JP4752372B2 - Positive electrode active material, method for producing the same, and non-aqueous electrolyte secondary battery - Google Patents

Positive electrode active material, method for producing the same, and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4752372B2
JP4752372B2 JP2005216721A JP2005216721A JP4752372B2 JP 4752372 B2 JP4752372 B2 JP 4752372B2 JP 2005216721 A JP2005216721 A JP 2005216721A JP 2005216721 A JP2005216721 A JP 2005216721A JP 4752372 B2 JP4752372 B2 JP 4752372B2
Authority
JP
Japan
Prior art keywords
active material
positive electrode
electrode active
battery
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005216721A
Other languages
Japanese (ja)
Other versions
JP2006196433A (en
Inventor
修司 堤
崇 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005216721A priority Critical patent/JP4752372B2/en
Publication of JP2006196433A publication Critical patent/JP2006196433A/en
Application granted granted Critical
Publication of JP4752372B2 publication Critical patent/JP4752372B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、非水電解質二次電池に関し、特に正極活物質の製造法および正極材料に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a method for producing a positive electrode active material and a positive electrode material.

近年、携帯電話やノートパソコン等のポータブル、コードレス機器の普及により、これらの機器に電力を供給する電池の需要が高まっており、繰り返し充放電が可能な二次電池が求められている。なかでも、電解液が水溶液系の二次電池に比べて作動電圧、エネルギー密度が高く、小型軽量な電池を実現できる非水電解質二次電池に対する期待は大きい。   In recent years, with the widespread use of portable and cordless devices such as mobile phones and notebook computers, there is an increasing demand for batteries that supply power to these devices, and secondary batteries that can be repeatedly charged and discharged are required. In particular, there is a high expectation for a non-aqueous electrolyte secondary battery that can realize a small and lightweight battery with a higher operating voltage and energy density than an aqueous secondary battery.

その非水電解質二次電池を構成する正極活物質として、様々な化合物があるが、特にLiCoO2やLiNiO2、LiMn24などのリチウム遷移金属複合酸化物と一部を他の元素で置換あるいは固溶させた化合物は、動作電位も高く、炭素材料等の負極と組み合わせて高い作動電圧の電池を実現できる点で優れており、すでに実用化されているものもある。 There are various compounds as the positive electrode active material constituting the non-aqueous electrolyte secondary battery. In particular, lithium transition metal composite oxides such as LiCoO 2 , LiNiO 2 and LiMn 2 O 4 are partially substituted with other elements. Alternatively, the solid solution has a high operating potential and is excellent in that a battery having a high operating voltage can be realized in combination with a negative electrode such as a carbon material, and some have already been put into practical use.

このように、非水電解質二次電池は水溶液系二次電池に比べて電池電圧が高いという特徴があるが、電圧が高いことに加え活性も高いため、充電状態で電解液が酸化分解してガス発生し、電池が膨れたり、漏液を起こしたり、ガスによって電解液が排除されて電極反応面積が減少するために電池特性も低下することや、混入した水分とも反応して、直接あるいは反応生成物を介して電解液の分解を引き起こすという課題があった。そのため、活物質の表面を修飾したり、改質したりする研究がなされており、例えば正極活物質の表面に各種化合物の層を形成することが提案されていた。(例えば特許文献1参照)
また、表面修飾・改質のための製造方法としては、負極材料の導電性を改善するためではあるが、圧縮力および摩砕力よりなる機械的エネルギーを作用させるメカノケミカル反応を利用して、活物質粒子の表面に導電性材料を圧延し活物質表面を改質する方法が提案されている。(例えば特許文献2参照)
特開平8−222219号公報 特開2001−15101号公報
As described above, the nonaqueous electrolyte secondary battery has a feature that the battery voltage is higher than that of the aqueous solution type secondary battery. However, since the activity is high in addition to the high voltage, the electrolyte solution is oxidized and decomposed in the charged state. Gas is generated, the battery swells, leaks, the electrolyte is removed by the gas and the electrode reaction area decreases, so the battery characteristics also deteriorate, and it reacts directly with the mixed moisture. There existed a subject of causing decomposition of electrolyte solution through a product. Therefore, studies have been made to modify or modify the surface of the active material. For example, it has been proposed to form various compound layers on the surface of the positive electrode active material. (For example, see Patent Document 1)
Moreover, as a manufacturing method for surface modification / modification, although it is for improving the conductivity of the negative electrode material, utilizing a mechanochemical reaction that acts mechanical energy consisting of compressive force and grinding force, A method has been proposed in which a conductive material is rolled on the surface of active material particles to modify the surface of the active material. (For example, see Patent Document 2)
JP-A-8-222219 JP 2001-15101 A

しかしながら上記特許文献1のような従来の技術では、活物質に表面層を被覆してガス発生を抑制することはできるが、例えば、電子抵抗の大きい酸化物などによる表面層では、イオン伝導を阻害する上に電子伝導性に乏しいため、大電流放電特性等の電池特性が犠牲になって、電池トータルでの性能バランスが十分でなかった。   However, in the conventional technique such as Patent Document 1, it is possible to suppress the gas generation by covering the active material with the surface layer. However, for example, the surface layer made of an oxide having a high electron resistance inhibits ionic conduction. In addition, since the electron conductivity is poor, battery characteristics such as large current discharge characteristics are sacrificed, and the performance balance of the total battery is not sufficient.

そこで、電子伝導性に優れる金属あるいは窒化物などによる被覆を検討したところ、金属表面層においては、実際の電極作製工程で圧延加工した場合に、圧力によって表面層が破壊されてガス抑制効果が低下する問題があった。一方、窒化物表面層は、硬度が高く圧延加工に対する耐久性はあるものの、充放電に伴う活物質の膨張収縮に対して対応できずに活物質から剥離してしまう問題があった。   Therefore, when coating with a metal or nitride excellent in electron conductivity was examined, the surface layer was destroyed by pressure when the metal surface layer was rolled in the actual electrode manufacturing process, and the gas suppression effect was reduced. There was a problem to do. On the other hand, although the nitride surface layer has high hardness and durability against rolling, there is a problem that the nitride surface layer can not cope with the expansion and contraction of the active material due to charge and discharge and peels off from the active material.

さらに製造方法の点からも、これらの表面層を形成する際に、メカノフュージョン等の機械的エネルギーを与えて融合させる手法を用いると、正極活物質の一部が削り取られて微粒子粉末が生成したり、機械的エネルギーを与える装置から混入する不純物のために、ガス発生を抑制する効果以上に逆にガス発生量が増えたり、電池の微小短絡が発生して電
圧が低下したりする問題が起きた。特許文献2のように負極ではほとんど問題にならなかった不純物による微小短絡が大きな課題となった理由は、負極と本発明の正極では電位が異なるため、混入した金属の溶解性が違っているためであると推測される。
Furthermore, also from the point of manufacturing method, when forming these surface layers, if a method of fusing mechanical energy such as mechanofusion is used, a part of the positive electrode active material is scraped off to produce fine particle powder. In addition, due to impurities mixed in from the device that gives mechanical energy, the amount of gas generated increases more than the effect of suppressing gas generation, or the voltage drops due to a micro short circuit of the battery. It was. The reason why micro short-circuiting due to impurities, which is hardly a problem in the negative electrode as in Patent Document 2, has become a major issue is that the potential of the negative electrode is different from that of the positive electrode of the present invention, and the solubility of the mixed metal is different. It is estimated that.

