can be fitted into the concave curved surface before the cap is attached to the main body, when fitting the bearing member to the aligning member, one member is forced to the other member. There is no need to push in, and the fitting operation becomes easy.

図1、図2に、この発明の第1実施形態を示す。
第1実施形態の調心機構は、図1に示すように、軸部材1を回転自在に支持する軸受部材2と、その外周側に嵌めた調心部材6とからなる。
上記軸受部材2は、従来の調心部材に用いるものと同様に、その外周に、軸部材1の軸方向に湾曲した凸曲面2aを備えている。この凸曲面2aが、この発明の軸受部材側の嵌め合わせ面となる。
なお、図1に示す軸受部材2の凸曲面2aは、完全な円弧ではなく、上記凸曲面の中央に、僅かな範囲で平坦部を形成しているが、その理由は次の通りである。
1 and 2 show a first embodiment of the present invention.
The alignment mechanism of 1st Embodiment consists of the bearing member 2 which supports the shaft member 1 rotatably, and the alignment member 6 fitted to the outer peripheral side, as shown in FIG.
The bearing member 2 is provided with a convex curved surface 2a that is curved in the axial direction of the shaft member 1 on the outer periphery thereof in the same manner as that used for a conventional aligning member. The convex curved surface 2a becomes a fitting surface on the bearing member side of the present invention.
In addition, the convex curved surface 2a of the bearing member 2 shown in FIG. 1 is not a complete circular arc, but forms a flat portion in a slight range at the center of the convex curved surface for the following reason.

すなわち、上記凸曲面2aを備えた軸受部材2を型形成する際には、凸曲面2aの中央付近で、軸方向に分割される2つの型を用いる。このような型を用いて軸受部材2を形成した場合、型の接合部分にバリがでてしまう。このようなバリは、成形後に研磨によって取り除かなければならない。ところが、図1のように、中央に平坦部を形成するようにして、この平坦部と円弧との境界を、型の接合部とした場合には、バリをほとんど無くすことができ、バリ取り工程を省略することができる。
但し、調心部材6に対して軸受部材2をよりスムーズに回動させるためには、凸曲面2aは完全な円弧の方が好ましいので、上記平坦部は、この発明においては必ずしも必須の構成要素とはならない。
That is, when forming the bearing member 2 having the convex curved surface 2a, two molds divided in the axial direction are used near the center of the convex curved surface 2a. When the bearing member 2 is formed using such a mold, burrs are generated at the joint portion of the mold. Such burrs must be removed by polishing after molding. However, as shown in FIG. 1, when a flat part is formed at the center and the boundary between the flat part and the arc is a joint part of the mold, burrs can be almost eliminated, and the deburring process Can be omitted.
However, in order to make the bearing member 2 rotate more smoothly with respect to the aligning member 6, the convex curved surface 2a is preferably a complete arc. Therefore, the flat portion is not necessarily an essential component in the present invention. It will not be.

一方、第1実施形態の調心部材6は、図1に示すように本体4とキャップ5とを組み合わせて構成している。
上記本体4は、軸受部材2の凸曲面2aを嵌め合わせる第1凹曲面4aと、この第1凹曲面4aに隣接する挿入穴4bとを形成している。この挿入穴4bは、図1に示すように、第1凹曲面4aの最大径部よりも大径にするとともに、挿入穴4bと第1凹曲面4aとの境界部分に挟持用段部4cが形成されるようにしている。このようにして形成された挟持用段部4cは、図1に示すように、軸受部材2と調心部材6とを組み合わせたとき、軸受部材2の凸曲面2aの最大径部となる頂部分に対応する関係にしている。
On the other hand, the alignment member 6 of the first embodiment is configured by combining the main body 4 and the cap 5 as shown in FIG.
The main body 4 forms a first concave curved surface 4a for fitting the convex curved surface 2a of the bearing member 2 and an insertion hole 4b adjacent to the first concave curved surface 4a. As shown in FIG. 1, the insertion hole 4b has a larger diameter than the maximum diameter portion of the first concave curved surface 4a, and a clamping step 4c is formed at the boundary between the insertion hole 4b and the first concave curved surface 4a. To be formed. As shown in FIG. 1, the clamping step 4 c formed in this way is a top portion that becomes the maximum diameter portion of the convex curved surface 2 a of the bearing member 2 when the bearing member 2 and the alignment member 6 are combined. Have a corresponding relationship.

