JP2019203830A - Voltage measuring device and voltage measuring method - Google Patents

Voltage measuring device and voltage measuring method Download PDF

Info

Publication number
JP2019203830A
JP2019203830A JP2018100180A JP2018100180A JP2019203830A JP 2019203830 A JP2019203830 A JP 2019203830A JP 2018100180 A JP2018100180 A JP 2018100180A JP 2018100180 A JP2018100180 A JP 2018100180A JP 2019203830 A JP2019203830 A JP 2019203830A
Authority
JP
Japan
Prior art keywords
voltage
frequency
current
magnitude
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2018100180A
Other languages
Japanese (ja)
Inventor
真也 芦川
Shinya Ashikawa
真也 芦川
石橋 賢一
Kenichi Ishibashi
賢一 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Energy System Corp
Original Assignee
Yazaki Energy System Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Energy System Corp filed Critical Yazaki Energy System Corp
Priority to JP2018100180A priority Critical patent/JP2019203830A/en
Publication of JP2019203830A publication Critical patent/JP2019203830A/en
Abandoned legal-status Critical Current

Links

Images

Abstract

To provide a voltage measuring device that can perform non-contact measurement of high voltage without causing an increase in cost.SOLUTION: A voltage measuring device measures an AC voltage at a first frequency, and comprises: an electrode; a constant voltage source that connects to the electrode and outputs an AC voltage at a second frequency; a current measuring unit that measures the magnitude of a current at the first frequency and the magnitude of a current at the second frequency flowing between the electrode and constant voltage source; and an operation unit that calculates the AC voltage at the first frequency on the basis of an output voltage from the constant voltage source, the magnitude of the current at the first frequency, the magnitude of the current at the second frequency, the first frequency, and the second frequency.SELECTED DRAWING: Figure 3

Description

本発明は、測定対象物の電圧を非接触で測定可能な電圧測定装置および電圧測定方法に関する。   The present invention relates to a voltage measuring apparatus and a voltage measuring method capable of measuring a voltage of a measurement object in a non-contact manner.

特許文献1には、図8に示すような測定対象物404の電圧V1を非接触で測定可能な電圧測定装置400が開示されている。電圧測定装置400は、プローブユニット402の検出電極412が測定対象物404の近傍に非接触な状態で配置されており、検出電極412と測定対象物404との間に静電容量C0が形成されている。   Patent Document 1 discloses a voltage measurement apparatus 400 that can measure the voltage V1 of the measurement object 404 as shown in FIG. 8 in a non-contact manner. In the voltage measurement apparatus 400, the detection electrode 412 of the probe unit 402 is arranged in a non-contact state in the vicinity of the measurement object 404, and a capacitance C0 is formed between the detection electrode 412 and the measurement object 404. ing.

電圧測定装置400では、可変容量素子413を本体403から交流信号S1で駆動すると可変容量素子413の静電容量の変化により交流電流iが流れる。電流iの大きさは測定対象物404の電圧V1とプローブユニット402のシールドケースの電圧V4との電圧差によって決まる。電流iを検出抵抗415で交流電圧V2として測定し、その振幅に応じたシールド電圧V4を電圧生成回路425から発生させる。   In the voltage measuring device 400, when the variable capacitance element 413 is driven from the main body 403 with the AC signal S <b> 1, an alternating current i flows due to a change in the capacitance of the variable capacitance element 413. The magnitude of the current i is determined by the voltage difference between the voltage V1 of the measurement object 404 and the voltage V4 of the shield case of the probe unit 402. The current i is measured by the detection resistor 415 as the AC voltage V2, and a shield voltage V4 corresponding to the amplitude is generated from the voltage generation circuit 425.

この構成により、電圧測定装置400のシールド電圧V4は電流iが0となるように制御され、このときシールド電圧V4は測定対象物404の電圧V1と同電圧になる。このため、シールド電圧V4を電圧計426により測定することで、測定対象物404の電圧V1を計測することができる。   With this configuration, the shield voltage V4 of the voltage measuring device 400 is controlled so that the current i becomes 0. At this time, the shield voltage V4 is the same voltage as the voltage V1 of the measurement object 404. For this reason, the voltage V1 of the measurement object 404 can be measured by measuring the shield voltage V4 with the voltmeter 426.

特開2007−132926号公報JP 2007-132926 A

電圧測定装置400では、例えば、数kVの高電圧を測定する場合には、プローブユニット402のシールドケースが高電圧になる。したがって、測定装置の安全性を確保するためにシールドケース周辺の高絶縁設計や破損による感電防止措置等が必要となる。また、電流iが0となるようにシールド電圧V4を制御するために、電圧生成回路425として可変電圧源を用いなければならない。このため、電圧測定装置400の高コスト化を招いている。   In the voltage measuring apparatus 400, for example, when measuring a high voltage of several kV, the shield case of the probe unit 402 becomes a high voltage. Therefore, in order to ensure the safety of the measuring device, a high insulation design around the shield case, an electric shock prevention measure due to breakage, and the like are required. Further, a variable voltage source must be used as the voltage generation circuit 425 in order to control the shield voltage V4 so that the current i becomes zero. Therefore, the cost of the voltage measuring device 400 is increased.

