JP4751789B2 - Non-grounded circuit insulation monitoring method and apparatus - Google Patents

Non-grounded circuit insulation monitoring method and apparatus Download PDF

Info

Publication number
JP4751789B2
JP4751789B2 JP2006220984A JP2006220984A JP4751789B2 JP 4751789 B2 JP4751789 B2 JP 4751789B2 JP 2006220984 A JP2006220984 A JP 2006220984A JP 2006220984 A JP2006220984 A JP 2006220984A JP 4751789 B2 JP4751789 B2 JP 4751789B2
Authority
JP
Japan
Prior art keywords
circuit
voltage
frequency
current
impedance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006220984A
Other languages
Japanese (ja)
Other versions
JP2006353097A (en
Inventor
正彦 藤井
至 羽生
達哉 村田
Original Assignee
光商工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 光商工株式会社 filed Critical 光商工株式会社
Priority to JP2006220984A priority Critical patent/JP4751789B2/en
Publication of JP2006353097A publication Critical patent/JP2006353097A/en
Application granted granted Critical
Publication of JP4751789B2 publication Critical patent/JP4751789B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Testing Relating To Insulation (AREA)

Description

本発明は非接地電路の絶縁状態を監視する電路の絶縁監視技術に関し、特に、病院の手術室および集中治療室等で使用される非接地式電路の絶縁監視に適した監視方法と装置に関する。   The present invention relates to a circuit insulation monitoring technique for monitoring the insulation state of a non-grounded circuit, and more particularly to a monitoring method and apparatus suitable for insulation monitoring of a non-grounded circuit used in a hospital operating room, an intensive care unit, and the like.

病院の手術室や集中治療室等の電路は、地絡故障時の漏洩電流を極小に抑え患者を保護するため、あるいは、医師や看護士が感電することによる二次災害を防止するため、非接地式の電路が用いられている。   Electrical circuits such as operating rooms and intensive care units in hospitals are not used to protect patients by minimizing leakage current in the event of a ground fault, or to prevent secondary disasters caused by electric shocks of doctors and nurses. A grounding type electric circuit is used.

近年、手術室等では医療機器が多数設置され、配線距離が長くなる傾向にあり、長くなると配線の対地静電容量が増大し、また、多数の機器を設置することにより、機器の絶縁劣化の確率が増し、感電の危険性が増大している。   In recent years, many medical devices have been installed in operating rooms and the like, and the wiring distance tends to be long. When the length is long, the capacitance to the ground of the wiring increases. The probability increases and the risk of electric shock increases.

そこで、病院の手術室や集中治療室等で使用される非接地式電路には絶縁監視・警報装置が用いられている。   Therefore, an insulation monitoring / warning device is used for an ungrounded electric circuit used in a hospital operating room or an intensive care unit.

この警報装置は、非接地式電路のいずれかの一線を低インピーダンスの導体で大地に接続した場合に流れる地絡電流の値が2mAとなるような状態となったとき動作するようJISで規定されている。   This alarm device is stipulated by JIS to operate when any one of the ungrounded electrical circuits is connected to the ground with a low impedance conductor and the value of the ground fault current flowing becomes 2 mA. ing.

このような非接地式電路の絶縁監視装置としては、従来次の方式が用いられていた。
(1)抵抗接地方式:電路に抵抗を接続し、中性点を作りその中性点を電流検出器を介して大地に接地し、一線地絡事故時に大地から中性点に流れる漏洩電流を検出する方式。
(2)直流重畳方式:電路の一線と大地との間に直流電流検出器と直流電源を接続し、電路の絶縁抵抗の変化に伴って変化する直流電流を検出する方式。
(3)低周波重畳方式:電路の一線と大地との間に低周波電流検出器と系統周波数より十分低い周波数の交流電源を接続し、電路の絶縁抵抗の変化に伴って変化する低周波電流を検出する方式(例えば、特許文献1)。
(4)線路順次切替監視方式:電流検出器の一端を大地に接続し、他端を半導体あるいは機械的な交互切り替えスイッチで電路の各線と大地の間に交互に挿入し、電路の絶縁抵抗の変化に伴って変化する電流を検出する方式。
Conventionally, the following method has been used as an insulation monitoring device for such an ungrounded electric circuit.
(1) Resistive grounding method: Connect a resistor to the electric circuit, create a neutral point, ground the neutral point to the ground via a current detector, and leak current flowing from the ground to the neutral point in the event of a one-line ground fault Method to detect.
(2) DC superposition method: A method in which a DC current detector and a DC power source are connected between one line of the electric circuit and the ground, and a DC current that changes as the insulation resistance of the electric circuit changes is detected.
(3) Low frequency superposition method: A low frequency current detector and an AC power source having a frequency sufficiently lower than the system frequency are connected between the line of the circuit and the ground, and the low frequency current that changes with the change in the insulation resistance of the circuit (For example, patent document 1).
(4) Line sequential switching monitoring method: Connect one end of the current detector to the ground, and insert the other end alternately between each line of the circuit and the ground with a semiconductor or mechanical alternating switch, and the insulation resistance of the circuit A method of detecting current that changes with changes.

しかし、上記の(1)〜(4)の方式は夫々以下の課題があった。   However, the above methods (1) to (4) have the following problems.

即ち、(1)の方式は、電路の絶縁抵抗が同時に低下した場合、あるいは対地静電容量が増加した場合に各線の大地に対する静電容量はほぼ同等に増加するため中性点と大地との間に電圧が発生せず、インピーダンスの低下を検出できない。   That is, in the method of (1), when the insulation resistance of the electric circuit is lowered at the same time, or when the capacitance to the ground is increased, the capacitance with respect to the ground of each line increases almost equally. No voltage is generated between them, and a decrease in impedance cannot be detected.

(2)の方式は、検出信号が直流であるため電路の対地静電容量の増加に対してのインピーダンス低下を検出できない。   In the method (2), since the detection signal is a direct current, it is impossible to detect a decrease in impedance with respect to an increase in the ground capacitance of the electric circuit.

また、各線ごとの絶縁抵抗値が検出できないため、片線が絶縁劣化したときの値と、両線ともに劣化した場合の検出値が同じとなり、両線の絶縁劣化の場合、所定値より早く検出してしまうことになる。   In addition, since the insulation resistance value for each line cannot be detected, the value when one line is deteriorated in insulation and the detection value when both lines are deteriorated are the same. Will end up.