また、上記挿入穴4bは、その内周面を、上記軸方向に対しては同一の内径を保つ凹曲面とするとともに、この挿入穴4bの開口側には、位置決め用段部4dを形成している。
上記本体4に組み込むキャップ5は、その外側にフランジ部5cを形成するとともに、その先端側には環状凸部5bを形成し、この環状凸部5bを上記挿入穴4bに挿入するようにしている。そして、上記フランジ部5cが位置決め用段部4dに当接したとき、環状凸部5bの先端と、本体4の挟持用段部4cとが所定の間隔を保持して対向する関係にし、この対向間隔を弾性部材保持部8としている。このようにして形成された弾性部材保持部8は、図1からも明らかなように、軸受部材2の凸曲面2aの中央に位置する関係にしている。
The insertion hole 4b has a concave curved surface whose inner peripheral surface maintains the same inner diameter with respect to the axial direction, and a positioning step 4d is formed on the opening side of the insertion hole 4b. ing.
The cap 5 incorporated in the main body 4 has a flange portion 5c formed on the outside thereof, and an annular convex portion 5b formed on the tip side thereof, and the annular convex portion 5b is inserted into the insertion hole 4b. . When the flange portion 5c comes into contact with the positioning step portion 4d, the tip of the annular convex portion 5b and the sandwiching step portion 4c of the main body 4 are in a relationship of facing each other while maintaining a predetermined distance. The interval is the elastic member holding portion 8. As is apparent from FIG. 1, the elastic member holding portion 8 formed in this way is in a relationship positioned at the center of the convex curved surface 2 a of the bearing member 2.

また、上記キャップ5の内側には、第2凹曲面5aを形成しているが、上記のようにキャップ5の環状凸部5bを挿入穴4bに挿入したとき、上記第2凹曲面5aは、弾性部材保持部8を挟んで第1凹曲面4aと連続する曲面を構成するもので、これら第1凹曲面4a及び第2凹曲面5aはそれらの曲率を同じにしている。しかも、このようにして形成された第1,第2凹曲面4a,5aが連続する曲面は、軸受部材2の凸曲面2aともその曲率をほぼ同じにしている。   Further, the second concave curved surface 5a is formed inside the cap 5, but when the annular convex portion 5b of the cap 5 is inserted into the insertion hole 4b as described above, the second concave curved surface 5a is The first concave curved surface 4a and the second concave curved surface 5a have the same curvature. The curved surface is continuous with the first concave curved surface 4a with the elastic member holding portion 8 interposed therebetween. In addition, the curved surface in which the first and second concave curved surfaces 4 a and 5 a formed in this way have the same curvature as that of the convex curved surface 2 a of the bearing member 2.

従って、上記第1,2凹曲面4a,5aが連続する湾曲部分に、軸受部材2の凸曲面2aを嵌め合わせることによって、軸受部材2は、その凸曲面2aに沿って回動できることになる。
また、キャップ5を上記挿入穴4bに挿入することによって、弾性部材保持部8が形成されること前記の通りであるが、この弾性部材保持部8には、この発明の弾性部材であるOリング7をはめ込み、このOリング7の弾性力を上記凸曲面2aに作用させている。
Therefore, by fitting the convex curved surface 2a of the bearing member 2 to the curved portion where the first and second concave curved surfaces 4a and 5a are continuous, the bearing member 2 can be rotated along the convex curved surface 2a.
Further, as described above, the elastic member holding portion 8 is formed by inserting the cap 5 into the insertion hole 4b. The elastic member holding portion 8 includes an O-ring which is an elastic member of the present invention. 7 is inserted, and the elastic force of the O-ring 7 is applied to the convex curved surface 2a.

