JP6845732B2 - Voltage measuring device, voltage measuring method - Google Patents

Voltage measuring device, voltage measuring method Download PDF

Info

Publication number
JP6845732B2
JP6845732B2 JP2017084285A JP2017084285A JP6845732B2 JP 6845732 B2 JP6845732 B2 JP 6845732B2 JP 2017084285 A JP2017084285 A JP 2017084285A JP 2017084285 A JP2017084285 A JP 2017084285A JP 6845732 B2 JP6845732 B2 JP 6845732B2
Authority
JP
Japan
Prior art keywords
frequency
voltage
unit
current
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017084285A
Other languages
Japanese (ja)
Other versions
JP2018179927A (en
Inventor
真也 芦川
真也 芦川
和俊 田澤
和俊 田澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Energy System Corp
Original Assignee
Yazaki Energy System Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Energy System Corp filed Critical Yazaki Energy System Corp
Priority to JP2017084285A priority Critical patent/JP6845732B2/en
Publication of JP2018179927A publication Critical patent/JP2018179927A/en
Application granted granted Critical
Publication of JP6845732B2 publication Critical patent/JP6845732B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Description

本発明は、測定対象物の電圧を非接触で測定可能な電圧測定装置および電圧測定方法に関する。 The present invention relates to a voltage measuring device and a voltage measuring method capable of measuring the voltage of an object to be measured in a non-contact manner.

特許文献1には、図7に示すような、測定対象物404の電圧V1を非接触で測定可能な電圧測定装置400が開示されている。電圧測定装置400では、プローブユニット402の検出電極412が、測定対象物404の近傍に非接触な状態で配置されており、検出電極412と測定対象物404との間に静電容量C0が形成されている。 Patent Document 1 discloses a voltage measuring device 400 capable of measuring the voltage V1 of the measurement object 404 in a non-contact manner as shown in FIG. 7. In the voltage measuring device 400, the detection electrode 412 of the probe unit 402 is arranged in the vicinity of the measurement object 404 in a non-contact state, and a capacitance C0 is formed between the detection electrode 412 and the measurement object 404. Has been done.

電圧測定装置400では、可変容量素子413を本体403から交流信号S1で駆動すると、可変容量素子413の静電容量の変化により交流電流iが流れる。電流iの大きさは測定対象物404の電圧V1とプローブユニット402のシールドケースの電圧V4との電圧差によって決まる。電流iを検出抵抗415で交流電圧V2として測定し、その振幅に応じたシールド電圧V4を電圧生成回路425から発生させる。 In the voltage measuring device 400, when the variable capacitance element 413 is driven by the AC signal S1 from the main body 403, an alternating current i flows due to a change in the capacitance of the variable capacitance element 413. The magnitude of the current i is determined by the voltage difference between the voltage V1 of the object to be measured 404 and the voltage V4 of the shield case of the probe unit 402. The current i is measured by the detection resistor 415 as an AC voltage V2, and a shield voltage V4 corresponding to the amplitude is generated from the voltage generation circuit 425.

この構成により、電圧測定装置400のシールド電圧V4は電流iが0となるように制御され、このときシールド電圧V4は測定対象物404の電圧V1と同電圧になる。このため、シールド電圧V4を電圧計426により測定することで、測定対象物404の電圧V1を計測することができる。 With this configuration, the shield voltage V4 of the voltage measuring device 400 is controlled so that the current i becomes 0, and at this time, the shield voltage V4 becomes the same voltage as the voltage V1 of the measurement object 404. Therefore, the voltage V1 of the object to be measured 404 can be measured by measuring the shield voltage V4 with the voltmeter 426.

特開2007−132926号公報JP-A-2007-132926

電圧測定装置400では、例えば、数kVの高電圧を測定する場合には、プローブユニット402のシールドケースが高電圧になる。したがって、測定装置の安全性を確保するためにシールドケース周辺の高絶縁設計や破損による感電防止措置等が必要となる。このため電圧測定装置400の高コスト化を招いている。 In the voltage measuring device 400, for example, when measuring a high voltage of several kV, the shield case of the probe unit 402 becomes a high voltage. Therefore, in order to ensure the safety of the measuring device, it is necessary to design a high insulation around the shield case and take measures to prevent electric shock due to damage. Therefore, the cost of the voltage measuring device 400 is increased.

そこで、本発明は、高コスト化を招くことなく高電圧の非接触測定が可能な電圧測定技術を提供することを目的とする。 Therefore, an object of the present invention is to provide a voltage measurement technique capable of non-contact measurement of a high voltage without inviting an increase in cost.

上記課題を解決するため、本発明の第1の態様である電圧測定装置は、第1周波数の交流電圧を測定する電圧測定装置であって、電極と、前記電極と接続し、第1電圧で固定された第2周波数の交流信号を出力する可変周波数発振部と、前記電極と前記可変周波数発振部との間を流れる電流を検出する電流検出部と、検出された電流から、前記第1周波数成分の大きさと、前記第2周波数成分の大きさとの差分に相当する値を抽出して出力する差分抽出部と、前記差分抽出部の出力が0になるように、前記可変周波数発振部の第2周波数を変化させる周波数調整部と、前記第1電圧と前記第1周波数と前記第2周波数とに基づいて、前記第1周波数の交流電圧を算出する演算部と、を備えたことを特徴とする。
ここで、前記演算部は、前記第1電圧を前記第1周波数で割った値に前記第2周波数を乗じることにより前記第1周波数の交流電圧を算出することができる。
また、前記電極と前記可変周波数発振部とがコンデンサを介して接続していてもよい。
また、前記可変周波数発振部は、第1電圧の値を切替え可能であってもよい。
上記課題を解決するため、本発明の第2の態様である電圧測定方法は、第1周波数の交流電圧を測定する電圧測定方法であって、前記第1周波数の交流電圧が印加された測定対象物に、容量を介して第1電圧で固定された第2周波数の交流電圧を印加したときに前記容量を流れる電流について、前記第1周波数成分の大きさと、前記第2周波数成分の大きさとが同じなるように、前記第2周波数を調整し、前記第1電圧と前記第1周波数とそのときの前記第2周波数とに基づいて、前記第1周波数の交流電圧を算出することを特徴とする。
In order to solve the above problems, the voltage measuring device according to the first aspect of the present invention is a voltage measuring device that measures an AC voltage of a first frequency, and is connected to an electrode and the electrode to use a first voltage. A variable frequency oscillating unit that outputs a fixed second frequency AC signal, a current detecting unit that detects a current flowing between the electrode and the variable frequency oscillating unit, and the first frequency from the detected current. The difference extraction unit that extracts and outputs a value corresponding to the difference between the size of the component and the size of the second frequency component, and the variable frequency oscillation unit so that the output of the difference extraction unit becomes 0. It is characterized by including a frequency adjusting unit that changes two frequencies and a calculation unit that calculates an AC voltage of the first frequency based on the first voltage, the first frequency, and the second frequency. To do.
Here, the calculation unit can calculate the AC voltage of the first frequency by multiplying the value obtained by dividing the first voltage by the first frequency by the second frequency.
Further, the electrode and the variable frequency oscillator may be connected via a capacitor.
Further, the variable frequency oscillator may be capable of switching the value of the first voltage.
In order to solve the above problems, the voltage measuring method according to the second aspect of the present invention is a voltage measuring method for measuring the AC voltage of the first frequency, and is a measurement target to which the AC voltage of the first frequency is applied. Regarding the current flowing through the capacitance when an AC voltage of the second frequency fixed by the first voltage is applied to the object, the magnitude of the first frequency component and the magnitude of the second frequency component are The second frequency is adjusted in the same manner, and the AC voltage of the first frequency is calculated based on the first voltage, the first frequency, and the second frequency at that time. ..

本発明によれば、高コスト化を招くことなく高電圧の非接触測定が可能な電圧測定技術が提供される。 According to the present invention, there is provided a voltage measurement technique capable of non-contact measurement of a high voltage without incurring a high cost.

本発明の電圧測定器の測定原理を説明する図である。It is a figure explaining the measurement principle of the voltage measuring instrument of this invention. 本発明の電圧測定器の第1実施例の構成を示す図である。It is a figure which shows the structure of 1st Example of the voltage measuring instrument of this invention. 本発明の電圧測定器の第2実施例の構成を示す図である。It is a figure which shows the structure of the 2nd Example of the voltage measuring instrument of this invention. 本発明の電圧測定器の第3実施例の構成を示す図である。It is a figure which shows the structure of the 3rd Example of the voltage measuring instrument of this invention. 本発明の電圧測定器の第4実施例の構成を示す図である。It is a figure which shows the structure of the 4th Example of the voltage measuring instrument of this invention. 本発明の電圧測定器の第5実施例の構成を示す図である。It is a figure which shows the structure of the 5th Example of the voltage measuring instrument of this invention. 従来の非接触型電圧測定器を説明する図である。It is a figure explaining the conventional non-contact type voltage measuring instrument.

本発明の実施形態について、図面を参照して詳細に説明する。図1は、本発明の電圧測定器の測定原理を説明する図である。本発明の電圧測定器では、交流電圧を測定対象としており、本図では、周波数fxの交流電圧Vxが測定対象となっている。周波数fxは既知であるとする。交流電圧Vxは、例えば、数100V〜数kV程度であるとする。 Embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram illustrating a measurement principle of the voltage measuring instrument of the present invention. In the voltage measuring instrument of the present invention, an AC voltage is a measurement target, and in this figure, an AC voltage Vx having a frequency fx is a measurement target. It is assumed that the frequency fx is known. The AC voltage Vx is, for example, about several hundred V to several kV.

測定側には周波数fsを変化させることができる可変周波数発振部110が備えられている。可変周波数発振部110の出力電圧は、電圧Vsで固定されている。測定対象と測定側との間には容量C1が存在している。容量C1は未知でもよい。 A variable frequency oscillator 110 capable of changing the frequency fs is provided on the measurement side. The output voltage of the variable frequency oscillator 110 is fixed at the voltage Vs. A capacitance C1 exists between the measurement target and the measurement side. The capacity C1 may be unknown.

測定対象の電圧Vxが起因となって容量C1を流れる周波数fxの電流をIxとし、可変周波数発振部110の電圧Vsが起因となって容量C1を流れる周波数fsの電流をIsとする。実際には、電流Ixと電流Isとを重ね合わせた電流が容量C1を流れることになる。 The current of the frequency fx flowing through the capacitance C1 due to the voltage Vx to be measured is defined as Ix, and the current of the frequency fs flowing through the capacitance C1 due to the voltage Vs of the variable frequency oscillator 110 is defined as Is. In reality, the current obtained by superimposing the current Ix and the current Is will flow through the capacitance C1.

測定側には、電流検出部120、差分抽出部130、周波数調整部140、周波数測定部150、演算部160が備えられている。なお、測定対象と測定側の接地は共通でなくてもよい。 On the measurement side, a current detection unit 120, a difference extraction unit 130, a frequency adjustment unit 140, a frequency measurement unit 150, and a calculation unit 160 are provided. The grounding of the measurement target and the measurement side does not have to be common.

電流検出部120は、電流Ixと電流Isとが重畳した電流を検出する。差分抽出部130は、電流検出部120の検出結果から、電流Ixの大きさと電流Isの大きさとの差分に相当する値を抽出して出力する。周波数調整部140は、差分抽出部130の出力が0になるように、すなわち、電流Isの大きさが電流Ixの大きさと等しくなるように可変周波数発振部110の出力周波数fsを変化させる。 The current detection unit 120 detects the current in which the current Ix and the current Is are superimposed. The difference extraction unit 130 extracts and outputs a value corresponding to the difference between the magnitude of the current Ix and the magnitude of the current Is from the detection result of the current detection unit 120. The frequency adjusting unit 140 changes the output frequency fs of the variable frequency oscillating unit 110 so that the output of the difference extracting unit 130 becomes 0, that is, the magnitude of the current Is is equal to the magnitude of the current Ix.

周波数測定部150は、可変周波数発振部110の出力周波数fsを測定する。演算部160は、周波数測定部150における周波数fsの測定結果に基づいて測定対象の電圧Vxを算出して出力する。電圧Vxの出力は、表示装置への表示、他装置へのデータ出力等とすることができる。 The frequency measuring unit 150 measures the output frequency fs of the variable frequency oscillating unit 110. The calculation unit 160 calculates and outputs the voltage Vx to be measured based on the measurement result of the frequency fs in the frequency measurement unit 150. The output of the voltage Vx can be a display on a display device, data output to another device, or the like.

この構成において、電流Ixに対する容量C1のインピーダンスをXcxとし、電流Isに対する容量C1のインピーダンスをXcsとすると、電流Ix、電流Isは以下のように表すことができる。

Figure 0006845732
Figure 0006845732
ここで、
Figure 0006845732
Figure 0006845732
が成り立つので、[数5]が得られる。
Figure 0006845732
差分抽出部130と周波数調整部140により、Ix=Isとなるように電圧Vsが調整されるため、[数1][数2]より、
Figure 0006845732
そして、[数5][数6]より[数7]が得られる。
Figure 0006845732
したがって、演算部160は、可変周波数発振部110の既知の固定出力電圧Vsを測定対象交流電圧の既知の固定周波数fxで割って得られた固定値に、周波数測定部150の測定値fsを乗じる演算を行なうことで、測定対象電圧Vxを算出し、測定結果として出力することができる。 In this configuration, assuming that the impedance of the capacitance C1 with respect to the current Ix is Xcx and the impedance of the capacitance C1 with respect to the current Is is Xcs, the current Ix and the current Is can be expressed as follows.
Figure 0006845732
Figure 0006845732
here,
Figure 0006845732
Figure 0006845732
Therefore, [Equation 5] is obtained.
Figure 0006845732
Since the voltage Vs is adjusted so that Ix = Is by the difference extraction unit 130 and the frequency adjustment unit 140, from [Equation 1] and [Equation 2],
Figure 0006845732
Then, [Equation 7] is obtained from [Equation 5] and [Equation 6].
Figure 0006845732
Therefore, the calculation unit 160 multiplies the fixed value obtained by dividing the known fixed output voltage Vs of the variable frequency oscillation unit 110 by the known fixed frequency fx of the AC voltage to be measured by the measured value fs of the frequency measurement unit 150. By performing the calculation, the measurement target voltage Vx can be calculated and output as the measurement result.

例えば、測定対象電圧の周波数fxを商用電源の50Hzとすると、測定された周波数fsが50kHであれば、電圧Vsを1000倍した値が測定対象の電圧Vxとなる。すなわち、電圧Vsを数Vに設定しておくことで、測定対象電圧が数kVであっても数Vの電圧で測定できることになる。仮に、この場合、電圧Vsが1Vであれば、測定対象の電圧Vxは1kVと測定される。 For example, assuming that the frequency fx of the voltage to be measured is 50 Hz of the commercial power supply, if the measured frequency fs is 50 kHz, the value obtained by multiplying the voltage Vs by 1000 is the voltage Vx to be measured. That is, by setting the voltage Vs to several Vs, even if the measurement target voltage is several kV, it is possible to measure with a voltage of several Vs. In this case, if the voltage Vs is 1V, the voltage Vx to be measured is measured as 1 kV.

可変周波数発振部110の固定出力電圧Vsを複数の値から選択できるようにしてもよい。これにより、測定対象電圧に応じた測定レンジの切替えを行なうことができるようになり、演算部160が切換えられた固定出力電圧Vsに応じた演算を行なうことで、測定範囲を広げることができる。 The fixed output voltage Vs of the variable frequency oscillator 110 may be selected from a plurality of values. As a result, the measurement range can be switched according to the measurement target voltage, and the measurement range can be expanded by performing the calculation according to the switched fixed output voltage Vs by the calculation unit 160.

例えば、可変周波数発振部110の可変帯域が25kHz〜50kHzであるとすると、固定出力電圧Vsが1Vの場合は、50Hzの交流電圧Vxを、0.5kV〜1kVの範囲で測定可能となるが、固定出力電圧Vsを1Vと0.5Vとで切換えられるとすると、0.25kV〜1kVの範囲で電圧Vxが測定可能となる。 For example, assuming that the variable band of the variable frequency oscillator 110 is 25 kHz to 50 kHz, when the fixed output voltage Vs is 1 V, the AC voltage Vx of 50 Hz can be measured in the range of 0.5 kV to 1 kV. Assuming that the fixed output voltage Vs can be switched between 1V and 0.5V, the voltage Vx can be measured in the range of 0.25kV to 1kV.

このように、本発明では、測定側は測定対象電圧よりもはるかに低い電圧で測定することができるため、電圧測定器の構成部品に高価な高耐圧部品が不要となる。また、電圧測定器内部で高電圧が発生することがないため、高絶縁設計や感電防止措置が不要となる。したがって従来技術のような高コスト化を防ぐことができ、安価に電圧測定器を構成することができる。 As described above, in the present invention, the measuring side can measure at a voltage much lower than the voltage to be measured, so that expensive high withstand voltage components are not required for the components of the voltage measuring instrument. In addition, since high voltage is not generated inside the voltage measuring instrument, high insulation design and electric shock prevention measures are not required. Therefore, it is possible to prevent the cost increase as in the prior art, and it is possible to construct the voltage measuring instrument at low cost.

次に、上記の測定原理を利用した電圧測定器の実施例について説明する。図2は、本発明の電圧測定器100の第1実施例の構成を示す図である。 Next, an example of a voltage measuring instrument using the above measurement principle will be described. FIG. 2 is a diagram showing a configuration of a first embodiment of the voltage measuring instrument 100 of the present invention.

本図の例において、測定対象物は、周波数fxの交流電圧Vxが印加される導体310である。導体310は、絶縁被覆320により被覆されており、被覆電線300を形成している。 In the example of this figure, the object to be measured is the conductor 310 to which the AC voltage Vx of the frequency fx is applied. The conductor 310 is covered with an insulating coating 320 to form a coated electric wire 300.

第1実施例の電圧測定器100は、電極101、電流検出部120、差分抽出部130、定電圧可変周波数正弦波発振部104、周波数測定部150、演算部160を備えている。 The voltage measuring device 100 of the first embodiment includes an electrode 101, a current detecting unit 120, a difference extracting unit 130, a constant voltage variable frequency sine wave oscillating unit 104, a frequency measuring unit 150, and a calculation unit 160.

電極101は、被覆電線300に取り付けられている。このため、導体310と電極101とは非接触であり、導体310と電極101との間に未知の寄生容量C1が存在している。 The electrode 101 is attached to the covered electric wire 300. Therefore, the conductor 310 and the electrode 101 are not in contact with each other, and an unknown parasitic capacitance C1 exists between the conductor 310 and the electrode 101.

電流検出部120は、抵抗R121と、抵抗R121に生じる電圧を検出する計装アンプ122とを備えている。 The current detection unit 120 includes a resistor R121 and an instrumentation amplifier 122 that detects a voltage generated in the resistor R121.

差分抽出部130は、周波数fxの信号を通過させる第1フィルタ部131、周波数fsの可変信号帯域を通過させる第2フィルタ部132、第1フィルタ部131を通過した周波数fxの信号を平滑化して直流に変換する第1交流−直流変換部133、第2フィルタ部132を通過した周波数fsの信号を平滑化して直流に変換する第2交流−直流変換部134、第1交流−直流変換部133が出力する電流Ixの大きさに相当する信号Vrxと第2交流−直流変換部134が出力する電流Isの大きさに相当する信号Vrsとの差分を抽出する差動アンプ135を備えている。 The difference extraction unit 130 smoothes the signal of the frequency fx that has passed through the first filter unit 131 that passes the signal of the frequency fx, the second filter unit 132 that passes the variable signal band of the frequency fs, and the first filter unit 131. The first AC-DC conversion unit 133 that converts to DC, the second AC-DC conversion unit 134 that smoothes the signal of frequency fs that has passed through the second filter unit 132 and converts it to DC, and the first AC-DC conversion unit 133. A differential amplifier 135 is provided for extracting the difference between the signal Vrx corresponding to the magnitude of the current Ix output by and the signal Vrs corresponding to the magnitude of the current Is output by the second AC-DC converter 134.

定電圧可変周波数正弦波発振部104は、差分抽出部130が出力する電圧信号に応じた周波数の正弦波を固定電圧Vsで出力する回路であり、電圧制御発振器(Voltage-controlled oscillator)、電圧周波数変換器(Voltage to Frequency Converter)等を用いることができる。定電圧可変周波数正弦波発振部104は、周波数調整部140、可変周波数発振部110として機能する。 The constant voltage variable frequency sine wave oscillating unit 104 is a circuit that outputs a sine wave having a frequency corresponding to the voltage signal output by the difference extraction unit 130 at a fixed voltage Vs, and is a voltage-controlled oscillator and a voltage frequency. A converter (Voltage to Frequency Converter) or the like can be used. The constant voltage variable frequency sine wave oscillating unit 104 functions as a frequency adjusting unit 140 and a variable frequency oscillating unit 110.

定電圧可変周波数正弦波発振部104は、Vrx>Vrsの場合、出力周波数を高くする。これにより、Isが増加し、Vrsが増加する。一方、Vrx<Vrsの場合、出力周波数を低くする。これにより、Isが減少し、Vrsが減少する。 The constant voltage variable frequency sine wave oscillator 104 increases the output frequency when Vrx> Vrs. As a result, Is increases and Vrs increases. On the other hand, when Vrx <Vrs, the output frequency is lowered. As a result, Is decreases and Vrs decreases.

周波数測定部150は、定電圧可変周波数正弦波発振部104の出力周波数fsを測定し、演算部160は、周波数測定部150における周波数fsの測定結果に基づいて電圧Vxを算出して測定結果として出力する。 The frequency measurement unit 150 measures the output frequency fs of the constant voltage variable frequency sine wave oscillation unit 104, and the calculation unit 160 calculates the voltage Vx based on the measurement result of the frequency fs in the frequency measurement unit 150 and uses it as the measurement result. Output.

周波数測定部150は、種々の方式を用いることができる。例えば、一定の測定時間における入力信号と基準電圧とが交差する回数を計測する方法、入力信号と基準電圧とが交差する時間(周期)を計測する方法等を用いることができる。 The frequency measuring unit 150 can use various methods. For example, a method of measuring the number of times the input signal and the reference voltage intersect in a fixed measurement time, a method of measuring the time (cycle) at which the input signal and the reference voltage intersect, and the like can be used.

第1実施例では、電流検出部120に抵抗R121を用いているため、抵抗R121で生じる電流Ixによる電圧降下Vrxと電流Isによる電圧降下Vrsとを考慮して、上記の[数3][数4]に加え、[数8][数9]が得られる。

Figure 0006845732
Figure 0006845732
したがって、
Figure 0006845732
となる。 In the first embodiment, since the resistor R121 is used for the current detection unit 120, the voltage drop Vrx due to the current Ix and the voltage drop Vrs due to the current Is generated in the resistor R121 are taken into consideration, and the above [Equation 3] [Number] In addition to [4], [Equation 8] and [Equation 9] are obtained.
Figure 0006845732
Figure 0006845732
Therefore,
Figure 0006845732
Will be.

ここで、差分抽出部130と定電圧可変周波数正弦波発振部104により、Ix=Isとなるように周波数fsが調整されるため、VrxとVrsとが等しくなり、これをVrとすると、

Figure 0006845732
が得られる。−Vrは小さいので無視すると、
Figure 0006845732
となる。さらに、抵抗R121が、容量C1と周波数fsとで決まるリアクタンスよりも十分小さければ、Vrを無視することができる。このため、電流検出用の抵抗R121を小さい値とすることで、Vx=Vs×fs/fxが得られることになる。したがって、演算部160は、周波数測定部150の測定結果fsを(Vs/fx)倍する演算を行なうことで、測定対象電圧Vxを算出し、出力することができる。もちろん、Vr(VrsあるいはVrx)を別途測定し、[数12]にしたがって、測定対象電圧Vxを算出し、出力してもよい。 Here, since the frequency fs is adjusted so that Ix = Is by the difference extraction unit 130 and the constant voltage variable frequency sine wave oscillator 104, Vrx and Vrs become equal, and if this is Vr, it is assumed.
Figure 0006845732
Is obtained. -Vr 2 is small, so if you ignore it,
Figure 0006845732
Will be. Further, if the resistor R121 is sufficiently smaller than the reactance determined by the capacitance C1 and the frequency fs, Vr 2 can be ignored. Therefore, by setting the current detection resistor R121 to a small value, Vx = Vs × fs / fx can be obtained. Therefore, the calculation unit 160 can calculate and output the measurement target voltage Vx by performing a calculation of multiplying the measurement result fs of the frequency measurement unit 150 by (Vs / fx). Of course, Vr (Vrs or Vrx) may be measured separately, and the measurement target voltage Vx may be calculated and output according to [Equation 12].

なお、電流検出部120は、抵抗R121と計装アンプ122とで構成していたが、この構成に限られず、電流に応じた信号を取得可能な種々の方式を採用することができる。例えば、ホールセンサやカレントトランス回路等を利用して電流による磁界を検出し、電流に比例した電圧を出力してもよい。また、抵抗R121に換えてコンデンサやコイル、またはこれらの組み合わせを用いてもよい。 The current detection unit 120 is composed of the resistor R121 and the instrumentation amplifier 122, but the present invention is not limited to this configuration, and various methods capable of acquiring a signal corresponding to the current can be adopted. For example, a hall sensor, a current transformer circuit, or the like may be used to detect a magnetic field due to a current and output a voltage proportional to the current. Further, a capacitor, a coil, or a combination thereof may be used instead of the resistor R121.

また、第1フィルタ部131、第2フィルタ部132としては、アクティブバンドパスフィルタのVCVS(サレン・キー)型、多重帰還型、状態変数型、パッシブバンドパスフィルタのLCバンドパスフィルタ、RLCバンドパスフィルタ等種々の方式を用いることができる。 The first filter unit 131 and the second filter unit 132 include a VCVS (salen key) type of an active bandpass filter, a multiple feedback type, a state variable type, an LC bandpass filter of a passive bandpass filter, and an RLC bandpass. Various methods such as a filter can be used.

なお、第2フィルタ部132は、可変周波数fsの可変範囲を透過帯域としてカバーする必要がある。このため、周波数fs以外のノイズを透過させてしまう場合が起こり得る。そこで、定電圧可変周波数正弦波発振部104の出力周波数に応じたカットオフ周波数を設定できるようにしてもよい。 The second filter unit 132 needs to cover the variable range of the variable frequency fs as a transmission band. Therefore, there may be a case where noise other than the frequency fs is transmitted. Therefore, the cutoff frequency may be set according to the output frequency of the constant voltage variable frequency sine wave oscillator 104.

この場合、例えば、第2フィルタ部132をスイッチトキャパシタフィルタで構成し、そのクロックとして、定電圧可変周波数正弦波発振部104の出力をPLL等によりN倍に逓倍した周波数の信号を入力すればよい。これにより、カットオフ周波数を周波数fsの1/nに設定することができ、ノイズの混入を抑制することができる。 In this case, for example, the second filter unit 132 may be configured by a switched capacitor filter, and a signal having a frequency obtained by multiplying the output of the constant voltage variable frequency sine wave oscillator 104 by N times by a PLL or the like may be input as the clock. .. As a result, the cutoff frequency can be set to 1 / n of the frequency fs, and noise mixing can be suppressed.

また、第1交流−直流変換部133、第2交流−直流変換部134としては、RMS−DCコンバーター(実効値検波)、全波平均あるいは半波平均の平均値検波、ピークホールド回路等の種々の方式を用いることができる。 Further, as the first AC-DC conversion unit 133 and the second AC-DC conversion unit 134, various types such as an RMS-DC converter (effective value detection), a full-wave average or half-wave average average value detection, and a peak hold circuit are used. Method can be used.

次に、本発明の電圧測定器100の第2実施例について図3を参照して説明する。第2実施例では、差分抽出部130を、同期検波回路を用いて構成している。同期検波回路は、入力信号のうち、参照信号と同じ周波数成分の信号について、その大きさを直流電圧に変換して出力する回路である。 Next, a second embodiment of the voltage measuring instrument 100 of the present invention will be described with reference to FIG. In the second embodiment, the difference extraction unit 130 is configured by using a synchronous detection circuit. The synchronous detection circuit is a circuit that converts the magnitude of an input signal having the same frequency component as the reference signal into a DC voltage and outputs the signal.

本図の例では、電流検出部120の出力信号から第1同期検波部136を用いて周波数fxの信号の大きさに相当する直流電圧Vrxを得ており、第2同期検波部137を用いて周波数fsの信号の大きさに相当する直流電圧Vrsを得ている。第2実施例の電圧測定器100は、第1同期検波部136の参照信号のために、周波数fxの正弦波発振器138を備えている。第2同期検波部137の参照信号は、周波数fsの定電圧可変周波数正弦波発振部104の出力信号を用いている。 In the example of this figure, the DC voltage Vrx corresponding to the magnitude of the signal of the frequency fx is obtained from the output signal of the current detection unit 120 by using the first synchronous detection unit 136, and the second synchronous detection unit 137 is used. A DC voltage Vrs corresponding to the magnitude of a signal having a frequency fs is obtained. The voltage measuring instrument 100 of the second embodiment includes a sinusoidal oscillator 138 having a frequency of fx for the reference signal of the first synchronous detection unit 136. As the reference signal of the second synchronous detection unit 137, the output signal of the constant voltage variable frequency sine wave oscillation unit 104 having a frequency fs is used.

次に、本発明の電圧測定器100の第3実施例について図4を参照して説明する。第3実施例では、ディジタル信号処理部170を備えており、抵抗R121と計装アンプ122で構成した電流検出部120以外の処理をディジタル信号処理で行なう。 Next, a third embodiment of the voltage measuring instrument 100 of the present invention will be described with reference to FIG. In the third embodiment, the digital signal processing unit 170 is provided, and processing other than the current detection unit 120 composed of the resistor R121 and the instrumentation amplifier 122 is performed by digital signal processing.

このため、電流検出部120の出力信号をディジタルデータに変換するためのA/D変換部177を備えている。A/D変換部177は、フラッシュ型、逐次比較型、積分型、デルタシグマ型等種々の方式を用いることができる。 Therefore, an A / D conversion unit 177 for converting the output signal of the current detection unit 120 into digital data is provided. The A / D conversion unit 177 can use various methods such as a flash type, a sequential comparison type, an integral type, and a delta sigma type.

ディジタル信号処理部170は、周波数fxの信号を分離してVrxを抽出する周波数分離器(fx)171と、周波数fsの信号を分離してVrsを抽出する周波数分離器(fs)172と、VrxとVrsとを比較し、比較結果に基づいて周波数制御値を変化させるレベル比較部173と、電圧Vs、周波数fsのアナログ正弦波を出力するディジタル直接合成発振器175と、ディジタル直接合成発振器175の出力周波数fsを(Vs/fx)倍する演算を行なうことで測定対象電圧Vxを算出し、出力する演算部176を備えている。 The digital signal processing unit 170 includes a frequency separator (fx) 171 that separates the frequency fx signal and extracts Vrx, a frequency separator (fs) 172 that separates the frequency fs signal and extracts Vrs, and Vrx. And Vrs are compared, and the level comparison unit 173 that changes the frequency control value based on the comparison result, the digital direct synthesis oscillator 175 that outputs an analog sine wave of voltage Vs and frequency fs, and the output of the digital direct synthesis oscillator 175. It is provided with a calculation unit 176 that calculates and outputs the measurement target voltage Vx by performing a calculation of multiplying the frequency fs by (Vs / fx).

周波数分離器171、172、レベル比較部173は、差分抽出部130として機能する。ディジタル直接合成発振器175は、可変周波数発振部110、周波数調整部140、周波数測定部150として機能する。 The frequency separators 171 and 172 and the level comparison unit 173 function as the difference extraction unit 130. The digital direct synthesis oscillator 175 functions as a variable frequency oscillator 110, a frequency adjustment unit 140, and a frequency measurement unit 150.

周波数分離器171、172は、ディジタルフィルタや同期検波回路を用いて構成することができる。周波数分離器(fs)172は、レベル比較部173の周波数制御値あるいはディジタル直接合成発振器175の出力周波数fsに基づいて、透過周波数帯域を調整する構成としてもよい。 The frequency separators 171 and 172 can be configured by using a digital filter or a synchronous detection circuit. The frequency separator (fs) 172 may be configured to adjust the transmission frequency band based on the frequency control value of the level comparison unit 173 or the output frequency fs of the digital direct synthesis oscillator 175.

次に、本発明の電圧測定器100の第4実施例について図5を参照して説明する。第4実施例は、測定対象の正確な周波数が分からない場合にも適用可能な構成である。第1実施例の構成を基に説明するが、他の実施例に適用してもよい。 Next, a fourth embodiment of the voltage measuring instrument 100 of the present invention will be described with reference to FIG. The fourth embodiment is a configuration that can be applied even when the exact frequency of the measurement target is not known. Although the description will be given based on the configuration of the first embodiment, it may be applied to other embodiments.

第4実施例では、周波数測定部180を用いて、第1フィルタ部131を通過した信号の周波数を測定して、測定対象の正確な周波数fxとする。演算部では、周波数測定部150の測定周波数fsに対して、(Vs/fx)をかけることにより測定対象電圧Vxを算出する。fxは、周波数測定部180の測定値を用いる。なお、第1フィルタ部131部は、測定対象のおおよその周波数を通過帯域に含むフィルタを用いるものとする。 In the fourth embodiment, the frequency measuring unit 180 is used to measure the frequency of the signal that has passed through the first filter unit 131 to obtain an accurate frequency fx to be measured. The calculation unit calculates the measurement target voltage Vx by multiplying the measurement frequency fs of the frequency measurement unit 150 by (Vs / fx). For fx, the measured value of the frequency measuring unit 180 is used. The first filter unit 131 uses a filter that includes the approximate frequency of the measurement target in the pass band.

周波数測定部180は、周波数測定部150と同様に種々の方式を用いることができる。例えば、一定の測定時間における入力信号と基準電圧とが交差する回数を計測する方法、入力信号と基準電圧とが交差する時間(周期)を計測する方法等を用いることができる。 The frequency measuring unit 180 can use various methods like the frequency measuring unit 150. For example, a method of measuring the number of times the input signal and the reference voltage intersect in a fixed measurement time, a method of measuring the time (cycle) at which the input signal and the reference voltage intersect, and the like can be used.

次に、本発明の電圧測定器100の第5実施例について図6を参照して説明する。第5実施例は、測定対象物に非接触のみならず、接触状態でも電圧を測定することができる構成である。第1実施例の構成を基に説明するが、他の実施例に適用してもよい。 Next, a fifth embodiment of the voltage measuring instrument 100 of the present invention will be described with reference to FIG. The fifth embodiment has a configuration in which the voltage can be measured not only in the non-contact state with the measurement object but also in the contact state. Although the description will be given based on the configuration of the first embodiment, it may be applied to other embodiments.

第5実施例の電圧測定器100は、電極101と電流検出部120との間に、実際のコンデンサ102が接続されている。このため、電極101を導線330に接触させた状態でも、コンデンサ102が容量C1の役割を担うため、測定対象電圧Vxを測定することができる。また、被覆電線300を測定する場合は、寄生容量とコンデンサ102の合成容量が容量C1の役割を担うため、測定対象電圧Vxを測定することができる。すなわち、非接触でも接触でも測定対象電圧Vxを測定することができる。 In the voltage measuring instrument 100 of the fifth embodiment, an actual capacitor 102 is connected between the electrode 101 and the current detecting unit 120. Therefore, even when the electrode 101 is in contact with the lead wire 330, the capacitor 102 plays the role of the capacitance C1, so that the measurement target voltage Vx can be measured. Further, when measuring the coated electric wire 300, since the parasitic capacitance and the combined capacitance of the capacitor 102 play the role of the capacitance C1, the measurement target voltage Vx can be measured. That is, the measurement target voltage Vx can be measured both in non-contact and in contact.

100 電圧測定器
101 電極
102 コンデンサ
104 定電圧可変周波数正弦波発振部
110 可変周波数発振部
120 電流検出部
121 抵抗R
122 計装アンプ
130 差分抽出部
131 第1フィルタ部
132 第2フィルタ部
133 第1交流−直流変換部
134 第2交流−直流変換部
135 差動アンプ
136 第1同期検波部
137 第2同期検波部
138 正弦波発振器
140 周波数調整部
150 周波数測定部
160 演算部
170 ディジタル信号処理部
171 周波数分離器
172 周波数分離器
173 レベル比較部
175 ディジタル直接合成発振器
176 演算部
177 A/D変換部
180 周波数測定部
300 被覆電線
310 導体
320 絶縁被覆
330 導線
100 Voltage measuring instrument 101 Electrode 102 Capacitor 104 Constant voltage variable frequency sine wave oscillator 110 Variable frequency oscillator 120 Current detector 121 Resistance R
122 Instrumentation amplifier 130 Difference extraction unit 131 1st filter unit 132 2nd filter unit 133 1st AC-DC conversion unit 134 2nd AC-DC conversion unit 135 Differential amplifier 136 1st synchronous detection unit 137 2nd synchronous detection unit 138 Sine wave oscillator 140 Frequency adjustment unit 150 Frequency measurement unit 160 Calculation unit 170 Digital signal processing unit 171 Frequency separator 172 Frequency separator 173 Level comparison unit 175 Digital direct synthesis oscillator 176 Calculation unit 177 A / D conversion unit 180 Frequency measurement unit 300 Covered wire 310 Conductor 320 Insulation coated 330 Conductor

Claims (3)

第1周波数の交流電圧を測定する電圧測定装置であって、
電極と、
前記電極と接続し、第1電圧で固定された第2周波数の交流信号を出力する可変周波数発振部と、
前記電極と前記可変周波数発振部との間を流れる電流を検出する電流検出部と、
検出された電流から、前記第1周波数成分の大きさと、前記第2周波数成分の大きさとの差分に相当する値を抽出して出力する差分抽出部と、
前記差分抽出部の出力が0になるように、前記可変周波数発振部の第2周波数を変化させる周波数調整部と、
前記第1電圧と前記第1周波数と前記第2周波数とに基づいて、前記第1周波数の交流電圧を算出する演算部と、
を備えたことを特徴とする電圧測定装置。
A voltage measuring device that measures the AC voltage of the first frequency.
With electrodes
A variable frequency oscillator that is connected to the electrode and outputs a second frequency AC signal fixed by the first voltage,
A current detection unit that detects the current flowing between the electrode and the variable frequency oscillation unit, and
A difference extraction unit that extracts and outputs a value corresponding to the difference between the magnitude of the first frequency component and the magnitude of the second frequency component from the detected current.
A frequency adjusting unit that changes the second frequency of the variable frequency oscillating unit so that the output of the difference extracting unit becomes 0.
A calculation unit that calculates the AC voltage of the first frequency based on the first voltage, the first frequency, and the second frequency.
A voltage measuring device characterized by being equipped with.
前記演算部は、前記第1電圧を前記第1周波数で割った値に前記第2周波数を乗じることにより前記第1周波数の交流電圧を算出することを特徴とする請求項1に記載の電圧測定装置。 The voltage measurement according to claim 1, wherein the calculation unit calculates an AC voltage of the first frequency by multiplying the value obtained by dividing the first voltage by the first frequency by the second frequency. apparatus. 第1周波数の交流電圧を測定する電圧測定方法であって、
前記第1周波数の交流電圧が印加された測定対象物に、容量を介して第1電圧で固定された第2周波数の交流電圧を印加したときに前記容量を流れる電流について、
前記第1周波数成分の大きさと、前記第2周波数成分の大きさとが同じなるように、前記第2周波数を調整し、
前記第1電圧と前記第1周波数とそのときの前記第2周波数とに基づいて、前記第1周波数の交流電圧を算出することを特徴とする電圧測定方法。
It is a voltage measuring method for measuring the AC voltage of the first frequency.
Regarding the current flowing through the capacitance when the AC voltage of the second frequency fixed at the first voltage is applied to the measurement object to which the AC voltage of the first frequency is applied.
The second frequency is adjusted so that the size of the first frequency component and the size of the second frequency component are the same.
A voltage measuring method characterized in that an AC voltage of the first frequency is calculated based on the first voltage, the first frequency, and the second frequency at that time.
JP2017084285A 2017-04-21 2017-04-21 Voltage measuring device, voltage measuring method Active JP6845732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017084285A JP6845732B2 (en) 2017-04-21 2017-04-21 Voltage measuring device, voltage measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017084285A JP6845732B2 (en) 2017-04-21 2017-04-21 Voltage measuring device, voltage measuring method

Publications (2)

Publication Number Publication Date
JP2018179927A JP2018179927A (en) 2018-11-15
JP6845732B2 true JP6845732B2 (en) 2021-03-24

Family

ID=64276560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017084285A Active JP6845732B2 (en) 2017-04-21 2017-04-21 Voltage measuring device, voltage measuring method

Country Status (1)

Country Link
JP (1) JP6845732B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3158063B2 (en) * 1997-01-21 2001-04-23 北斗電子工業株式会社 Non-contact voltage measurement method and device
JP5106816B2 (en) * 2005-10-12 2012-12-26 日置電機株式会社 Voltage measuring device and power measuring device
JP5160248B2 (en) * 2008-01-18 2013-03-13 日置電機株式会社 Voltage detector
US10175268B2 (en) * 2015-04-17 2019-01-08 The Board Of Trustees Of The Leland Stanford Junior University Actively calibrated capacitively coupled electrostatic device for high voltage measurement

Also Published As

Publication number Publication date
JP2018179927A (en) 2018-11-15

Similar Documents

Publication Publication Date Title
TWI779190B (en) Non-contact dc voltage measurement device with oscillating sensor
JP6210938B2 (en) Non-contact voltage detector
JP6616987B2 (en) Impedance measuring apparatus and impedance measuring method
JP2015111087A (en) Non-contact voltage measurement device and non-contact voltage measurement method
KR102314148B1 (en) Apparatus for measuring insulation deterioration of power utilities
WO2014136589A1 (en) Current sensor, current measuring apparatus, and leakage detection apparatus
ES2784660T3 (en) Method and device for the supervision of capacitor steps for a three-phase alternating current network
JP2016027332A5 (en)
KR100584020B1 (en) A variable frequency inverter-type high power ground resistance measuring device and measuring method based on PC
JP7009025B2 (en) Voltage measuring device, voltage measuring method
WO2017073031A1 (en) Electric leak detection device and electric leak detection method
JP6106992B2 (en) Insulation resistance measuring device
KR100920153B1 (en) Measurement Device of leakage current ohmic value on power line And Method Thereof
JP6845732B2 (en) Voltage measuring device, voltage measuring method
US9372217B2 (en) Cable detector
KR101075484B1 (en) Measurement Device of leakage current ohmic value on power line And Method Thereof
JP6590387B1 (en) Leakage current detection device and ground leakage current detection method
JP2015169440A (en) Voltage measurement device and voltage measuring method
RU2275645C2 (en) Method for measuring resistance of connections isolation in branched networks of direct and alternating current, and device for its realization
CN102692544B (en) Electrostatic voltage measurement device and method
JP6788259B2 (en) Loop impedance acquisition method and loop impedance tester
JP6778515B2 (en) Impedance measuring device and impedance measuring method
JP2019203830A (en) Voltage measuring device and voltage measuring method
JP2015206620A (en) Partial discharge testing apparatus
JP2017203726A (en) Impedance measurement device and impedance measurement method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180125

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180810

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210226

R150 Certificate of patent or registration of utility model

Ref document number: 6845732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250