以上のように従来の技術は、実際の電池製造工程での課題や実使用時における課題を考慮しておらず、電極の圧延による被覆層の破壊や、充放電に伴う活物質の膨張収縮による被覆層の剥離といった課題を有していた。   As described above, the conventional technology does not consider the problem in the actual battery manufacturing process or the problem at the time of actual use, and is due to the destruction of the coating layer due to the rolling of the electrode or the expansion and contraction of the active material accompanying the charge / discharge. There was a problem such as peeling of the coating layer.

本発明は上記のような課題を鑑みてなされたのであり、本発明の正極活物質の製造法は、リチウムイオンの放出と吸蔵が可能なリチウム遷移金属複合酸化物粒子表面の一部に金属被覆層を形成する工程と、窒化物被覆層を形成する工程とを有することを特徴とするものである。   The present invention has been made in view of the above problems, and the method for producing a positive electrode active material according to the present invention is a method in which a part of the surface of a lithium transition metal composite oxide particle capable of releasing and occluding lithium ions is coated with metal. It has the process of forming a layer, and the process of forming a nitride coating layer.

また、その製造法を用い正極活物質が、リチウムイオンの放出と吸蔵が可能なリチウム遷移金属複合酸化物粒子表面の少なくとも一部が金属窒化物で被覆されていることを特徴とするものである。   Further, the positive electrode active material using the production method is characterized in that at least a part of the surface of the lithium transition metal composite oxide particles capable of releasing and occluding lithium ions is coated with a metal nitride. .

このような製造工程を経ることで、リチウムイオンの放出と吸蔵が可能なリチウム遷移金属複合酸化物粒子表面の一部を金属窒化物で被覆することができる。   Through such a manufacturing process, a part of the surface of the lithium transition metal composite oxide particles capable of releasing and occluding lithium ions can be coated with the metal nitride.

また、本発明の製造方法によって、金属窒化物の被覆層が窒素濃度の傾斜材料であり、リチウム遷移金属複合酸化物との界面に金属層、あるいは窒素濃度がほぼゼロの金属層が存在する特徴を持つ正極活物質を具現化できる。このような正極活物質は、金属あるいは窒素固溶量の少ない層によって充放電時の膨張収縮に対しても活物質との密着性を保つ一方、窒素固溶量の多い層が硬化層として機能して圧延工程を経験した後も被覆層の効果を維持できることから、電池の製造工程の課題を解決して、充放電や高温環境下における保存時などのガス発生を抑制して電池の信頼性を向上させることができる。   Further, according to the manufacturing method of the present invention, the metal nitride coating layer is a gradient material having a nitrogen concentration, and a metal layer or a metal layer having a substantially zero nitrogen concentration exists at the interface with the lithium transition metal composite oxide. The positive electrode active material having Such a positive electrode active material maintains adhesion to the active material against expansion and contraction during charge and discharge by a layer having a small amount of metal or nitrogen solid solution, while a layer having a large amount of nitrogen solid solution functions as a hardened layer. Since the effect of the coating layer can be maintained even after experiencing the rolling process, it solves the problems of the battery manufacturing process and suppresses the generation of gas during charging / discharging and storage in a high temperature environment, and the reliability of the battery Can be improved.

以上のように本発明の製造方法を用いれば、充放電特性に優れ、かつ高温環境での充放電サイクルや、保存後においてもガス発生しにくい高い信頼性を有する正極活物質と非水電解質二次電池を得ることができる。   As described above, when the production method of the present invention is used, a positive electrode active material and a non-aqueous electrolyte that are excellent in charge and discharge characteristics and have high reliability that is difficult to generate gas even after charge and discharge cycles in a high temperature environment and after storage. A secondary battery can be obtained.

本発明者らが鋭意検討した結果、まずリチウム遷移金属複合酸化物の一部に金属を被覆して、次いで窒化する工程を経ることで電池性能を落とさずにガス発生抑制するために効果的な被覆層を形成できることが分かった。それも単なる窒化物の被覆ではなく、リチウム遷移金属複合酸化物と被覆している窒化物の界面に窒素濃度がほぼゼロの層、あるいは金属層が存在するように被覆層の表面から活物質界面にかけて窒素元素濃度が傾斜した構成の窒化物被覆層を形成することがより好ましい。   As a result of intensive studies by the present inventors, it is effective to suppress gas generation without degrading battery performance by first coating a part of the lithium transition metal composite oxide with a metal and then nitriding. It has been found that a coating layer can be formed. It is not just a nitride coating, but an active material interface from the surface of the coating layer so that a layer with almost zero nitrogen or a metal layer is present at the interface between the lithium transition metal composite oxide and the coating nitride. It is more preferable to form a nitride coating layer having a structure in which the nitrogen element concentration is inclined toward the top.

金属窒化物には高い硬度を有するものもあり、金属窒化物のみで形成された強固な被覆層は、電極の圧延工程でリチウム遷移金属複合酸化物粒子どうしが擦れ合っても壊れることは無かったが、電池の充放電に伴う膨張収縮の繰り返しに耐えきれず、充放電サイクルが進むと剥離してガス発生抑制効果が低下した。これに対して本発明のリチウム遷移金属複合酸化物との界面から被覆層表面に向かって窒素元素の濃度が増えていくような窒化物被覆層を形成すると、内部の金属あるいはそれに近い組成の部分が充放電に伴う膨張収縮の応力を緩和して被覆層の剥離を防ぎ、ガス発生抑制効果を持続させることができる。   Some metal nitrides have high hardness, and the strong coating layer formed only of the metal nitrides was not broken even when the lithium transition metal composite oxide particles were rubbed with each other in the electrode rolling process. However, it could not withstand the repeated expansion and contraction associated with the charging / discharging of the battery, and as the charging / discharging cycle proceeded, it peeled off and the gas generation suppressing effect was reduced. On the other hand, when a nitride coating layer in which the concentration of nitrogen element increases from the interface with the lithium transition metal composite oxide of the present invention toward the coating layer surface, the inner metal or a portion having a composition close thereto is formed. However, it is possible to relieve the stress of expansion and contraction accompanying charging / discharging, prevent peeling of the coating layer, and maintain the gas generation suppressing effect.

この様な形態を有する被覆層を形成するためには、単に窒化物をメカノフュージョン法のような機械的エネルギーによってリチウム遷移金属複合酸化物に融合させる方法であったり、窒化物そのものの蒸着、焼き付けなどの方法では困難で、リチウム遷移金属複合酸化物の表面に金属層を形成する第一の工程と、その金属層を窒化するかまたはその上に窒化物層を形成する第二の工程を設けた製造方法をとる必要がある。   In order to form a coating layer having such a form, the nitride is simply fused to the lithium transition metal composite oxide by mechanical energy such as a mechano-fusion method, or the nitride itself is deposited and baked. The first step of forming a metal layer on the surface of the lithium transition metal composite oxide and the second step of nitriding the metal layer or forming a nitride layer thereon are provided. It is necessary to take a manufacturing method.

金属層はリチウム遷移金属複合酸化物に密着させやすいことから、被覆層とリチウム遷移金属複合酸化物の界面に存在させることが好ましい。金属層の形成方法としては例えば、無電解メッキ等のメッキ法、物理蒸着、化学蒸着、スパッタリング、イオンプレーティング、溶射、アルキルアルミニウム等の有機金属化合物を用いる方法等の方法で金属層を形成することができる。金属層は、Ni、Co、Ti、Zn、Zr、Al、Nb、V、Ta、Liなどの単一の金属でもAl−Ti合金のような合金でも良いが、窒化物の形成しやすさや、正極電位での安定性、窒化物を形成した際の電子伝導性や硬度の面からは、Ti、Zn、Zr、Al、Nb、V、Taの群から選ばれる少なくとも一種類であることが好ましい。   Since the metal layer is easily adhered to the lithium transition metal composite oxide, the metal layer is preferably present at the interface between the coating layer and the lithium transition metal composite oxide. As a method for forming the metal layer, for example, a metal layer is formed by a plating method such as electroless plating, physical vapor deposition, chemical vapor deposition, sputtering, ion plating, thermal spraying, or a method using an organometallic compound such as alkylaluminum. be able to. The metal layer may be a single metal such as Ni, Co, Ti, Zn, Zr, Al, Nb, V, Ta, or Li, or an alloy such as an Al-Ti alloy. From the viewpoints of stability at the positive electrode potential, electron conductivity and hardness when nitrides are formed, at least one selected from the group consisting of Ti, Zn, Zr, Al, Nb, V, and Ta is preferable. .