また、(3)の方式も、低周波であるため電路の対地静電容量が増加した場合、系統周波数でのインピーダンスの値とは異なり、このままではインピーダンスの低下を正確に検出できない。   In addition, since the method (3) also has a low frequency, when the ground capacitance of the electric circuit increases, unlike the impedance value at the system frequency, the decrease in impedance cannot be accurately detected as it is.

また、各線ごとの絶縁抵抗値が検出できないため、片線が絶縁劣化したときの値と、両線ともに劣化した場合の検出値が同じとなり、両線の絶縁劣化の場合、所定値より早く検出してしまうことになる。   In addition, since the insulation resistance value for each line cannot be detected, the value when one line is deteriorated in insulation and the detection value when both lines are deteriorated are the same. Will end up.

また、(4)の方式は、一線および両線地絡とも検出でき対地静電容量の増加によるインピーダンス低下も検出できるが、急激な電路の対地電圧の変化を伴うためノイズが発生し、心電計等の医用機器に障害を与える。   The method (4) can detect both one-line and both-line ground faults and can also detect a decrease in impedance due to an increase in the ground capacitance, but noise is generated due to a sudden change in the ground voltage of the circuit, and the electrocardiogram Damage to medical equipment such as meters.

そこで、本願の出願人は上記の各方式の課題を解決すべく、種々実験調査の結果、系統周波数とわずかに異なる周波数重畳による線路順次切替監視方式を開発し、実用に供している(例えば、特許文献2)。   Therefore, the applicant of the present application has developed a line sequential switching monitoring method using a frequency superposition slightly different from the system frequency as a result of various experimental investigations in order to solve the problems of each of the above methods, and has put them into practical use (for example, Patent Document 2).

この先提案の発明を従来技術として図3および図4によって説明する。図3はその説明図で、P1,P2は絶縁を監視する非接地電路、1は絶縁トランス、2は信号電源、3は電流検出器で、この信号電源2と電流検出器3は絶縁トランス1の中性点と大地(アース)E間に直列接続されている。4および5は電流路P1およびP2の対地間インピーダンスを示している。 The previously proposed invention will be described as a prior art with reference to FIGS. FIG. 3 is an explanatory diagram, P1 and P2 are ungrounded electric circuits for monitoring insulation, 1 is an insulating transformer, 2 is a signal power source, 3 is a current detector, and the signal power source 2 and the current detector 3 are insulating transformers 1 Is connected in series between the neutral point and ground (earth) E. Reference numerals 4 and 5 denote the impedance between the current paths P 1 and P 2 .

信号電源2は系統の周波数とわずか異なる周波数で、系統電路電圧の1/2の交流信号を出力する。系統の周波数が50Hz(又は60Hz)で電圧が100Vの場合は、この周波数とわずか異なる例えば、55Hzで50Vの交流信号を発生させる。   The signal power source 2 outputs an alternating current signal having a frequency slightly different from the system frequency and ½ of the system circuit voltage. When the frequency of the system is 50 Hz (or 60 Hz) and the voltage is 100 V, an AC signal of 50 V at 55 Hz, for example, slightly different from this frequency is generated.

そして、この55Hz,50Vの交流信号を絶縁トランス1の中性点と大地間に印加する。この交流信号の印加により電路P1と大地E間及び電路P2と大地E間には、それぞれ図4の(A)及び(B)に示すように、50Hzと55Hzとが合成されてうなり現象を発生し、合成電圧は、最大振幅100V、最小振幅0V,周期数5Hzで緩やかに増減を繰り返す。そして、電路P1と大地E間の電圧が最大のとき、電路P2と大地間の電圧は最小となり、電路P1と大地間の電圧が最小のとき、電路P2と大地間の電圧は最大となる。 Then, the 55 Hz, 50 V AC signal is applied between the neutral point of the insulating transformer 1 and the ground. As shown in FIGS. 4A and 4B, 50 Hz and 55 Hz are synthesized between the electric circuit P 1 and the ground E and between the electric circuit P 2 and the ground E by the application of the AC signal, respectively. The combined voltage repeats a gentle increase and decrease with a maximum amplitude of 100 V, a minimum amplitude of 0 V, and a cycle number of 5 Hz. When the voltage between the electric circuit P 1 and the ground E is maximum, the voltage between the electric circuit P 2 and the ground is minimum, and when the voltage between the electric circuit P 1 and the ground is minimum, the voltage between the electric circuit P 2 and the ground is Maximum.

この電圧に比例した電流が、電路P1−対地インピーダンス4−大地E−電流検出器3−信号電源2−中性点の経路で、また電路P2側は、電路P2−対地インピーダンス5−大地E−電流検出器3−信号電源2−中性点の経路で流れる。 A current proportional to this voltage is a path of an electric circuit P 1 -ground impedance 4 -ground E -current detector 3 -signal power source 2 -neutral point, and the electric circuit P 2 side has an electric circuit P 2 -ground impedance 5- It flows in the path of earth E-current detector 3-signal power source 2-neutral point.

この電流は電路P1,P2の絶縁抵抗の低下及び電路と対地間の静電容量の増加による対地インピーダンス4,5の低下に伴って増加するので、この電流を電流検出器3で検出することにより、絶縁状態を監視することができる。 Since this current increases as the insulation resistance of the electric circuits P 1 and P 2 decreases and the ground impedances 4 and 5 decrease due to the increase in capacitance between the electric circuit and ground, this current is detected by the current detector 3. Thus, the insulation state can be monitored.

また、人体が電路P1,P2に触れると、人体を介して電流が流れるが、この電流が人体に危険が無い程度(2mA)に制限する必要があり、通常は信号電源2,電流検出器3と直列に電流制限器6を設けて制限している。
特開平7−209366号公報 特公平1−16088号公報。
Further, when the human body touches the electric paths P 1 and P 2 , a current flows through the human body. However, it is necessary to limit the current to such a level that there is no danger to the human body (2 mA). The current limiter 6 is provided in series with the voltage limiter 3 to limit the current.
JP-A-7-209366 Japanese Patent Publication No. 1-160888.