以下に、上記本体4とキャップ5とで構成される調心部材6内に、軸受部材2を嵌め合わせ、調心機構を組み付ける工程を説明する。
まず、キャップ5を取り付けていない状態を保った挿入穴4b側から、この発明の弾性部材であるOリング7を、本体4の挟持用段部4cに突き当てるようにして嵌める。
次に、上記Oリング7を、その内周側から多少押し広げるようにして軸受部材2を挿入し、本体4の第1凹曲面4aと軸受部材2の凸曲面2aとを対向させる。
Below, the process of fitting the bearing member 2 in the aligning member 6 composed of the main body 4 and the cap 5 and assembling the aligning mechanism will be described.
First, an O-ring 7 which is an elastic member of the present invention is fitted so as to abut on the clamping step 4c of the main body 4 from the insertion hole 4b side where the cap 5 is not attached.
Next, the bearing member 2 is inserted so that the O-ring 7 is slightly expanded from the inner peripheral side thereof, and the first concave curved surface 4 a of the main body 4 and the convex curved surface 2 a of the bearing member 2 are made to face each other.

さらに、キャップ5の環状凸部5bを挿入穴4bに挿入して、フランジ部5cを位置決め用段部4dに対向配置させる。この段階では、上記挟持用段部4cに突き当てたOリング7とキャップ5の環状凸部5bの先端との間には隙間がある。
上記の状態でキャップ5に超音波振動装置を当てて超音波振動を与えると、溶着部9が順次溶融してキャップ5が本体4の内部に進行する。溶融とともにキャップ5が進行して、フランジ部5cが位置決め用段部4dに当接した状態となった時点で、上記超音波振動を与えるのを止める。これによって、上記キャップ5は本体4に溶着されることになり、キャップ5の環状凸部5bの先端と本体4の挟持用段部4cとの間にOリング7が挟持され、弾性部材保持部8が形成される。
Further, the annular convex portion 5b of the cap 5 is inserted into the insertion hole 4b, and the flange portion 5c is disposed opposite to the positioning step portion 4d. At this stage, there is a gap between the O-ring 7 butted against the clamping step 4c and the tip of the annular convex portion 5b of the cap 5.
When an ultrasonic vibration device is applied to the cap 5 in the above state to apply ultrasonic vibration, the welded portions 9 are sequentially melted and the cap 5 advances into the main body 4. When the cap 5 advances with melting and the flange portion 5c comes into contact with the positioning step portion 4d, the application of the ultrasonic vibration is stopped. As a result, the cap 5 is welded to the main body 4, and the O-ring 7 is sandwiched between the tip of the annular convex portion 5b of the cap 5 and the clamping step 4c of the main body 4, and the elastic member holding portion. 8 is formed.

上記組み付け工程では、調心部材6の本体4に、Oリング7を挿入してから、軸受部材2を挿入するようにしているが、上記本体4に軸受部材2を嵌め込んでから、本体4と軸受部材2との間にOリング7をはめ込むようにしてもよい。要するに、キャップ5を嵌めていない本体4に、弾性部材であるOリング7と軸受部材2とを組み付けるようにすれば、調心機構の組み付けが容易にできる。   In the assembling step, the O-ring 7 is inserted into the main body 4 of the aligning member 6 and then the bearing member 2 is inserted. However, after the bearing member 2 is fitted into the main body 4, the main body 4 is inserted. An O-ring 7 may be fitted between the bearing member 2 and the bearing member 2. In short, if the O-ring 7 and the bearing member 2 that are elastic members are assembled to the main body 4 in which the cap 5 is not fitted, the alignment mechanism can be easily assembled.

この第1実施形態の調心機構の作用を説明する。
この調心機構において、軸部材1に荷重Fが作用した場合を、図1、図2の断面図に示している。
この第1実施形態の調心機構でも、軸部材1に加重Fが作用すれば、軸部材1とともに軸受部材2が、調心部材6に対し、荷重方向へ移動する。従って、図1において、軸受部材2の上側の凸曲面2aでは、調心部材6の凹曲面4a,5aとの間に隙間ができるが、Oリング7は、上記凸曲面2aに接触している。
The operation of the alignment mechanism of the first embodiment will be described.
In this alignment mechanism, the case where a load F acts on the shaft member 1 is shown in the cross-sectional views of FIGS.
Even in the alignment mechanism of the first embodiment, when the load F acts on the shaft member 1, the bearing member 2 moves together with the shaft member 1 in the load direction with respect to the alignment member 6. Accordingly, in FIG. 1, a gap is formed between the convex curved surface 2a on the upper side of the bearing member 2 and the concave curved surfaces 4a and 5a of the aligning member 6, but the O-ring 7 is in contact with the convex curved surface 2a. .