また、副反応を抑え、強度を持たせるための窒化物の形成については、ガス窒化法、プラズマ窒化法等の方法で窒化することができる。ガス窒化法で用いるガスとしては、例えばアンモニアガス、アンモニアと窒素の混合ガスやさらに一酸化炭素、水素等を加えた混合ガスなどを用いることができ、数百℃の温度から窒化が可能であることから、活物質の結晶性低下に伴う電池容量の低下を防ぐことができる。また、プラズマ窒化(イオン窒化)法の雰囲気の例としては、窒素ガス、窒素と水素の混合ガス、窒素やアンモニアと不活性ガスの混合ガスなどの雰囲気が挙げられる。この窒化法は一般に600℃以下の比較的低温で行うことができるため、この方法も活物質の結晶性を大きく変化させたり分解を起こして電池の容量が低下するといった不具合の発生を防ぐことができる。   In addition, the formation of a nitride for suppressing side reactions and imparting strength can be performed by a method such as a gas nitriding method or a plasma nitriding method. As a gas used in the gas nitriding method, for example, ammonia gas, a mixed gas of ammonia and nitrogen, a mixed gas added with carbon monoxide, hydrogen, or the like can be used, and nitriding is possible from a temperature of several hundred degrees Celsius. For this reason, it is possible to prevent a decrease in battery capacity due to a decrease in crystallinity of the active material. Further, examples of the atmosphere of the plasma nitriding (ion nitriding) method include an atmosphere of nitrogen gas, a mixed gas of nitrogen and hydrogen, a mixed gas of nitrogen, ammonia, and an inert gas. Since this nitriding method can generally be performed at a relatively low temperature of 600 ° C. or lower, this method also prevents the occurrence of problems such as greatly changing the crystallinity of the active material or causing decomposition to lower the battery capacity. it can.

以上のような金属層の形成と窒化の工程は別々の装置で行っても良いし、連続的に処理可能な装置であっても良い。連続処理の一つの方法としては、物理蒸着の一種であるイオンプレーティング法が考えられる。始めにアルゴンプラズマ雰囲気で金属を蒸着させて、途中から窒素やアンモニア等の反応性ガスを加えて導入することで金属窒化物の被膜を堆積させることもできる。あるいは、同様にスパッタリング法においても、アルゴン雰囲気で金属を蒸着した後に反応性ガスを導入して金属窒化物を蒸着することもできる。   The formation of the metal layer and the nitriding process as described above may be performed by separate apparatuses or may be an apparatus capable of continuous processing. As one method of continuous processing, an ion plating method which is a kind of physical vapor deposition can be considered. A metal nitride film can also be deposited by first depositing a metal in an argon plasma atmosphere and adding and introducing a reactive gas such as nitrogen or ammonia from the middle. Alternatively, in the sputtering method as well, a metal nitride can be deposited by introducing a reactive gas after depositing a metal in an argon atmosphere.

また、窒化の工程が表面に被覆した金属の窒化のみならず、被覆されていない活物質表面の窒化も同時に行って、活物質の表面に窒素元素が侵入、拡散、あるいは置換していても効果的である。本発明者らが検討したところ、活物質表面を上記の方法で窒化処理した場合にもガス発生抑制効果が認められ、表面への窒素元素が存在しており、侵入、固溶していることが分かった。ガス発生抑制メカニズムは明らかではないが、リチウム遷移金属複合酸化物の酸素と置換した窒素から電子が供与されて充電時の遷移金属の見かけ価数が低下した可能性や、合成時にできた不純物で、ガス発生に寄与する可能性のある酸化物や水酸化物、炭酸塩(例えはNiO、Ni(OH)2、CoO、Co34、Co(OH)2、Li2O、LiOH、LiCO等)が窒化されて不活性になった可能性が考えられる。 In addition, the nitriding process not only nitrides the metal coated on the surface but also simultaneously nitrides the surface of the uncoated active material, so that it is effective even if nitrogen element penetrates, diffuses or substitutes on the surface of the active material. Is. As a result of studies by the present inventors, even when the surface of the active material is nitrided by the above-described method, a gas generation suppressing effect is recognized, and nitrogen element is present on the surface, invading and dissolving. I understood. Although the mechanism for suppressing gas generation is not clear, it is possible that electrons are donated from nitrogen substituted for oxygen in the lithium transition metal complex oxide and the apparent valence of the transition metal at the time of charging is reduced. , Oxides, hydroxides and carbonates that may contribute to gas generation (eg NiO, Ni (OH) 2 , CoO, Co 3 O 4 , Co (OH) 2 , Li 2 O, LiOH, Li 2 CO 3 etc.) may be inactivated by nitriding.

以上、本発明の被覆層の形成方法について例示したが、これらに限定されるものではない。   As mentioned above, although the formation method of the coating layer of this invention was illustrated, it is not limited to these.

本発明に用いられる非水電解質二次電池用正極活物質としてはリチウム遷移金属複合酸化物を用いることができる。例えば、一般式LixNi(1-y-z)Coyz2(xは充放電で変化する変数であり、0<x<1.1、0<y≦0.5、0≦z<0.5、Mは、Al
、Mn、Mg、Ca、Fe、Ti、Zn、Sr、Ba、Zr、Y、B、Taからなる群から選ばれる少なくとも1種類の元素で表されるリチウム遷移金属複合酸化物は好適である。また、複数の異なった正極材料を混合して用いることも可能である。正極活物質粒子の平均粒径は特に限定はされないが、1〜30μmであることが好ましい。
A lithium transition metal composite oxide can be used as the positive electrode active material for a non-aqueous electrolyte secondary battery used in the present invention. For example, the general formula Li x Ni (1-yz) Co y M z O 2 (x is a variable that changes with charge and discharge, and 0 <x <1.1, 0 <y ≦ 0.5, 0 ≦ z < 0.5, M is Al
, Mn, Mg, Ca, Fe, Ti, Zn, Sr, Ba, Zr, Y, B, and a lithium transition metal composite oxide represented by at least one element selected from the group consisting of Ta are suitable. It is also possible to use a mixture of a plurality of different positive electrode materials. The average particle diameter of the positive electrode active material particles is not particularly limited, but is preferably 1 to 30 μm.