上記の先提案の発明は、一線と大地との間の電圧が最大となったとき、他線と大地との間の電圧が最小となるので、電路の絶縁状態を一線ずつ順次電流検出器で監視することになり、二線の絶縁抵抗がバランスして低下した場合にも、電路の絶縁抵抗の劣化を検出することができる利点がある。   In the above-mentioned prior proposal invention, when the voltage between one line and the ground becomes maximum, the voltage between the other line and ground becomes minimum. Even if the insulation resistance of the two wires decreases in a balanced manner, there is an advantage that the deterioration of the insulation resistance of the electric circuit can be detected.

また、緩やかに増減を繰返す交流電圧により絶縁監視を行うものであるから、電路と大地間の静電容量の増加に伴う対地インピーダンスの低下も検出できる利点がある。   In addition, since insulation monitoring is performed with an alternating voltage that gradually increases and decreases, there is an advantage that a decrease in ground impedance accompanying an increase in capacitance between the electric circuit and the ground can be detected.

また、監視する電路の切替えを、従来例のように機械的、電気的なスイッチを用いて行うものではなく、一線と大地間の電圧が最大となった時、他線と大地間の電圧が最小となることを利用して行うものであるから、監視する電路の切替に際してノイズが発生することは全く無く、従って、精密な医療用測定器等に雑音障害を与えることが全くなくなる利点があり、好評裏に実用に供しているものである。   Moreover, the switching of the electric circuit to be monitored is not performed using a mechanical or electrical switch as in the conventional example, and when the voltage between one line and the ground becomes maximum, the voltage between the other line and the ground is Since it is performed by using the minimum, there is no noise at the time of switching the electric circuit to be monitored, and therefore there is an advantage that no noise disturbance is given to a precise medical measuring instrument. It is something that has been used for practical use.

しかしながら、近年、医療技術の高度化に伴い、医療機器分野にもコンピュータ制御が導入されて医療機器自体も高精度化が要求されるに至っている。   However, in recent years, with the advancement of medical technology, computer control has been introduced in the medical device field, and the medical device itself has been required to have high precision.

例えば心電計では、心電波形の僅かな波形の変化を捉えるため急峻なデジタルフィルターを用いて系統周波数のハム雑音をできるだけ除去し、源波形に忠実な心電波形を得るよう処理されるようになってきている。その際、検出するための印加信号が系統周波数と僅かに異なり、また、印加信号の電圧が高いため急峻なフィルターでは逆に除去しきれずハム雑音として障害を与えるようになってきている。   For example, an electrocardiograph is processed to capture a slight change in the electrocardiogram waveform by using a steep digital filter to remove the hum noise of the system frequency as much as possible and to obtain an electrocardiogram waveform faithful to the source waveform. It is becoming. At this time, the applied signal for detection is slightly different from the system frequency, and since the voltage of the applied signal is high, a steep filter cannot be removed, and it has become an obstacle as hum noise.

そこで本発明は、上記の先発明の利点を生かし、更に検出信号の電圧が低くとも絶縁の監視を可能とする絶縁監視方法および監視装置を提供することを目的とする。   Therefore, the present invention has an object to provide an insulation monitoring method and a monitoring device that can take advantage of the above-described prior invention and can monitor insulation even when the voltage of a detection signal is low.

本発明において上記の課題を解決するための手段は、非接地電路P1、P2を有するトランスの中性点と大地間に、電路の周波数と異なる周波数の電圧検出信号を発生する信号電源と高抵抗値の抵抗体とを直列接続して検出回路を形成し、この検出回路に該検出回路に流れる電流を検出する電流検出手段を設け、該電流検出手段で検出した検出信号からフィルタを介して信号電源の周波数と電路の周波数による電流をそれぞれ取り出し、この取り出した信号電源による検出信号で電路と大地間の総合インピーダンスを計測し、次に、取り出した電路の周波数による信号電流から得られる中性点と大地間の零相電圧と、該零相電圧と電路P 1 .P 2 の電圧を検出する電路電圧信号入力回路で得られた電路電圧から、各電路P 1 、P 2 の大地間電圧を求め、前記計測した信号電源の周波数による総合インピーダンスを電路の周波数によるインピーダンスに換算し、換算したインピーダンスを用いて各電路P 1 、P 2 と大地間のインピーダンスを求め、このインピーダンスで電路の大地間電圧を除した電流値により電路P1と大地間及びP2と大地間の絶縁抵抗を夫々監視するようにする。 Means for solving the above-described problems in the present invention include a signal power source for generating a voltage detection signal having a frequency different from the frequency of the electric circuit between the neutral point of the transformer having the ungrounded electric circuits P 1 and P 2 and the ground. A detection circuit is formed by connecting high resistance resistors in series, current detection means for detecting a current flowing through the detection circuit is provided in the detection circuit, and a detection signal detected by the current detection means is passed through a filter. The signal power supply frequency and the current of the circuit frequency are taken out, respectively, and the total impedance between the circuit and the earth is measured by the detection signal from the signal power supply taken out. The zero-phase voltage between the sex point and the ground, and the zero-phase voltage and the electric circuit P 1 . From path voltage obtained by the path voltage signal input circuit which detects the voltage of the P 2, obtains the earth voltage of each path P 1, P 2, the impedance with frequency of the total impedance path due to the frequency of the signal power obtained by the measurement The impedance between the electric circuits P 1 and P 2 and the earth is obtained using the converted impedance, and the electric current P 1 and the earth and the current between the electric circuit P 1 and the earth and P 2 and the earth are obtained by dividing the voltage between the electric circuits by this impedance. The insulation resistance between them is monitored.

このように、検出信号による電流から電路と大地間のインピーダンスを計測し、この計測したインピーダンスを用いて電路(系統)の周波数によるインピーダンスに換算して監視するようにすることにより、信号電源の電圧が低くとも、また信号電源の周波数に関係なく電路の絶縁を監視することができる。   In this way, by measuring the impedance between the electric circuit and the ground from the current of the detection signal, and converting to the impedance according to the frequency of the electric circuit (system) using this measured impedance, the voltage of the signal power supply is monitored. Even if it is low, the insulation of the electric circuit can be monitored regardless of the frequency of the signal power source.

また、検出回路に、高抵抗体を設けることにより、電流制限器が無くとも安全性が高められる。   Further, by providing a high resistance in the detection circuit, safety can be improved without a current limiter.