そこで、本発明は、高コスト化を招くことなく高電圧の非接触測定が可能な電圧測定技術を提供することを目的とする。   Accordingly, an object of the present invention is to provide a voltage measurement technique capable of non-contact measurement of a high voltage without causing an increase in cost.

上記課題を解決するため、本発明の第1の態様である電圧測定装置は、第1周波数の交流電圧を測定する電圧測定装置であって、電極と、前記電極と接続し、第2周波数の交流電圧を出力する定電圧源と、前記電極と前記定電圧源との間を流れる前記第1周波数の電流の大きさおよび前記第2周波数の電流の大きさを測定する電流測定部と、前記定電圧源の出力電圧、前記第1周波数の電流の大きさ、前記第2周波数の電流の大きさ、前記第1周波数、前記第2周波数に基づいて、前記第1周波数の交流電圧を算出する演算部と、を備えたことを特徴とする。
本発明の第1の態様である電圧測定装置によれば、第2周波数を第1周波数よりも十分大きくすることで、測定側は測定対象電圧よりもはるかに低い電圧で測定することができるため、電圧測定装置の構成部品に高価な高耐圧部品が不要となる。また、電圧測定装置内部で高電圧が発生することがないため、高絶縁設計や感電防止措置が不要となる。さらには、定周波数の定電圧源を用いているため、可変周波数発振器や可変電圧源が不要である。したがって、従来技術のような高コスト化を防ぐことができ、安価に電圧測定装置を構成することができる。
前記演算部は、前記第2周波数と前記第1周波数との比に、前記第1周波数の電流の大きさと前記第2周波数の電流の大きさとの比と、前記定電圧源の出力電圧を乗じることにより前記第1周波数の交流電圧を算出することができる。
前記定電圧源が、コンデンサを介して前記電極と接続されていてもよい。
上記課題を解決するため、本発明の第2の態様である電圧測定方法は、第1周波数の交流電圧を測定する電圧測定方法であって、前記第1周波数の交流電圧が印加された測定対象物に、容量を介して第2周波数、所定電圧の交流電圧を印加したときに前記容量を流れる前記第1周波数の電流の大きさおよび前記第2周波数の電流の大きさを測定し、前記所定電圧、前記第1周波数の電流の大きさ、前記第2周波数の電流の大きさ、前記第1周波数、前記第2周波数に基づいて、前記第1周波数の交流電圧を算出することを特徴とする。
前記容量は、寄生容量を含んでいてもよい。
前記第2周波数と前記第1周波数との比に、前記第1周波数の電流の大きさと前記第2周波数の電流の大きさとの比と、前記所定電圧を乗じることにより前記第1周波数の交流電圧を算出することができる。
In order to solve the above problems, a voltage measuring apparatus according to a first aspect of the present invention is a voltage measuring apparatus that measures an alternating voltage of a first frequency, and is connected to an electrode and the electrode, and has a second frequency. A constant voltage source that outputs an alternating voltage; a current measuring unit that measures the magnitude of the current of the first frequency and the magnitude of the current of the second frequency flowing between the electrode and the constant voltage source; The AC voltage of the first frequency is calculated based on the output voltage of the constant voltage source, the magnitude of the current of the first frequency, the magnitude of the current of the second frequency, the first frequency, and the second frequency. And an arithmetic unit.
According to the voltage measuring apparatus according to the first aspect of the present invention, the measurement side can measure at a voltage much lower than the voltage to be measured by making the second frequency sufficiently higher than the first frequency. In addition, expensive high-voltage components are not required for the components of the voltage measuring device. Moreover, since a high voltage is not generated inside the voltage measuring device, a high insulation design and an electric shock prevention measure are not required. Furthermore, since a constant voltage source having a constant frequency is used, a variable frequency oscillator and a variable voltage source are not necessary. Therefore, the cost increase as in the conventional technique can be prevented, and the voltage measuring device can be configured at low cost.
The calculation unit multiplies the ratio between the second frequency and the first frequency by the ratio between the current magnitude at the first frequency and the current magnitude at the second frequency and the output voltage of the constant voltage source. Thus, the alternating voltage of the first frequency can be calculated.
The constant voltage source may be connected to the electrode via a capacitor.
In order to solve the above-described problem, a voltage measurement method according to a second aspect of the present invention is a voltage measurement method for measuring an alternating voltage of a first frequency, and a measurement object to which the alternating voltage of the first frequency is applied. Measuring the magnitude of the current at the first frequency and the magnitude of the current at the second frequency flowing through the capacity when an AC voltage having a second frequency and a predetermined voltage is applied to the object via the capacity; An AC voltage of the first frequency is calculated based on the voltage, the magnitude of the current of the first frequency, the magnitude of the current of the second frequency, the first frequency, and the second frequency. .
The capacitance may include a parasitic capacitance.
The ratio between the second frequency and the first frequency is multiplied by the ratio between the magnitude of the current at the first frequency and the magnitude of the current at the second frequency and the predetermined voltage. Can be calculated.