本発明で使用される正極用導電剤は、用いる正極材料の充放電電位において、化学変化を起こさない電子伝導性材料であれば何でもよい。例えば、天然黒鉛(鱗片状黒鉛など)、人造黒鉛などのグラファイト類、アセチレンブラック、チャンネルブラック、ファーネスブラック、サーマルブラック等のカ−ボンブラック類、炭素繊維、金属繊維などの導電性繊維類、フッ化カーボン、アルミニウム等の金属粉末類、酸化亜鉛、チタン酸カリウムなどの導電性ウィスカー類、酸化チタンなどの導電性金属酸化物あるいはポリフェニレン誘導体などの有機導電性材料などを単独又はこれらの混合物として含ませることができる。これらの導電剤のなかで、人造黒鉛、アセチレンブラックが特に好ましい。導電剤の添加量は、特に限定されないが、正極材料に対して1〜50重量%が好ましく、特に1〜30重量%が好ましい。カーボンやグラファイトでは、2〜15重量%が特に好ましい。   The conductive agent for positive electrode used in the present invention may be anything as long as it is an electron conductive material that does not cause a chemical change at the charge / discharge potential of the positive electrode material used. For example, natural graphite (such as flake graphite), graphite such as artificial graphite, carbon black such as acetylene black, channel black, furnace black and thermal black, conductive fibers such as carbon fiber and metal fiber, fluorine Carbon oxides, metal powders such as aluminum, conductive whiskers such as zinc oxide and potassium titanate, conductive metal oxides such as titanium oxide, or organic conductive materials such as polyphenylene derivatives are included alone or as a mixture thereof Can be made. Among these conductive agents, artificial graphite and acetylene black are particularly preferable. Although the addition amount of a electrically conductive agent is not specifically limited, 1-50 weight% is preferable with respect to positive electrode material, and 1-30 weight% is especially preferable. In the case of carbon or graphite, 2 to 15% by weight is particularly preferable.

本発明に用いられる正極用結着剤としては、熱可塑性樹脂、熱硬化性樹脂のいずれであってもよい。本発明に於いて好ましい材料としてはポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)があげられる。   The positive electrode binder used in the present invention may be either a thermoplastic resin or a thermosetting resin. Preferred materials in the present invention include polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE).

本発明に用いられる正極用集電体としては、用いる正極材料の充放電電位において化学変化を起こさない電子伝導体であれば何でもよく、一般に知られているアルミニウム、導電性樹脂などを用いることができる。厚みは、特に限定されないが、1〜500μmのものが用いられる。   As the current collector for the positive electrode used in the present invention, any electronic conductor that does not cause a chemical change in the charge / discharge potential of the positive electrode material to be used may be used, and generally known aluminum, conductive resin, etc. may be used. it can. The thickness is not particularly limited, but a thickness of 1 to 500 μm is used.

電極合剤には、導電剤や結着剤の他、フィラー、分散剤、イオン伝導体、圧力増強剤及びその他の各種添加剤を用いることができる。フィラーは、構成された電池において、化学変化を起こさない繊維状材料であれば何でも用いることができる。通常、ポリプロピレン、ポリエチレンなどのオレフィン系ポリマー、ガラス、炭素などの繊維が用いられる。フィラーの添加量は特に限定されないが、電極合剤に対して0〜30重量%が好ましい。   In addition to a conductive agent and a binder, a filler, a dispersant, an ionic conductor, a pressure enhancer, and other various additives can be used for the electrode mixture. Any filler can be used as long as it is a fibrous material that does not cause a chemical change in the constructed battery. Usually, olefin polymers such as polypropylene and polyethylene, fibers such as glass and carbon are used. Although the addition amount of a filler is not specifically limited, 0 to 30 weight% is preferable with respect to an electrode mixture.

本発明における負極板と正極板の構成は、少なくとも正極合剤面の対向面に負極合剤面が存在していることが好ましい。   In the configuration of the negative electrode plate and the positive electrode plate in the present invention, it is preferable that the negative electrode mixture surface is present at least on the opposite surface of the positive electrode mixture surface.

本発明の負極活物質は、主成分が黒鉛材料または難黒鉛化性炭素質材料である。負極には特性改善の目的のために導電材を用いることもでき、電子伝導性材料であれば何でもよい。例えば、天然黒鉛(鱗片状黒鉛など)、人造黒鉛、膨張黒鉛などのグラファイト類、アセチレンブラック、チャンネルブラック、ファーネスブラック、サーマルブラック等のカ−ボンブラック類、炭素繊維、金属繊維などの導電性繊維類、銅、ニッケル等の金属粉末類およびポリフェニレン誘導体などの有機導電性材料などを単独又はこれらの混合物として含ませることができる。これらの導電材のなかで、人造黒鉛、アセチレンブラック、炭素繊維が特に好ましい。導電材の添加量は、特に限定されないが、負極活物質に対して1〜30重量%が好ましく、特に1〜10重量%が好ましい。本発明に用いられる負極用結着剤としては、熱可塑性樹脂、熱硬化性樹脂のいずれであっても良く、好ましい結着剤として、スチレンブタジエンゴム、ポリフッ化ビニリデン、エチレン−アクリル酸共重合体または前記材料の(Na+)イオン架橋体、エチレン−メタクリル酸共重合体または前記材料の(Na+)イオン架橋体、エチレン−アクリル酸メチル共重合体または前記材料の(Na+)イオン架橋体、エチレン−メタクリル酸メチル共重合体または前記材料の(Na+)イオン架橋体の単独又は混合物を挙げることができる。 The main component of the negative electrode active material of the present invention is a graphite material or a non-graphitizable carbonaceous material. For the purpose of improving the characteristics, a conductive material can be used for the negative electrode, and any electron conductive material may be used. For example, natural graphite (such as flake graphite), artificial graphite, graphite such as expanded graphite, carbon black such as acetylene black, channel black, furnace black, and thermal black, conductive fiber such as carbon fiber and metal fiber , Metal powders such as copper and nickel, and organic conductive materials such as polyphenylene derivatives can be contained alone or as a mixture thereof. Among these conductive materials, artificial graphite, acetylene black, and carbon fiber are particularly preferable. The addition amount of the conductive material is not particularly limited, but is preferably 1 to 30% by weight, particularly preferably 1 to 10% by weight with respect to the negative electrode active material. The binder for the negative electrode used in the present invention may be either a thermoplastic resin or a thermosetting resin. Preferred binders include styrene butadiene rubber, polyvinylidene fluoride, and ethylene-acrylic acid copolymer. Or (Na + ) ion-crosslinked product of the material, ethylene-methacrylic acid copolymer or (Na + ) ion-crosslinked product of the material, ethylene-methyl acrylate copolymer, or (Na + ) ion-crosslinked product of the material , An ethylene-methyl methacrylate copolymer, or a (Na + ) ion-crosslinked product of the above material, alone or as a mixture.

本発明に用いられる負極用集電体としては、構成された電池において化学安定な電子伝導体であれば何でも良く、銅、チタンなどを用いることができる。厚みは、特に限定されないが、1〜500μmのものが用いられる。   The negative electrode current collector used in the present invention may be anything as long as it is an electron conductor that is chemically stable in the constructed battery, and copper, titanium, or the like can be used. The thickness is not particularly limited, but a thickness of 1 to 500 μm is used.

正極と負極の電極合剤には、導電材や結着剤の他、フィラー、分散剤、イオン伝導体、圧力増強剤及びその他の各種添加剤を用いることができる。フィラーは、構成された電池において、化学変化を起こさない繊維状材料であれば何でも用いることができる。通常、ポリプロピレン、ポリエチレンなどのオレフィン系ポリマー、ガラス、炭素などの繊維が用いられる。フィラーの添加量は特に限定されないが、電極合剤に対して0〜10重量%が好ましい。   For the electrode mixture of the positive electrode and the negative electrode, a filler, a dispersant, an ionic conductor, a pressure enhancer, and other various additives can be used in addition to the conductive material and the binder. Any filler can be used as long as it is a fibrous material that does not cause a chemical change in the constructed battery. Usually, olefin polymers such as polypropylene and polyethylene, fibers such as glass and carbon are used. Although the addition amount of a filler is not specifically limited, 0 to 10 weight% is preferable with respect to an electrode mixture.