そして、前記のように換算した電路の周波数によるインピーダンスを用いて各電路P 1 、P 2 と大地間のインピーダンスを求め、このインピーダンスと電路の大地間電圧から、一線が導体で接地されたとき流れるであろう電流値を算出し、該電流値があらかじめ設定した電流値を超えたとき警報信号を出力して警報を発するようにする。 Then, the impedance between each of the electric circuits P 1 and P 2 and the ground is obtained by using the impedance according to the frequency of the electric circuit converted as described above, and the current flows when one line is grounded by the conductor from the impedance and the voltage between the grounds of the electric circuit. The current value that will be calculated is calculated, and when the current value exceeds a preset current value, an alarm signal is output to issue an alarm.

絶縁監視装置としては、非接地電路P1、P2を有するトランスの中性点と大地間に、高低抗体と電路の周波数と異なる周波数の電圧検出信号を発生する信号電源とを直列接続して形成した検出回路と、該検出回路に設けられこの検出回路に流れる電流を検出する電流検出手段と、該電流検出手段で検出した電流からフィルタにより検出信号の周波数と電路の周波数による電流とを夫々検出信号入力回路と電路信号入力回路で分別して演算手段に入力する演算部入力手段と、前記電路に設けられ電路電圧信号を入力して電路P 1 、P 2 の電路電圧を検出して前記の演算手段に入力する電路電圧検出回路とを備え、該演算手段は、検出信号入力回路から入力した信号で検出信号の周波数による電路と大地間の総合インピーダンを算出し、電路の周波数による信号から得られる中性点と大地間の零相電圧を検出し、該零相電圧と電路電圧から、各電路の大地間電圧を求め、前記算出した検出信号の周波数による総合インピーダンスを電路の周波数による総合インピーダンスに換算し、該換算したインピーダンスを用いて各電路P1と大地間、P2と大地間のインピーダンスを求め、このインピーダンスと電路の大地間電圧から一線が導体で接地されたとき流れるであろう電流値を算出し、該電流値があらかじめ設定した電流値を越えたとき警報信号を出力するように構成する。 As an insulation monitoring device, a high and low antibody and a signal power source that generates a voltage detection signal having a frequency different from the frequency of the electric circuit are connected in series between the neutral point of the transformer having the ungrounded electric circuits P 1 and P 2 and the ground. A detection circuit formed, a current detection unit provided in the detection circuit for detecting a current flowing through the detection circuit, and a current detected by the current detection unit using a filter to detect a frequency of a detection signal and a current based on a frequency of an electric circuit, respectively. An arithmetic unit input means for separating the detection signal input circuit and the electric circuit signal input circuit and inputting them to the arithmetic means; and an electric circuit voltage signal provided in the electric circuit for detecting the electric circuit voltages of the electric circuits P 1 and P 2 and a path voltage detection circuit for input to the arithmetic means, said arithmetic means calculates a total impedance between the electric path and the earth by the frequency of the detected signal at the input from the detection signal input circuit signal, circumference of path The zero-phase voltage between the neutral point and the ground obtained from the signal by the wave number is detected, the ground-to-ground voltage of each circuit is obtained from the zero-phase voltage and the circuit voltage, and the total impedance according to the frequency of the calculated detection signal is calculated as the circuit. The impedance is converted into the total impedance according to the frequency of the current, and the impedance between each electric circuit P 1 and the ground, and between P 2 and the earth is obtained using the converted impedance , and one line is grounded by the conductor from this impedance and the voltage between the electric circuits . A current value that will flow at times is calculated, and an alarm signal is output when the current value exceeds a preset current value .

本発明は、以上のように構成しているので、次の効果を奏する。   Since this invention is comprised as mentioned above, there exists the following effect.

(1)医療機器に影響を与えない低い電圧を検出信号として用いることができるので、医療機器の測定結果に影響を与えず、かつ商用周波数の高調波の影響の無い周波数を選定することができ、医療機器の電路の絶縁監視に適した装置が得られる。   (1) Since a low voltage that does not affect the medical device can be used as a detection signal, it is possible to select a frequency that does not affect the measurement result of the medical device and that is not affected by the harmonics of the commercial frequency. A device suitable for insulation monitoring of the electric circuit of a medical device can be obtained.

(2)非接地式電路と大地間を高抵抗(1MΩあるいはそれ以上)と検出信号源および信号電流検出用抵抗体で接続し、電路と大地間の絶縁抵抗および対地静電容量の増加によるインピーダンスの低下を計測するため電流制限のための回路が不要となり、かつ安全性が高められる。   (2) The non-grounded circuit is connected to the ground with a high resistance (1 MΩ or more), a detection signal source and a signal current detection resistor, and the insulation resistance between the circuit and the ground and the impedance due to the increase in ground capacitance Therefore, a circuit for limiting the current is not necessary and the safety is improved.

(3)検出信号を取り出すと同時に商用周波数の信号を取り出し、この零相電圧と電路電圧から各線と大地間の電圧(V1,V2)を求めるため、非接地電路に対し、他にインピーダンスを挿入する必要が無く、電路と大地間のインピーダンスを高く保つことができる。 (3) At the same time as the detection signal is extracted, the commercial frequency signal is extracted, and the voltage (V 1 , V 2 ) between each line and ground is obtained from this zero-phase voltage and circuit voltage. The impedance between the electric circuit and the ground can be kept high.

(4)各インピーダンスで電路電圧を除した電流値のどちらかが、所定のレベル以上であるとき警報出力を発するようにしたことにより、電路P1又はP2のどちらの絶縁不良かを表示することが可能となる。 (4) An alarm output is issued when either of the current values obtained by dividing the circuit voltage at each impedance is above a predetermined level, thereby indicating which insulation failure of the circuit P 1 or P 2 is displayed. It becomes possible.

(5)抵抗分およびコンデンサ分に分離し計算しているため抵抗分で絶縁劣化している場合は、より危険度が高いと判断され高感度で警報を発することもできる。   (5) Since the calculation is performed separately for the resistance component and the capacitor component, if the insulation is deteriorated due to the resistance component, it is determined that the degree of danger is higher and a warning can be issued with high sensitivity.

(6)単相二線で説明したが、単相三線でも上記方式で検出が可能である。
また、三相三線でも演算が複雑になるが検出は可能である。
(6) Although described with single-phase two-wire, detection with the above method is also possible with single-phase three-wire.
In addition, even three-phase three-wire calculation is complicated, but detection is possible.

以下、本願の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present application will be described with reference to the drawings.