本発明によれば、高コスト化を招くことなく高電圧の非接触測定が可能な電圧測定技術が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the voltage measurement technique in which the high voltage non-contact measurement is possible, without causing cost increase is provided.

本発明の電圧測定器の測定原理を説明する図である。It is a figure explaining the measurement principle of the voltage measuring device of this invention. 測定対象と測定側の接地例を説明する図である。It is a figure explaining the example of grounding of a measuring object and a measurement side. 本発明の電圧測定器の第1実施例の構成を示す図である。It is a figure which shows the structure of 1st Example of the voltage measuring device of this invention. 本発明の電圧測定器の第2実施例の構成を示す図である。It is a figure which shows the structure of 2nd Example of the voltage measuring device of this invention. 本発明の電圧測定器の第3実施例の構成を示す図である。It is a figure which shows the structure of 3rd Example of the voltage measuring device of this invention. 本発明の電圧測定器の第4実施例の構成を示す図である。It is a figure which shows the structure of 4th Example of the voltage measuring device of this invention. 本発明の電圧測定器の第5実施例の構成を示す図である。It is a figure which shows the structure of 5th Example of the voltage measuring device of this invention. 従来の非接触型電圧測定器を説明する図である。It is a figure explaining the conventional non-contact-type voltage measuring device.

本発明の実施形態について、図面を参照して詳細に説明する。図1は、本発明の電圧測定器の測定原理を説明する図である。本発明の電圧測定器では、交流電圧を測定対象としており、本図では、周波数fxの交流電圧Vxが測定対象となっている。本発明は、特に測定対象電圧Vxが、例えば、数kV程度の高電圧である場合に効果的である。   Embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram for explaining the measurement principle of the voltage measuring device of the present invention. In the voltage measuring instrument of the present invention, an AC voltage is a measurement object, and in this figure, an AC voltage Vx having a frequency fx is a measurement object. The present invention is particularly effective when the measurement target voltage Vx is a high voltage of about several kV, for example.

測定側には周波数fsで出力電圧Vsの定電圧源110が備えられている。周波数fx、周波数fsとも既知であり、fs>>fx、Vx>>Vsであるとする。測定対象と測定側との間には容量C1が存在しており、測定対象と測定側とは非接触になっている。容量C1は未知でもよい。   On the measurement side, a constant voltage source 110 having an output voltage Vs at a frequency fs is provided. It is assumed that the frequency fx and the frequency fs are known and fs >> fx and Vx >> Vs. A capacitance C1 exists between the measurement target and the measurement side, and the measurement target and the measurement side are not in contact with each other. The capacity C1 may be unknown.

測定対象の電圧Vxが起因となって容量C1を流れる周波数fxの電流をIxとし、定電圧源110の電圧Vsが起因となって容量C1を流れる周波数fsの電流をIsとする。実際には、電流Ixと電流Isとを重ね合わせた電流が容量C1を流れることになる。   The current at the frequency fx flowing through the capacitor C1 due to the voltage Vx to be measured is denoted as Ix, and the current at the frequency fs flowing through the capacitor C1 due to the voltage Vs of the constant voltage source 110 is denoted as Is. Actually, a current obtained by superimposing the current Ix and the current Is flows through the capacitor C1.

測定側には、電流測定部120、演算部130が備えられている。なお、図2(a)に示すように、測定対象と測定側の接地は共通であってもよいし、図2(b)に示すように、共通でなくてもよい。また、図2(c)に示すように、測定側の接地に対する基準電位が変動するものであってもよい。   On the measurement side, a current measurement unit 120 and a calculation unit 130 are provided. In addition, as shown to Fig.2 (a), a measurement object and the grounding of a measurement side may be common, and as shown in FIG.2 (b), it does not need to be common. Further, as shown in FIG. 2C, the reference potential with respect to the ground on the measurement side may vary.

電流測定部120は、電流Ixと電流Isのそれぞれの電流の大きさを測定する。電流の大きさは、振幅、実効値、平均値等のいずれであってもよい。演算部130は、電流測定部120における電流Ixおよび電流Isの測定結果に基づいて電圧Vxを算出して出力する。   The current measuring unit 120 measures the magnitudes of the currents Ix and Is. The magnitude of the current may be any of amplitude, effective value, average value, and the like. The calculation unit 130 calculates and outputs the voltage Vx based on the measurement results of the current Ix and the current Is in the current measurement unit 120.