電池の形状はコイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型、電気自動車等に用いる大型のものなどいずれにも適用できる。また、本発明の非水電解質二次電池は、携帯情報端末、携帯電子機器、家庭用小型電力貯蔵装置、自動二輪車、電気自動車、ハイブリッド電気自動車等に用いることができるが、特にこれらに限定されるわけではない。   The shape of the battery can be applied to any of a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, a square type, a large type used for an electric vehicle, and the like. Further, the nonaqueous electrolyte secondary battery of the present invention can be used for a portable information terminal, a portable electronic device, a small electric power storage device for home use, a motorcycle, an electric vehicle, a hybrid electric vehicle, etc., but is not particularly limited thereto. I don't mean.

次に本発明の具体例を説明する。   Next, specific examples of the present invention will be described.

《実施例1》
被覆処理をおこなう正極活物質として、LiNi0.81Co0.15Al0.042の場合を例にとる。この正極活物質は、従来から公知の方法で水酸化ニッケルNi(OH)2を合成する際に、水酸化コバルトCo(OH)2を共沈させてできた複合水酸化物と、水酸化アルミニウムと、水酸化リチウムを、Li/(Ni+Co+Al)=1.05のモル比となるように混合して、酸素気流下750℃で24時間焼成して合成した。なおAlやそれ以外の元素を添加する場合には、その水酸化物や酸化物、硝酸塩、硫酸塩、金属の形で添加することもできるし、Ni、Coと共に共沈させた複合水酸化物として添加することもできる。
Example 1
The case of LiNi 0.81 Co 0.15 Al 0.04 O 2 is taken as an example as the positive electrode active material to be coated. This positive electrode active material includes a composite hydroxide formed by coprecipitation of cobalt hydroxide Co (OH) 2 and aluminum hydroxide when nickel hydroxide Ni (OH) 2 is synthesized by a conventionally known method. Then, lithium hydroxide was mixed so as to have a molar ratio of Li / (Ni + Co + Al) = 1.05 and synthesized by firing at 750 ° C. for 24 hours in an oxygen stream. In addition, when adding Al or other elements, it can be added in the form of its hydroxide, oxide, nitrate, sulfate, metal, or composite hydroxide coprecipitated with Ni and Co. It can also be added as.

こうしてできたLiNi0.81Co0.15Al0.042に1PaのArガス中で、スパッタリング法によってバナジウム(V)金属を被覆した。被覆の状態は、SEM、EPMA、XPS等の分析方法で確認した。さらに、低真空中で窒素と水素の混合ガスを用いてグロー放電によるプラズマ窒化(イオン窒化)処理を行った。プラズマ窒化処理の条件は、活物質を処理装置の陰極上に装入して、処理室が1000Paになる様に調整した窒素と水素の混合ガス(各50%)を処理室へ導入しつつ、電圧を印可してグロー放電を発生して窒化を行った。活物質が約500℃となるようにヒーターを併用して調整して、2時間処理した。 LiNi 0.81 Co 0.15 Al 0.04 O 2 thus produced was coated with vanadium (V) metal by sputtering in Ar gas at 1 Pa. The state of the coating was confirmed by an analysis method such as SEM, EPMA, XPS. Furthermore, plasma nitriding (ion nitriding) treatment by glow discharge was performed in a low vacuum using a mixed gas of nitrogen and hydrogen. The conditions of the plasma nitriding treatment are as follows: an active material is charged on the cathode of the processing apparatus, and a mixed gas of nitrogen and hydrogen (50% each) adjusted so that the processing chamber becomes 1000 Pa is introduced into the processing chamber. Nitriding was performed by applying a voltage to generate a glow discharge. The active material was adjusted using a heater so that the temperature became about 500 ° C. and treated for 2 hours.

SEM、EPMA、XPS等の分析方法によって、得られた活物質の表面には窒化バナジウムが被覆されており、活物質表面との界面付近では窒素濃度が低く、金属バナジウムの存在も確認した。   The surface of the obtained active material was coated with vanadium nitride by an analysis method such as SEM, EPMA, XPS, etc., the nitrogen concentration was low near the interface with the active material surface, and the presence of metal vanadium was also confirmed.

こうして得られた正極活物質を用いて、以下の様にコイン型の非水電解質二次電池を作製した。このコイン型非水電解質二次電池の断面図を図1に示す。分散溶媒として十分に脱水されたN−メチルピロリジノン(NMP)を用いて、正極活物質と、アセチレンブラック(AB)と、ポリフッ化ビニリデン(PVDF)を、100:5:4の重量比で混練して活物質合剤ペーストを作製した。このペーストをアルミニウム箔でできた正極芯材1の上に塗布・乾燥した後、ローラーを用いて圧延して正極の電極シートを作製した。圧延後の正極2の密度は3.86g/ccであった。この正極の電極シートを直径15mmの
円盤状に打ち抜き、コイン電池用の正極とした。
Using the positive electrode active material thus obtained, a coin-type non-aqueous electrolyte secondary battery was produced as follows. A cross-sectional view of this coin-type non-aqueous electrolyte secondary battery is shown in FIG. Using positively dehydrated N-methylpyrrolidinone (NMP) as a dispersion solvent, a positive electrode active material, acetylene black (AB), and polyvinylidene fluoride (PVDF) are kneaded at a weight ratio of 100: 5: 4. Thus, an active material mixture paste was prepared. After applying and drying this paste on the positive electrode core material 1 made of aluminum foil, it was rolled using a roller to produce a positive electrode sheet. The density of the positive electrode 2 after rolling was 3.86 g / cc. This positive electrode sheet was punched into a disk shape having a diameter of 15 mm to obtain a positive electrode for a coin battery.

一方、負極は水を分散溶媒として、活物質の鱗片状黒鉛、結着剤のスチレンブタジエン系ゴムを、100:3の重量比で混練して合剤ペーストを作り、銅箔でできた負極芯材3に塗布・乾燥し、ローラーにて圧延して負極電極シートとした。これを110℃で10時間真空乾燥して、直径16mmの円盤状に打ち抜き、コイン電池用の負極4とした。   On the other hand, a negative electrode core made of copper foil is prepared by kneading active material flaky graphite and binder styrene butadiene rubber at a weight ratio of 100: 3 using water as a dispersion solvent. It apply | coated and dried to the material 3, and it rolled with the roller to make the negative electrode sheet. This was vacuum-dried at 110 ° C. for 10 hours and punched into a disk shape having a diameter of 16 mm to obtain a negative electrode 4 for a coin battery.

また、ポリプロピレン製の微多孔膜をセパレータ5として、電解液は1mol/LのLiPF6を体積比1:3のエチレンカーボネートとエチルメチルカーボネートに溶解させて用いた。 Also, a polypropylene microporous membrane was used as the separator 5, and the electrolyte was used by dissolving 1 mol / L LiPF 6 in ethylene carbonate and ethyl methyl carbonate having a volume ratio of 1: 3.

これらの正負極、セパレータ、電解液をコイン型電池の電池ケース6に入れ、封口板7を被せてガスケット8を介してかしめ、直径20mm、厚さ1.6mmのコイン型電池を作製した。電池ケース6と封口板7には、予め各々にアルミニウムメッシュ製の正極集電体9と、ニッケルメッシュ製の負極集電体10を溶接しておいた。この電池をA1とする。この電池の設計容量は、12mAhである。   These positive and negative electrodes, separator, and electrolyte were placed in a battery case 6 of a coin-type battery, covered with a sealing plate 7 and caulked through a gasket 8 to produce a coin-type battery having a diameter of 20 mm and a thickness of 1.6 mm. A positive current collector 9 made of aluminum mesh and a negative current collector 10 made of nickel mesh were previously welded to the battery case 6 and the sealing plate 7, respectively. This battery is designated as A1. The design capacity of this battery is 12 mAh.