一方、軸受部材2の下側では、Oリング7が、上記弾性部材保持部8内で圧縮されているが、Oリング7は、軸受部材2の凸曲面2aに接触している。そして、図2は、上記Oリング7の中心を通る断面図である。この図2に示すように、Oリング7は、その内側全周において軸受部材2の凸曲面に接触している。
この状態で、環境温度変化によって調心部材6と軸受部材2との間の隙間が全体的に狭くなったり、広くなったりした場合には、Oリング7が変形するが、Oリング7がその弾性力の範囲で全周にわたって凸曲面2aに接触している情況は変わらない。従って、環境温度が変化しても、Oリング7は、その弾性力の範囲内で、軸受部材2に常に接触しているので、調心時の起動トルクの変動は少ない。
On the other hand, the O-ring 7 is compressed in the elastic member holding portion 8 below the bearing member 2, but the O-ring 7 is in contact with the convex curved surface 2 a of the bearing member 2. FIG. 2 is a sectional view passing through the center of the O-ring 7. As shown in FIG. 2, the O-ring 7 is in contact with the convex curved surface of the bearing member 2 on the entire inner periphery thereof.
In this state, when the gap between the aligning member 6 and the bearing member 2 becomes narrower or wider as a whole due to environmental temperature changes, the O-ring 7 is deformed. The situation of contacting the convex curved surface 2a over the entire circumference in the range of the elastic force does not change. Therefore, even if the environmental temperature changes, the O-ring 7 is always in contact with the bearing member 2 within the range of the elastic force, so that the variation in the starting torque during alignment is small.

なお、上記第1実施形態の軸受部材2は、滑り軸受であるが、この発明の軸受部材は、滑り軸受に限らない。例えば、図3,図4に示す第2、第3実施形態のように、軸受部材としてボールベアリングを用いてもよい。
図3に示す第2実施形態は、軸受部材10が、ボールベアリングである点が、第1実施形態と異なるが、その他の構成は第1実施形態と同じである。そこで、第1実施形態と同様の構成要素には、図1と同じ符号を用い、詳細な説明は省略する。
In addition, although the bearing member 2 of the said 1st Embodiment is a sliding bearing, the bearing member of this invention is not restricted to a sliding bearing. For example, a ball bearing may be used as the bearing member as in the second and third embodiments shown in FIGS.
The second embodiment shown in FIG. 3 is different from the first embodiment in that the bearing member 10 is a ball bearing, but the other configuration is the same as that of the first embodiment. Therefore, the same reference numerals as those in FIG. 1 are used for the same components as those in the first embodiment, and detailed description thereof is omitted.

第2実施形態の軸受部材10は、内輪10aを軸部材1に固定し、内輪10aとの間にボールを介在させた外輪10bの外周には、上記第1実施形態の軸受部材2と同様に、凸曲面10cを形成している。そして、第1実施形態と同じ調心部材6の内周に形成した第1凹曲面4a及び第2凹曲面5aと、上記凸曲面10cとの間に、この発明の弾性部材であるOリング7を介在させ、このOリング7の全周が凸曲面10cに常に接触するようにしている。
従って、上記第1実施形態と同様に、軸受部材10の偏心や温度変化によっても調心時の起動トルクの変動が少なく、安定している。
In the bearing member 10 of the second embodiment, the inner ring 10a is fixed to the shaft member 1, and the outer circumference of the outer ring 10b with a ball interposed between the inner ring 10a and the outer ring 10b is the same as the bearing member 2 of the first embodiment. The convex curved surface 10c is formed. And between the 1st concave curved surface 4a and the 2nd concave curved surface 5a formed in the inner periphery of the alignment member 6 same as 1st Embodiment, and the said convex curved surface 10c, O ring 7 which is an elastic member of this invention The entire circumference of the O-ring 7 is always in contact with the convex curved surface 10c.
Therefore, as in the first embodiment, the start-up torque during alignment is small and stable due to the eccentricity of the bearing member 10 and the temperature change.