この構成において、電流Ixに対する容量C1のインピーダンスをXcxとし、電流Isに対する容量C1のインピーダンスをXcsとすると、電流Ix、電流Isは以下のように表すことができる。ただし、定電圧源110、電流測定部120、測定対象電圧源のインピーダンスは十分小さいものとする。

Figure 2019203830
ここで、容量C1のインピーダンスについて[数2]が成り立つ。
Figure 2019203830
[数1]と[数2]とから、
Figure 2019203830
が得られる。 In this configuration, when the impedance of the capacitor C1 with respect to the current Ix is Xcx and the impedance of the capacitor C1 with respect to the current Is is Xcs, the current Ix and the current Is can be expressed as follows. However, the impedance of the constant voltage source 110, the current measurement unit 120, and the voltage source to be measured is assumed to be sufficiently small.
Figure 2019203830
Here, [Equation 2] holds for the impedance of the capacitor C1.
Figure 2019203830
From [Equation 1] and [Equation 2],
Figure 2019203830
Is obtained.

測定対象電圧の周波数fx、定電圧源110の電圧Vsおよび周波数fsは既知であるため、電流Ixと電流Isを測定することにより、[数3]に基づいて測定対象電圧Vxを算出し、測定結果として出力することができる。   Since the frequency fx of the voltage to be measured, the voltage Vs and the frequency fs of the constant voltage source 110 are known, the current Ix and the current Is are measured to calculate the measurement target voltage Vx based on [Equation 3] and measure As a result, it can be output.

例えば、測定対象電圧の周波数fxが商用電源の50Hzとすると、定電圧源110の周波数fsを50Hzよりも十分大きな50kHとすれば、電圧Vsを1000倍(=fs/fx)した値に測定で得られたIx/Isを乗じた値が測定対象の電圧Vxとなる。すなわち、測定対象電圧が数kVであっても数Vの電圧で測定できることになる。   For example, if the frequency fx of the voltage to be measured is 50 Hz of the commercial power supply, the frequency Vs of the constant voltage source 110 is 50 kH which is sufficiently larger than 50 Hz. A value obtained by multiplying the obtained Ix / Is becomes the voltage Vx to be measured. That is, even if the voltage to be measured is several kV, it can be measured with a voltage of several volts.

このように、本発明では、測定側は測定対象電圧よりもはるかに低い電圧で測定することができるため、電圧測定器の構成部品に高価な高耐圧部品が不要となる。また、電圧測定器内部で高電圧が発生することがないため、高絶縁設計や感電防止措置が不要となる。さらには、定周波数の定電圧源110を用いているため、可変周波数発振器や可変電圧源が不要である。したがって、従来技術のような高コスト化を防ぐことができ、高電圧の非接触測定が可能な電圧測定器を安価に構成することができる。   As described above, in the present invention, since the measurement side can measure at a voltage much lower than the voltage to be measured, an expensive high-voltage component is not necessary as a component of the voltage measuring instrument. In addition, since a high voltage is not generated inside the voltage measuring device, a high insulation design and an electric shock prevention measure are not required. Furthermore, since the constant frequency constant voltage source 110 is used, a variable frequency oscillator and a variable voltage source are not necessary. Therefore, the cost increase as in the conventional technique can be prevented, and a voltage measuring device capable of high voltage non-contact measurement can be configured at low cost.

次に、上記の測定原理を利用した電圧測定器の実施例について説明する。図3は、本発明の電圧測定器100の第1実施例の構成を示す図である。   Next, an embodiment of a voltage measuring device using the above measurement principle will be described. FIG. 3 is a diagram showing the configuration of the first embodiment of the voltage measuring instrument 100 of the present invention.

本図の例において、測定対象は、周波数fxの電圧Vxが印加される導体310である。導体310は、絶縁被覆320により被覆されており、被覆電線300を形成している。   In the example of this figure, the measurement object is the conductor 310 to which the voltage Vx having the frequency fx is applied. The conductor 310 is covered with an insulating coating 320 to form a covered electric wire 300.

第1実施例の電圧測定器100は、電極101、電流測定部120、演算部130、演算部130が算出した測定対象電圧Vxを測定結果として表示する表示部140を備えている。   The voltage measuring device 100 according to the first embodiment includes an electrode 101, a current measurement unit 120, a calculation unit 130, and a display unit 140 that displays a measurement target voltage Vx calculated by the calculation unit 130 as a measurement result.

電極101は、被覆電線300に取り付けられている。このため、導体310と電極101とは非接触であり、導体310と電極101との間に寄生容量C1が存在している。導体310と電極101との間に寄生容量C1が存在すれば足りるため、電極101と絶縁被覆320との間に空隙が生じていてもよいし、電極101と絶縁被覆320との間にさらに絶縁体を配置してもよい。絶縁被覆320を備えない導体310に絶縁体あるいは空隙を挟んで電極101を配置してもよい。他の実施例についても同様である。   The electrode 101 is attached to the covered electric wire 300. For this reason, the conductor 310 and the electrode 101 are not in contact with each other, and a parasitic capacitance C1 exists between the conductor 310 and the electrode 101. Since it is sufficient that the parasitic capacitance C1 exists between the conductor 310 and the electrode 101, a gap may be formed between the electrode 101 and the insulating coating 320, or further insulation is provided between the electrode 101 and the insulating coating 320. You may place your body. The electrode 101 may be arranged with an insulator or a gap interposed between conductors 310 not provided with the insulating coating 320. The same applies to the other embodiments.