図1は本発明の実施の形態の構成図を示す。同図において1は絶縁トランス、P1,P2はこのトランス1の2次側の絶縁を監視する非接地電路(以下、電路と略称する)、10は高抵抗値を有する高抵抗体、11は検出信号を発生する信号電源で、これら高抵抗体10と信号電源11とはトランス1の中性点と大地E間に直列接続され検出回路を形成している。 FIG. 1 shows a configuration diagram of an embodiment of the present invention. In the figure, reference numeral 1 is an insulating transformer, P 1 and P 2 are non-grounded electric circuits (hereinafter abbreviated as electric circuits) for monitoring the insulation on the secondary side of the transformer 1, 10 is a high resistance body having a high resistance value, 11 Is a signal power source for generating a detection signal, and the high resistor 10 and the signal power source 11 are connected in series between the neutral point of the transformer 1 and the ground E to form a detection circuit.

12は信号電流検出用抵抗体で、検出回路に直列接続された抵抗体よりなる。   A signal current detection resistor 12 is formed of a resistor connected in series with a detection circuit.

20は演算部入力手段で、検出信号入力回路20Aと電路信号入力回路20Bを有し、各信号入力回路20Aおよび20Bは夫々フィルタ21Aおよび21B,増幅器22Aおよび22B,A/D変換回路23Aおよび23Bから成り、検出信号入力回路20Aで信号検出用抵抗体12の両端から検出信号の周波数における信号をフィルタ21Aにより取り出してA/D変換し演算手段30に出力する。   An arithmetic unit input means 20 includes a detection signal input circuit 20A and an electric circuit signal input circuit 20B. The signal input circuits 20A and 20B are filters 21A and 21B, amplifiers 22A and 22B, and A / D conversion circuits 23A and 23B, respectively. The detection signal input circuit 20A takes out the signal at the frequency of the detection signal from both ends of the signal detection resistor 12 by the filter 21A, performs A / D conversion, and outputs it to the arithmetic means 30.

同様に電路信号入力回路20Bは電路の周波数の信号をフィルター21Bにより取り出してA/D変換し、演算手段30に出力する。   Similarly, the electric circuit signal input circuit 20 </ b> B takes out the signal of the electric circuit frequency by the filter 21 </ b> B, performs A / D conversion, and outputs it to the calculation means 30.

31は電路電圧信号入力回路で、トランス31a,電源回路31b,A/D変換回路31Cから成り電路P1,P2の電圧および周波数を検出して演算手段30に入力する。40は警報手段で演算手段30により警報出力信号が出されたとき、音又は光等により人間が速やかに感知させる手段をとる。   An electric circuit voltage signal input circuit 31 includes a transformer 31a, a power supply circuit 31b, and an A / D conversion circuit 31C, and detects voltages and frequencies of the electric circuits P1 and P2 and inputs them to the calculation means 30. A warning means 40 is a means for allowing a human to quickly detect by means of sound or light when a warning output signal is issued by the calculation means 30.

51,52は電路P1およびP2と大地E間の対地インピーダンスを示している。 Reference numerals 51 and 52 denote ground impedances between the electric circuits P 1 and P 2 and the ground E.

検出信号を発生させる信号電源11の発生周波数は、電路の高調波の影響のない周波数を選定する。例えば、電路の周波数は一般に商用電源の周波数50Hz,(又は60Hz)であり、この商用電源に多く含まれる第三高調波は150Hz,(180Hz)であるから、これらの周波数に影響を与えない周波数、例えば166Hzを選定し、また電圧は医療機器等に影響を与えない程度に低い電圧、例えば12.5V程度とする。   As the generation frequency of the signal power source 11 that generates the detection signal, a frequency that is not affected by the harmonics of the electric circuit is selected. For example, the frequency of the electric circuit is generally 50 Hz (or 60 Hz) of the commercial power supply, and the third harmonic contained in the commercial power supply is 150 Hz (180 Hz), and therefore the frequencies that do not affect these frequencies. For example, 166 Hz is selected, and the voltage is set to a low voltage such as about 12.5 V so as not to affect the medical device.

非接地電路の絶縁監視は、信号電源11で電路P1と大地E間及びP2と大地E間に上記の設例により166Hz、12.5Vの検出信号を与え、このとき流れる電流を信号電流検出用抵抗体12で検出し、検出信号入力回路20Aによって検出信号166Hzにおける検出信号を演算手段30に送って、該演算手段30で電路と大地間の絶縁抵抗および対地静電容量を計測する。 Insulation monitoring of the ungrounded circuit is performed by applying a detection signal of 166 Hz, 12.5 V between the circuit P 1 and the ground E and between the circuit P 2 and the ground E by the signal power source 11 according to the above example, and the current flowing at this time is detected as a signal current Detected by the resistor 12, and the detection signal input circuit 20A sends a detection signal at a detection signal of 166 Hz to the calculation means 30, and the calculation means 30 measures the insulation resistance between the electric circuit and the ground and the ground capacitance.

この計測は、高抵抗体10の抵抗をZ0,電路P1およびP2の各電路と大地間の166Hzにおけるインピーダンスを夫々Z1´およびZ2´とすると、電路と大地間の166Hzにおける総合インピーダンスZ3´は、
3´=1/{(1/Z1´)+(1/Z2´)}………(1)
となる。
In this measurement, assuming that the resistance of the high-resistance element 10 is Z 0 and the impedances at 166 Hz between the electric circuits P 1 and P 2 and the ground are Z 1 ′ and Z 2 ′, respectively, the total at 166 Hz between the electric circuit and the ground. The impedance Z 3 ′ is
Z 3 ′ = 1 / {(1 / Z 1 ′) + (1 / Z 2 ′)} (1)
It becomes.

検出回路に流れる電流iを信号電流検出用抵抗体12の検出用抵抗体で検出する。   The current i flowing through the detection circuit is detected by the detection resistor of the signal current detection resistor 12.

信号電源11の電圧をV11とすると、
i=V11/(Z3´+Z0)………(2)
3´=(V11/i)−Z0………(3)
で166Hzにおける総合インピーダンスを求めることができる
When the voltage of the signal source 11 and V 11,
i = V 11 / (Z 3 '+ Z 0) ......... (2)
Z 3 ′ = (V 11 / i) −Z 0 (3)
In can therefore be found a total impedance at 166Hz.