図4に示す第3実施形態も、軸受部材11がボールベアリングであるが、この軸受部材11は、軸部材1に固定する内輪11aと、外輪11bとを備えるとともに、この外輪11bの外周に、さらに別部材の介在部材11cを取り付けて一体化したものである。そして、この介在部材11cの外周には、軸受部材11側の嵌め合わせ面となる凸曲面11dを形成している。
その他の構成及び作用は、図3の第2実施形態と同じである。
従って、Oリング7の内側全周と、軸受部材11の凸曲面11dとの摺動抵抗が、環境温度に影響されにくく、調心時の起動トルクの変動が少ない。
In the third embodiment shown in FIG. 4, the bearing member 11 is a ball bearing. The bearing member 11 includes an inner ring 11a fixed to the shaft member 1 and an outer ring 11b, and an outer periphery of the outer ring 11b. Further, another interposed member 11c is attached and integrated. And the convex curved surface 11d used as the fitting surface by the side of the bearing member 11 is formed in the outer periphery of this interposition member 11c.
Other configurations and operations are the same as those of the second embodiment shown in FIG.
Accordingly, the sliding resistance between the entire inner circumference of the O-ring 7 and the convex curved surface 11d of the bearing member 11 is hardly affected by the environmental temperature, and the start-up torque fluctuation during alignment is small.

なお、上記第1〜第3実施形態では、調心部材6の嵌め合わせ面に、凹曲面を形成するとともに、調心部材6を本体4とキャップ5の二つの部品で構成することにより、弾性部材であるOリング7を調心部材6と軸受部材2との間に嵌め合わせ易くしている。
但し、調心部材6を本体4とキャップ5で構成せず、初めから1部材としてもよい。その場合には、軸受部材2を調心部材6内に強引に押し込まなければならないので、両部材のうち、少なくともいずれか一方は、組み付け時に、大きく弾性変形する素材で形成する必要がある。
また、上記第1〜第3実施形態とは反対に、軸受部材に凹曲面を形成し、調心部材に凸曲面を形成するようにしても良い。
In the first to third embodiments, a concave curved surface is formed on the fitting surface of the aligning member 6, and the aligning member 6 is composed of two parts, the main body 4 and the cap 5. The O-ring 7 that is a member is easily fitted between the alignment member 6 and the bearing member 2.
However, the aligning member 6 may not be composed of the main body 4 and the cap 5 but may be one member from the beginning. In that case, the bearing member 2 must be forcibly pushed into the aligning member 6, and therefore at least one of the two members needs to be formed of a material that is greatly elastically deformed when assembled.
Further, contrary to the first to third embodiments, a concave curved surface may be formed on the bearing member, and a convex curved surface may be formed on the alignment member.

図5に示す第4実施形態は、軸受部材14を、本体12とキャップ13とで構成している。そして、本体12には第1凹曲面12aを形成し、キャップ13には上記第1凹曲面12aと曲率を同じにした第2凹曲面13aを形成している。そして、これら第1、第2凹曲面12a,13aによって、軸受部材14側の嵌め合わせ面の凹曲面を構成している。また、上記本体12とキャップ13との間に弾性部材保持部16を形成するとともに、そこに、この発明の弾性部材であるOリング7を組み込んでいる。
なお、図5中、符号15は調心部材であり、この調心部材15には、上記軸受部材14の本体12に形成された第1凹曲面12aとキャップ13に形された第2凹曲面13aに対してほぼ同曲率の凸曲面15aが形成されている。
In the fourth embodiment shown in FIG. 5, the bearing member 14 includes a main body 12 and a cap 13. The main body 12 is formed with a first concave curved surface 12a, and the cap 13 is formed with a second concave curved surface 13a having the same curvature as the first concave curved surface 12a. The first and second concave curved surfaces 12a and 13a constitute a concave curved surface of the fitting surface on the bearing member 14 side. Moreover, while forming the elastic member holding | maintenance part 16 between the said main body 12 and the cap 13, the O-ring 7 which is an elastic member of this invention is incorporated there.
In FIG. 5, reference numeral 15 denotes an aligning member. The aligning member 15 includes a first concave curved surface 12 a formed on the main body 12 of the bearing member 14 and a second concave curved surface formed on the cap 13. A convex curved surface 15a having substantially the same curvature as that of 13a is formed.