以上の活物質合成時あるいは電池作製時の取り扱い環境は、可能な限り水分の少ない環境で行った。   The handling environment at the time of synthesizing the active material or producing the battery was as low as possible.

《実施例2》
正極活物質LiNi0.81Co0.15Al0.042に、バナジウム金属のスパッタの後、プラズマ窒化処理を行う代わりにこの金属を被覆した活物質を環状炉に入れ、アンモニアガスを流しながら500℃で50時間窒化処理を行ってガス窒化処理したこと以外は、実施例1と同様にコイン型電池を作製した。この電池をA2とする。
Example 2
Cathode active material LiNi 0.81 Co 0.15 Al 0.04 O 2 was sputtered with vanadium metal, and instead of performing plasma nitriding treatment, the active material coated with this metal was put in a ring furnace, and flowing at 500 ° C. for 50 hours while flowing ammonia gas A coin-type battery was produced in the same manner as in Example 1 except that nitriding was performed and gas nitriding was performed. This battery is designated as A2.

《実施例3》
正極活物質LiNi0.81Co0.15Al0.042に、1PaのArガス中で、スパッタリング法によってバナジウム金属を被覆した後、つづいてスパッタ中に窒素ガスをさらに導入して窒化バナジウムを被覆した以外は、実施例1と同様にコイン型電池を作製した。この電池をA3とする。
Example 3
The positive electrode active material LiNi 0.81 Co 0.15 Al 0.04 O 2 was coated with vanadium metal by sputtering in Ar gas at 1 Pa, and then further introduced with nitrogen gas during sputtering to coat vanadium nitride. A coin-type battery was produced in the same manner as in Example 1. This battery is designated as A3.

《実施例4》
正極活物質LiNi0.81Co0.15Al0.042を、0.1Paのアルゴンガスを導入したイオンプレーティング装置に装入して、まずバナジウム金属の蒸着を行い、つづいて蒸着中に窒素ガスを加えていき、窒化バナジウムを蒸着したこと以外は、実施例1と同様にコイン型電池を作製した。この電池をA4とする。
Example 4
The positive electrode active material LiNi 0.81 Co 0.15 Al 0.04 O 2 was charged into an ion plating apparatus into which 0.1 Pa of argon gas was introduced. Vanadium metal was first deposited, and then nitrogen gas was added during the deposition. A coin-type battery was produced in the same manner as in Example 1 except that vanadium nitride was deposited. This battery is designated as A4.

《実施例5》
正極活物質LiNi0.81Co0.15Al0.042に、スパッタリング法によってチタン(Ti)金属を被覆した以外は、実施例1と同様にコイン型電池を作製した。この電池をA5とする。
Example 5
A coin-type battery was produced in the same manner as in Example 1 except that the positive electrode active material LiNi 0.81 Co 0.15 Al 0.04 O 2 was coated with titanium (Ti) metal by sputtering. This battery is designated as A5.

《実施例6》
正極活物質LiNi0.81Co0.15Al0.042に、スパッタリング法によってアルミニウム金属を被覆した以外は、実施例1と同様にコイン型電池を作製した。この電池をA6とする。
Example 6
A coin-type battery was produced in the same manner as in Example 1 except that the positive electrode active material LiNi 0.81 Co 0.15 Al 0.04 O 2 was coated with an aluminum metal by a sputtering method. This battery is designated as A6.

《実施例7》
正極活物質LiNi0.81Co0.15Al0.042に、スパッタリング法によって亜鉛(Z
n)金属を被覆した以外は、実施例1と同様にコイン型電池を作製した。この電池をA7とする。
Example 7
The positive electrode active material LiNi 0.81 Co 0.15 Al 0.04 O 2 was coated with zinc (Z
n) A coin-type battery was produced in the same manner as in Example 1 except that the metal was coated. This battery is designated as A7.

《実施例8》
正極活物質LiNi0.81Co0.15Al0.042に、スパッタリング法によってニオブ(Nb)金属を被覆した以外は、実施例1と同様にコイン型電池を作製した。この電池をA8とする。
Example 8
A coin-type battery was produced in the same manner as in Example 1 except that the positive electrode active material LiNi 0.81 Co 0.15 Al 0.04 O 2 was coated with niobium (Nb) metal by sputtering. This battery is designated as A8.

《実施例9》
正極活物質LiNi0.81Co0.15Al0.042に、スパッタリング法によってジルコニウム(Zr)金属を被覆した以外は、実施例1と同様にコイン型電池を作製した。この電池をA9とする。
Example 9
A coin-type battery was produced in the same manner as in Example 1 except that the positive electrode active material LiNi 0.81 Co 0.15 Al 0.04 O 2 was coated with zirconium (Zr) metal by sputtering. This battery is designated as A9.

《実施例10》
正極活物質LiNi0.81Co0.15Al0.042に、スパッタリング法によってタンタル(Ta)金属を被覆した以外は、実施例1と同様にコイン型電池を作製した。この電池をA10とする。
Example 10
A coin-type battery was produced in the same manner as in Example 1 except that the positive electrode active material LiNi 0.81 Co 0.15 Al 0.04 O 2 was coated with a tantalum (Ta) metal by a sputtering method. This battery is designated as A10.

《実施例11》
正極活物質LiNi0.81Co0.15Al0.042に、スパッタリング法によってニッケル(Ni)金属を被覆した以外は、実施例1と同様にコイン型電池を作製した。この電池をA11とする。
Example 11
A coin-type battery was produced in the same manner as in Example 1 except that the positive electrode active material LiNi 0.81 Co 0.15 Al 0.04 O 2 was coated with nickel (Ni) metal by sputtering. This battery is designated as A11.

《実施例12》
正極活物質LiNi0.81Co0.15Al0.042に、無電解メッキ法(塩基性浴)によってニッケル(Ni)金属を被覆した以外は、実施例1と同様にコイン型電池を作製した。この電池をA12とする。メッキ液の成分としては、NiSO4・7H2O、NaH2PO2、NaOHを用いて、pHを約9、液温90℃にて処理した。
Example 12
A coin-type battery was produced in the same manner as in Example 1 except that the positive electrode active material LiNi 0.81 Co 0.15 Al 0.04 O 2 was coated with nickel (Ni) metal by an electroless plating method (basic bath). This battery is designated as A12. As components of the plating solution, NiSO 4 .7H 2 O, NaH 2 PO 2 , and NaOH were used, and the pH was about 9 and the solution temperature was 90 ° C.

《比較例1》
正極活物質LiNi0.81Co0.15Al0.042に、スパッタリング法によってバナジウム金属を被覆したのみで、窒化被膜を形成しない活物質を用いたこと以外は、実施例1と同様にコイン型電池を作製した。この電池をB1とする。
<< Comparative Example 1 >>
A coin-type battery was fabricated in the same manner as in Example 1, except that the positive electrode active material LiNi 0.81 Co 0.15 Al 0.04 O 2 was coated with vanadium metal by sputtering and an active material that did not form a nitride film was used. . This battery is designated as B1.

《比較例2》
正極活物質LiNi0.81Co0.15Al0.042に、メカノフュージョン法によって窒化バナジウムを付着させた活物質を用いたこと以外は、実施例1と同様にコイン型電池を作製した。この電池をB2とする。
<< Comparative Example 2 >>
A coin-type battery was fabricated in the same manner as in Example 1 except that the positive electrode active material LiNi 0.81 Co 0.15 Al 0.04 O 2 was an active material in which vanadium nitride was adhered by a mechanofusion method. This battery is designated as B2.