次に、演算手段30は、電路の周波数(商用周波数)の信号を電路信号入力回路20Bを介して取り込む。この商用周波数信号は、中性点と大地間の零相電圧(V0)に相当し、この零相電圧と電路電圧信号入力回路31で計測した電路の線間電圧から各電路P1,P2と大地間電圧V1,V2を求め、前記の計測値を商用周波数のインピーダンスに換算し、この換算したインピーダンスを用いて各電路P1,P2と大地間のインピーダンスを求める。そして、このインピーダンスと電路電圧から、一線が導体で接地されたとき流れるであろう電流を求め、あらかじめ設定した電流値を超えたとき警報信号を警報手段40に出力して警報を発する。 Next, the calculating means 30 takes in the signal of the electric circuit frequency (commercial frequency) via the electric circuit signal input circuit 20B. This commercial frequency signal corresponds to a zero-phase voltage (V 0 ) between the neutral point and the ground, and each electric circuit P 1 , P is determined from this zero-phase voltage and the line voltage of the electric circuit measured by the electric circuit voltage signal input circuit 31. 2 and the ground voltages V 1 and V 2 are obtained, the measured value is converted into the impedance of the commercial frequency, and the impedance between the electric circuits P 1 and P 2 and the ground is obtained using the converted impedance. Then, from this impedance and the circuit voltage, a current that will flow when one line is grounded by a conductor is obtained, and when a preset current value is exceeded, an alarm signal is output to the alarm means 40 to issue an alarm.

次に、電路P1およびP2と大地間の商用周波数におけるインピーダンスの演算について説明する。 Next, calculation of impedance at commercial frequencies between the electric circuits P 1 and P 2 and the ground will be described.

図2は、商用周波数信号検出部分の等価回路で、次式により各電路P1およびP2のインピーダンスを求める。 FIG. 2 is an equivalent circuit of a commercial frequency signal detection part, and the impedances of the electric circuits P 1 and P 2 are obtained by the following equation.

位意の点に流れ込む電流の総和はキルヒホッフの法則により零であるから、図2のG点に流れ込む電流をi0,i1,i2とすると、
0+i1+i2=0………(4)
またi0=V0/Z0,i1=V1/Z1,i2=V2/Z2
また1/Z0,1/Z1,1/Z2を夫々アドミツタンスY0,Y1,Y2に置き換えると電路と大地間の総合アドミツタンスY3は、Y3=Y1+Y2となる。
Since the sum of the currents flowing into the points of interest is zero according to Kirchhoff's law, if the currents flowing into the points G in FIG. 2 are i 0 , i 1 , i 2 ,
i 0 + i 1 + i 2 = 0 (4)
I 0 = V 0 / Z 0 , i 1 = V 1 / Z 1 , i 2 = V 2 / Z 2
If 1 / Z 0 , 1 / Z 1 , 1 / Z 2 are replaced with admittances Y 0 , Y 1 , Y 2 , the total admittance Y 3 between the electric circuit and the ground is Y 3 = Y 1 + Y 2 .

ここでZ0は検出回路に挿入する高抵抗体で既知の値で、従ってY0も既知となる。また、Y3(3)式で求めたインピーダンスZ 3 ´から商用周波数のインピーダンスに換算したインピーダンスの逆数であるからこの値も既知である。
(4)式を書き換えると、
(V0・Y0)+(V1・Y1)+(V2・Y2)=0
1・Y1=−(V0・Y0+V2・Y2)………(5)
2=Y3−Y1であるから(5)式は
1・Y1=−(V0・Y0+V2・Y3−V2・Y1
1・Y1−V2・Y1=−(V0・Y0+Y2・Y3
となり、Y1を求めると、
1=−(V0・Y0+V2・Y3)/(V1−V2
1=1/Y1で一方の電路P1のインピーダンスが求められる。
Here, Z 0 is a known value for the high resistor inserted in the detection circuit, and therefore Y 0 is also known. Y 3 is the reciprocal of the impedance converted from the impedance Z 3 obtained by the expression (3) into the impedance of the commercial frequency, and this value is also known.
Rewriting equation (4)
(V 0 · Y 0 ) + (V 1 · Y 1 ) + (V 2 · Y 2 ) = 0
V 1 · Y 1 = − (V 0 · Y 0 + V 2 · Y 2 ) (5)
Since Y 2 = Y 3 −Y 1 , the equation (5) is V 1 · Y 1 = − (V 0 · Y 0 + V 2 · Y 3 −V 2 · Y 1 )
V 1 · Y 1 -V 2 · Y 1 = - (V 0 · Y 0 + Y 2 · Y 3)
When Y 1 is calculated,
Y 1 = − (V 0 · Y 0 + V 2 · Y 3 ) / (V 1 −V 2 )
The impedance of one electric circuit P 1 is obtained when Z 1 = 1 / Y 1 .

同様にして、他方の電路P2のインピーダンスが求められる。 Similarly, the impedance of the other electric circuit P 2 is obtained.

即ち、Y2=−(V0・Y0+V1・Y3)/(V2−V1
2=1/Y2
この演算を演算回路30で演算し、求められた各インピーダンスで電路電圧を除した電流値のどちらかが予め設定した設定レベル以上のとき警報手段40から警報を出す。
That is, Y 2 = − (V 0 · Y 0 + V 1 · Y 3 ) / (V 2 −V 1 )
Z 2 = 1 / Y 2
This calculation is performed by the calculation circuit 30, and an alarm is issued from the alarm means 40 when either of the current values obtained by dividing the circuit voltage by the obtained impedances is equal to or higher than a preset set level.

なお、上記の説明では、信号電源の周波数を166Hzの例について説明したが、電路の周波数と異なる周波数であれば、いかなる周波数でも良い。   In the above description, an example in which the frequency of the signal power source is 166 Hz has been described. However, any frequency may be used as long as the frequency is different from the frequency of the electric circuit.

本発明の実施の形態の構成図。The block diagram of embodiment of this invention. 商用周波数信号検出部分の等価回路図。The equivalent circuit diagram of a commercial frequency signal detection part. 従来の非接地電路絶縁監視装置の説明図。Explanatory drawing of the conventional non-grounded electric circuit insulation monitoring apparatus. 従来の非接地電路絶縁監視装置の検出信号の説明図。Explanatory drawing of the detection signal of the conventional non-grounding circuit insulation monitoring apparatus.