この第4実施形態の調心機構の組み付け工程は、以下の通りである。
まず、軸受部材14の本体12にキャップ13を嵌めていない状態で、本体12にOリング7を嵌める。次に、上記軸受部材14の外周に調心部材15を嵌め、第1凹曲面12aと調心部材15の凸曲面15aとを対向させる。
さらに、キャップ13を本体12に組み合わせて、両者を溶着部17で溶着して結合し、軸受部材14を形成する。
The assembly process of the alignment mechanism of the fourth embodiment is as follows.
First, the O-ring 7 is fitted to the main body 12 without the cap 13 being fitted to the main body 12 of the bearing member 14. Next, the aligning member 15 is fitted to the outer periphery of the bearing member 14, and the first concave curved surface 12a and the convex curved surface 15a of the aligning member 15 are opposed to each other.
Further, the cap 13 is combined with the main body 12, and the two are welded and joined at the welded portion 17, thereby forming the bearing member 14.

このようにして完成した調心機構も、Oリング7の内周が、全周にわたって調心部材15の凸曲面15aに対して弾性力を発揮している。そのため、軸部材1に作用する荷重によって、軸受部材14が調心部材15に対して偏心したり、環境温度変化によって部材が伸縮したりしても、上記Oリング7が、全周にわたって上記凸曲面15aに接触した状態を保つことができる。
従って、軸受部材14の偏心や、温度変化による部材の収縮があっても、軸受部材14と調心部材15との相対回動時の抵抗の変動が少ない。つまり、環境温度が変化したとしても、調心時の起動トルクの変動が少なくなる。
In the aligning mechanism thus completed, the inner periphery of the O-ring 7 exhibits an elastic force against the convex curved surface 15a of the aligning member 15 over the entire periphery. Therefore, even if the bearing member 14 is eccentric with respect to the alignment member 15 due to the load acting on the shaft member 1 or the member expands and contracts due to a change in environmental temperature, the O-ring 7 does not protrude over the entire circumference. The state in contact with the curved surface 15a can be maintained.
Therefore, even if the bearing member 14 is decentered or the member contracts due to a temperature change, the resistance variation during the relative rotation between the bearing member 14 and the aligning member 15 is small. That is, even when the environmental temperature changes, the variation in the starting torque during alignment is reduced.

また、この第4実施形態のように、軸受部材14側の嵌め合わせ面を凹曲面とする場合でも、軸受部材14を本体12とキャップ13とで構成することによって、弾性部材であるOリング7及び調心機構の組み付けが容易になることは上記他の実施形態と同じである。但し、軸受部材14を1部材で構成するようにしてもよい。
さらに、この第4実施形態の調心機構も、軸受部材14の本体12に対して、弾性部材であるOリング7と、調心部材15のどちらを先に組み付けるようにしてもかまわない。
要するに、調心部材と軸受部材のうち、凹曲面を備えるとともに本体とキャップとで構成される部材の本体に、他方の部材と弾性部材とを組み付けた後に、キャップを組み付けるようにすれば、調心部材の組み付けが容易になる。
Further, even when the fitting surface on the bearing member 14 side is a concave curved surface as in the fourth embodiment, the O-ring 7 which is an elastic member can be formed by configuring the bearing member 14 with the main body 12 and the cap 13. The assembly of the aligning mechanism is easy as in the other embodiments. However, you may make it comprise the bearing member 14 by one member.
Furthermore, in the alignment mechanism of the fourth embodiment, either the O-ring 7 that is an elastic member or the alignment member 15 may be assembled first with respect to the main body 12 of the bearing member 14.
In short, of the alignment member and the bearing member, if the cap is assembled after the other member and the elastic member are assembled to the main body of the member having the concave curved surface and the main body and the cap, Assembling of the core member is facilitated.

第1実施形態の断面図である。It is sectional drawing of 1st Embodiment. 図1のII-II線断面図である。It is the II-II sectional view taken on the line of FIG. 第2実施形態の断面図である。It is sectional drawing of 2nd Embodiment. 第3実施形態の断面図である。It is sectional drawing of 3rd Embodiment. 第4実施形態の断面図である。It is sectional drawing of 4th Embodiment. 従来例の調心機構の断面図である。It is sectional drawing of the aligning mechanism of a prior art example.