電流測定部120は、抵抗R121と、抵抗R121に生じる電圧を検出する計装アンプ122と、周波数fxの信号を通過させる第1フィルタ部123a、周波数fsの信号を通過させる第2フィルタ部123b、第1フィルタ部123aを通過した周波数fxの信号を平滑化して直流電圧Vmxに変換する第1交流−直流変換部124a、第2フィルタ部123bを通過した周波数fsの信号を平滑化して直流電圧Vmsに変換する第2交流−直流変換部124bを備えている。本例では、定電圧源110は、電流測定部120を介して電極101と接続されている。   The current measuring unit 120 includes a resistor R121, an instrumentation amplifier 122 that detects a voltage generated in the resistor R121, a first filter unit 123a that passes a signal of frequency fx, a second filter unit 123b that passes a signal of frequency fs, The first AC-DC converter 124a that smoothes the signal of the frequency fx that has passed through the first filter unit 123a and converts the signal to the DC voltage Vmx, and the signal of the frequency fs that passes through the second filter unit 123b is smoothed and the DC voltage Vms. The second AC-DC converting unit 124b for converting into In this example, the constant voltage source 110 is connected to the electrode 101 via the current measurement unit 120.

直流電圧Vmxは、電流Ixの大きさに対応し、直流電圧Vmsは、電流Isの大きさに対応する。電流測定部120では、抵抗R121と計装アンプ122とで電流を検出する電流検出部分を構成し、フィルタ部123と交流−直流変換部124とで振幅を測定する振幅測定部分を構成している。   The DC voltage Vmx corresponds to the magnitude of the current Ix, and the DC voltage Vms corresponds to the magnitude of the current Is. In the current measurement unit 120, the resistor R121 and the instrumentation amplifier 122 constitute a current detection part that detects current, and the filter part 123 and the AC-DC conversion part 124 constitute an amplitude measurement part that measures amplitude. .

フィルタ部123は、通過対象以外の周波数成分やノイズを除去する。交流−直流変換部124は、フィルタ部123が出力した交流電圧の振幅に応じた直流電圧を出力する。抵抗R121は、電流Ix、電流Isへの影響を避けるために小さな値とすることが望ましい。   The filter unit 123 removes frequency components and noise other than the passage target. The AC-DC conversion unit 124 outputs a DC voltage corresponding to the amplitude of the AC voltage output by the filter unit 123. The resistor R121 is desirably a small value in order to avoid an influence on the current Ix and the current Is.

演算部130は、電流測定部120が出力する直流電圧Vmx、直流電圧Vmxと、既知の周波数fs、fx、および既知の電圧Vsに基づいて測定対象電圧Vxを算出し、表示部140が測定結果として表示する。   The calculation unit 130 calculates the measurement target voltage Vx based on the DC voltage Vmx, the DC voltage Vmx output from the current measurement unit 120, the known frequencies fs and fx, and the known voltage Vs, and the display unit 140 displays the measurement result. Display as.

なお、電流測定部120の電流検出部分を、抵抗R121と計装アンプ122とで構成していたが、この構成に限られず、電流の大きさに応じた信号を取得可能な種々の方式を採用することができる。例えば、ホールセンサやカレントトランス回路等を利用して電流による磁界を検出し、電流の大きさに比例した電圧を出力してもよい。また、抵抗R121に換えてコンデンサやコイル、またはこれらの組み合わせを用いてもよい。   In addition, although the current detection part of the current measuring unit 120 is configured by the resistor R121 and the instrumentation amplifier 122, the present invention is not limited to this configuration, and various methods capable of acquiring a signal corresponding to the magnitude of the current are employed. can do. For example, a magnetic field due to current may be detected using a hall sensor, a current transformer circuit, or the like, and a voltage proportional to the magnitude of the current may be output. Further, instead of the resistor R121, a capacitor, a coil, or a combination thereof may be used.

また、第1フィルタ部123a、第2フィルタ部123bとしては、アクティブバンドパスフィルタのVCVS(サレン・キー)型、多重帰還型、状態変数型、パッシブバンドパスフィルタのLCバンドパスフィルタ、RLCバンドパスフィルタ等種々の方式を用いることができる。   The first filter unit 123a and the second filter unit 123b include an active bandpass filter VCVS (salen key) type, multiple feedback type, state variable type, passive bandpass filter LC bandpass filter, and RLC bandpass. Various systems such as a filter can be used.

また、第1交流−直流変換部124a、第2交流−直流変換部124bとしては、RMS−DCコンバーター(実効値検波)、全波平均あるいは半波平均の平均値検波、ピークホールド回路等の種々の方式を用いることができる。   The first AC-DC converter 124a and the second AC-DC converter 124b include various types such as an RMS-DC converter (effective value detection), a full-wave average or half-wave average average value detection, a peak hold circuit, and the like. This method can be used.

