JP2008020322A - Device and method for detecting short-circuit of electrical installation - Google Patents

Device and method for detecting short-circuit of electrical installation Download PDF

Info

Publication number
JP2008020322A
JP2008020322A JP2006192352A JP2006192352A JP2008020322A JP 2008020322 A JP2008020322 A JP 2008020322A JP 2006192352 A JP2006192352 A JP 2006192352A JP 2006192352 A JP2006192352 A JP 2006192352A JP 2008020322 A JP2008020322 A JP 2008020322A
Authority
JP
Japan
Prior art keywords
impedance
electrical equipment
voltage
frequency
phases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006192352A
Other languages
Japanese (ja)
Inventor
Satoshi Kitamura
敏 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Services Co Ltd
Original Assignee
Tokyo Electric Power Services Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Services Co Ltd filed Critical Tokyo Electric Power Services Co Ltd
Priority to JP2006192352A priority Critical patent/JP2008020322A/en
Publication of JP2008020322A publication Critical patent/JP2008020322A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately determine short-circuit of an electrical installation even when a phase advance capacitor installation for improving power factor is installed in the electrical installation. <P>SOLUTION: This device applies an alternating voltage of variable frequency generated in an alternating voltage generator 14 from a detection probe 13 to two phases of the electrical installation and detects current flowing into the electrical installation by applying of the alternating voltage of variable frequency. An impedance display part 16 calculates and displays impedance of the electrical installation from the current flowing into the electrical installation and the applied alternating voltage. A checker changes the frequency of the alternating current generated in the alternating voltage generator 14 so that the impedance of the electrical installation should be maximum with a frequency variable device 15, and determines whether or not the electrical installation might be short-circuited based on the maximum value of the impedance. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば、受配電設備等における電気設備の短絡を検出する短絡検出装置及び方法に関する。   The present invention relates to a short circuit detection device and method for detecting a short circuit of an electrical facility in a power receiving / distributing facility, for example.

電力系統の受配電設備における電気設備の地絡状態は、市販の「絶縁抵抗計」により容易に検出できる。絶縁抵抗計では、直流電圧を電気設備に印加して流れる電流を計測し、印加した直流電圧を計測した電流で除算して電気設備の絶縁抵抗を測定する。このような絶縁抵抗計では、電気設備の短絡状態を検出することはできない。これは、絶縁抵抗計は直流電圧を印加して直流電流を検出し電気設備の絶縁抵抗を検出するものであるからである。   The ground fault state of the electrical equipment in the power distribution facility can be easily detected by a commercially available “insulation resistance meter”. In an insulation resistance meter, a DC voltage is applied to electrical equipment to measure the flowing current, and the applied DC voltage is divided by the measured current to measure the insulation resistance of the electrical equipment. Such an insulation resistance meter cannot detect the short-circuit state of the electrical equipment. This is because the insulation resistance meter detects a direct current by applying a direct current voltage to detect an insulation resistance of the electrical equipment.

すなわち、電気設備の相間短絡状態を検出するには、相間に変圧器や計量器のコイルが接続されているため、その交流インピーダンスωLを検出することになるが、直流ではω=0であるので、電気設備が短絡状態になくとも相間のインピーダンスωLはほとんど零となり短絡状態として検出してしまうからである。ここに、ωは交流の角周波数、Lはコイルのインダクタンスである。   That is, in order to detect the short-circuit state between the phases of the electrical equipment, since the transformer and the coil of the measuring instrument are connected between the phases, the AC impedance ωL is detected. However, in DC, ω = 0. This is because the impedance ωL between the phases is almost zero even if the electrical equipment is not in a short-circuited state and is detected as a short-circuited state. Here, ω is the angular frequency of the alternating current, and L is the inductance of the coil.

従って、敢えて電気設備の短絡状態を検出するには、商用周波数の交流を発生できる耐圧試験装置を用いて電気設備に課電することになる。受配電設備やフィーダ数の多い交流電気回路における回路の点検作業に好適な交流電気回路の短絡検出装置として、短絡検出に用いるインピーダンスと整流器付き表示灯(或いはブザー)を備え、インピーダンスを介して交流電源を短絡検出用の電源として交流電気回路に接続し、整流器付き表示灯を交流電気回路と並列に接続し、交流回路が短絡していない場合は、整流器に電圧が印加され表示灯が点灯し、短絡している場合は、整流器に電圧が印加されず表示灯が消灯し、この表示灯を通して短絡の有無を判別可能にしたものがある(例えば、特許文献1参照)。
特開平9−218234号公報
Therefore, in order to detect the short-circuit state of the electrical equipment, power is applied to the electrical equipment using a withstand voltage test apparatus capable of generating an alternating current of commercial frequency. As an AC electrical circuit short-circuit detection device suitable for circuit inspection work in power receiving and distribution equipment and AC electrical circuits with a large number of feeders, it has an impedance used for short-circuit detection and an indicator lamp (or buzzer) with a rectifier. Connect the power supply to the AC electrical circuit as a power supply for short circuit detection, connect the indicator lamp with rectifier in parallel with the AC electrical circuit, and if the AC circuit is not short-circuited, the voltage is applied to the rectifier and the indicator lamp lights up. In the case of short-circuiting, there is one in which the voltage is not applied to the rectifier and the indicator lamp is turned off, and the presence or absence of a short-circuit can be determined through this indicator lamp (for example, see Patent Document 1).
JP-A-9-218234