符号の説明Explanation of symbols

1 軸部材
2 軸受部材
2a 凸曲面
4 本体
4a 第1凹曲面
5 キャップ
5a 第2凹曲面
6 調心部材
7 Oリング
8 弾性部材保持部
9 溶着部
10 軸受部材
10c 凸曲面
11 軸受部材
11d 凸曲面
12 本体
12a 第1凹曲面
13 キャップ
13a 第2凹曲面
14 軸受部材
15 調心部材
15a 凸曲面
16 弾性部材保持部
17 溶着
DESCRIPTION OF SYMBOLS 1 Shaft member 2 Bearing member 2a Convex curved surface 4 Main body 4a 1st concave curved surface 5 Cap 5a 2nd concave curved surface 6 Alignment member 7 O ring 8 Elastic member holding part 9 Welding part 10 Bearing member 10c Convex curved surface 11 Bearing member 11d Convex curved surface 12 Main body 12a First concave curved surface 13 Cap 13a Second concave curved surface 14 Bearing member 15 Alignment member 15a Convex curved surface 16 Elastic member holding portion 17 Welding portion

Claims (1)

軸受部材の外周側に調心部材を嵌め合わせ、軸受部材と調心部材とが凸曲面及び凹曲面を介して相対的に回動することによって調心機能を発揮する調心機構であって、上記軸受部材または調心部材のうちいずれか一方を、本体とキャップとで構成するとともに、上記本体であって、上記軸受部材または調心部材のうちいずれか他方の部材の嵌め合わせ面に対向する面には、軸受部材で支持される軸部材の軸方向に湾曲した第1凹曲面と、この第1凹曲面に隣接し、第1凹曲面の最大径部よりも大径にした挿入穴とを形成し、上記挿入穴の開口側には位置決め用段部を形成するとともに、上記挿入穴と第1凹曲面との境界部分に挟持用段部を備え、上記キャップには、その外側に形成したフランジ部と、当該キャップの先端側に形成した環状凸部と、上記第1凹曲面に連続し、上記第1凹曲面と曲率を同じにした第2凹曲面とを備え、上記第1,2の凹曲面の境界部分であって上記環状凸部と挟持用段部との対向部間に、ゴム製のOリングを組み込む弾性部材保持部を備える一方、上記軸受部材または調心部材のうち他方の部材における嵌め合わせ面には、上記第1及び第2凹曲面と曲率をほぼ同じにした凸曲面を形成し、上記挟持用段部に上記Oリングを突き当て、キャップの環状凸部を挿入穴に挿入するとともに、上記Oリングと上記環状凸部の先端との間に隙間を設けた状態でフランジ部を位置決め用段部に対向配置させる一方、上記本体とキャップとの対向面に溶着部を設け、このキャップに超音波振動を与えることによって溶着部が溶融するとともに、その溶融にともなってキャップを本体の内部に進入させ、フランジ部を位置決め用段部に当接させて、環状凸部と挟持用段部との間に上記Oリングを挟持させ、上記凸曲面と凹曲面との間に弾性力を保持した上記Oリングを介在させた調心機構 The outer peripheral side of the bearing member so Awa fitted with a centering member, there by aligning mechanism to exert centering function by the shaft receiving member and the aligning member is relatively rotated via the convex surface and concave surface And either one of the bearing member or the aligning member is composed of a main body and a cap, and is the main body, the fitting surface of the other member of the bearing member or the aligning member. A first concave curved surface that is curved in the axial direction of the shaft member supported by the bearing member and an insertion that is adjacent to the first concave curved surface and has a larger diameter than the maximum diameter portion of the first concave curved surface are provided on the opposing surfaces. A positioning step is formed on the opening side of the insertion hole, and a clamping step is provided at a boundary portion between the insertion hole and the first concave curved surface. And an annular protrusion formed on the tip side of the cap And a second concave curved surface that is continuous with the first concave curved surface and has the same curvature as the first concave curved surface, and is sandwiched between the annular convex portion and a boundary portion of the first and second concave curved surfaces An elastic member holding portion that incorporates a rubber O-ring is provided between the opposed portion to the stepped portion, and the fitting surface of the other member of the bearing member or the aligning member is provided with the first and second members. A convex curved surface having substantially the same curvature as the concave curved surface is formed, the O-ring is abutted against the clamping step, the annular convex portion of the cap is inserted into the insertion hole, and the O-ring and the annular convex portion are While the flange portion is disposed opposite to the positioning step portion with a gap between the tip and the positioning portion, a welding portion is provided on the facing surface between the main body and the cap, and ultrasonic vibration is applied to the cap to provide a welding portion. As the material melts, The cap is inserted into the main body, the flange portion is brought into contact with the positioning step portion, the O-ring is sandwiched between the annular convex portion and the sandwiching step portion, and between the convex curved surface and the concave curved surface. Alignment mechanism with the O-ring holding elastic force in the center
JP2008174323A 2007-07-31 2008-07-03 Alignment mechanism Active JP4753977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008174323A JP4753977B2 (en) 2007-07-31 2008-07-03 Alignment mechanism

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007200093 2007-07-31
JP2007200093 2007-07-31
JP2008174323A JP4753977B2 (en) 2007-07-31 2008-07-03 Alignment mechanism

Publications (2)

Publication Number Publication Date
JP2009052737A JP2009052737A (en) 2009-03-12
JP4753977B2 true JP4753977B2 (en) 2011-08-24

Family

ID=40503979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008174323A Active JP4753977B2 (en) 2007-07-31 2008-07-03 Alignment mechanism

Country Status (1)

Country Link
JP (1) JP4753977B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6949221B2 (en) * 2018-06-20 2021-10-13 三菱電機株式会社 Hoisting machine support structure
CN110848250B (en) * 2019-11-28 2021-06-01 洛阳轴承研究所有限公司 Joint bearing for main driving assembly of shield tunneling machine and checking method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2433129A1 (en) * 1978-08-07 1980-03-07 Elges Helmut Self-aligning plain journal bearing - has O=rings between inner ring and housing to accommodate tolerances and reduce noise
JPH0469405A (en) * 1990-07-11 1992-03-04 Hitachi Ltd Bearing structure and sealed type electric compressor using that bearing
JP3558367B2 (en) * 1994-06-27 2004-08-25 株式会社鈴木製作所 Sewing machine bearing device
JPH10292886A (en) * 1997-04-18 1998-11-04 Fushiman Kk Ball joint

Also Published As

Publication number Publication date
JP2009052737A (en) 2009-03-12

Similar Documents

Publication Publication Date Title
JP6256663B2 (en) Worm reducer
JP4811186B2 (en) Hydrodynamic bearing device
JP6167198B1 (en) Electric power steering device and method of manufacturing electric power steering device
JP2008101772A (en) Sleeve unit manufacturing method, sleeve unit, and motor
JPWO2007029716A1 (en) Ball screw mechanism and ball screw assembly method
EP1793124A2 (en) Structure for joining impeller to rotatable shaft
JP4753977B2 (en) Alignment mechanism
JP5465967B2 (en) Rolling bearing device
JP2020090972A (en) Seal ring and method for manufacturing seal ring
JP5057330B2 (en) Helical gear molding equipment
JP2011204318A (en) Rolling bearing device and pivot device
JP2006109592A (en) Bearing preload structure motor
JP5225700B2 (en) Rolling bearing unit
JP5603117B2 (en) Rolling bearing device and pivot device
JP7291442B1 (en) Resin-molded member and manufacturing method thereof
JP4235597B2 (en) Static pressure gas bearing
JP5465972B2 (en) Rolling bearing device
JP2007056945A (en) Outer joint member for constant velocity universal joint
JP4554324B2 (en) Hydrodynamic bearing device
JP2019219028A (en) Speed reducer
JP2007278325A (en) Fluid bearing device
JP2003314523A (en) Nut and bearing unit using the same
JP2002310140A (en) Dynamic pressure bearing device and manufacturing method thereof
JP2010203517A (en) Torque limiter
JP4761208B2 (en) Bearing device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4753977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250