10…高抵抗体
11…信号電源
12…信号電流検出用抵抗体
20…演算部入力手段
20A…検出信号入力回路
20B…電路信号入力回路
21A,21B…フィルタ
22A,22B…増幅器
23A,23B…A/D変換回路
30…演算手段
31…電路電圧信号入力回路
40…警報手段
51,52…対地間インピーダンス
DESCRIPTION OF SYMBOLS 10 ... High resistor 11 ... Signal power supply 12 ... Signal current detection resistor 20 ... Operation part input means 20A ... Detection signal input circuit 20B ... Electric circuit signal input circuit 21A, 21B ... Filter 22A, 22B ... Amplifier 23A, 23B ... A / D conversion circuit 30 ... arithmetic means 31 ... electric circuit voltage signal input circuit 40 ... alarm means 51, 52 ... impedance to ground

Claims (3)

非接地電路P1、P2を有するトランスの中性点と大地間に、電路の周波数と異なる周波数の電圧検出信号を発生する信号電源と高抵抗値の抵抗体とを直列接続して検出回路を形成し、この検出回路に該検出回路に流れる電流を検出する電流検出手段を設け、該電流検出手段で検出した検出信号からフィルタを介して信号電源の周波数と電路の周波数による電流をそれぞれ取り出し、この取り出した信号電源による検出信号で電路と大地間の総合インピーダンスを計測し、次に、取り出した電路の周波数による信号電流から得られる中性点と大地間の零相電圧と、該零相電圧と電路P 1 .P 2 の電圧を検出する電路電圧信号入力回路で得られた電路電圧から、各電路P 1 、P 2 の大地間電圧を求め、前記計測した信号電源の周波数による総合インピーダンスを電路の周波数によるインピーダンスに換算し、換算したインピーダンスを用いて各電路P 1 、P 2 と大地間のインピーダンスを求め、このインピーダンスで電路の大地間電圧を除した電流値により電路P1と大地間及びP2と大地間の絶縁抵抗を夫々監視するようにしたことを特徴とする非接地電路の絶縁監視方法。 A detection circuit in which a signal power source for generating a voltage detection signal having a frequency different from the frequency of the electric circuit and a high-resistance resistor are connected in series between the neutral point and the ground of the transformer having the ungrounded electric circuits P 1 and P 2 The detection circuit is provided with current detection means for detecting the current flowing through the detection circuit, and the current based on the frequency of the signal power supply and the frequency of the electric circuit is extracted from the detection signal detected by the current detection means through a filter. Then, the total impedance between the electric circuit and the ground is measured by the detection signal from the extracted signal power supply, and then the zero-phase voltage between the neutral point and the ground obtained from the signal current according to the frequency of the extracted electric circuit, and the zero-phase Voltage and circuit P 1 . From path voltage obtained by the path voltage signal input circuit which detects the voltage of the P 2, obtains the earth voltage of each path P 1, P 2, the impedance with frequency of the total impedance path due to the frequency of the signal power obtained by the measurement The impedance between the electric circuits P 1 and P 2 and the earth is obtained using the converted impedance, and the electric current P 1 and the earth and the current between the electric circuit P 1 and the earth and P 2 and the earth are obtained by dividing the voltage between the electric circuits by this impedance. insulation monitoring method for ungrounded path, characterized in that the insulation resistance between the so as to respectively monitor. 請求項1で換算した電路の周波数によるインピーダンスを用いて各電路P 1 、P 2 と大地間のインピーダンスを求め、このインピーダンスと電路の大地間電圧から電路の一線が導体で接地されたとき流れるであろう電流値を算出し、該電流値があらかじめ設定した電流値を超えたとき警報信号を出力することを特徴とする請求項1記載の非接地電路の絶縁監視方法。 The impedance between each of the electric circuits P 1 and P 2 and the ground is obtained by using the impedance according to the frequency of the electric circuit converted in claim 1, and the current flows when one line of the electric circuit is grounded by a conductor from the impedance and the voltage between the electric circuits. Aro will calculate the current value, the insulation monitoring method for ungrounded path according to claim 1, characterized in that outputs a warning signal when it exceeds a current value current value is set in advance. 非接地電路P1、P2を有するトランスの中性点と大地間に、高低抗体と電路の周波数と異なる周波数の電圧検出信号を発生する信号電源とを直列接続して形成した検出回路と、該検出回路に設けられこの検出回路に流れる電流を検出する電流検出手段と、該電流検出手段で検出した電流からフィルタにより検出信号の周波数と電路の周波数による電流とを夫々検出信号入力回路と電路信号入力回路で分別して演算手段に入力する演算部入力手段と、前記電路に設けられ電路電圧信号を入力して電路P 1 、P 2 の電路電圧を検出して前記の演算手段に入力する電路電圧検出回路とを備え、該演算手段は、検出信号入力回路から入力した信号で検出信号の周波数による電路と大地間の総合インピーダンを算出し、電路の周波数による信号から得られる中性点と大地間の零相電圧を検出し、該零相電圧と電路電圧から、各電路の大地間電圧を求め、前記算出した検出信号の周波数による総合インピーダンスを電路の周波数による総合インピーダンスに換算し、該換算したインピーダンスを用いて各電路P1と大地間、P2と大地間のインピーダンスを求め、このインピーダンスと電路の大地間電圧から一線が導体で接地されたとき流れるであろう電流値を算出し、該電流値があらかじめ設定した電流値を越えたとき警報信号を出力するようにしたことを特徴とする非接地電路の絶縁監視装置。 A detection circuit formed by serially connecting a high and low antibody and a signal power source that generates a voltage detection signal having a frequency different from the frequency of the electric circuit between the neutral point and the ground of the transformer having the non-grounded electric circuits P 1 and P 2 ; Current detection means provided in the detection circuit for detecting a current flowing in the detection circuit, and a detection signal input circuit and an electric circuit, respectively, for a detection signal frequency and an electric circuit frequency by a filter from the current detected by the current detection means. An arithmetic unit input means for classifying and inputting to the arithmetic means by a signal input circuit, and an electric circuit for detecting an electric circuit voltage of the electric circuits P 1 and P 2 by inputting an electric circuit voltage signal provided in the electric circuit and inputting the electric circuit voltage to the calculating means A voltage detection circuit, and the calculation means calculates a total impedance between the electric circuit and the ground according to the frequency of the detection signal from the signal input from the detection signal input circuit, and is obtained from the signal based on the frequency of the electric circuit . The zero-phase voltage between the neutral point and the ground is detected, the ground-to-ground voltage of each circuit is obtained from the zero-phase voltage and the circuit voltage, and the total impedance based on the frequency of the calculated detection signal is calculated as the total impedance based on the frequency of the circuit. Using the converted impedance, the impedance between each electric circuit P 1 and the earth and between the P 2 and the earth is obtained, and the current will flow when one line is grounded by a conductor from the impedance and the voltage between the earth of the electric circuit . An insulation monitoring device for an ungrounded electrical circuit, wherein a current value is calculated and an alarm signal is output when the current value exceeds a preset current value .
JP2006220984A 1998-12-28 2006-08-14 Non-grounded circuit insulation monitoring method and apparatus Expired - Fee Related JP4751789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006220984A JP4751789B2 (en) 1998-12-28 2006-08-14 Non-grounded circuit insulation monitoring method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP37191098A JP4256967B2 (en) 1998-12-28 1998-12-28 Non-grounded circuit insulation monitoring method and insulation monitoring device
JP2006220984A JP4751789B2 (en) 1998-12-28 2006-08-14 Non-grounded circuit insulation monitoring method and apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP37191098A Division JP4256967B2 (en) 1998-12-28 1998-12-28 Non-grounded circuit insulation monitoring method and insulation monitoring device