《比較例3》
焼成後の正極活物質LiNi0.81Co0.15Al0.042をそのまま用いたこと以外は、実施例1と同様にコイン型電池を作製した。この電池をB3とする。
<< Comparative Example 3 >>
A coin-type battery was fabricated in the same manner as in Example 1 except that the positive electrode active material LiNi 0.81 Co 0.15 Al 0.04 O 2 after firing was used as it was. This battery is designated as B3.

以上の様にして作製した電池を表1にまとめた。   The batteries produced as described above are summarized in Table 1.

Figure 0004752372
Figure 0004752372

またそれらの電池の評価を行った。   Moreover, those batteries were evaluated.

まず、圧延工程における活物質あるいは被覆層の破壊の程度を評価するため、活物質を円盤状のペレットの成型金型に入れて60Mpaの圧力を加えた後、取り出して解砕して粒度分布を測定した。1ミクロン未満の微粉の有無について、表2に示す。   First, in order to evaluate the degree of destruction of the active material or the coating layer in the rolling process, the active material is put into a disk-shaped pellet molding die, a pressure of 60 Mpa is applied, and then taken out and crushed to obtain a particle size distribution. It was measured. Table 2 shows the presence or absence of fine powder of less than 1 micron.

また、できあがった電池については、充電および放電電流2mA、電圧範囲2.5V〜4.2Vの定電流充放電を25℃環境下で3サイクル行った。このうち各実施例と比較例の10セルずつを充電状態で45℃環境に3日放置したときの電圧不良電池の割合を表2に示した。電池電圧が3.9V以下になったセルを不良とした。   Moreover, about the completed battery, charge and discharge current 2mA and the constant current charge / discharge of voltage range 2.5V-4.2V were performed 3 cycles in 25 degreeC environment. Table 2 shows the ratio of voltage failure batteries when 10 cells of each example and comparative example were left in a charged state in a 45 ° C. environment for 3 days. A cell having a battery voltage of 3.9 V or less was regarded as defective.

これとは別に高温充放電サイクルでのガス発生を評価するために、まず充電状態で初期の電池厚みを測定した(各n=5セル)。その後、45℃の環境下で、上記と同じ充放電電流値、電圧範囲でのサイクル試験を行い、50サイクル経過後の充電状態で電池の厚みを測定した。電池厚みの変化と放電容量の維持率を表2に示す。   Separately from this, in order to evaluate the gas generation in the high-temperature charge / discharge cycle, first, the initial battery thickness was measured in the charged state (each n = 5 cells). Thereafter, under the environment of 45 ° C., a cycle test was performed in the same charge / discharge current value and voltage range as described above, and the thickness of the battery was measured in the charged state after 50 cycles. Table 2 shows the change in battery thickness and the maintenance rate of discharge capacity.

Figure 0004752372
Figure 0004752372

表1および表2から分かる様に、焼成後の活物質をそのまま用いた比較例3はもとより、金属被覆のみ行った比較例1や、窒化物を表面に融合させた比較例2においても、本実施例よりも多くのガスが発生して電池の膨れが大きかった。金属被覆のみでは、プレス試験後の微粉の存在から、圧延時の圧力で被覆層あるいは活物質の一部が崩れたものと推察される。メカノフュージョン法による窒化物被覆は、被覆工程で大きな圧力がかかるため、硬い窒化物層が形成される前に活物質の一部が崩れて微粉が生成された可能性や、充放電の膨張収縮に窒化物層が追随できずに崩れた可能性が考えられる。また、電圧不良が多発したことから、メカノフュージョン処理工程で、用いたステンレス容器の一部が混入して不具合を引き起こしたものと推察される。   As can be seen from Tables 1 and 2, not only in Comparative Example 3 using the fired active material as it is, but also in Comparative Example 1 in which only metal coating was performed and in Comparative Example 2 in which nitride was fused to the surface, More gas was generated than in the Examples, and the swelling of the battery was large. In the case of only metal coating, it is inferred that the coating layer or part of the active material collapsed due to the pressure during rolling because of the presence of fine powder after the press test. Nitride coating by the mechano-fusion method applies a great deal of pressure during the coating process, so that a portion of the active material may collapse before the hard nitride layer is formed, and fine powder may be generated. There is a possibility that the nitride layer could not follow and collapsed. Moreover, since voltage failures frequently occurred, it is assumed that a part of the used stainless steel container was mixed in the mechano-fusion treatment process and caused a problem.

一方、本発明の製造方法で作製した活物質は、プレスされた際にも微粉を生成しにくく、高温環境下でのガス発生を抑制することが期待される。実際に、45℃サイクルでの電池の膨れが非常に小さく、充放電時の活物質の膨張収縮にもかかわらず強固な被膜を保持して電解液との反応を抑えていることが分かった。また、ガス発生が抑えられたために電極間にガスがたまることもなく、サイクル後の容量維持率も高かった。   On the other hand, the active material produced by the production method of the present invention is less likely to produce fine powder even when pressed, and is expected to suppress gas generation under a high temperature environment. In fact, it was found that the swelling of the battery in the 45 ° C. cycle was very small, and the reaction with the electrolytic solution was suppressed by holding a strong coating despite the expansion and contraction of the active material during charging and discharging. Moreover, since gas generation was suppressed, gas did not accumulate between the electrodes, and the capacity retention rate after cycling was high.

更に、本実施例以外の活物質組成、つまり、LiCoO、LiNiOおよびLiMnOでも実験を行い、同様の結果が得られた。 Furthermore, experiments were performed with active material compositions other than this example, that is, LiCoO 2 , LiNiO 2, and LiMnO 2 , and similar results were obtained.

また、上記の活物質を用い、スパッタリング法でコバルト(Co)金属とリチウム(Li)金属を被覆し、プラズマ窒化法を用いても、同様の結果が得られた。   Similar results were obtained even when the above active material was used, and a cobalt (Co) metal and a lithium (Li) metal were coated by a sputtering method and a plasma nitriding method was used.

なお、本発明は、上記の実施例に記載された製造方法・条件に限定されるものではない。   In addition, this invention is not limited to the manufacturing method and conditions described in said Example.

本発明の非水電解質二次電池用正極材料およびそれを用いた電池は、信頼性の優れた寿命の長いポータブル用電源等として有用である。   The positive electrode material for a non-aqueous electrolyte secondary battery of the present invention and a battery using the same are useful as a portable power source having excellent reliability and a long lifetime.

本発明の一実施例の非水電解質二次電池の断面図Sectional drawing of the nonaqueous electrolyte secondary battery of one Example of this invention

符号の説明Explanation of symbols

1 正極芯材
2 正極
3 負極芯材
4 負極
5 セパレータ
6 電池ケース
7 封口板
8 ガスケット
9 正極集電体
10 負極集電体

DESCRIPTION OF SYMBOLS 1 Positive electrode core material 2 Positive electrode 3 Negative electrode core material 4 Negative electrode 5 Separator 6 Battery case 7 Sealing plate 8 Gasket 9 Positive electrode collector 10 Negative electrode collector

Claims (7)