次に、本発明の電圧測定器100の第2実施例について図4を参照して説明する。第2実施例では、電流測定部120の振幅測定部分を、同期検波回路125を用いて構成している。同期検波回路は、入力信号のうち、参照信号と同じ周波数成分の信号について、その大きさを直流電圧に変換して出力する回路である。   Next, a second embodiment of the voltage measuring device 100 of the present invention will be described with reference to FIG. In the second embodiment, the amplitude measurement portion of the current measurement unit 120 is configured using the synchronous detection circuit 125. The synchronous detection circuit is a circuit that converts the magnitude of a signal having the same frequency component as that of a reference signal among input signals into a DC voltage and outputs the signal.

本図の例では、電流測定部分の出力信号から第1同期検波部125aを用いて周波数fxの信号の大きさに相当する直流電圧Vmxを得て、第2同期検波部125bを用いて周波数fsの信号の大きさに相当する直流電圧Vmsを得ている。第2実施例の電圧測定器100は、第1同期検波部125aの参照信号のために、周波数fxの正弦波発振器126を備えている。第2同期検波部125bの参照信号は、周波数fsの定電圧源110の出力信号を用いている。   In the example of this figure, the DC voltage Vmx corresponding to the magnitude of the signal of the frequency fx is obtained from the output signal of the current measurement portion using the first synchronous detector 125a, and the frequency fs using the second synchronous detector 125b. The DC voltage Vms corresponding to the magnitude of the signal is obtained. The voltage measuring device 100 according to the second embodiment includes a sine wave oscillator 126 having a frequency fx for the reference signal of the first synchronous detection unit 125a. The reference signal of the second synchronous detector 125b uses the output signal of the constant voltage source 110 having the frequency fs.

次に、本発明の電圧測定器100の第3実施例について図5を参照して説明する。第3実施例では、電流測定部120の振幅測定をディジタル信号処理で行なう。このため、電流検出部分の出力信号をディジタルデータに変換するためのA/D変換部127と、周波数fxの信号を分離してVmxを抽出する周波数分離器(fx)128aと、周波数fsの信号を分離してVmsを抽出する周波数分離器(fs)128bとを備えている。周波数分離器128は、ディジタルフィルタや同期検波回路を用いて構成することができる。   Next, a third embodiment of the voltage measuring device 100 of the present invention will be described with reference to FIG. In the third embodiment, the amplitude measurement of the current measuring unit 120 is performed by digital signal processing. For this reason, the A / D converter 127 for converting the output signal of the current detection portion into digital data, the frequency separator (fx) 128a for separating the signal of frequency fx and extracting Vmx, and the signal of frequency fs And a frequency separator (fs) 128b for extracting Vms. The frequency separator 128 can be configured using a digital filter or a synchronous detection circuit.

次に、本発明の電圧測定器100の第4実施例について図6を参照して説明する。第4実施例は、測定対象の正確な周波数が分からない場合にも適用可能な構成である。第1実施例の構成を基に説明するが、他の実施例に適用してもよい。   Next, a fourth embodiment of the voltage measuring device 100 of the present invention will be described with reference to FIG. The fourth embodiment is applicable to a case where an accurate frequency to be measured is not known. Although the description will be based on the configuration of the first embodiment, it may be applied to other embodiments.

第4実施例では、周波数測定部129を用いて、第1フィルタ部123aを通過した信号の周波数を測定して、測定対象の正確な周波数fxとする。演算部130では、電流測定部120が出力する直流電圧Vmx、直流電圧Vmx、周波数fxと、既知の周波数fx、および既知の電圧Vsに基づいて測定対象電圧Vxを算出し、表示部140が測定結果として表示する。なお、第1フィルタ部123aは、測定対象のおおよその周波数を通過帯域に含むフィルタを用いるものとする。   In the fourth embodiment, the frequency measurement unit 129 is used to measure the frequency of the signal that has passed through the first filter unit 123a to obtain the accurate frequency fx to be measured. The calculation unit 130 calculates the measurement target voltage Vx based on the DC voltage Vmx, the DC voltage Vmx, the frequency fx, the known frequency fx, and the known voltage Vs output from the current measurement unit 120, and the display unit 140 performs measurement. Display as a result. In addition, the 1st filter part 123a shall use the filter which contains the approximate frequency of a measuring object in a pass band.

周波数測定部129は、種々の方式を用いることができる。例えば、一定の測定時間における入力信号と基準電圧とが交差する回数を計測する方法、入力信号と基準電圧とが交差する時間(周期)を計測する方法等を用いることができる。   The frequency measuring unit 129 can use various methods. For example, a method of measuring the number of times that the input signal and the reference voltage intersect at a fixed measurement time, a method of measuring the time (period) at which the input signal and the reference voltage intersect, and the like can be used.

次に、本発明の電圧測定器100の第5実施例について図7を参照して説明する。第5実施例は、電極101が測定対象に非接触のみならず、接触状態でも電圧を測定することができる構成である。なお、電極101は測定対象に接触するが、測定対象と測定側との間には容量C1が存在するため、測定対象と測定側とは非接触である。ここでは、第1実施例の構成を基に説明するが、他の実施例に適用してもよい。   Next, a fifth embodiment of the voltage measuring device 100 of the present invention will be described with reference to FIG. In the fifth embodiment, the electrode 101 can measure the voltage not only in contact with the measurement object but also in the contact state. The electrode 101 is in contact with the measurement object, but the measurement object and the measurement side are not in contact with each other because the capacitance C1 exists between the measurement object and the measurement side. Here, the description is based on the configuration of the first embodiment, but the present invention may be applied to other embodiments.

第5実施例の電圧測定器100は、電極101と電流測定部120との間に、実際のコンデンサ102が接続されている。本例では、定電圧源110は、コンデンサ102および電流測定部120を介して電極101と接続されている。   In the voltage measuring device 100 of the fifth embodiment, an actual capacitor 102 is connected between the electrode 101 and the current measuring unit 120. In this example, the constant voltage source 110 is connected to the electrode 101 via the capacitor 102 and the current measuring unit 120.

実際のコンデンサ102が接続されていることにより、電極101を導線330に接触させた状態でも、コンデンサ102が容量C1の役割を担うため、測定対象電圧Vxを測定することができる。また、被覆電線300を測定する場合は、寄生容量とコンデンサ102の合成容量が容量C1の役割を担うため、測定対象電圧Vxを測定することができる。すなわち、電極101が測定対象に非接触でも接触でも測定対象電圧Vxを測定することができる。   By connecting the actual capacitor 102, the measurement object voltage Vx can be measured because the capacitor 102 plays the role of the capacitance C1 even when the electrode 101 is in contact with the conducting wire 330. Moreover, when measuring the covered wire | conductor 300, since the synthetic capacity of a parasitic capacitance and the capacitor | condenser 102 plays the role of the capacity | capacitance C1, the measurement object voltage Vx can be measured. That is, the measurement target voltage Vx can be measured regardless of whether or not the electrode 101 is in contact with the measurement target.

100 電圧測定器
101 電極
102 コンデンサ
110 定電圧源
120 電流測定部
121 抵抗
122 計装アンプ
123 フィルタ部
124 交流−直流変換部
125 同期検波回路
126 正弦波発振器
127 A/D変換部
128 周波数分離器
129 周波数測定部
130 演算部
140 表示部
300 被覆電線
310 導体
320 絶縁被覆
330 導線
DESCRIPTION OF SYMBOLS 100 Voltage measuring device 101 Electrode 102 Capacitor 110 Constant voltage source 120 Current measurement part 121 Resistance 122 Instrumentation amplifier 123 Filter part 124 AC-DC conversion part 125 Synchronous detection circuit 126 Sine wave oscillator 127 A / D conversion part 128 Frequency separator 129 Frequency measurement unit 130 Calculation unit 140 Display unit 300 Insulated wire 310 Conductor 320 Insulation coating 330 Conductor

Claims (6)

第1周波数の交流電圧を測定する電圧測定装置であって、
電極と、
前記電極と接続し、第2周波数の交流電圧を出力する定電圧源と、
前記電極と前記定電圧源との間を流れる前記第1周波数の電流の大きさおよび前記第2周波数の電流の大きさを測定する電流測定部と、
前記定電圧源の出力電圧、前記第1周波数の電流の大きさ、前記第2周波数の電流の大きさ、前記第1周波数、前記第2周波数に基づいて、前記第1周波数の交流電圧を算出する演算部と、
を備えたことを特徴とする電圧測定装置。
A voltage measuring device for measuring an alternating voltage of a first frequency,
Electrodes,
A constant voltage source connected to the electrode and outputting an alternating voltage of a second frequency;
A current measuring unit that measures the magnitude of the current at the first frequency and the magnitude of the current at the second frequency flowing between the electrode and the constant voltage source;
The AC voltage of the first frequency is calculated based on the output voltage of the constant voltage source, the magnitude of the current of the first frequency, the magnitude of the current of the second frequency, the first frequency, and the second frequency. An arithmetic unit to perform,
A voltage measuring device comprising:
前記演算部は、前記第2周波数と前記第1周波数との比に、前記第1周波数の電流の大きさと前記第2周波数の電流の大きさとの比と、前記定電圧源の出力電圧を乗じることにより前記第1周波数の交流電圧を算出することを特徴とする請求項1に記載の電圧測定装置。   The computing unit multiplies the ratio between the second frequency and the first frequency by the ratio between the current magnitude at the first frequency and the current magnitude at the second frequency and the output voltage of the constant voltage source. The voltage measuring device according to claim 1, wherein the AC voltage of the first frequency is calculated. 前記定電圧源が、コンデンサを介して前記電極と接続されていることを特徴とする請求項1または2に記載の電圧測定装置。   The voltage measuring apparatus according to claim 1, wherein the constant voltage source is connected to the electrode via a capacitor. 第1周波数の交流電圧を測定する電圧測定方法であって、
前記第1周波数の交流電圧が印加された測定対象物に、容量を介して第2周波数、所定電圧の交流電圧を印加したときに前記容量を流れる前記第1周波数の電流の大きさおよび前記第2周波数の電流の大きさを測定し、
前記所定電圧、前記第1周波数の電流の大きさ、前記第2周波数の電流の大きさ、前記第1周波数、前記第2周波数に基づいて、前記第1周波数の交流電圧を算出することを特徴とする電圧測定方法。
A voltage measurement method for measuring an alternating voltage of a first frequency,
When a second frequency, an alternating voltage of a predetermined voltage is applied to a measurement object to which the alternating voltage of the first frequency is applied, the magnitude of the current of the first frequency flowing through the capacitor and the first Measure the magnitude of the current at two frequencies,
An AC voltage of the first frequency is calculated based on the predetermined voltage, the magnitude of the current of the first frequency, the magnitude of the current of the second frequency, the first frequency, and the second frequency. Voltage measurement method.
前記容量は、寄生容量を含んでいることを特徴とする請求項4に記載の電圧測定方法。   The voltage measurement method according to claim 4, wherein the capacitance includes a parasitic capacitance. 前記第2周波数と前記第1周波数との比に、前記第1周波数の電流の大きさと前記第2周波数の電流の大きさとの比と、前記所定電圧を乗じることにより前記第1周波数の交流電圧を算出することを特徴とする請求項4または5に記載の電圧測定方法。   The ratio between the second frequency and the first frequency is multiplied by the ratio between the magnitude of the current at the first frequency and the magnitude of the current at the second frequency, and the predetermined voltage, to thereby generate an AC voltage at the first frequency. The voltage measurement method according to claim 4, wherein the voltage is calculated.
JP2018100180A 2018-05-25 2018-05-25 Voltage measuring device and voltage measuring method Abandoned JP2019203830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018100180A JP2019203830A (en) 2018-05-25 2018-05-25 Voltage measuring device and voltage measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018100180A JP2019203830A (en) 2018-05-25 2018-05-25 Voltage measuring device and voltage measuring method

Publications (1)

Publication Number Publication Date
JP2019203830A true JP2019203830A (en) 2019-11-28

Family

ID=68726721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018100180A Abandoned JP2019203830A (en) 2018-05-25 2018-05-25 Voltage measuring device and voltage measuring method

Country Status (1)

Country Link
JP (1) JP2019203830A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10206468A (en) * 1997-01-21 1998-08-07 Hokuto Denshi Kogyo Kk Method and apparatus for measuring voltage in noncontact manner
US20180136264A1 (en) * 2016-11-11 2018-05-17 Fluke Corporation Non-contact voltage measurement system using reference signal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10206468A (en) * 1997-01-21 1998-08-07 Hokuto Denshi Kogyo Kk Method and apparatus for measuring voltage in noncontact manner
US20180136264A1 (en) * 2016-11-11 2018-05-17 Fluke Corporation Non-contact voltage measurement system using reference signal
JP2018141769A (en) * 2016-11-11 2018-09-13 フルークコーポレイションFluke Corporation Non-contact voltage measurement system using reference signal

Similar Documents

Publication Publication Date Title
US9255970B2 (en) On-line monitoring of stator insulation in motors and generators
JP4611774B2 (en) Non-contact voltage detection method and non-contact voltage detection device
EP3567380B1 (en) Non-contact dc voltage measurement device with oscillating sensor
EP3567384B1 (en) Multi-sensor configuration for non-contact voltage measurement devices
CN110869775B (en) Non-contact voltage converter
JP3158063B2 (en) Non-contact voltage measurement method and device
JP2023052672A (en) Multi-sensor scanner configuration for non-contact voltage measurement device
JP2018136301A (en) Sensor subsystems for non-contact voltage measurement devices
KR100584020B1 (en) A variable frequency inverter-type high power ground resistance measuring device and measuring method based on PC
JP7009025B2 (en) Voltage measuring device, voltage measuring method
JP2002311061A (en) Processor for electric power
JP4248627B2 (en) Ground fault inspection device
JP2019203830A (en) Voltage measuring device and voltage measuring method
JP2014119384A (en) Non-contact voltage measuring probe
JP2000193708A (en) Method and apparatus for monitoring of insulation of floating electric circuit
JP6845732B2 (en) Voltage measuring device, voltage measuring method
WO2021090479A1 (en) Measurement assistance device, non-contact voltage observation device, and non-contact voltage observation system
JP2016099207A (en) Voltage measuring device
WO2022224325A1 (en) Non-contact voltage sensor device
JP2002323533A (en) Partial discharge testing method for electric power equipment
JPS596137Y2 (en) Insulation monitoring device for rotating machine windings
JP2022021382A (en) Partial discharge measuring instrument
RU155038U1 (en) PRIMARY MEASUREMENT DEVICE FOR VOLTAGE MEASURING TRANSFORMER
JP2000009788A (en) Deterioration diagnosis method of cables
JP2017110908A (en) measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20220601