Publications (2)

Publication Number Publication Date
JP2006353097A JP2006353097A (en) 2006-12-28
JP4751789B2 true JP4751789B2 (en) 2011-08-17

Family

ID=18499518

Family Applications (2)

Application Number Title Priority Date Filing Date
JP37191098A Expired - Fee Related JP4256967B2 (en) 1998-12-28 1998-12-28 Non-grounded circuit insulation monitoring method and insulation monitoring device
JP2006220984A Expired - Fee Related JP4751789B2 (en) 1998-12-28 2006-08-14 Non-grounded circuit insulation monitoring method and apparatus

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP37191098A Expired - Fee Related JP4256967B2 (en) 1998-12-28 1998-12-28 Non-grounded circuit insulation monitoring method and insulation monitoring device

Country Status (1)

Country Link
JP (2) JP4256967B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4256967B2 (en) * 1998-12-28 2009-04-22 光商工株式会社 Non-grounded circuit insulation monitoring method and insulation monitoring device
JP3893331B2 (en) * 2002-08-19 2007-03-14 財団法人鉄道総合技術研究所 Protection device for feeder circuit
JP2011242233A (en) * 2010-05-18 2011-12-01 Hioki Ee Corp Ground resistance meter and method for measuring ground resistance
JP5440432B2 (en) * 2010-07-14 2014-03-12 ヤマハ株式会社 Driving circuit
EP2511998B1 (en) * 2011-04-13 2015-08-26 AEG Power Solutions GmbH Assembly for earth connection surveillance in an alternating current circuit and power supply assembly with such an earth connection surveillance
WO2014199431A1 (en) * 2013-06-10 2014-12-18 三菱電機株式会社 Inter-vehicle transmission device
KR20150088504A (en) * 2014-01-24 2015-08-03 (주)바인이에스티 Electric Transformer with Neutral Grounding and Method Thereof, and Anti-Electric Shock Apparatus In Water Immersion Using That
CN103777112B (en) * 2014-01-28 2017-01-11 国网山东昌乐县供电公司 Test instrument grounding detection warning device
CN109910615B (en) * 2019-03-18 2020-10-16 北汽福田汽车股份有限公司 Insulation design method and device for vehicle
JP7235548B2 (en) * 2019-03-25 2023-03-08 光商工株式会社 Insulation condition monitor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783975A (en) * 1993-09-14 1995-03-31 Kawaju Bosai Kogyo Kk Insulation monitor for electric circuit of non-grounded wiring system
JPH07128387A (en) * 1993-10-29 1995-05-19 Kawaju Bosai Kogyo Kk Insulation monitor for line of isolated neutral wiring system
JPH07209366A (en) * 1994-01-14 1995-08-11 Kawaju Bosai Kogyo Kk Insulation monitor for isolated neutral wiring line
JP4256967B2 (en) * 1998-12-28 2009-04-22 光商工株式会社 Non-grounded circuit insulation monitoring method and insulation monitoring device

Also Published As

Publication number Publication date
JP2006353097A (en) 2006-12-28
JP2000193708A (en) 2000-07-14
JP4256967B2 (en) 2009-04-22

Similar Documents

Publication Publication Date Title
JP4751789B2 (en) Non-grounded circuit insulation monitoring method and apparatus
CN105852844B (en) Inhibit common mode signal components in the measurement of bioelectrical signals
EP2588871B1 (en) Apparatus and method for measuring the dissipation factor of an insulator
JP3430627B2 (en) Insulation monitoring method and apparatus for monitoring the insulation state of a power cable under a live line
KR100920153B1 (en) Measurement Device of leakage current ohmic value on power line And Method Thereof
CN114236212A (en) Voltage measurement method, voltage measurement circuit and equipment
US2999231A (en) Ground detectors for electrical distribution systems
JP7009025B2 (en) Voltage measuring device, voltage measuring method
JP5750313B2 (en) Wiring confirmation tester and method for outlet with ground electrode
KR20090069153A (en) Measurement device of leakage current ohmic value on power line and method thereof
JP6788259B2 (en) Loop impedance acquisition method and loop impedance tester
JPH0116088B2 (en)
EP2588872B1 (en) Apparatus and method for measuring the dissipation factor of an insulator
KR100241314B1 (en) Live cable insulation deterioration determining method and apparatus by ac four voltage measurement
US10725120B2 (en) Isolated grounding effectiveness monitor
JPH0783975A (en) Insulation monitor for electric circuit of non-grounded wiring system
Seaba Electrical safety
RU2541418C9 (en) Device for measurement and control of live resistance insulation in alternating-current mains with resistive neutral line
JPH07209366A (en) Insulation monitor for isolated neutral wiring line
JPH0690245B2 (en) Insulation deterioration related quantity measuring device
Zennaro et al. An approach for modeling of a medical equipment for the estimation of leakage currents
JP2000009788A (en) Deterioration diagnosis method of cables
JPH05180884A (en) Insulation resistance measuring method for load apparatus
JP2019203830A (en) Voltage measuring device and voltage measuring method
JPS5856116B2 (en) Method for locating defective points of corrosion protection layer insulation under live wires

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110404

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees