JP6106992B2 - Insulation resistance measuring device - Google Patents

Insulation resistance measuring device Download PDF

Info

Publication number
JP6106992B2
JP6106992B2 JP2012187247A JP2012187247A JP6106992B2 JP 6106992 B2 JP6106992 B2 JP 6106992B2 JP 2012187247 A JP2012187247 A JP 2012187247A JP 2012187247 A JP2012187247 A JP 2012187247A JP 6106992 B2 JP6106992 B2 JP 6106992B2
Authority
JP
Japan
Prior art keywords
circuit
voltage
phase
insulation resistance
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012187247A
Other languages
Japanese (ja)
Other versions
JP2014044140A (en
Inventor
泰弘 高林
泰弘 高林
謙二 馬場
謙二 馬場
徹 引地
徹 引地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2012187247A priority Critical patent/JP6106992B2/en
Publication of JP2014044140A publication Critical patent/JP2014044140A/en
Application granted granted Critical
Publication of JP6106992B2 publication Critical patent/JP6106992B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、活線(通電)状態にある交流電路の絶縁抵抗を測定することのできる絶縁抵抗測定方法および装置に関する。   The present invention relates to an insulation resistance measuring method and apparatus capable of measuring the insulation resistance of an AC circuit in a live line (energized) state.

交流電路や各種機器の絶縁抵抗測定は、専ら、メガーと称される絶縁抵抗計を用い、無通電状態で実施される。或いは一般的な三相交流電路に対しては、Y結線した中性点を接地し、この中性点に流れる電流を計測することで、各相の地絡(絶縁抵抗の低下)を検出している。また単相または三相交流電路における各相間電流の不平衡を検出することで、各相の絶縁抵抗を測定することも行われている。   Insulation resistance measurement of AC circuits and various devices is carried out exclusively in an unenergized state using an insulation resistance meter called a megger. Or, for a general three-phase AC circuit, ground the Y-connected neutral point and measure the current flowing through this neutral point to detect the ground fault (decrease in insulation resistance) of each phase. ing. Moreover, the insulation resistance of each phase is also measured by detecting the imbalance of the current between each phase in a single-phase or three-phase AC circuit.

これに対して本出願人は、先に活線(通電)状態にある直流電路間の絶縁抵抗を測定する手法を提唱した(例えば特許文献1,2を参照)。   On the other hand, the present applicant previously proposed a method of measuring the insulation resistance between DC electric circuits in a live line (energized) state (see, for example, Patent Documents 1 and 2).

特許第4525630号公報Japanese Patent No. 4525630 特開2009−31187号公報JP 2009-31187 A

しかしながら特許文献1,2に紹介される手法は、直流電路間の絶縁抵抗の測定には有効であるが、活線(通電)状態にある交流電路間の絶縁抵抗は測定できない。具体的には船舶用電源設備のように、交流電路が非接地である場合、例えば活線(通電)状態のまま三相交流電路の各相をY結線し、中性点を接地することができないので、各相の絶縁抵抗を測定することは極めて困難である。   However, the techniques introduced in Patent Documents 1 and 2 are effective in measuring the insulation resistance between DC electric circuits, but cannot measure the insulation resistance between AC electric circuits in a live line (energized) state. Specifically, when the AC circuit is ungrounded, such as power supply equipment for ships, for example, each phase of the three-phase AC circuit can be Y-connected while the live (energized) state is maintained, and the neutral point can be grounded. Since this is not possible, it is very difficult to measure the insulation resistance of each phase.

本発明はこのような事情を考慮してなされたもので、その目的は、活線(通電)状態にある交流電路間の絶縁抵抗を簡易に、しかも常時連続して測定することのできる絶縁抵抗測定方法および装置を提供することにある。   The present invention has been made in view of such circumstances, and its purpose is to easily and continuously measure the insulation resistance between AC circuits in a live line (energized) state. It is to provide a measuring method and apparatus.

上述した目的を達成するべく本発明に係る絶縁抵抗測定方法は、
例えば非接地方式の単相または三相交流電路間の電圧を全波整流して得た直流電圧の正極と負極との間に、前記交流電路間の中性点に対する正極側基準電圧を求める第1の分圧抵抗回路および前記中性点に対する負極側基準電圧を求める第2の分圧抵抗回路を直列接続して介装すると共に、これらの第1および第2の分圧抵抗回路の直列接続点と接地点との間に前記中性点に生じる電圧を検出する検出抵抗を介装し、
前記第1および第2の分圧抵抗回路にてそれぞれ求められた前記正極側基準電圧および負極側基準電圧を加算した直流基準電圧を、前記検出抵抗にて求められた前記中性点の検出電圧にて割り算し、この割り算値に所定の定数を乗算して前記交流電路の絶縁抵抗を求めることを特徴としている。
In order to achieve the above-mentioned object, the insulation resistance measuring method according to the present invention is:
For example, the positive reference voltage for the neutral point between the AC circuits is obtained between the positive and negative electrodes of the DC voltage obtained by full-wave rectification of the voltage between the ungrounded single-phase or three-phase AC circuits. And a first voltage dividing resistor circuit and a second voltage dividing resistor circuit for obtaining a negative reference voltage with respect to the neutral point are connected in series, and the first and second voltage dividing resistor circuits are connected in series. A detection resistor for detecting a voltage generated at the neutral point between the point and the ground point,
A DC reference voltage obtained by adding the positive side reference voltage and the negative side reference voltage obtained by the first and second voltage dividing resistor circuits, respectively, is used as the detection voltage at the neutral point obtained by the detection resistor. And dividing the divided value by a predetermined constant to obtain the insulation resistance of the AC circuit.

また本発明に係る絶縁抵抗測定装置は、
例えば非接地方式の単相または三相交流電路間の電圧を整流して直流電圧を得る全波整流回路と、
直列に接続されて前記全波整流回路の正極および負極からなる出力端子間に介装され、該全波整流回路が出力する直流電圧を分圧して前記交流電路の中性点に対する正極側基準電圧および負極側基準電圧をそれぞれ求める第1および第2の分圧抵抗回路と、
前記第1および第2の分圧抵抗回路を直列接続点と接地点との間に介装されて前記中性点に生じる電圧を検出する検出抵抗と、
前記正極側基準電圧を前記交流電路側とは絶縁分離してそれぞれ抽出する第1の絶縁変換器と、
前記負極側基準電圧を前記交流電路側とは絶縁分離してそれぞれ抽出する第2の絶縁変換器と、
前記第1の絶縁変換器および前記第2の絶縁変換器を介して得られる前記正極側基準電圧および前記負極側基準電圧を極性を揃えてそれぞれ整流し、これら整流して得られる信号を突き合わせた後にローパスフィルタを通して一の基準電圧信号を得る基準電圧信号生成回路と
前記検出抵抗にて求められた中性点電圧を前記交流電路側とは絶縁分離してそれぞれ抽出する第3の絶縁変換器と、
前記第3の絶縁変換器を介して得られる検出電圧を整流した後、ローパスフィルタを通して検出電圧信号を得る検出電圧生成回路と、
前記基準電圧信号を前記検出電圧信号にて割り算した後、その割り算値に所定の係数を乗算して前記交流電路間の絶縁抵抗を求める演算回路と
を具備したことを特徴としている。


The insulation resistance measuring apparatus according to the present invention is
For example, a full-wave rectifier circuit that rectifies the voltage between ungrounded single-phase or three-phase AC circuits to obtain a DC voltage,
A positive-side reference voltage with respect to the neutral point of the AC circuit by dividing the DC voltage output from the full-wave rectifier circuit connected in series and interposed between output terminals consisting of the positive and negative electrodes of the full-wave rectifier circuit And first and second voltage-dividing resistor circuits for obtaining the negative-side reference voltage and
A detection resistor for detecting a voltage generated at the neutral point by interposing the first and second voltage dividing resistor circuits between a series connection point and a ground point;
A first insulation converter for extracting the positive side reference voltage from the alternating current circuit side in an isolated manner;
A second insulation converter for extracting the negative reference voltage from the alternating current circuit side separately from each other;
The positive reference voltage and the negative reference voltage obtained via the first insulation converter and the second insulation converter are rectified with the same polarity, and the signals obtained by rectification are matched. A reference voltage signal generation circuit that obtains one reference voltage signal later through a low-pass filter;
A third insulation converter for extracting the neutral point voltage determined by the detection resistor from the alternating current circuit side in an isolated manner;
A detection voltage generation circuit that obtains a detection voltage signal through a low-pass filter after rectifying the detection voltage obtained via the third isolation converter;
And an arithmetic circuit for dividing the reference voltage signal by the detection voltage signal and multiplying the divided value by a predetermined coefficient to obtain an insulation resistance between the AC electric circuits.


尚、好ましくは前記絶縁抵抗測定装置は、更に前記演算回路にて求められた前記交流電路の絶縁抵抗を表示する表示装置、および前記交流電路の絶縁抵抗が設定値を下回ったときに警報を発する警報器を備えることが望ましい。   Preferably, the insulation resistance measuring device further displays a display device that displays the insulation resistance of the AC circuit obtained by the arithmetic circuit, and issues an alarm when the insulation resistance of the AC circuit is below a set value. It is desirable to provide an alarm.

ちなみに前記第1および第2の分圧抵抗回路は、高抵抗値の第1の抵抗と低抵抗値の第2の抵抗とをそれぞれ直接接続した同一仕様の抵抗回路であって、前記第1および第2の分圧抵抗回路の直列接続は、各分圧抵抗回路における前記第2の抵抗間を相互に接続し、その接続点を前記交流電路に対する中性点としたものからなる。   Incidentally, the first and second voltage dividing resistor circuits are resistor circuits of the same specification in which a first resistor having a high resistance value and a second resistor having a low resistance value are directly connected to each other. The series connection of the second voltage dividing resistor circuit is formed by connecting the second resistors in each voltage dividing resistor circuit to each other and setting the connection point as a neutral point with respect to the AC circuit.

また前記基準電圧信号生成回路および前記検出電圧生成回路については、前記第1〜第3の絶縁変換器を介して抽出した前記基準電圧信号および前記検出電圧信号をそれぞれ整流した後、カットオフ周波数の低いローパスフィルタを介して出力するように構成することが好ましい。   For the reference voltage signal generation circuit and the detection voltage generation circuit, after rectifying the reference voltage signal and the detection voltage signal extracted through the first to third isolation converters, It is preferable that the output is made through a low-pass filter.

上記構成の絶縁抵抗測定方法および装置によれば、単相または三相交流電路が活線(通電)状態であっても、該交流電路の各相間の絶縁抵抗を連続して測定することができるので、絶縁抵抗の測定に際して、その都度、交流電路に接続された各種機器の運転を停止させる必要がない。特に非接地方式の交流電路に対しても、活線状態にある各相間の絶縁抵抗を連続して測定することができるので、例えば船舶用電源設備を監視して安全航行を確保する上で、その有用性が非常に高い等の効果が奏せられる。   According to the insulation resistance measuring method and apparatus having the above configuration, even when the single-phase or three-phase AC circuit is in a live line (energized) state, the insulation resistance between the phases of the AC circuit can be continuously measured. Therefore, it is not necessary to stop the operation of various devices connected to the AC circuit each time when measuring the insulation resistance. Especially for non-grounded AC circuits, the insulation resistance between each phase in the live line state can be measured continuously. For example, in order to ensure safe navigation by monitoring ship power supply equipment, Effects such as extremely high usefulness are exhibited.

本発明の一実施形態に係る絶縁抵抗測定装置の全体的な概略構成を示す図。The figure which shows the whole schematic structure of the insulation resistance measuring apparatus which concerns on one Embodiment of this invention. 三相交流電路間の絶縁抵抗測定を説明する為の信号波形図。The signal waveform diagram for demonstrating the insulation resistance measurement between three-phase alternating current electric circuits. 本発明の一実施形態に係る絶縁抵抗測定方法を説明する為の測定原理図。The measurement principle figure for demonstrating the insulation resistance measuring method which concerns on one Embodiment of this invention.

以下、図面を参照して本発明の一実施形態に係る絶縁抵抗測定方法および絶縁抵抗測定装置について説明する。   Hereinafter, an insulation resistance measuring method and an insulation resistance measuring apparatus according to an embodiment of the present invention will be described with reference to the drawings.

図1は本発明の一実施形態に係る絶縁抵抗測定装置の概略的な全体構成を示す図で、図2はその動作を説明する為の信号波形図、図3は絶縁抵抗測定方法の測定原理を説明するための図である。この絶縁抵抗測定方法および絶縁抵抗測定装置は、交流電源ACの三相交流電路(U相,V相,W相)の絶縁抵抗を測定するものであって、概略的には前記三相交流電路(U相,V相,W相)の中性点に生じる電圧に基づいて該三相交流電路間に流れる電流を検出し、この電流から前記三相交流電路(U相,V相,W相)間の絶縁抵抗を求めるように構成される。   1 is a diagram showing a schematic overall configuration of an insulation resistance measuring apparatus according to an embodiment of the present invention, FIG. 2 is a signal waveform diagram for explaining the operation, and FIG. 3 is a measurement principle of an insulation resistance measuring method. It is a figure for demonstrating. This insulation resistance measuring method and insulation resistance measuring apparatus measure the insulation resistance of a three-phase AC circuit (U-phase, V-phase, W-phase) of an AC power supply AC. Based on the voltage generated at the neutral point (U phase, V phase, W phase), the current flowing between the three phase AC circuits is detected, and the three phase AC circuit (U phase, V phase, W phase) is detected from this current. ) Is configured to obtain an insulation resistance between the two.

この絶縁抵抗測定装置は、図1に示すように測定対象である三相交流電路のU相,V相,W相からなる各電路間にそれぞれ接続された6個のダイオードD1〜D6からなる全波整流回路10と、この全波整流回路10の正極および負極からなる出力端子間に接続されて、前記各相の正の半サイクルにより得られる直流電圧VPおよび負の半サイクルにより得られる直流電圧VNをそれぞれ検出する直列抵抗回路20を備える。   As shown in FIG. 1, this insulation resistance measuring device is composed of six diodes D1 to D6 each connected between the U-phase, V-phase, and W-phase electric circuits of the three-phase AC circuit to be measured. DC voltage VP obtained by the positive half cycle of each phase and DC voltage obtained by the negative half cycle, connected between the wave rectifier circuit 10 and the output terminal comprising the positive electrode and the negative electrode of the full wave rectifier circuit 10 A series resistance circuit 20 for detecting VN is provided.

この直列抵抗回路20は、高抵抗値の第1の抵抗R1aと低抵抗値の第2の抵抗R1bとを直列接続した第1の分圧抵抗回路21と、高抵抗値の第1の抵抗R2aと低抵抗値の第2の抵抗R2bとを直列接続した第2の分圧抵抗回路22とを直列に接続したものである。特に上記2組の分圧抵抗回路21,22は同一仕様の抵抗回路をなし、前記第2の抵抗R1b,R2b間の接続点を前記三相交流電路に対する中性点Mとしている。   The series resistor circuit 20 includes a first voltage dividing resistor circuit 21 in which a first resistor R1a having a high resistance value and a second resistor R1b having a low resistance value are connected in series, and a first resistor R2a having a high resistance value. And a second voltage dividing resistor circuit 22 in which a low resistance second resistor R2b is connected in series. In particular, the two sets of voltage dividing resistor circuits 21 and 22 form a resistor circuit having the same specification, and a connection point between the second resistors R1b and R2b is a neutral point M with respect to the three-phase AC circuit.

前記直列抵抗回路20は、前記全波整流回路10の正極および負極からなる出力端子間に得られる直流電圧(VP+VN)をその抵抗値比に従って分圧する。そして前記直列抵抗回路20は、前記各第2の抵抗R1b,R2bの接続点である前記中性点Mの電圧を基準として、正の半サイクルにおける正極側基準電圧VR1および負の半サイクルにおける負極側基準電圧VR2をそれぞれ求める役割を担う。   The series resistance circuit 20 divides the DC voltage (VP + VN) obtained between the positive and negative output terminals of the full-wave rectifier circuit 10 according to the resistance value ratio. The series resistor circuit 20 includes a positive reference voltage VR1 in a positive half cycle and a negative electrode in a negative half cycle with reference to the voltage at the neutral point M, which is a connection point of the second resistors R1b and R2b. It plays the role which calculates | requires each side reference voltage VR2.

また前記直列抵抗回路20における前記中性点Mと大地アース(接地点)Eとの間には、該中性点Mに生じる中性点電圧VR3を検出する為の検出抵抗R3が介装されている。前記分圧抵抗回路21,22を構成する抵抗R1a,R1b,R2a,R2b、および前記検出抵抗R3からなる抵抗回路は、前記三相交流電路をなすU相,V相,W相間の交流電圧を全波整流して得られる前記直流電圧(PV+PN)に対する、いわゆるT型電圧検出回路を構成する。   Further, a detection resistor R3 for detecting a neutral point voltage VR3 generated at the neutral point M is interposed between the neutral point M and the earth ground (grounding point) E in the series resistance circuit 20. ing. The resistor circuit composed of the resistors R1a, R1b, R2a, R2b and the detection resistor R3 constituting the voltage dividing resistor circuits 21, 22 generates an AC voltage between the U-phase, V-phase, and W-phase forming the three-phase AC circuit. A so-called T-type voltage detection circuit for the DC voltage (PV + PN) obtained by full-wave rectification is configured.

さて前記各抵抗R1a,R1b,R2a,R2b,R3の抵抗値をそれぞれr1a,r1b,r2a(=r1a),r2b(=r1b),r3とすると、前記直列抵抗回路20に流れる電流IPは、
IP=(VP+VN)÷(r1a+r1b+r2a+r2b)
となる。
Now, assuming that the resistance values of the resistors R1a, R1b, R2a, R2b, R3 are r1a, r1b, r2a (= r1a), r2b (= r1b), r3, respectively, the current IP flowing through the series resistor circuit 20 is
IP = (VP + VN) ÷ (r1a + r1b + r2a + r2b)
It becomes.

そして前記各第2の抵抗R1b,R2bの両端間にそれぞれ生じる前記正極側基準電圧VR1および前記負極側基準電圧VR2は、
VR1=IP×r1b , VR2=IP×r2b
となる。
The positive reference voltage VR1 and the negative reference voltage VR2 generated between both ends of the second resistors R1b and R2b are as follows:
VR1 = IP × r1b, VR2 = IP × r2b
It becomes.

一方、前記三相交流電路をなす前記U相,V相,W相の大地アース(接地点)Eに対する絶縁抵抗をそれぞれRux,Rvx,Rwxとする。尚、これらの絶縁抵抗Rux,Rvx,Rwxの値は、三相交流電路が非接地である故、本来的にはそれぞれ無限大である。また前記三相交流電路をなす前記U相,V相,W相の各電圧は、図2(a)〜(c)に示すようにそれぞれの位相が120°ずれて変化する。そして前記全波整流回路10を介して前記U相,V相,W相の各電圧を全波整流して得られる整流電圧波形は、図2(d)に示すような直流電圧(VP+VN)となる。   On the other hand, the insulation resistances with respect to the earth ground (grounding point) E of the U phase, V phase, and W phase constituting the three-phase AC circuit are respectively Rux, Rvx, and Rwx. The values of these insulation resistances Rux, Rvx, Rwx are inherently infinite because the three-phase AC circuit is not grounded. Further, the U-phase, V-phase, and W-phase voltages forming the three-phase AC circuit change with their phases shifted by 120 ° as shown in FIGS. The rectified voltage waveform obtained by full-wave rectifying the U-phase, V-phase, and W-phase voltages via the full-wave rectifier circuit 10 is a DC voltage (VP + VN) as shown in FIG. Become.

ここでU相の絶縁抵抗Ruxが低下したと仮定すると、該U相における0〜180°の正の半サイクルにおいては、図3に示すようにU相から前記絶縁抵抗Ruxを介して流れる接地電流Iuxは、更に前記検出抵抗R3、抵抗R2b、抵抗R2a、そして前記ダイオードD4を順に介してV相に流れ込む。このときの前記接地電流Iuxは、前記U相とV相との間の電圧をVuvとしたとき
Iux=Vuv÷(Rux+r3+r2b+r2a)
となる。
Assuming that the U-phase insulation resistance Rux is lowered, in the positive half cycle of 0 to 180 ° in the U-phase, the ground current flowing from the U-phase through the insulation resistance Rux as shown in FIG. Iux further flows into the V phase through the detection resistor R3, the resistor R2b, the resistor R2a, and the diode D4 in this order. The ground current Iux at this time is expressed as Vux when the voltage between the U phase and the V phase is Vuv. Iux = Vuv ÷ (Rux + r3 + r2b + r2a)
It becomes.

そして前記検出抵抗R3の両端には
VR3=Iux×r3
なる電圧VR3が発生する。この電圧VR3は、前記大地アース(接地点)Eに対する前記中性点Mの電圧(中性点電圧)である。
And VR3 = Iux × r3 at both ends of the detection resistor R3
A voltage VR3 is generated. This voltage VR3 is a voltage (neutral point voltage) of the neutral point M with respect to the earth ground (grounding point) E.

この正の半サイクルの期間、前記整流回路10の正極には、図2(d)に示すように前記U相とV相との間の電圧Vuvが該整流回路10のダイオードD1を介して電圧VP(=Vuv)として出力される。そしてこの電圧VPが加えられた前記直列抵抗回路20に流れる電流IPにより前記抵抗R1bには、前述したように
VR1=IP×r1b
なる正極側基準電圧VR1が生起される。
During the positive half cycle, the voltage Vuv between the U phase and the V phase is applied to the positive electrode of the rectifier circuit 10 via the diode D1 of the rectifier circuit 10 as shown in FIG. It is output as VP (= Vuv). Then, as described above, VR1 = IP × r1b is caused in the resistor R1b by the current IP flowing through the series resistor circuit 20 to which the voltage VP is applied.
A positive reference voltage VR1 is generated.

ここで前記第1の分圧抵抗回路21における第1の抵抗R1aの値r1aが、前記正極側基準電圧VR1を生成する第2の抵抗R1bの値r1bよりも十分に大きく(例えば100倍以上)、また前記検出抵抗R3の値r3が前記絶縁抵抗Ruxの値よりも十分に大きい(例えば100倍以上)とする。また同時に前記第2の抵抗R1bの値r1bと前記検出抵抗R3の値r3とが等しいとする(r1b=r3)。   Here, the value r1a of the first resistor R1a in the first voltage dividing resistor circuit 21 is sufficiently larger (for example, 100 times or more) than the value r1b of the second resistor R1b that generates the positive reference voltage VR1. The value r3 of the detection resistor R3 is sufficiently larger than the value of the insulation resistance Rux (for example, 100 times or more). At the same time, it is assumed that the value r1b of the second resistor R1b is equal to the value r3 of the detection resistor R3 (r1b = r3).

すると前記正の半サイクルにおける前記正極側基準電圧VR1と前記電圧VR3との電圧比は、
VR1/VR3=IP/Iux
≒(VP÷r1b)/(Vuv÷Rux)
=Rux/r1b
となり、前記第2の抵抗R1bおよび前記絶縁抵抗Ruxの各抵抗値の比の逆数に比例する。従って前記正極側基準電圧VR1と前記電圧VR3との電圧比を求め、この電圧比に前記第2の抵抗R1bの値r1bを乗じれば、これによって前記絶縁抵抗Ruxの値を求めることが可能となる。
Then, the voltage ratio between the positive reference voltage VR1 and the voltage VR3 in the positive half cycle is
VR1 / VR3 = IP / Iux
≒ (VP ÷ r1b) / (Vuv ÷ Rux)
= Rux / r1b
And is proportional to the reciprocal of the ratio of the resistance values of the second resistor R1b and the insulation resistor Rux. Therefore, if the voltage ratio between the positive reference voltage VR1 and the voltage VR3 is obtained and multiplied by the value r1b of the second resistor R1b, the value of the insulation resistance Rux can be obtained. Become.

同様に前記U相における180〜360°の負の半サイクルにおいては、図3に示すように前記絶縁抵抗Ruxを介する接地電流Iuxが前記V相から前記ダイオードD3、抵抗R1a、抵抗R1b、検出抵抗R3、そして絶縁抵抗Ruxを順に介して前記U相に流れる。この負の半サイクルにおける接地電流Iuxは、前記V相とU相との間の電圧をVvuとしたとき
Iux=Vvu÷(r1a+r1b+r3+Rux)
となり、前記検出抵抗R3の両端には
VR3=Iux×r3
なる電圧VR3が発生する。
Similarly, in the negative half cycle of 180 to 360 degrees in the U phase, as shown in FIG. 3, the ground current Iux through the insulation resistance Rux is changed from the V phase to the diode D3, the resistance R1a, the resistance R1b, and the detection resistance. It flows to the U phase via R3 and the insulation resistance Rux in order. The ground current Iux in this negative half cycle is expressed as Iux = Vvu / (r1a + r1b + r3 + Rux) where Vvu is the voltage between the V phase and the U phase.
VR3 = Iux × r3 at both ends of the detection resistor R3
A voltage VR3 is generated.

またこの負の半サイクルにおいては前記U相とV相との間の電圧Vvuが前記整流回路10のダイオードD2を介して負極に電圧VNとして得られる。従って前記負極側基準電圧VR2と前記電圧VR3との電圧比は、先に説明した正の半サイクルの場合と同様に
VR2/VR3=IP/Iux
≒(VN÷r2b)/(Vvu÷Rux)
=Rux/r2b
となり、前記第2の抵抗R2bおよび前記絶縁抵抗Ruxの各抵抗値の比の逆数に比例する。従って前記負極側基準電圧VR2と前記電圧VR3との電圧比を求め、この電圧比に前記第2の抵抗R2bの値r2bを乗じれば、これによって前記絶縁抵抗Ruxの値を求めることが可能となる。
In this negative half cycle, the voltage Vvu between the U phase and the V phase is obtained as the voltage VN at the negative electrode via the diode D2 of the rectifier circuit 10. Therefore, the voltage ratio between the negative reference voltage VR2 and the voltage VR3 is VR2 / VR3 = IP / Iux as in the case of the positive half cycle described above.
≒ (VN ÷ r2b) / (Vvu ÷ Rux)
= Rux / r2b
And is proportional to the reciprocal of the ratio of the resistance values of the second resistor R2b and the insulation resistor Rux. Therefore, if the voltage ratio between the negative reference voltage VR2 and the voltage VR3 is obtained and multiplied by the value r2b of the second resistor R2b, the value of the insulation resistance Rux can be obtained. Become.

即ち、U相における正の半サイクル(0〜180°)および負の半サイクル(180〜360°)において、前記検出抵抗R3の両端間には前記U相の絶縁抵抗Ruxの低下に起因して正負に交番する電圧VR3が発生する。またこのとき前記整流回路10の正極および負極にはU相の電圧変化Vuv,Vvuに応じて整流された電圧VP,VNが交互に出力される。従ってU相における正の半サイクル(0〜180°)および負の半サイクル(180〜360°)に応じて、前記正極側基準電圧VR1または負極側基準電圧VR2と前記電圧VR3との電圧比を求めれば、この電圧比に従って前記U相の絶縁抵抗Ruxの値を算出することが可能となる。   That is, in the positive half cycle (0 to 180 °) and the negative half cycle (180 to 360 °) in the U phase, a gap between both ends of the detection resistor R3 is caused by a decrease in the insulation resistance Rux of the U phase. A voltage VR3 alternating between positive and negative is generated. At this time, voltages VP and VN rectified according to the U-phase voltage changes Vuv and Vvu are alternately output to the positive and negative electrodes of the rectifier circuit 10. Therefore, according to the positive half cycle (0 to 180 °) and the negative half cycle (180 to 360 °) in the U phase, the voltage ratio between the positive reference voltage VR1 or the negative reference voltage VR2 and the voltage VR3 is changed. If obtained, the value of the U-phase insulation resistance Rux can be calculated according to this voltage ratio.

同様にして前記V相の絶縁抵抗Rvxが低下した場合には、該V相における正の半サイクル(120〜300°)および負の半サイクル(300〜120°)において、前記検出抵抗R3の両端間に前記V相の絶縁抵抗Rvxの低下に起因する交番電圧VR3が発生する。更に前記W相の絶縁抵抗Rwxが低下した場合には、該W相の正の半サイクル(240〜60°)および負の半サイクル(60〜240°)において、前記検出抵抗R3の両端間に前記W相の絶縁抵抗Rwxの低下に起因する交番電圧VR3が発生する。   Similarly, when the insulation resistance Rvx of the V phase decreases, both ends of the detection resistor R3 in the positive half cycle (120 to 300 °) and the negative half cycle (300 to 120 °) in the V phase. In the meantime, an alternating voltage VR3 is generated due to a decrease in the V-phase insulation resistance Rvx. Further, when the insulation resistance Rwx of the W phase is lowered, the detection resistor R3 is connected between both ends of the positive half cycle (240 to 60 °) and the negative half cycle (60 to 240 °) of the W phase. An alternating voltage VR3 is generated due to a decrease in the W-phase insulation resistance Rwx.

従ってこれらのV相またはW相の絶縁抵抗Rvx,Rwxについても、前述したU相の場合と同様に、前記正極側基準電圧VR1または負極側基準電圧VR2と前記検出抵抗R3の両端に発生した電圧VR3との電圧比を求めれば、この電圧比に従って前記V相またはW相の絶縁抵抗Rvx,Rwxの値を算出することが可能となる。しかしながら実際的には、前記検出抵抗R3の両端に発生した電圧VR3は、前述したU相、V相、W相のいずれの絶縁抵抗Rux,Rvx,Rwxの低下に起因するものであるかは不明である。   Accordingly, the V-phase or W-phase insulation resistances Rvx and Rwx are also generated at both ends of the positive-side reference voltage VR1 or the negative-side reference voltage VR2 and the detection resistor R3, as in the case of the U-phase. If the voltage ratio with VR3 is obtained, the values of the V-phase or W-phase insulation resistances Rvx and Rwx can be calculated according to this voltage ratio. However, in practice, it is unknown whether the voltage VR3 generated at both ends of the detection resistor R3 is caused by the decrease in the insulation resistance Rux, Rvx, Rwx of the U phase, V phase, or W phase described above. It is.

そこでこの発明においては、前述した電圧VR3が前記三相交流電路におけるU相、V相およびW相の各電圧変化に応じて交番して発生すること、また前記正極側基準電圧VR1および負極側基準電圧VR2についても、その極性に応じて交互に検出し得ることに着目している。また同時に前記U相、V相およびW相の各絶縁抵抗Rux,Rvx,Rwxを個別に計測できなくても、各相の全体的な絶縁抵抗の低下を計測できれば、前記三相交流電路の運用を管理する上で十分にその目的を達成し得ることに着目している。   Therefore, in the present invention, the voltage VR3 described above is generated alternately according to the voltage changes of the U-phase, V-phase and W-phase in the three-phase AC circuit, and the positive-side reference voltage VR1 and the negative-side reference It is noted that the voltage VR2 can also be detected alternately according to its polarity. At the same time, even if the U-phase, V-phase, and W-phase insulation resistances Rux, Rvx, Rwx cannot be measured individually, if the decrease in the overall insulation resistance of each phase can be measured, the operation of the three-phase AC circuit can be performed. We are paying attention to the fact that the purpose can be sufficiently achieved in managing.

そこで本絶縁抵抗測定装置は、図1に示すように、前記抵抗R1bおよび抵抗R2bの各両端間に生じる前記正極側基準電圧VR1および負極側基準電圧VR2を、第1および第2の絶縁変換器(IAP,IAN)31,32をそれぞれ介して前記三相交流電路側とは絶縁分離して抽出すると共に、前記検出抵抗R3を介して検出される電圧V3を第3の絶縁変換器(IAM)33を介して前記三相交流電路側とは絶縁分離して抽出している。   Accordingly, as shown in FIG. 1, the present insulation resistance measuring apparatus converts the positive reference voltage VR1 and the negative reference voltage VR2 generated between both ends of the resistor R1b and the resistor R2b into first and second insulation converters. (IAP, IAN) 31 and 32 are respectively isolated and extracted from the three-phase AC circuit side, and a voltage V3 detected via the detection resistor R3 is extracted as a third insulation converter (IAM). Through 33, the three-phase AC circuit side is isolated and extracted.

そしてこれらの第1〜第3の絶縁変換器(IAP,IAN,IAM)31,32,33をそれぞれ介して抽出した電圧VR1,VR2,V3を、ダイオードからなる第1および第2の整流回路(DP,DE)41,42を介してそれぞれ整流した後、これらの各整流出力を第1および第2のフィルタ回路(LPP,LPM)43,44を介してそれぞれフィルタリングしている。これらの整流回路(DP,DE)41,42およびフィルタ回路(LPP,LPM)43,44は、後述する演算回路40の一部を構成する。   The voltages VR1, VR2, and V3 extracted through the first to third isolation converters (IAP, IAN, and IAM) 31, 32, and 33 are respectively converted into first and second rectifier circuits (a diode). DP, DE) 41 and 42 are respectively rectified, and then these rectified outputs are filtered through first and second filter circuits (LPP and LPM) 43 and 44, respectively. These rectifier circuits (DP, DE) 41, 42 and filter circuits (LPP, LPM) 43, 44 constitute a part of an arithmetic circuit 40 described later.

尚、前記第1の整流回路(DP)41は、前記第1および第2の絶縁変換器(IAP,IAN)31,32を介してそれぞれ抽出した電圧VR1,VR2の一方の極性を反転して整流することで、その整流出力の極性を揃えている。この結果、正の半サイクルにおける正極側基準電圧VR1および負の半サイクルにおける負極側基準電圧VR2がそれぞれ同一極性の整流出力として求められる。そして前記整流回路(DP)41は、上記電圧VR1,VR2の各整流出力を互いに突き合わせることで、前記正極側基準電圧VR1の絶対値と前記負極側基準電圧VR2の絶対値とを1サイクルに亘って連続させ、各相に亘って重ね合わせた図2(e)に示すような基準電圧VRを示す信号aとなる。   The first rectifier circuit (DP) 41 inverts one polarity of the voltages VR1 and VR2 extracted through the first and second isolation converters (IAP and IAN) 31 and 32, respectively. By rectifying, the polarity of the rectified output is aligned. As a result, the positive reference voltage VR1 in the positive half cycle and the negative reference voltage VR2 in the negative half cycle are obtained as rectified outputs having the same polarity. The rectifier circuit (DP) 41 matches the rectified outputs of the voltages VR1 and VR2 with each other, thereby obtaining the absolute value of the positive reference voltage VR1 and the absolute value of the negative reference voltage VR2 in one cycle. A signal a indicating the reference voltage VR as shown in FIG.

また前記フィルタ回路43,44は、例えばカットオフ周波数が5Hzのローパスフィルタからなる。前記整流回路(DP)41を介して得られる前記基準電圧VRを示す信号aは、前記フィルタ回路43を介することで図2(e)に示すように信号bとして平滑化される。また前記整流回路(DE)42介して得られる電圧VR3を示す信号c、即ち、前記U相、V相、W相の絶縁抵抗Rux,Rvx,Rwxの低下に伴って流れる接地電流Iux,Ivx,Iwxを示す信号cは、前記フィルタ回路44を介することで、図2(f)〜(h)にそれぞれ示すような信号dとして平滑化される。   The filter circuits 43 and 44 are, for example, low-pass filters having a cutoff frequency of 5 Hz. A signal a indicating the reference voltage VR obtained through the rectifier circuit (DP) 41 is smoothed as a signal b through the filter circuit 43 as shown in FIG. Further, the signal c indicating the voltage VR3 obtained through the rectifier circuit (DE) 42, that is, the ground currents Iux, Ivx, which flow as the U-phase, V-phase and W-phase insulation resistances Rux, Rvx, Rwx decrease. The signal c indicating Iwx is smoothed as a signal d as shown in FIGS. 2 (f) to 2 (h) through the filter circuit 44.

ちなみに前記整流回路(DP)41およびフィルタ回路43は、前記正極側基準電圧VR1と前記負極側基準電圧VR2とに基づいて前記基準電圧VRを示す信号(基準電圧信号)bを生成する基準電圧信号生成回路を構成する。また前記整流回路(DE)42およびフィルタ回路44は、前記検出抵抗R3に生じた電圧VR3を示す信号(検出電圧信号)dを生成する検出電圧生成回路を構成する。   Incidentally, the rectifier circuit (DP) 41 and the filter circuit 43 generate a reference voltage signal (reference voltage signal) b indicating the reference voltage VR based on the positive reference voltage VR1 and the negative reference voltage VR2. A generation circuit is configured. The rectifier circuit (DE) 42 and the filter circuit 44 constitute a detection voltage generation circuit that generates a signal (detection voltage signal) d indicating the voltage VR3 generated in the detection resistor R3.

しかして前記三相交流電路の絶縁抵抗を求める演算回路40は、前述した整流回路(DP,DE)41,42およびフィルタ回路43,44に加えて、割り算器(DV)45および掛け算器(MP)46、更に係数設定器47を備えて構成される。尚、この演算回路40の演算処理機能については、例えばマイクロプロセッサの演算機能として実現されるものであっても良い。   Thus, the arithmetic circuit 40 for obtaining the insulation resistance of the three-phase AC circuit includes a divider (DV) 45 and a multiplier (MP) in addition to the rectifier circuits (DP, DE) 41 and 42 and the filter circuits 43 and 44 described above. 46) and a coefficient setting unit 47. Note that the arithmetic processing function of the arithmetic circuit 40 may be realized, for example, as an arithmetic function of a microprocessor.

前記割り算器(DV)45は、前記フィルタ回路43を介して得られる基準電圧VR[信号b]を、前記フィルタ回路44を介して得られる電圧VR3[信号d]で割り算することで、その電圧比[信号e]を求めるものである。そして前記掛け算器(MP)46は前記割り算器(DV)45の出力(電圧比[信号e])に、予め前記検出抵抗R3の抵抗値r3に応じて前記係数設定器47に設定された係数Kを乗じることで、前記U相、V相、W相の絶縁抵抗Rux,Rvx,Rwxを一括して求める役割を担う。   The divider (DV) 45 divides the reference voltage VR [signal b] obtained through the filter circuit 43 by the voltage VR3 [signal d] obtained through the filter circuit 44 to obtain the voltage. The ratio [signal e] is obtained. The multiplier (MP) 46 is a coefficient set in the coefficient setter 47 in advance at the output (voltage ratio [signal e]) of the divider (DV) 45 according to the resistance value r3 of the detection resistor R3. By multiplying by K, the U-phase, V-phase, and W-phase insulation resistances Rux, Rvx, Rwx are collectively obtained.

尚、表示装置(IND)48は、前記掛け算器(MP)46から出力される前記三相交流電路の絶縁抵抗(計測値)を表示するものである。また警報機(AL)49は、計測された前記三相交流電路の絶縁抵抗(計測値)が、漏電を防止する上での予め定められた絶縁抵抗値に満たない場合、絶縁抵抗低下として警報を発し、またその旨の情報を図示しない監視センタ等に通知するものである。   The display device (IND) 48 displays the insulation resistance (measured value) of the three-phase AC circuit output from the multiplier (MP) 46. The alarm device (AL) 49 warns that the insulation resistance is lowered when the measured insulation resistance (measured value) of the three-phase AC circuit is less than a predetermined insulation resistance value for preventing electric leakage. And information to that effect is sent to a monitoring center (not shown).

上述した如く構成された絶縁抵抗測定装置によれば、前記基準電圧VR[信号b]を、前記電圧VR3[信号d]で割り算することでその電圧比[信号e]を求め、この電圧比[信号e]に係数Kを掛けるだけで、前述した測定原理に従って前記三相交流電路の絶縁抵抗Rux,Rvx,Rwxを一括して求めることができる。特に活線状態にある三相交流電路の絶縁抵抗Rux,Rvx,Rwxを、該三相交流電路のU相、V相、およびW相に加わっている電圧を有効に活用して、簡易に測定することができる。   According to the insulation resistance measuring apparatus configured as described above, the voltage ratio [signal e] is obtained by dividing the reference voltage VR [signal b] by the voltage VR3 [signal d]. By simply multiplying the signal e] by the coefficient K, the insulation resistances Rux, Rvx, Rwx of the three-phase AC circuit can be obtained collectively according to the measurement principle described above. In particular, the insulation resistance Rux, Rvx, Rwx of a three-phase AC circuit in a live state is easily measured by effectively using the voltages applied to the U-phase, V-phase, and W-phase of the three-phase AC circuit. can do.

しかも三相交流電路のU相、V相、W相をY字結線して大地アースEに接地することなく、活線状態にある前記三相交流電路の絶縁抵抗Rux,Rvx,Rwxを定常的に連続して測定することができる。そして測定した絶縁抵抗を表示装置48を用いて表示しながら、該絶縁抵抗が規定の絶縁抵抗値に満たない場合、警報器49を作動させて速やかに警報を発することができる。従って、例えば船舶用電源設備のように、非接地方式の交流電路の絶縁抵抗を監視する上で、その実用的利点が多大である。   In addition, the U-phase, V-phase, and W-phase of the three-phase AC circuit are Y-connected, and the insulation resistance Rux, Rvx, Rwx of the three-phase AC circuit in the live state is steady without being grounded to the earth ground E. Can be measured continuously. Then, while displaying the measured insulation resistance using the display device 48, if the insulation resistance is less than the prescribed insulation resistance value, the alarm 49 can be operated to promptly issue an alarm. Therefore, there is a great practical advantage in monitoring the insulation resistance of an ungrounded AC circuit, such as a ship power supply facility.

ここで前述した絶縁抵抗測定方法および絶縁抵抗測定装置による三相交流電路の絶縁抵抗測定についての具体的な実施形態について説明する。例えば前記直列抵抗回路20における第2の抵抗R1b,R2bの抵抗値r1b,r2bをそれぞれ1MΩとし、前記各第2の抵抗R1b,R2bを介してそれぞれ得られる前記基準電圧VR1,VR2が[5V]となるように前記直列抵抗回路20の回路定数を設定しておく。そして、例えば前記絶縁抵抗Ruxが[1MΩ]であるとき、前記接地電流Iuxによって前記検出抵抗R3に生起される電圧VR3が[5V]となるように、予め前記検出抵抗R3の抵抗値r3を設定する。   Here, specific embodiments of the above-described insulation resistance measurement method and insulation resistance measurement of a three-phase AC circuit using the insulation resistance measurement device will be described. For example, the resistance values r1b and r2b of the second resistors R1b and R2b in the series resistor circuit 20 are set to 1 MΩ, and the reference voltages VR1 and VR2 obtained via the second resistors R1b and R2b are [5V]. The circuit constants of the series resistance circuit 20 are set so that For example, when the insulation resistance Rux is [1 MΩ], the resistance value r3 of the detection resistor R3 is set in advance so that the voltage VR3 generated in the detection resistor R3 by the ground current Iux is [5V]. To do.

このような回路定数を設定しておけば、例えば前記電圧VR3が[5V]として検出されたとき、前記割り算器(DV)45の出力は[5V÷5V=1]となり、前記係数Kを[1]に設定しておくことで前記掛け算器(MP)46の出力として[1MΩ]なる絶縁抵抗計測値を得ることができる。また絶縁抵抗が[2MΩ]であれば、前記検出抵抗R3を介して検出される電圧VR3が[2.5V]となるので、前記割り算器(DV)45の出力は[5V÷2.5V=2]となり、前記掛け算器(MP)46の出力として[2MΩ]なる絶縁抵抗計測値を得ることができる。   If such a circuit constant is set, for example, when the voltage VR3 is detected as [5V], the output of the divider (DV) 45 becomes [5V ÷ 5V = 1], and the coefficient K is set to [ 1], an insulation resistance measurement value [1 MΩ] can be obtained as the output of the multiplier (MP) 46. If the insulation resistance is [2 MΩ], the voltage VR3 detected via the detection resistor R3 is [2.5V], so that the output of the divider (DV) 45 is [5V ÷ 2.5V = 2], and an insulation resistance measurement value [2 MΩ] can be obtained as the output of the multiplier (MP) 46.

そして前記検出抵抗R3を介して検出される電圧VR3が[1V]であれば、前記割り算器(DV)45の出力は[5V÷1V=5]となり、前記掛け算器(MP)46の出力として[5MΩ]なる絶縁抵抗計測値を得ることができる。逆に前記検出抵抗R3を介して検出される電圧VR3が[10V]であれば、前記割り算器(DV)45の出力は[5V÷10V=0.5]となり、前記掛け算器(MP)46の出力として[0.5MΩ]なる絶縁抵抗計測値を得ることができる。   If the voltage VR3 detected through the detection resistor R3 is [1V], the output of the divider (DV) 45 is [5V ÷ 1V = 5], and the output of the multiplier (MP) 46 is as follows. An insulation resistance measurement value of [5 MΩ] can be obtained. Conversely, if the voltage VR3 detected through the detection resistor R3 is [10V], the output of the divider (DV) 45 is [5V ÷ 10V = 0.5], and the multiplier (MP) 46 As a result, an insulation resistance measurement value of [0.5 MΩ] can be obtained.

ここで前記係数設定器47に設定する係数Kを[2]に設定すれば、前述した検出抵抗R3を介して検出される電圧VR3が[5V]であるとき、前記割り算器(DV)45の出力は[5V÷5V=1]であり、前記掛け算器(MP)46の出力として[1MΩ×2=2MΩ]なる絶縁抵抗計測値を得ることができる。従って前記係数Kを[2]に設定することで、前記電圧VR3が[10V]であるとき前記絶縁抵抗Ruxが[1MΩ]として測定し得るように、その計測感度(計測レンジ)を高く設定することができる。   Here, if the coefficient K set in the coefficient setting unit 47 is set to [2], when the voltage VR3 detected via the detection resistor R3 is [5V], the divider (DV) 45 The output is [5V ÷ 5V = 1], and an insulation resistance measurement value of [1 MΩ × 2 = 2 MΩ] can be obtained as the output of the multiplier (MP) 46. Therefore, by setting the coefficient K to [2], the measurement sensitivity (measurement range) is set high so that the insulation resistance Rux can be measured as [1 MΩ] when the voltage VR3 is [10V]. be able to.

逆に前記係数設定器47に設定する係数Kを[0.2]に設定すれば、前述した検出抵抗R3を介して検出される電圧VR3が[5V]であるとき、前記割り算器(DV)45の出力は[5V÷5V=1]であり、前記掛け算器(MP)46の出力として[1MΩ×0.2=0.2MΩ]なる絶縁抵抗計測値を得ることができる。従って前記係数Kを[0.2]に設定することで、前記電圧VR3が[1V]であるとき前記絶縁抵抗Ruxが[1MΩ]として測定し得るように、その計測感度(計測レンジ)を低く設定することができる。   Conversely, when the coefficient K set in the coefficient setting unit 47 is set to [0.2], when the voltage VR3 detected through the detection resistor R3 is [5V], the divider (DV) The output of 45 is [5V ÷ 5V = 1], and an insulation resistance measurement value of [1 MΩ × 0.2 = 0.2 MΩ] can be obtained as the output of the multiplier (MP) 46. Accordingly, by setting the coefficient K to [0.2], the measurement sensitivity (measurement range) is lowered so that the insulation resistance Rux can be measured as [1 MΩ] when the voltage VR3 is [1V]. Can be set.

従って前記係数Kを可変設定するだけで、絶縁抵抗に対する計測レンジを容易に変更することが可能となる。しかも前述した構成であれば、仮に前記三相交流電路の電圧が変動しても、この電圧変動に伴って前記整流回路10を介して出力される直流電圧(VP+VN)が変化し、前記直列抵抗回路20に流れる前記電流IPも変化する。そして前記基準電圧VR1,VR2も前記電流IPに応じて変化する。   Accordingly, it is possible to easily change the measurement range for the insulation resistance only by variably setting the coefficient K. In addition, even if the voltage of the three-phase AC circuit fluctuates, the DC voltage (VP + VN) output through the rectifier circuit 10 varies with the voltage fluctuation, and the series resistance is changed. The current IP flowing through the circuit 20 also changes. The reference voltages VR1 and VR2 also change according to the current IP.

一方、前記三相交流電路の電圧の変動に伴って前記U相、V相、W相間の絶縁抵抗Rux,Rvx,Rwxを介して流れる接地電流Iux,Ivx,Iwxも変化する。そしてこの接地電流Iux,Ivx,Iwxの変化に伴って前記検出抵抗R3に生起される電圧VR3も変動し、その変動量は前記基準電圧VR1,VR2の変動量に比例する。従って前述した演算によって求められる絶縁抵抗の値は、前記三相交流電路の電圧の変動の影響を受けることなく一定に保たれる。故に電源電圧の変動に拘わることなく前記三相交流電路間の絶縁抵抗を測定することができる。   On the other hand, the ground currents Iux, Ivx, and Iwx flowing through the insulation resistances Rux, Rvx, and Rwx between the U phase, the V phase, and the W phase also change in accordance with the voltage variation of the three-phase AC circuit. As the ground currents Iux, Ivx, and Iwx change, the voltage VR3 generated in the detection resistor R3 also changes, and the amount of change is proportional to the amount of change in the reference voltages VR1 and VR2. Therefore, the value of the insulation resistance obtained by the above-described calculation is kept constant without being affected by the voltage fluctuation of the three-phase AC circuit. Therefore, it is possible to measure the insulation resistance between the three-phase AC circuits without regard to fluctuations in the power supply voltage.

尚、本発明は上述した実施形態に限定されるものではない。ここでは三相交流電路間の絶縁抵抗測定を例に説明したが、単相交流電路間の絶縁抵抗測定に対しても同様に適用可能なことは勿論のことである。また前記各抵抗R1a,R1b,R2a,R2b,R3の各抵抗値r1a,r1b,r2a,r2b,r3については、測定対象とする交流電路の電源電圧仕様に応じて定めれば良いものである。更には前記実施形態においては、前記第1〜第3の絶縁変換器(IAP,IAN,IAM)31,32,33が[1:1]の電圧信号変換を実行するものとの前提で説明したが、これらの絶縁変換器(IAP,IAN,IAM)31,32,33にて[1:n]の電圧信号変換を実行するようにし、その測定感度を高めることも可能である。その他、本発明はその要旨を逸脱しない範囲で種々変形して実施することができる。   The present invention is not limited to the embodiment described above. Here, the insulation resistance measurement between the three-phase AC circuits has been described as an example, but it is needless to say that the measurement can be similarly applied to the measurement of the insulation resistance between the single-phase AC circuits. The resistance values r1a, r1b, r2a, r2b, r3 of the resistors R1a, R1b, R2a, R2b, R3 may be determined according to the power supply voltage specifications of the AC circuit to be measured. Furthermore, in the said embodiment, it demonstrated on the assumption that the said 1st-3rd isolation | separation converter (IAP, IAN, IAM) 31,32,33 performs the voltage signal conversion of [1: 1]. However, these isolation converters (IAP, IAN, IAM) 31, 32, 33 may perform [1: n] voltage signal conversion to increase the measurement sensitivity. In addition, the present invention can be variously modified and implemented without departing from the scope of the invention.

10 全波整流回路
20 直列抵抗回路
21,22 分圧抵抗回路
R1a,R1b,R2a,R2b 抵抗
R3 検出抵抗
31,32,33 絶縁変換器(IAP,IAN,IAM)
40 演算回路
41,42 第2の整流回路(DP,DE)
43,44 フィルタ回路(LPP,LPM)
45 割り算器(DV)
46 掛け算器(MP)
47 係数設定器
48 表示装置(IND)
49 警報器(AL)
10 full wave rectifier circuit 20 series resistor circuit 21, 22 voltage dividing resistor circuit R1a, R1b, R2a, R2b resistor R3 detection resistor 31, 32, 33 insulation converter (IAP, IAN, IAM)
40 arithmetic circuit 41, 42 second rectifier circuit (DP, DE)
43,44 Filter circuit (LPP, LPM)
45 Divider (DV)
46 Multiplier (MP)
47 Coefficient setting device 48 Display device (IND)
49 Alarm (AL)

Claims (4)

交流電路間の電圧を整流して直流電圧を得る全波整流回路と、
直列に接続されて前記全波整流回路の正極および負極からなる出力端子間に介装され、該全波整流回路が出力する直流電圧を分圧して前記交流電路の中性点に対する正極側基準電圧および負極側基準電圧をそれぞれ求める第1および第2の分圧抵抗回路と、
前記第1および第2の分圧抵抗回路を直列接続点と接地点との間に介装されて前記中性点に生じる電圧を検出する検出抵抗と、
前記正極側基準電圧を前記交流電路側とは絶縁分離して抽出する第1の絶縁変換器と、
前記負極側基準電圧を前記交流電路側とは絶縁分離して抽出する第2の絶縁変換器と、
前記第1の絶縁変換器および前記第2の絶縁変換器を介して得られる前記正極側基準電圧および前記負極側基準電圧を極性を揃えてそれぞれ整流し、これら整流して得られる信号を突き合わせた後にローパスフィルタを通して一の基準電圧信号を得る基準電圧信号生成回路と、
前記検出抵抗にて求められた中性点電圧を前記交流電路側とは絶縁分離して抽出する第3の絶縁変換器と、
前記第3の絶縁変換器を介して得られる検出電圧を整流した後、ローパスフィルタを通して検出電圧信号を得る検出電圧生成回路と、
前記基準電圧信号を前記検出電圧信号にて割り算した後、その割り算値に所定の係数を掛けて前記交流電路の絶縁抵抗を求める演算回路と
を具備したことを特徴とする絶縁抵抗測定装置。
A full-wave rectifier circuit that obtains a DC voltage by rectifying the voltage between the AC circuits;
A positive-side reference voltage with respect to the neutral point of the AC circuit by dividing the DC voltage output from the full-wave rectifier circuit connected in series and interposed between output terminals consisting of the positive and negative electrodes of the full-wave rectifier And first and second voltage-dividing resistor circuits for obtaining the negative-side reference voltage and
A detection resistor for detecting a voltage generated at the neutral point by interposing the first and second voltage dividing resistor circuits between a series connection point and a ground point;
A first isolation converter for extracting the positive reference voltage from the AC circuit side in an isolated manner;
A second isolation converter that extracts the negative reference voltage from the AC circuit side by isolation, and
The positive reference voltage and the negative reference voltage obtained via the first insulation converter and the second insulation converter are rectified with the same polarity, and the signals obtained by rectification are matched. A reference voltage signal generation circuit for obtaining one reference voltage signal later through a low-pass filter;
A third isolation converter that extracts the neutral point voltage obtained by the detection resistor by isolation from the AC circuit side; and
A detection voltage generation circuit that obtains a detection voltage signal through a low-pass filter after rectifying the detection voltage obtained via the third isolation converter;
An insulation resistance measuring apparatus comprising: an arithmetic circuit for dividing the reference voltage signal by the detection voltage signal and multiplying the divided value by a predetermined coefficient to obtain an insulation resistance of the AC circuit.
請求項に記載の絶縁抵抗測定装置において、
更に前記演算回路にて求められた前記交流電路の絶縁抵抗を表示する表示装置、および前記交流電路の絶縁抵抗が設定値を下回ったときに警報を発する警報器を備えることを特徴とする絶縁抵抗測定装置。
The insulation resistance measuring apparatus according to claim 1 ,
Insulation resistance further comprising: a display device that displays the insulation resistance of the AC circuit obtained by the arithmetic circuit; and an alarm device that issues an alarm when the insulation resistance of the AC circuit is below a set value. measuring device.
前記第1および第2の分圧抵抗回路は、高抵抗値の第1の抵抗と低抵抗値の第2の抵抗とをそれぞれ直接接続した抵抗回路であって、
前記第1および第2の分圧抵抗回路の直列接続は、各分圧抵抗回路における前記第2の抵抗間を相互に接続し、その接続点を前記交流電路に対する中性点としたものである請求項またはに記載の絶縁抵抗測定装置。
It said first and second voltage dividing resistor circuit is a resistor circuit that the second resistor and the directly connected each of the first resistor and the low resistance value of the high resistance value,
In the series connection of the first and second voltage dividing resistor circuits, the second resistors in each voltage dividing resistor circuit are connected to each other, and the connection point is set as a neutral point with respect to the AC circuit. The insulation resistance measuring apparatus according to claim 1 or 2 .
前記交流電路は、非接地方式の単相または三相交流電路である請求項またはに記載の絶縁抵抗測定装置。 The insulation resistance measuring apparatus according to claim 1 or 2 , wherein the AC circuit is a non-grounded single-phase or three-phase AC circuit.
JP2012187247A 2012-08-28 2012-08-28 Insulation resistance measuring device Active JP6106992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012187247A JP6106992B2 (en) 2012-08-28 2012-08-28 Insulation resistance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012187247A JP6106992B2 (en) 2012-08-28 2012-08-28 Insulation resistance measuring device

Publications (2)

Publication Number Publication Date
JP2014044140A JP2014044140A (en) 2014-03-13
JP6106992B2 true JP6106992B2 (en) 2017-04-05

Family

ID=50395501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012187247A Active JP6106992B2 (en) 2012-08-28 2012-08-28 Insulation resistance measuring device

Country Status (1)

Country Link
JP (1) JP6106992B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160020122A (en) * 2014-08-13 2016-02-23 다담마이크로 주식회사 Device for detecting insulation resistance
CN105911353B (en) * 2016-04-15 2018-09-14 广州汽车集团股份有限公司 Automobile insulating resistor detecting circuit and its insulation resistance detection method
KR101960293B1 (en) * 2017-02-14 2019-03-20 에스케이이노베이션 주식회사 Insulation resistance measurement method and apparatus
JP7232564B2 (en) * 2019-06-07 2023-03-03 光商工株式会社 Insulation resistance monitoring device for AC ungrounded circuits
CN111337752B (en) * 2020-03-12 2022-05-10 鲁东大学 Power cable insulation resistance to ground on-line detection system and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331746B2 (en) * 1973-07-10 1978-09-04
JPH088458Y2 (en) * 1986-06-18 1996-03-06 新日本製鐵株式会社 Live line megger
JPH0817580B2 (en) * 1987-05-29 1996-02-21 日新電機株式会社 Inverter control method
DE102006031663B3 (en) * 2006-07-08 2007-11-15 Semikron Elektronik Gmbh & Co. Kg Information technology network`s insulation resistance measuring method for vehicle application, involves evaluating average value in temporal sequence, and using transient effect of potential measurements to inspect measuring instrument
JP5003333B2 (en) * 2007-07-30 2012-08-15 富士電機株式会社 Insulation resistance measuring method and apparatus

Also Published As

Publication number Publication date
JP2014044140A (en) 2014-03-13

Similar Documents

Publication Publication Date Title
JP6106992B2 (en) Insulation resistance measuring device
WO2014192217A1 (en) Leakage current calculation device and method for calculating leakage current
KR100896091B1 (en) Measuring instrument for a resistive electric leakage current
CA2792785A1 (en) Pulse width modulated voltage measuring circuit and method
JP6416416B2 (en) Insulation resistance measuring device
JP5003333B2 (en) Insulation resistance measuring method and apparatus
JP6127824B2 (en) Power conditioner system for photovoltaic power generation
WO2008069249A1 (en) Leakage current determining apparatus and leakage current determining method
JP4977481B2 (en) Insulation monitoring device
KR20090105773A (en) Measurement Device of Internal Impedance or it's effective value, And Method Thereof
TWI553318B (en) Grounding resistance measurement apparatus and method of operating the same
TWI427298B (en) Signal generation device, measurement device, leakage detection device, and signal generation method
JP2016039742A (en) Charging apparatus
KR20080071259A (en) Measurement device of leakage current ohmic value on power line and method thereof
JP7009025B2 (en) Voltage measuring device, voltage measuring method
JP2017194465A (en) Monitoring device
CN105675998B (en) Footing impedance measuring apparatus and its operating method
JP6240918B1 (en) Leakage current measuring method and leakage current measuring device
US9335363B2 (en) Missing or broken neutral monitoring circuit for split phase electrical distribution configurations
JP2008020322A (en) Device and method for detecting short-circuit of electrical installation
TWI609187B (en) Insulation monitoring device
JP6778515B2 (en) Impedance measuring device and impedance measuring method
JP6788259B2 (en) Loop impedance acquisition method and loop impedance tester
CN111220837A (en) Output voltage detector of broadband PWM frequency converter
JP6590387B1 (en) Leakage current detection device and ground leakage current detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170220

R150 Certificate of patent or registration of utility model

Ref document number: 6106992

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250