しかし、耐圧試験装置には商用周波数の電源が必要となり、装置が重量物であり搬入が容易でない。また、特許文献1のものでも商用周波数の電源が必要となる。さらには、電気設備に力率改善用の進相コンデンサ設備が設置されている場合には、コイルのインピーダンスωLを相殺して電気設備のインピーダンスが低い値となってしまい、電気設備の短絡状態の検出が難しくなる。   However, the pressure test apparatus requires a power supply of commercial frequency, and the apparatus is heavy and not easy to carry in. Further, the power supply of commercial frequency is required even in the case of Patent Document 1. Furthermore, when a phase advance capacitor equipment for power factor improvement is installed in the electrical equipment, the impedance ωL of the coil is canceled out and the impedance of the electrical equipment becomes a low value. Detection becomes difficult.

例えば、力率改善用の進相コンデンサ設備は、受電容量の15%前後のコンデンサ容量となるので、受電容量が1000kVAの電気設備では、進相コンデンサのインピーダンスとして0.7kΩといった低い値が検出される。この値が短絡状態を示すのか否かを判定するのは難しい。   For example, a phase-advancing capacitor facility for power factor improvement has a capacitor capacity of about 15% of the power receiving capacity. Therefore, in an electric facility with a power receiving capacity of 1000 kVA, a low value of 0.7 kΩ is detected as the impedance of the phase-advancing capacitor. The It is difficult to determine whether this value indicates a short circuit state.

例えば、電灯変圧器の低圧側の短絡抵抗値が1Ω程度の場合には、電灯変圧器の高圧側から見た抵抗値は、電圧比の2乗倍({(6600)/210}2 = 990倍)に拡大されるので990Ωとなる。また、動力変圧器の低圧側の2相が短絡している場合では、電気設備の受電容量や短絡抵抗値によって、検出されるインピーダンスの値が大きく変動する。 For example, when the short circuit resistance value on the low voltage side of the light transformer is about 1Ω, the resistance value seen from the high voltage side of the light transformer is the square of the voltage ratio ({(6600) / 210} 2 = 990 Magnifying power) is 990Ω. In addition, when the two phases on the low voltage side of the power transformer are short-circuited, the detected impedance value varies greatly depending on the power receiving capacity and the short-circuit resistance value of the electrical equipment.

現実には、動力変圧器の低圧側の2相が完全に短絡していても、高圧側3相(a、b、c相)のうちの2相(例えば、a−b、b−c相間)が0.5〜10kΩ、残り1相(例えばa−c相間)が1〜30kΩのように大きく変動し、検出した値が健全な進相コンデンサのインピーダンスを表しているのか、動力変圧器の低圧側での2相短絡を示しているのかの判断がつかなくなる。   In reality, even if the two phases on the low-voltage side of the power transformer are completely short-circuited, two phases (for example, between ab and bc phases) of the three phases (a, b, and c) on the high-voltage side ) Is 0.5 to 10 kΩ, and the remaining one phase (for example, between a and c phases) fluctuates significantly as 1 to 30 kΩ, and whether the detected value represents the impedance of a healthy phase advance capacitor, It is impossible to judge whether a two-phase short circuit is indicated on the low-pressure side.

本発明の目的は、電気設備に力率改善用の進相コンデンサ設備が設置されている場合であっても精度よく電気設備の短絡を判定できる電気設備の短絡検出装置及び方法を提供することである。   An object of the present invention is to provide an electrical equipment short-circuit detection device and method that can accurately determine a short circuit of an electrical equipment even when a phase advance capacitor equipment for power factor improvement is installed in the electrical equipment. is there.

請求項1の発明に係わる電気設備の短絡検出装置は、可変周波数の交流電圧を発生する交流電圧発生装置と、前記交流電圧発生装置で発生した可変周波数の交流電圧を電気設備の2相に課電するとともに可変周波数の交流電圧の課電により前記電気設備に流れる電流を検出する検出プローブと、前記検出プローブから課電された可変周波数の交流電圧の課電により前記電気設備に流れる電流と課電した交流電圧とから電気設備のインピーダンスを演算し表示するインピーダンス表示部と、前記電気設備のインピーダンスが最大となるように前記交流電圧発生装置で発生する交流電圧の周波数を変化させるための周波数可変装置とを備えたことを特徴とする。   The short-circuit detection device for electrical equipment according to the invention of claim 1 imposes an alternating voltage generator for generating an alternating voltage of variable frequency and an alternating voltage of a variable frequency generated by the alternating voltage generator on two phases of the electrical equipment. And a detection probe for detecting a current flowing through the electrical equipment by applying a variable frequency alternating voltage, and a current flowing through the electrical equipment by applying a variable frequency alternating voltage applied from the detection probe. An impedance display unit that calculates and displays the impedance of the electrical equipment from the supplied AC voltage, and a variable frequency for changing the frequency of the AC voltage generated by the AC voltage generator so that the impedance of the electrical equipment is maximized And an apparatus.

請求項2の発明に係わる電気設備の短絡検出方法は、可変周波数の交流電圧を電気設備の2相に課電し、可変周波数の交流電圧の課電により前記電気設備に流れる電流と課電した交流電圧とから電気設備のインピーダンスを演算し、前記演算された電気設備のインピーダンスが最大となるように交流電圧の周波数を変化させて前記電気設備のインピーダンスの最大値を求め、求めた前記電気設備のインピーダンスの最大値に基づいて前記電気設備の短絡を検出することを特徴とする。   According to a second aspect of the present invention, there is provided a method for detecting a short circuit in an electrical equipment, wherein an AC voltage having a variable frequency is applied to two phases of the electrical equipment, and an electric current applied to the electrical equipment is applied by applying an AC voltage having a variable frequency. Calculate the impedance of the electrical equipment from the AC voltage, change the frequency of the AC voltage so that the calculated impedance of the electrical equipment is maximized, obtain the maximum value of the impedance of the electrical equipment, and obtain the electrical equipment A short circuit of the electrical equipment is detected based on a maximum value of the impedance.

本発明によれば、電気設備における短絡発生の有無を通電前に迅速かつ手軽に検出できるので、短絡設備への通電による電気設備の損傷・火災・爆発と短絡発生による人身の感電・火傷・失明・被災を未然に防止できる。特に、大地震発生後の電気設備には短絡発生の可能性が高く、本発明は震災後の電気設備への通電に際し、その短絡発生の有無を検出するために欠かせないものとなる。   According to the present invention, the presence or absence of a short circuit in an electrical facility can be detected quickly and easily before energization.・ We can prevent damage. In particular, there is a high possibility of a short circuit occurring in an electrical facility after a large earthquake, and the present invention is indispensable for detecting the occurrence of the short circuit when energizing the electrical facility after the earthquake.

図1は、本発明の実施の形態に係わる電気設備の短絡検出装置の構成図である。短絡検出装置は、検出装置本体11と、この検出装置本体11に測定用電源を供給する直流電源装置12と、電気設備の各相間のインピーダンスを計測するための検出プローブ13とから構成される。そして、検出装置本体11は、直流電源12からの測定用電源を基に交流電圧を発生する交流電圧発生装置14と、交流電圧の周波数を変化させる周波数可変装置15と、電気設備のインピーダンスを表示するインピーダンス表示部16と、周波数を連続的に変化させるための周波数調節摘み17と、インピーダンス表示の倍率を変更するための表示倍率調節摘み18とから構成される。   FIG. 1 is a configuration diagram of a short-circuit detection apparatus for electrical equipment according to an embodiment of the present invention. The short-circuit detection device includes a detection device main body 11, a DC power supply device 12 that supplies measurement power to the detection device main body 11, and a detection probe 13 for measuring the impedance between each phase of the electrical equipment. And the detection apparatus main body 11 displays the alternating voltage generator 14 which generate | occur | produces alternating voltage based on the power supply for measurement from the direct current power supply 12, the frequency variable apparatus 15 which changes the frequency of alternating voltage, and the impedance of electrical equipment. The impedance display unit 16 is configured to include a frequency adjustment knob 17 for continuously changing the frequency, and a display magnification adjustment knob 18 for changing the magnification of the impedance display.

交流電圧発生装置14は直流電源装置12からの直流電圧を入力し、周波数可変装置15で指定された周波数の交流電圧を発生する。直流電源装置12としては、可搬性を考慮し乾電池または小型バッテリを用いる。交流電圧発生装置14で発生した可変周波数の交流電圧はインピーダンス表示部16を介して、検出プローブ13から電気設備の2相に課電される。そして、検出プローブ13は可変周波数の交流電圧の課電により電気設備に流れる電流を検出しインピーダンス表示部16に入力する。   The AC voltage generator 14 receives the DC voltage from the DC power supply device 12 and generates an AC voltage having a frequency specified by the frequency variable device 15. As the DC power supply device 12, a dry cell or a small battery is used in consideration of portability. The variable frequency AC voltage generated by the AC voltage generator 14 is applied to two phases of the electrical equipment from the detection probe 13 via the impedance display unit 16. Then, the detection probe 13 detects a current flowing through the electrical equipment by applying an AC voltage having a variable frequency and inputs the current to the impedance display unit 16.

インピーダンス表示部16は、検出プローブ13で検出した電気設備に流れる電流と課電した交流電圧とから電気設備のインピーダンスを演算し表示する。インピーダンス表示部16に表示されたインピーダンスは、表示倍率摘み18により表示倍率を調整できるようになっており、また、周波数変更摘み17により周波数可変装置15の周波数を調節し、電気設備に課電される交流電圧の周波数を調節できるようになっている。本発明の実施の形態では、インピーダンス表示部16に表示されるインピーダンスが最大となるように、周波数変更摘み17を操作し、インピーダンスの最大値に基づいて電気設備に短絡が発生しているか否かを判定することになる。   The impedance display unit 16 calculates and displays the impedance of the electrical equipment from the current flowing through the electrical equipment detected by the detection probe 13 and the applied AC voltage. The impedance displayed on the impedance display section 16 can be adjusted in display magnification by a display magnification knob 18, and the frequency of the frequency variable device 15 is adjusted by a frequency change knob 17 to be applied to electric equipment. The frequency of AC voltage can be adjusted. In the embodiment of the present invention, the frequency change knob 17 is operated so that the impedance displayed on the impedance display unit 16 is maximized, and whether or not a short circuit has occurred in the electrical equipment based on the maximum impedance value. Will be judged.

図2は、進相コンデンサ設備を有した電気設備の等価回路図である。図2において、Cは電気設備の進相コンデンサ設備の容量(電気設備の2相間の容量)、Lは変圧器の課電側のインダクタンス(通常は高圧側から課電するので高圧側のインダクタンス)、Rは等価的な絶縁抵抗である。なお、図2では、ケーブルなどの対地静電容量を無視している。これは、ケーブルなどの対地静電容量は進相コンデンサの容量Cに比べて一般には小さいからである。   FIG. 2 is an equivalent circuit diagram of an electrical facility having a phase advance capacitor facility. In FIG. 2, C is the capacity of the phase advance capacitor equipment of the electrical equipment (capacity between the two phases of the electrical equipment), and L is the inductance on the voltage application side of the transformer (usually the voltage on the high voltage side is applied from the high voltage side). , R is an equivalent insulation resistance. In FIG. 2, the ground capacitance such as a cable is ignored. This is because the capacitance to ground such as a cable is generally smaller than the capacitance C of the phase advance capacitor.

このような電気設備に対して、短絡検出装置から交流電圧Vを課電したときに流れる電流Iは、進相コンデンサの電流IC、インダクタンスの電流IL、絶縁抵抗の電流IRとしたとき、以下の(1)式で示される。   For such electrical equipment, the current I flowing when the AC voltage V is applied from the short-circuit detection device is represented by the following equation, when the phase-advancing capacitor current IC, the inductance current IL, and the insulation resistance current IR are: It is shown by the formula (1).

I = IC + IL + LR = ( jωC + 1 / jωL + 1 / R ) V
= { 1 / R + ( 1 −ω2LC) / jωL} V …(1)
ここで、完全共振の周波数ω(ω2=1/LC)においては、(1)式は、V / I = Rとなって電気設備の絶縁抵抗Rだけが検出できる。つまり、完全共振の周波数ω(ω2=1/LC)のときに電気設備のインピーダンスは最大となり、進相コンデンサ設備の容量C及び変圧器のコイル等のインダクタンスLの影響を受けなくなる。従って、インピーダンスが最大のときに絶縁抵抗Rに流れる電流を測定できることになるので、精度よく短絡か否かを判定できる。
I = IC + IL + LR = (jωC + 1 / jωL + 1 / R) V
= {1 / R + (1 −ω 2 LC) / jωL} V (1)
Here, at the complete resonance frequency ω (ω 2 = 1 / LC), the equation (1) becomes V / I = R, and only the insulation resistance R of the electrical equipment can be detected. In other words, the impedance of the electrical equipment is maximized at the complete resonance frequency ω (ω 2 = 1 / LC), and is not affected by the capacitance C of the phase advance capacitor equipment and the inductance L of the transformer coil or the like. Accordingly, since the current flowing through the insulation resistance R can be measured when the impedance is maximum, it can be accurately determined whether or not a short circuit has occurred.

図3は、本発明の実施の形態に係わる電気設備の短絡検出方法の工程の一例を示すフローチャートである。まず、検出プローブを検査対象である電気設備の高圧側のいずれかの2相に接続し(S1)、可変周波数の交流電圧を課電する(S2)。可変周波数の交流電圧の課電により電気設備に流れる電流を検出し(S3)、その検出した電流と課電した交流電圧とから電気設備のインピーダンスを演算し表示する(S4)。点検員は、表示されたインピーダンスが最大となるように、交流電圧の周波数を変化させて電気設備のインピーダンスの最大値を求め(S5)、求めた電気設備のインピーダンスの最大値に基づいて電気設備の短絡を検出する(S6)。   FIG. 3 is a flowchart showing an example of the steps of the electrical equipment short-circuit detection method according to the embodiment of the present invention. First, the detection probe is connected to any two phases on the high voltage side of the electrical equipment to be inspected (S1), and an AC voltage with a variable frequency is applied (S2). A current flowing through the electrical equipment is detected by applying an AC voltage having a variable frequency (S3), and the impedance of the electrical equipment is calculated and displayed from the detected current and the applied AC voltage (S4). The inspector obtains the maximum impedance value of the electrical equipment by changing the frequency of the AC voltage so that the displayed impedance is maximized (S5), and the electrical equipment is based on the obtained maximum impedance value of the electrical equipment. Is detected (S6).

次に、本発明の実施の形態の短絡検出装置を用いて、実際の電気設備で短絡を模擬して短絡検出を行った試験結果の一例を表1に示す。表1は、進相コンデンサを有した675kVAのAビルの電気設備の試験結果を示す。

Figure 2008020322
Next, Table 1 shows an example of a test result obtained by performing a short circuit detection by simulating a short circuit with actual electrical equipment using the short circuit detection device according to the embodiment of the present invention. Table 1 shows the test results of a 675 kVA A building electrical installation with a phase advance capacitor.
Figure 2008020322

短絡模擬として、短絡無し(No.1)、変圧器の高圧側の2相短絡(No.2)、電灯変圧器の低圧側の短絡(No.3)、動力変圧器の低圧側の2相(青赤)短絡(No.4)の4通りについて行い、検出相は変圧器の高圧側で測定した。   As a short circuit simulation, there is no short circuit (No. 1), two phase short circuit on the high voltage side of the transformer (No. 2), short circuit on the low voltage side of the light transformer (No. 3), two phases on the low voltage side of the power transformer (Blue red) Short circuit (No. 4) was performed in four ways, and the detection phase was measured on the high voltage side of the transformer.

まず、短絡無し(No.1)の場合には、高圧側の青−白の2相間の最大インピーダンスは周波数が10Hzのときに10kΩであり、高圧側の青−赤、赤−白の各2相間の最大インピーダンスは8kΩであった。進相コンデンサを有した電気設備であることから、周波数10Hzは進相コンデンサの容量Cと変圧器等のコイルのインダクタンスLとの共振周波数であると判断できる。また、青−白の2相間の最大インピーダンス10kΩは青−白の2相間の絶縁抵抗値であり、同様に、青−赤、赤−白の各2相間の最大インピーダンス8kΩは青−赤、赤−白の各2相間の絶縁抵抗値である判断できる。いずれの絶縁抵抗値も大きい値であるので短絡は発生していないと判断できる。   First, in the case of no short circuit (No. 1), the maximum impedance between the blue-white two phases on the high-voltage side is 10 kΩ when the frequency is 10 Hz, and each of blue-red and red-white two on the high-voltage side. The maximum impedance between the phases was 8 kΩ. Since the electric equipment has the phase advance capacitor, it can be determined that the frequency 10 Hz is a resonance frequency between the capacitance C of the phase advance capacitor and the inductance L of the coil such as a transformer. The maximum impedance 10 kΩ between the blue-white two phases is the insulation resistance value between the blue-white two phases. Similarly, the maximum impedance 8 kΩ between the two phases blue-red and red-white is blue-red, red. -It can be judged that it is the insulation resistance value between each two phases of white. Since all the insulation resistance values are large values, it can be determined that no short circuit has occurred.

次に、変圧器の高圧側の2相短絡(No.2)の場合には、青−赤の2相間の最大インピーダンスは周波数の値に関係なく0Ωである。このことから、青−赤の2相間の絶縁抵抗値は零であり、青−赤の2相間が短絡していると判定できる。一方、青−白の2相間の最大インピーダンスは7kΩであり、青−白の2相間の絶縁抵抗値は大きい値であるので、青−白の2相間には短絡は発生していないと判断できる。   Next, in the case of a two-phase short circuit (No. 2) on the high voltage side of the transformer, the maximum impedance between the blue-red two phases is 0Ω regardless of the frequency value. From this, it can be determined that the insulation resistance value between the blue-red two phases is zero, and the blue-red two phases are short-circuited. On the other hand, since the maximum impedance between the blue-white two phases is 7 kΩ and the insulation resistance value between the blue-white two phases is a large value, it can be determined that no short circuit has occurred between the blue-white two phases. .

電灯変圧器の低圧側の短絡(No.3)の場合も、変圧器の高圧側の2相短絡(No.2)の場合と同様に、短絡箇所の青−赤の2相間の最大インピーダンス(絶縁抵抗値)は0Ωであり、青−赤の2相間が短絡していると判定できる。一方、青−白の2相間の最大インピーダンスは7kΩであり、青−白の2相間の絶縁抵抗値は大きい値であるので、青−白の2相間には短絡は発生していないと判断できる。ここで、電灯変圧器の短絡(No.3)の場合に、変圧器の高圧側の2相短絡(No.2)と同じ特性となるのは、電灯変圧器の低圧側は単相三線式の配電方式が採用されているからであると判断できる。   In the case of the short circuit on the low voltage side of the light transformer (No. 3), the maximum impedance between the blue and red phases at the short circuit point (No. 2) is the same as in the case of the two phase short circuit on the high voltage side of the transformer (No. 2) The insulation resistance value is 0Ω, and it can be determined that the two phases of blue and red are short-circuited. On the other hand, since the maximum impedance between the blue-white two phases is 7 kΩ and the insulation resistance value between the blue-white two phases is a large value, it can be determined that no short circuit has occurred between the blue-white two phases. . Here, in the case of the short circuit of the light transformer (No. 3), the same characteristic as the two-phase short circuit (No. 2) on the high voltage side of the transformer is the single phase three-wire type on the low voltage side of the light transformer. It can be determined that this is the case.

動力変圧器の低圧側の2相(青赤)短絡(No.4)には、高圧側3相(青、赤、白)のうちの2相(青−赤、青−白)の最大インピーダンスが2.5kΩであり、残り1相(赤−白)が8kΩである。低圧側の青−赤の2相短絡である場合に、高圧側の2相(青−赤、青−白)の最大インピーダンスが小さくなるのは、動力変圧器の場合には、高圧側がY結線であり低圧側がΔ結線であることから、高圧側の2相にその影響が現れるものと考えられる。いずれにしても、変圧器の低圧側のいずれかの2相で短絡が発生すると、高圧側3相(青、赤、白)のうちの2相(青−赤、青−白)の最大インピーダンスが小さくなり、残り1相(赤−白)は大きい値を維持しているので、この最大インピーダンスの関係から短絡を判定できる。   The two-phase (blue-red, blue-white) maximum impedance of the three phases (blue, red, white) of the high-voltage side is connected to the two-phase (blue-red) short circuit (No. 4) on the low-voltage side of the power transformer. Is 2.5 kΩ, and the remaining one phase (red-white) is 8 kΩ. In the case of a blue-red two-phase short circuit on the low-voltage side, the maximum impedance of the two phases on the high-voltage side (blue-red, blue-white) decreases. In the case of a power transformer, the high-voltage side is Y-connected. Since the low pressure side is a Δ connection, it is considered that the influence appears in the two phases on the high pressure side. In any case, when a short circuit occurs in any two phases on the low voltage side of the transformer, the maximum impedance of two phases (blue-red, blue-white) of the three phases on the high voltage side (blue, red, white) Since the remaining one phase (red-white) maintains a large value, a short circuit can be determined from this maximum impedance relationship.

このように、本発明の実施の形態では、課電する交流電圧の周波数が50Hzといった1つの値に固定せずに周波数を可変としているので、インピーダンスの表示からはインダクタンスL及び静電容量Cの影響が排除されて、電気設備の絶縁抵抗に近い値が検出できる。特に、進相コンデンサを設置している場合には、進相コンデンサの容量Cは変圧器等のインダクタンスLとω2 = 1/LCなる各周波数ωで共振して短絡検出装置のインピーダンスの表示からはL、Cの影響が排除されて、電気設備の絶縁抵抗に近い値が検出できる。 As described above, in the embodiment of the present invention, the frequency of the alternating voltage to be applied is not fixed to one value such as 50 Hz, but the frequency is variable. A value close to the insulation resistance of the electrical equipment can be detected without the influence. In particular, when a phase advance capacitor is installed, the capacitance C of the phase advance capacitor resonates with an inductance L of a transformer or the like at each frequency ω of ω 2 = 1 / LC, and from the impedance display of the short circuit detection device. Since the influence of L and C is eliminated, a value close to the insulation resistance of the electrical equipment can be detected.

同様に、動力変圧器の低圧側で2相が短絡している場合にも、周波数を可変し短絡検出装置の表示インピーダンスが最大となる周波数で検出する。この場合、高圧側の3つの各相間検出値のうち2つの検出値v1、v2がほぼ同じ値となり、もう1つの検出値v3がv1、v2の値の3倍前後になれば、低圧側で2相短絡と判定できる。3つの検出値がほぼ同じ値で2kΩ前後以上であれば2相間の短絡はないと判定できる。   Similarly, even when two phases are short-circuited on the low-voltage side of the power transformer, the frequency is varied and detection is performed at a frequency at which the display impedance of the short-circuit detection device is maximized. In this case, if the two detected values v1 and v2 are substantially the same among the three interphase detected values on the high pressure side and the other detected value v3 is about three times the value of v1 and v2, the low pressure side It can be determined as a two-phase short circuit. If the three detected values are substantially the same and are about 2 kΩ or more, it can be determined that there is no short circuit between the two phases.

なお、高圧側での短絡、電灯変圧器の低圧側の短絡、動力変圧器の低圧側の3相短絡では、短絡検出装置の表示がほとんど0Ωとなって、明確に短絡状態を検出できる。一方、電気設備の地絡検出や高圧側と低圧側との短絡は、従来の絶縁抵抗計により迅速に検出できるので、短絡検出装置を用いる必要はない。   In addition, in the short circuit on the high voltage side, the short circuit on the low voltage side of the light transformer, and the three-phase short circuit on the low voltage side of the power transformer, the indication of the short circuit detection device is almost 0Ω, and the short circuit condition can be clearly detected. On the other hand, it is not necessary to use a short-circuit detection device because a ground fault detection of an electrical facility and a short circuit between a high voltage side and a low voltage side can be detected quickly by a conventional insulation resistance meter.

本発明の実施の形態によれば、電気設備の2相に周波数が可変できる交流電圧を課電し、そのとき短絡検出装置から流出する電流と課電電圧の比{(課電電圧)/(流出電流)=インピーダンス}を求めるので、求めたインピーダンスからはインダクタンスL及び静電容量Cの影響が排除され、電気設備の絶縁抵抗に近い値が検出できる。従って、精度よく電気設備の短絡を判定できる。   According to the embodiment of the present invention, an AC voltage whose frequency can be varied is applied to two phases of the electrical equipment, and the ratio of the current flowing out of the short-circuit detection device and the applied voltage {(applied voltage) / ( (Outflow current) = impedance}, the influence of the inductance L and the capacitance C is eliminated from the obtained impedance, and a value close to the insulation resistance of the electrical equipment can be detected. Therefore, it is possible to accurately determine a short circuit of the electrical equipment.

本発明の実施の形態に係わる電気設備の短絡検出装置の構成図。The block diagram of the short circuit detection apparatus of the electrical installation concerning embodiment of this invention. 進相コンデンサ設備を有した電気設備の等価回路図。The equivalent circuit diagram of the electrical equipment which has the phase advance capacitor equipment. 本発明の実施の形態に係わる電気設備の短絡検出方法の工程の一例を示すフローチャート。The flowchart which shows an example of the process of the short circuit detection method of the electrical equipment concerning embodiment of this invention.

符号の説明Explanation of symbols

11…検出装置本体、12…直流電源装置、13…検出プローブ、14…交流電圧発生装置、15…周波数可変装置、16…インピーダンス表示部、17…周波数調節摘み、18…表示倍率調節摘み DESCRIPTION OF SYMBOLS 11 ... Detection apparatus main body, 12 ... DC power supply device, 13 ... Detection probe, 14 ... AC voltage generator, 15 ... Frequency variable device, 16 ... Impedance display part, 17 ... Frequency adjustment knob, 18 ... Display magnification adjustment knob

Claims (2)

可変周波数の交流電圧を発生する交流電圧発生装置と、
前記交流電圧発生装置で発生した可変周波数の交流電圧を電気設備の2相に課電するとともに可変周波数の交流電圧の課電により前記電気設備に流れる電流を検出する検出プローブと、
前記検出プローブから課電された可変周波数の交流電圧の課電により前記電気設備に流れる電流と課電した交流電圧とから電気設備のインピーダンスを演算し表示するインピーダンス表示部と、
前記電気設備のインピーダンスが最大となるように前記交流電圧発生装置で発生する交流電圧の周波数を変化させるための周波数可変装置と、
を備えたことを特徴とする電気設備の短絡検出装置。
An AC voltage generator for generating an AC voltage of variable frequency;
A detection probe for applying a variable frequency AC voltage generated by the AC voltage generator to two phases of the electrical equipment and detecting a current flowing through the electrical equipment by applying a variable frequency AC voltage;
An impedance display unit that calculates and displays the impedance of the electrical equipment from the current flowing through the electrical equipment and the applied alternating voltage by applying an alternating voltage of a variable frequency applied from the detection probe;
A frequency variable device for changing the frequency of the AC voltage generated by the AC voltage generator so that the impedance of the electrical equipment is maximized;
A short-circuit detection device for electrical equipment, comprising:
可変周波数の交流電圧を電気設備の2相に課電し、
可変周波数の交流電圧の課電により前記電気設備に流れる電流と課電した交流電圧とから電気設備のインピーダンスを演算し、
前記演算された電気設備のインピーダンスが最大となるように交流電圧の周波数を変化させて前記電気設備のインピーダンスの最大値を求め、
求めた前記電気設備のインピーダンスの最大値に基づいて前記電気設備の短絡を検出することを特徴とする電気設備の短絡検出方法。
A variable frequency AC voltage is applied to the two phases of the electrical equipment,
Calculate the impedance of the electrical equipment from the current flowing through the electrical equipment and the applied alternating voltage by applying an alternating voltage of variable frequency,
Change the frequency of the AC voltage so that the calculated impedance of the electrical equipment is maximized to obtain the maximum value of the impedance of the electrical equipment,
A method for detecting a short circuit in an electrical facility, comprising: detecting a short circuit in the electrical facility based on the obtained maximum impedance value of the electrical facility.
JP2006192352A 2006-07-13 2006-07-13 Device and method for detecting short-circuit of electrical installation Pending JP2008020322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006192352A JP2008020322A (en) 2006-07-13 2006-07-13 Device and method for detecting short-circuit of electrical installation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006192352A JP2008020322A (en) 2006-07-13 2006-07-13 Device and method for detecting short-circuit of electrical installation

Publications (1)

Publication Number Publication Date
JP2008020322A true JP2008020322A (en) 2008-01-31

Family

ID=39076369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006192352A Pending JP2008020322A (en) 2006-07-13 2006-07-13 Device and method for detecting short-circuit of electrical installation

Country Status (1)

Country Link
JP (1) JP2008020322A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216618A (en) * 2008-03-12 2009-09-24 Hioki Ee Corp Impedance measuring device
WO2012160118A1 (en) * 2011-05-24 2012-11-29 Sma Solar Technology Ag Isolation monitoring using a test signal of variable frequency
JP2020176888A (en) * 2019-04-17 2020-10-29 中国電力株式会社 Measurement device and measurement method
CN116165468A (en) * 2023-02-22 2023-05-26 正泰电气股份有限公司 Method and device for testing stable winding of transformer and electronic equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226327A (en) * 1994-02-14 1995-08-22 Taiyo Yuden Co Ltd Resonance frequency selection method of inductor
JPH09218234A (en) * 1996-02-09 1997-08-19 Hitachi Eng & Services Co Ltd Short circuit detector for ac electric circuit
JP2002247748A (en) * 2001-02-19 2002-08-30 Tohoku Denki Hoan Kyokai Short-circuit detector
JP2003090859A (en) * 2001-09-20 2003-03-28 Tohoku Denki Hoan Kyokai Short circuit detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226327A (en) * 1994-02-14 1995-08-22 Taiyo Yuden Co Ltd Resonance frequency selection method of inductor
JPH09218234A (en) * 1996-02-09 1997-08-19 Hitachi Eng & Services Co Ltd Short circuit detector for ac electric circuit
JP2002247748A (en) * 2001-02-19 2002-08-30 Tohoku Denki Hoan Kyokai Short-circuit detector
JP2003090859A (en) * 2001-09-20 2003-03-28 Tohoku Denki Hoan Kyokai Short circuit detector

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216618A (en) * 2008-03-12 2009-09-24 Hioki Ee Corp Impedance measuring device
WO2012160118A1 (en) * 2011-05-24 2012-11-29 Sma Solar Technology Ag Isolation monitoring using a test signal of variable frequency
JP2014517667A (en) * 2011-05-24 2014-07-17 エスエムエー ソーラー テクノロジー アーゲー Isolation monitoring using variable frequency test signals
US9720025B2 (en) 2011-05-24 2017-08-01 Sma Solar Technology Ag Isolation monitoring using a test signal of variable frequency
JP2020176888A (en) * 2019-04-17 2020-10-29 中国電力株式会社 Measurement device and measurement method
JP7279489B2 (en) 2019-04-17 2023-05-23 中国電力株式会社 Measuring device and its measuring method
CN116165468A (en) * 2023-02-22 2023-05-26 正泰电气股份有限公司 Method and device for testing stable winding of transformer and electronic equipment
CN116165468B (en) * 2023-02-22 2023-12-01 正泰电气股份有限公司 Method and device for testing stable winding of transformer and electronic equipment

Similar Documents

Publication Publication Date Title
KR20080093169A (en) Method of leakage current break and measurement leakage current use phase calculation
CN108646125B (en) Method, device and system for testing capacitance current
CN201514473U (en) Error positioning device of high-voltage electric power metering device
JP5661231B2 (en) Clamp meter and DC ground fault circuit search method
JP2011015504A (en) Method, device, and program for setting tap of arc-suppressing reactor
JP2008020322A (en) Device and method for detecting short-circuit of electrical installation
JP4983441B2 (en) Short-circuit determination device, short-circuit determination method
JP2014044140A (en) Method and apparatus for measuring insulation resistance
EP2778694B1 (en) Apparatus and method for insulation testing of an electrical supply network
CN108548982B (en) Method, device and system for testing capacitance current
CN108548983B (en) Method, device and system for testing capacitance current
CN203630312U (en) Direct current motor armature fault detection device
KR101909379B1 (en) Leakage current measuring method and leakage current measuring apparatus
JP5636698B2 (en) DC accident point inspection device
CN102226773B (en) Test bench for X-ray detection apparatuses
JP2014202686A (en) Non-outage insulation diagnostic device and non-outage insulation diagnostic method
JP5679480B2 (en) Indirect AC megger measuring instrument and insulation resistance measuring method
JP5428030B1 (en) Insulation monitoring device
JP3714878B2 (en) Short circuit detector
CN108303595B (en) Capacitive current testing method, device and system based on pilot frequency phase current
JP5452972B2 (en) Wiring connection inspection method and inspection device for integrated watt-hour meter
JP2011155749A (en) Testing device of cable run in distribution board
JP3009323B2 (en) Power cable insulation diagnostic device
CN202189126U (en) Detection device for transformer on-load tap-changer
CN103235231B (en) Circuit and method of bi-directionally testing phase of three-phase transformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110222