リチウムイオンの放出と吸蔵が可能なリチウム遷移金属複合酸化物粒子表面の一部に金属被覆層を形成する工程と、窒化物被覆層を形成する工程とを有することを特徴とする正極活物質の製造法。 A positive electrode active material comprising: a step of forming a metal coating layer on a part of a surface of a lithium transition metal composite oxide particle capable of releasing and occluding lithium ions; and a step of forming a nitride coating layer. Manufacturing method. 窒化物被覆層を形成する工程が、金属層と前記金属層で被覆されていないリチウム遷移金属複合酸化物粒子表面の両方を窒化することを特徴とする請求項1記載の正極活物質の製造法。 2. The method for producing a positive electrode active material according to claim 1, wherein the step of forming the nitride coating layer nitrides both the metal layer and the surface of the lithium transition metal composite oxide particles not covered with the metal layer. . リチウムイオンの放出と吸蔵が可能なリチウム遷移金属複合酸化物粒子表面の少なくとも一部が金属窒化物で被覆されていることを特徴とする請求項1または2記載の製造法で製造された正極活物質。 The positive electrode active produced by the production method according to claim 1 or 2, wherein at least a part of the surface of the lithium transition metal composite oxide particles capable of releasing and occluding lithium ions is coated with a metal nitride. material. 前記金属窒化物が窒素濃度の傾斜材料であり、リチウム遷移金属複合酸化物との界面に金属層が存在していることを特徴とする請求項3記載の正極活物質。 The positive electrode active material according to claim 3, wherein the metal nitride is a gradient material having a nitrogen concentration, and a metal layer is present at an interface with the lithium transition metal composite oxide. リチウム遷移金属複合酸化物粒子の表面を被覆する金属あるいは窒化物が、Ni、Co、Ti、Zn、Zr、Al、Nb、V、Ta、Liおよびその窒化物の群から選ばれる少なくとも1種であることを特徴とする請求項3または4記載の正極活物質。 The metal or nitride covering the surface of the lithium transition metal composite oxide particles is at least one selected from the group consisting of Ni, Co, Ti, Zn, Zr, Al, Nb, V, Ta, Li and nitrides thereof. The positive electrode active material according to claim 3, wherein the positive electrode active material is present. リチウム遷移金属複合酸化物が、LiMO2(MはNi、CoまたはMnの少なくとも一種類以上)で表されることを特徴とする請求項3から5のいずれかに記載の正極活物質。 The positive electrode active material according to claim 3, wherein the lithium transition metal composite oxide is represented by LiMO 2 (M is at least one of Ni, Co, and Mn). 請求項3から6のいずれかに記載の正極活物質を用いたことを特徴とする非水電解質二次電池。

A non-aqueous electrolyte secondary battery using the positive electrode active material according to claim 3.

JP2005216721A 2004-12-13 2005-07-27 Positive electrode active material, method for producing the same, and non-aqueous electrolyte secondary battery Expired - Fee Related JP4752372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005216721A JP4752372B2 (en) 2004-12-13 2005-07-27 Positive electrode active material, method for producing the same, and non-aqueous electrolyte secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004359421 2004-12-13
JP2004359421 2004-12-13
JP2005216721A JP4752372B2 (en) 2004-12-13 2005-07-27 Positive electrode active material, method for producing the same, and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2006196433A JP2006196433A (en) 2006-07-27
JP4752372B2 true JP4752372B2 (en) 2011-08-17

Family

ID=36802319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005216721A Expired - Fee Related JP4752372B2 (en) 2004-12-13 2005-07-27 Positive electrode active material, method for producing the same, and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4752372B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101260539B1 (en) * 2006-03-02 2013-05-06 에이지씨 세이미 케미칼 가부시키가이샤 Positive electrode active material for rechargeable battery with nonaqueous electrolyte and method for manufacturing the same
JP5671831B2 (en) * 2009-05-21 2015-02-18 トヨタ自動車株式会社 Method for producing lithium nitride-transition metal composite oxide, lithium nitride-transition metal composite oxide, and lithium battery
JP4807467B1 (en) * 2010-07-23 2011-11-02 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US10128507B2 (en) 2012-12-07 2018-11-13 Samsung Electronics Co., Ltd. Lithium secondary battery
WO2014104234A1 (en) 2012-12-28 2014-07-03 Agcセイミケミカル株式会社 Surface-modified lithium-containing composite oxide particles, positive electrode using surface-modified lithium-containing composite oxide particles, and nonaqueous electrolyte secondary battery
KR20170097699A (en) * 2014-12-19 2017-08-28 솔베이 스페셜티 폴리머스 이태리 에스.피.에이. Electrode-forming composition
JP6459953B2 (en) * 2015-12-22 2019-01-30 トヨタ自動車株式会社 Lithium ion battery

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3192855B2 (en) * 1993-12-24 2001-07-30 三洋電機株式会社 Non-aqueous battery
JP2989746B2 (en) * 1994-07-19 1999-12-13 株式会社ライムズ Steel-based composite surface-treated product and its manufacturing method
JP3195175B2 (en) * 1994-11-11 2001-08-06 株式会社東芝 Non-aqueous solvent secondary battery
JPH08250120A (en) * 1995-03-08 1996-09-27 Sanyo Electric Co Ltd Lithium secondary battery
JPH09330720A (en) * 1996-06-11 1997-12-22 Sanyo Electric Co Ltd Lithium battery
JPH1116566A (en) * 1997-06-20 1999-01-22 Hitachi Ltd Battery
JPH11280648A (en) * 1998-03-30 1999-10-15 Sanyo Electric Co Ltd Rotary compressor
JP4706090B2 (en) * 1999-04-23 2011-06-22 三菱化学株式会社 Positive electrode material and positive electrode for lithium secondary battery, and lithium secondary battery
DE10128970A1 (en) * 2001-06-15 2002-12-19 Fortu Bat Batterien Gmbh Rechargeable battery cell comprises a negative electrode, an electrolyte system, and a positive electrode with one electrode having an electrically conducting deviating element with a surface layer made from a protective metal
JP2003173775A (en) * 2001-12-05 2003-06-20 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2006196433A (en) 2006-07-27

Similar Documents

Publication Publication Date Title
US10511048B2 (en) Method of preparing negative electrode active material for lithium secondary battery and lithium secondary battery using the same
JP4942319B2 (en) Lithium secondary battery
JP5132941B2 (en) Electrode additive coated with conductive material and lithium secondary battery comprising the same
JP4868786B2 (en) Lithium secondary battery
US8003253B2 (en) Non-aqueous electrolyte secondary battery
JP5219339B2 (en) Lithium secondary battery
CN110832673B (en) Separator including coating layer, lithium secondary battery including the same, and method of manufacturing the same
JP4945906B2 (en) Secondary battery negative electrode and secondary battery using the same
WO2005088761A1 (en) Lithium secondary battery
JP4752372B2 (en) Positive electrode active material, method for producing the same, and non-aqueous electrolyte secondary battery
JP2007273183A (en) Negative electrode and secondary battery
CN110890525B (en) Positive active material for lithium secondary battery and lithium secondary battery including the same
WO2005064714A1 (en) Negative electrode material for secondary battery, negative electrode for secondary battery and secondary battery using same
JP3536944B2 (en) Non-aqueous electrolyte battery
JP2008251480A (en) Cathode active material for nonaqueous electrolyte secondary battery and nonaqueous secondary battery using it
JP4067268B2 (en) Negative electrode for lithium secondary battery and method for producing the same
JP2005294078A (en) Negative electrode for secondary battery, and secondary battery
JP2005332629A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and its manufacturing method
JP2022547501A (en) Method for manufacturing secondary battery
JP2009149462A (en) Composite material and production method thereof, electrode structure and power storage device
US11437610B2 (en) High capacity secondary battery
CN114051666B (en) Method for manufacturing secondary battery
JP4419402B2 (en) Electrode, battery using the same, and nonaqueous electrolyte secondary battery
KR102306877B1 (en) A high capacity secondary battery
JP4851699B2 (en) Anode active material for non-aqueous electrolyte electrochemical cell and non-aqueous electrolyte electrochemical cell using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080509

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110318

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees