JP4748341B2 - Phenol derivative having thioether structure or disulfide structure, and production method thereof - Google Patents

Phenol derivative having thioether structure or disulfide structure, and production method thereof Download PDF

Info

Publication number
JP4748341B2
JP4748341B2 JP2001119198A JP2001119198A JP4748341B2 JP 4748341 B2 JP4748341 B2 JP 4748341B2 JP 2001119198 A JP2001119198 A JP 2001119198A JP 2001119198 A JP2001119198 A JP 2001119198A JP 4748341 B2 JP4748341 B2 JP 4748341B2
Authority
JP
Japan
Prior art keywords
group
formula
phenol derivative
carbon atoms
phenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001119198A
Other languages
Japanese (ja)
Other versions
JP2002316976A (en
Inventor
尚 熊木
晴昭 陶
秀康 立木
俊彦 高崎
寛 松谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2001119198A priority Critical patent/JP4748341B2/en
Priority to TW91123403A priority patent/TW593388B/en
Publication of JP2002316976A publication Critical patent/JP2002316976A/en
Application granted granted Critical
Publication of JP4748341B2 publication Critical patent/JP4748341B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、新規なフェノール誘導体及びその製造法に関する。本発明のフェノール誘導体は、液晶表示器(LCD)用、半導体実装用等のポリマー接着剤の接着力向上等に有用である。
【0002】
【従来の技術】
電気・電子部品の液晶表示器(LCD)や半導体パッケージ用の接着剤としてフェノール樹脂は広く使われるものの一つであり、また接着剤の種々の特性を高めるため特定なフェノール誘導体が使われることがある。
【0003】
例えば、導電性接着剤では、基材樹脂としてのエポキシ樹脂のほかに、硬化剤としてのポリアリルフェノール樹脂を配合し接着剤としている(特開平6−322350号公報)。
【0004】
TAB用接着剤付きテープでは、接着剤の構成成分であるポリイミド樹脂のほかに、フェノール炭素−フェノール炭素間に硫黄原子や酸素原子を導入したフェノール誘導体を含有させて、高接着性、高絶縁性を有するTAB用接着剤付きテープを得ている(特開平11−260865号公報)。
【0005】
また、フレキシブル印刷回路基板用接着剤では、熱硬化性樹脂以外の構成成分であるアクリロニトリルブタジエンゴムの酸化防止剤として、特定構造の含硫黄フェノール誘導体を配合している(特開平7−245478号公報)。
【0006】
一方、液晶表示器(LCD)や半導体パッケージの更なる小型化・軽量化に伴い、更に進んだ高密度実装技術が要求されている。また、最近の異方導電性フィルム(ACF)やダイボンドフィルム等の接着剤が対象とする被接着物の表面層も、銅のほかに、銀、金、金/パラジウム、あるいは窒化珪素などの比較的接着の困難な金属材料が相対的に増えている。
【0007】
【発明が解決しようとする課題】
このような銅、銀、金、金/パラジウム、あるいは窒化珪素などの材料に被覆された表面は汚染の影響を受けやすい。また、これらの金属材料表面に対して従来の接着剤では、接着性、安定性等で必ずしも満足できない場合がある。
【0008】
本発明の目的は、新規なフェノール誘導体を提供することであり、また、別の目的は、銅、銀、金、金/パラジウムなどの金属材料で被覆された表面層に優れた接着力を示す接着剤を提供することである。
【0009】
【課題を解決するための手段】
本発明者らは、銅、銀、金、金/パラジウムなどで被覆された金属表面に優れた接着力を示す化合物又は接着剤を種々検討したところ、チオエーテル構造あるいはジスルフィド構造をもつフェノール誘導体が接着剤の接着力向上に大きく寄与することを見出し、本発明を完成するに至った。
【0010】
すなわち、本発明は、式(21)で表される(ジスルフィド構造をもつ)フェノール誘導体である。
【化5】

Figure 0004748341
〔式中、Rは炭素数が2又は3のメチレン鎖、Rは炭素数が1〜10のメチレン鎖、Gは水素原子、メチル基、エチル基、ブチル基、メトキシ基、エトキシ基、ブトキシ基、水酸基、カルボキシル基、ニトロ基、アミン基、ノニル基、フェニレン基、ベンジル基又はハロゲン原子のいずれかを指す〕。
【0011】
また、本発明は、式(21)で表される(ジスルフィド構造をもつ)フェノール誘導体の製造法に関する。式(21)のフェノール誘導体は、最初に、合成原料となる式(11)で表される(チオエーテル構造をもつ)フェノール誘導体を製造する
【化6】
Figure 0004748341
〔式中、R、R、Gは、式(21)中における意味と同じ。〕
【0012】
(11)のフェノール誘導体の製造法においては、式(1)又は式(2)
【化7】
Figure 0004748341
〔式中、Gは、式(21)中における意味と同じ。〕で表されるフェノール化合物と、式(3)
【化8】
HS−R−SH (3)
〔式中、Rは、式(21)中における意味と同じ。〕で表されるジチオールとを、加熱・反応させる。
【0013】
のようにして得られた式(11)のフェノール誘導体を、溶媒中、過酸化水素を用いて酸化反応させることを特徴とする、前記式(21)のフェノール誘導体の製造法である
【0014】
【発明の実施の形態】
以下、本発明を更に具体的に説明する。
本発明のジスルフィド構造をもつフェノール誘導体は、上で述べたように、式(21)で表されるジスルフィド構造をもつフェノール誘導体である。
【0015】
ここで、Rが炭素数3のメチレン鎖の場合、上記フェノール誘導体は次の式(22)で表される。
【化9】
Figure 0004748341
〔式中、Rは炭素数が1〜10のメチレン鎖、Gは水素原子、メチル基、エチル基、ブチル基、メトキシ基、エトキシ基、ブトキシ基、水酸基、カルボキシル基、ニトロ基、アミン基、ノニル基、フェニレン基、ベンジル基又はハロゲン原子のいずれかを示す。〕
【0016】
Gがメトキシ基の場合、上記フェノール誘導体は例えば次の式(23)で表され、Gが水素原子の場合、上記フェノール誘導体は例えば次の式(24)で表される。
【化10】
Figure 0004748341
〔式中、Rは炭素数が1〜10のメチレン鎖を示す。〕
【0017】
オエーテル構造をもつフェノール誘導体は、上で述べたように、式(11)で表されるフェノール誘導体である。ここで、Rが炭素数3のメチレン鎖の場合、上記フェノール誘導体は次の式(12)で表される。
【化11】
Figure 0004748341
〔式中、Rは炭素数が1〜10のメチレン鎖、Gは水素原子、メチル基、エチル基、ブチル基、メトキシ基、エトキシ基、ブトキシ基、水酸基、カルボキシル基、ニトロ基、アミン基、ノニル基、フェニレン基、ベンジル基又はハロゲン原子のいずれかを示す。〕
【0018】
Gがメトキシ基の場合、上記フェノール誘導体は例えば次の式(13)で表され、Gが水素原子の場合、上記フェノール誘導体は例えば次の式(14)で表される。
【化12】
Figure 0004748341
〔式中、Rは炭素数が1〜10のメチレン鎖を示す。〕
【0019】
本発明の式(11)のチオエーテル構造をもつフェノール誘導体の製造法について先ず、説明する。
式(1)のアリル基で置換されたフェノール又は式(2)のビニル基で置換されたフェノールの所定量を反応容器に秤量し、次いで、式(3)のジチオールの所定量を加える。ここで、式(1)のフェノール又は式(2)のフェノールの量と、式(3)のジチオールの量は等モル比を基本とする。一方が他方よりも過剰であれば、その過剰分は未反応のまま残るので好ましくない。
反応温度や反応時間等の反応条件は、反応(求核置換反応)が十分に進行する条件を選ぶ。概ね、反応温度は100℃〜200℃、反応時間は30分〜7時間程度である。
【0020】
さらに反応を具体的に説明する。反応は、反応容器中にて撹拌、還流させながら加熱する。雰囲気は窒素ガス等の不活性雰囲気中でもよいが、通常は、空気中で行う。所定の時間を保持すると、式(11)のフェノール誘導体(フェノリックモノチオール)が得られる。得られたフェノール誘導体(フェノリックモノチオール)は、反応物混合系から単離・精製してもよいが、単離・精製することなくこれを原料として、式(21)のフェノール誘導体の製造に供することができる。
【0021】
次に、得られたフェノール誘導体(フェノリックモノチオール)を、溶媒中で、過酸化水素を用いて酸化反応させ、式(21)のフェノール誘導体を得る。過酸化水素は、過酸化水素液(30−35%水溶液)として市販されているものを用いることができ、その使用量は基質であるフェノール誘導体(フェノリックモノチオール)と等モル又はほぼ等モルとする。
用いる溶媒としては、式(21)のフェノール誘導体及び水(過酸化水素水中に存在するもの)の両方を溶かす溶媒、例えば、メタノール、エタノール等のアルコール類やアセトン等を用いることができ、好ましくはエタノールである。
反応温度や反応時間等の反応条件は、酸化反応が十分に進行する条件を選ぶ。概ね、反応温度50℃〜70℃、反応時間1時間〜3時間程度である。
【0022】
さらに反応を具体的に説明する。フェノール誘導体(フェノリックモノチオール)の適量を反応容器に秤量し、これに過酸化水素液のエタノール希釈液(過酸化水素液と等重量のエタノールで薄めたもの)を徐々に滴下する。このとき滴下量は、過酸化水素基準でフェノール誘導体(フェノリックモノチオール)に対して等モル又はほぼ等モルとする。その後、攪拌しながら50℃〜70℃で加熱する。反応の進行をGPCで確認する。反応終了後、アセトン及び蒸留水にて反応生成物を抽出し、さらにエバポレータにより濃縮し、式(21)のフェノール誘導体(フェノリックジスルフィド)を得る。
【0023】
なお、反応の進行過程を追ったGPCは、溶離液にテトラヒドロフラン(THF)を用い、測定濃度は2.0g/Lとした。測定機器は島津製作所製C−R4A、カラムは東ソー社製TSK gel G3000HxL+TSK gel G2000HxL、RIモニタは日立製作所製L−3300、ポンプには日立製作所製L−6000を用いた。
【0024】
【実施例】
以下、本発明を実施例により説明する。
実施例1 フェノリックモノチオール〔式(14)のフェノール誘導体のうち、Rが炭素数2のメチレン鎖である化合物〕の合成
2−アリルフェノール74.0g(0.536mol)をセパラブルフラスコに秤量し、これにエタンジチオール50.5g(0.536mol)を添加した。4つ口セパラブルフラスコの蓋(セパラブルカバー)側に還流管及び攪拌翼が付いた攪拌棒を取り付け、攪拌シールを介してその攪拌棒を攪拌用モータに繋いだ。この状態で、攪拌しながら、油浴上にて150℃で加熱を始めた。還流状態で、約4時間保持した。反応性生物のGPCを図1に示した。2本のピークが存在し、初めに表れたピーク(左のピーク)は副生成物、2番目に表れたピーク(右のピーク)がモノチオール体である。
また、反応性生物の赤外吸収スペクトラムを図2に示した。2550cm−1付近にチオール(SH)起因の吸収ピークが認められる。
【0025】
実施例2 フェノリックジスルフィド〔式(24)のフェノール誘導体のうち、Rが炭素数2のメチレン鎖である化合物〕の合成
実施例1で得られたフェノリックモノチオール(含有率65%)を35g(モノチオールのモル量が0.1mol)セパラブルフラスコに秤量し、エタノールで2倍にうすめた30%過酸化水素水を徐々に滴下した(約3.4ml)。この後、攪拌しながら約70℃で加熱した。GPCで反応の進行を追った。反応終了後、アセトン及び蒸留水にて反応生成物を抽出し、さらにエバポレータで濃縮した。濃縮物のGPCを図3に示した。2本のピークがあり、初めに表れた大きなピーク(左のピーク)がフェノリックジスルフィド、2番目に表れたピーク(右のピーク)がモノチオール体のピークであった。これから、モノチオールがジスルフィドに反応していることが分かる。なお、ジスルフィドのピークは、図1の副生成物のピーク出現位置とわずかに異なっている。
濃縮物の赤外吸収スペクトラムを図4に示した。2550cm−1付近のチオール(SH)起因の吸収ピークが消失していることから、チオールが反応してジスルフィドになったことが分かる。
【0026】
<応用例> 接着剤への応用
(ポリイミド樹脂の合成)
攪拌装置、窒素導入管、乾燥管を備えた1リットルの4つ口フラスコに、2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパンを41.0g(0.10モル)を入れ、窒素気流下、NMP(N−メチルピロリドン)250gを加えて溶液とした。フラスコを水浴上に移し、激しく攪拌させながら1,2−(エチレン)ビス(トリメリテート二無水物)41.0g(0.10モル)を少量ずつ加えた。酸二無水物がほぼ溶解したら、ゆっくりと攪拌しながら6時間反応させ、ポリアミド溶液を得た。
【0027】
次に、前記のポリアミド溶液が入った4つ口フラスコに蒸留装置を装着し、キシレン220gを加えた。窒素気流下、180℃の油浴上で激しく攪拌しながら、イミド化により生成する縮合水をキシレン共に共沸留去した。その反応液を水中に注ぎ、沈殿したポリマーを濾別乾燥してポリイミド得た。
【0028】
(ワニスの調合)
得られたポリイミド100重量部に対してDMAc(ジメチルアセトアミド)500重量部とTCG−1(フィラー)200重量部とを配合してポリイミドワニスを調合すると共に、この時点で、実施例2で得られたフェノリックジスルフィドを5重量部配合した。
【0029】
(接着フィルムの作成)
ポリプロピレンフィルム基材上に上記ワニスを30〜50μmの厚さに塗布し、80℃で10分、続いて150℃で30分、加熱・乾燥し、室温で冷やしたのち、乾燥物を基材から剥がして接着フィルム(試験片A)を得た。なお、上記フェノリックジスルフィド無添加で同様に作成した接着フィルム(試験片B)を比較(対照)として用いた。
【0030】
(接着フィルムの評価)
上記方法で得られた接着フィルムについて、ピール接着力(引き剥がし強さ)を測定した。
接着フィルムを5mm×5mmの大きさに切断し、これを5mm×5mmのシリコンチップと銅リードフレームの間に挟み、1kgの加重をかけて、180℃または250℃で圧着させた後、180℃で一時間加熱して接着フィルムを硬化させた。245℃または275℃、20秒加熱時の引き剥がし強さをプッシュプルゲージで測定した。
【0031】
(評価結果)
測定結果を表1に示した。
【表1】
Figure 0004748341
【0032】
フェノリックジスルフィドを配合していない接着フィルム(試験片B)のピール強度は、180℃圧着で0.3(245℃測定)、0.1(275℃測定)、250℃圧着で0.2(245℃測定)、0.1(275℃測定)であったのに対して、フェノリックジスルフィドを配合した接着フィルム(試験片A)のピール強度は、180℃圧着で1.5(245℃測定)、1.7(275℃測定)、250℃圧着で1.9(245℃測定)、1.8(275℃測定)とピール強度が向上していた。
【0033】
【発明の効果】
本発明の式(21)のフェノール誘導体は新規な化合物である。
本発明の式(11)のフェノール誘導体も新規な化合物であり、上記式(21)のフェノール誘導体の合成中間体となる。
本発明に係る式(11)のフェノール誘導体の製造法により、式(11)のフェノール誘導体を容易に合成できる。
本発明に係る式(21)のフェノール誘導体の製造法により、式(21)のフェノール誘導体を容易に合成できる。
本発明で得られる式(21)のフェノール誘導体は樹脂系接着剤に配合すれば、金属材料で被覆された表面層にも優れた接着力を示す。これらは、半導体実装技術に有用な添加剤となる。
【図面の簡単な説明】
【図1】実施例1における生成反応物(フェノリックモノチオール)のGPCチャート
【図2】実施例1における生成反応物(フェノリックモノチオール)のIR測定チャート
【図3】実施例2における生成反応物(フェノリックジスルフィド)のGPCチャート
【図4】実施例2における生成反応物(フェノリックジスルフィド)のIR測定チャート[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel phenol derivative and a method for producing the same. The phenol derivative of the present invention is useful for improving the adhesive force of a polymer adhesive for liquid crystal display (LCD), semiconductor mounting and the like.
[0002]
[Prior art]
Phenolic resin is one of the widely used adhesives for liquid crystal displays (LCDs) for electrical and electronic parts and semiconductor packages, and specific phenol derivatives are used to enhance various properties of adhesives. is there.
[0003]
For example, in a conductive adhesive, in addition to an epoxy resin as a base resin, a polyallylphenol resin as a curing agent is blended to form an adhesive (Japanese Patent Laid-Open No. 6-322350).
[0004]
In the tape with adhesive for TAB, in addition to the polyimide resin that is a component of the adhesive, it contains a phenol derivative in which a sulfur atom or an oxygen atom is introduced between phenolic carbon and phenolic carbon, resulting in high adhesion and high insulation. A tape with an adhesive for TAB is obtained (Japanese Patent Laid-Open No. 11-260865).
[0005]
Moreover, in the adhesive for flexible printed circuit boards, a sulfur-containing phenol derivative having a specific structure is blended as an antioxidant for acrylonitrile butadiene rubber, which is a component other than the thermosetting resin (Japanese Patent Laid-Open No. 7-245478). ).
[0006]
On the other hand, with the further miniaturization and weight reduction of liquid crystal displays (LCD) and semiconductor packages, further advanced high-density packaging technology is required. In addition to copper, the surface layer of adherends targeted by adhesives such as recent anisotropic conductive films (ACF) and die bond films is also a comparison of silver, gold, gold / palladium, or silicon nitride. There is a relative increase in the number of metallic materials that are difficult to bond together.
[0007]
[Problems to be solved by the invention]
Surfaces coated with such materials as copper, silver, gold, gold / palladium, or silicon nitride are susceptible to contamination. In addition, conventional adhesives for these metal material surfaces may not always be satisfactory in terms of adhesion, stability, and the like.
[0008]
An object of the present invention is to provide a novel phenol derivative, and another object is to show excellent adhesion to a surface layer coated with a metal material such as copper, silver, gold, gold / palladium. It is to provide an adhesive.
[0009]
[Means for Solving the Problems]
The inventors of the present invention have studied various compounds or adhesives that exhibit excellent adhesion on metal surfaces coated with copper, silver, gold, gold / palladium, etc., and found that phenol derivatives having a thioether structure or a disulfide structure are bonded. The present inventors have found that it greatly contributes to improving the adhesive strength of the agent, and have completed the present invention.
[0010]
That is, the present invention is a phenol derivative (having a disulfide structure) represented by the formula (21).
[Chemical formula 5]
Figure 0004748341
[Wherein R 1 is a methylene chain having 2 or 3 carbon atoms, R 2 is a methylene chain having 1 to 10 carbon atoms, G is a hydrogen atom, a methyl group, an ethyl group, a butyl group, a methoxy group, an ethoxy group, It refers butoxy group, a hydroxyl group, a carboxyl group, a nitro group, an amine group, a nonyl group, a phenylene group, one of the benzyl group or a halogen atom].
[0011]
The present invention also relates to a method for producing a phenol derivative (having a disulfide structure) represented by formula (21). Phenol derivatives of the formula (21) is first (with thioether structure) represented by the formula (11) as a synthetic raw material for producing a phenol derivative.
[Chemical 6]
Figure 0004748341
[Wherein R 1 , R 2 and G have the same meaning as in formula (21). ]
[0012]
Equation (11) In the production process of phenol induction of formula (1) or Formula (2)
[Chemical 7]
Figure 0004748341
[Wherein G has the same meaning as in formula (21). A phenol compound represented by formula (3)
[Chemical 8]
HS-R 2 -SH (3)
[Wherein, R 2 has the same meaning as in formula (21). A dithiol represented by], Ru heated or reaction.
[0013]
The phenol derivatives of the so obtained this equation (11), in a solvent, characterized in that the oxidation reaction using hydrogen peroxide, is a method for producing a phenol derivative of the formula (21).
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described more specifically.
As described above, the phenol derivative having a disulfide structure of the present invention is a phenol derivative having a disulfide structure represented by the formula (21).
[0015]
Here, when R 1 is a methylene chain having 3 carbon atoms, the phenol derivative is represented by the following formula (22).
[Chemical 9]
Figure 0004748341
[Wherein R 2 is a methylene chain having 1 to 10 carbon atoms, G is a hydrogen atom , methyl group, ethyl group, butyl group, methoxy group, ethoxy group, butoxy group, hydroxyl group, carboxyl group, nitro group, amine group , Nonyl group, phenylene group, benzyl group or halogen atom . ]
[0016]
When G is a methoxy group, the phenol derivative is represented, for example, by the following formula (23). When G is a hydrogen atom, the phenol derivative is represented, for example, by the following formula (24).
[Chemical Formula 10]
Figure 0004748341
[Wherein R 2 represents a methylene chain having 1 to 10 carbon atoms. ]
[0017]
Phenol derivatives with Chi thioether structure, as discussed above, a phenol derivative represented by the formula (11). Here, when R 1 is a methylene chain having 3 carbon atoms, the phenol derivative is represented by the following formula (12).
Embedded image
Figure 0004748341
[Wherein R 2 is a methylene chain having 1 to 10 carbon atoms, G is a hydrogen atom , methyl group, ethyl group, butyl group, methoxy group, ethoxy group, butoxy group, hydroxyl group, carboxyl group, nitro group, amine group , Nonyl group, phenylene group, benzyl group or halogen atom . ]
[0018]
When G is a methoxy group, the phenol derivative is represented, for example, by the following formula (13). When G is a hydrogen atom, the phenol derivative is represented, for example, by the following formula (14).
Embedded image
Figure 0004748341
[Wherein R 2 represents a methylene chain having 1 to 10 carbon atoms. ]
[0019]
First, a method for producing a phenol derivative having a thioether structure of the formula (11) of the present invention will be described.
A predetermined amount of phenol substituted with an allyl group of formula (1) or phenol substituted with a vinyl group of formula (2) is weighed into a reaction vessel, and then a predetermined amount of dithiol of formula (3) is added. Here, the amount of phenol of formula (1) or phenol of formula (2) and the amount of dithiol of formula (3) are based on equimolar ratio. If one is more than the other, the excess remains unreacted, which is not preferable.
Reaction conditions such as reaction temperature and reaction time are selected so that the reaction (nucleophilic substitution reaction) proceeds sufficiently. In general, the reaction temperature is 100 ° C. to 200 ° C., and the reaction time is about 30 minutes to 7 hours.
[0020]
Further, the reaction will be specifically described. The reaction is heated while stirring and refluxing in a reaction vessel. The atmosphere may be an inert atmosphere such as nitrogen gas, but is usually performed in air. When the predetermined time is maintained, the phenol derivative (phenolic monothiol) of the formula (11) is obtained. The obtained phenol derivative (phenolic monothiol) may be isolated and purified from the reactant mixture system, but is used as a raw material for the production of the phenol derivative of formula (21) without isolation and purification. be able to.
[0021]
Next, the obtained phenol derivative (phenolic monothiol) is oxidized using hydrogen peroxide in a solvent to obtain a phenol derivative of the formula (21). As the hydrogen peroxide, a commercially available hydrogen peroxide solution (30-35% aqueous solution) can be used, and the amount used thereof is equimolar or nearly equimolar with the phenol derivative (phenolic monothiol) as the substrate. To do.
As the solvent to be used, a solvent that dissolves both the phenol derivative of the formula (21) and water (present in hydrogen peroxide water), for example, alcohols such as methanol and ethanol, acetone, and the like can be used. Ethanol.
Reaction conditions such as reaction temperature and reaction time are selected so that the oxidation reaction proceeds sufficiently. In general, the reaction temperature is 50 to 70 ° C., and the reaction time is about 1 to 3 hours.
[0022]
Further, the reaction will be specifically described. An appropriate amount of a phenol derivative (phenolic monothiol) is weighed in a reaction vessel, and an ethanol dilution of a hydrogen peroxide solution (thinned with an equal weight of ethanol to a hydrogen peroxide solution) is gradually added dropwise thereto. At this time, the dropping amount is equimolar or almost equimolar with respect to the phenol derivative (phenolic monothiol) based on hydrogen peroxide. Then, it heats at 50 to 70 degreeC, stirring. The progress of the reaction is confirmed by GPC. After completion of the reaction, the reaction product is extracted with acetone and distilled water, and further concentrated by an evaporator to obtain a phenol derivative (phenolic disulfide) of the formula (21).
[0023]
In addition, GPC which followed the progress process of reaction used tetrahydrofuran (THF) as an eluent, and measured concentration was 2.0 g / L. The measuring instrument was C-R4A manufactured by Shimadzu Corporation, the column was TSK gel G3000HxL + TSK gel G2000HxL manufactured by Tosoh Corporation, the RI monitor was L-3300 manufactured by Hitachi, and the pump L-6000 manufactured by Hitachi was used.
[0024]
【Example】
Hereinafter, the present invention will be described with reference to examples.
Example 1 Synthesis of phenolic monothiol [a compound in which R 2 is a methylene chain having 2 carbon atoms among the phenol derivatives of formula (14)] Weigh 74.0 g (0.536 mol) of allylphenol into a separable flask. Then, 50.5 g (0.536 mol) of ethanedithiol was added thereto. A stirring rod with a reflux tube and a stirring blade was attached to the lid (separable cover) side of the four-necked separable flask, and the stirring rod was connected to a stirring motor via a stirring seal. In this state, heating was started at 150 ° C. on an oil bath while stirring. Hold at reflux for about 4 hours. The GPC of the reactive organism is shown in FIG. There are two peaks. The first peak (left peak) is a by-product, and the second peak (right peak) is a monothiol form.
Moreover, the infrared absorption spectrum of the reactive organism is shown in FIG. An absorption peak due to thiol (SH) is observed in the vicinity of 2550 cm −1 .
[0025]
Example 2 Synthesis of phenolic disulfide [a compound in which R 2 is a methylene chain having 2 carbon atoms among the phenol derivatives of formula (24)] 35 g of phenolic monothiol (65% content) obtained in Example 1 30% hydrogen peroxide solution diluted with ethanol twice was gradually added dropwise (about 3.4 ml). This was followed by heating at about 70 ° C. with stirring. The progress of the reaction was followed by GPC. After completion of the reaction, the reaction product was extracted with acetone and distilled water, and further concentrated with an evaporator. The GPC of the concentrate is shown in FIG. There were two peaks. The first large peak (left peak) was phenolic disulfide, and the second peak (right peak) was a monothiol peak. This shows that monothiol is reacting with disulfide. The disulfide peak is slightly different from the peak appearance position of the by-product in FIG.
The infrared absorption spectrum of the concentrate is shown in FIG. Since the absorption peak due to thiol (SH) near 2550 cm −1 disappears, it can be seen that the thiol reacted to become disulfide.
[0026]
<Application examples> Application to adhesives (synthesis of polyimide resin)
Into a 1 liter four-necked flask equipped with a stirrer, a nitrogen inlet tube, and a drying tube was placed 41.0 g (0.10 mol) of 2,2-bis (4- (4-aminophenoxy) phenyl) propane. In a nitrogen stream, 250 g of NMP (N-methylpyrrolidone) was added to prepare a solution. The flask was transferred to a water bath, and 41.0 g (0.10 mol) of 1,2- (ethylene) bis (trimellitate dianhydride) was added little by little with vigorous stirring. When the acid dianhydride was almost dissolved, the mixture was reacted for 6 hours with slow stirring to obtain a polyamide solution.
[0027]
Next, a distillation apparatus was attached to the four-necked flask containing the polyamide solution, and 220 g of xylene was added. Condensed water produced by imidization was distilled off azeotropically with xylene while stirring vigorously on a 180 ° C. oil bath under a nitrogen stream. The reaction solution was poured into water, and the precipitated polymer was separated by filtration and dried to obtain a polyimide.
[0028]
(Varnish formulation)
A polyimide varnish was prepared by blending 500 parts by weight of DMAc (dimethylacetamide) and 200 parts by weight of TCG-1 (filler) with respect to 100 parts by weight of the obtained polyimide. 5 parts by weight of phenolic disulfide was added.
[0029]
(Creation of adhesive film)
The above varnish is applied on a polypropylene film substrate to a thickness of 30 to 50 μm, heated and dried at 80 ° C. for 10 minutes, then at 150 ° C. for 30 minutes, cooled at room temperature, and dried product is removed from the substrate. The adhesive film (test piece A) was obtained by peeling. In addition, the adhesive film (test piece B) produced similarly without adding the phenolic disulfide was used as a comparison (control).
[0030]
(Evaluation of adhesive film)
About the adhesive film obtained by the said method, the peel adhesive force (peeling strength) was measured.
The adhesive film is cut into a size of 5 mm × 5 mm, and is sandwiched between a 5 mm × 5 mm silicon chip and a copper lead frame, applied with a weight of 1 kg and pressed at 180 ° C. or 250 ° C., and then 180 ° C. The adhesive film was cured by heating for 1 hour. The peel strength when heated at 245 ° C. or 275 ° C. for 20 seconds was measured with a push-pull gauge.
[0031]
(Evaluation results)
The measurement results are shown in Table 1.
[Table 1]
Figure 0004748341
[0032]
The peel strength of the adhesive film containing no phenolic disulfide (test piece B) is 0.3 (measured at 245 ° C.), 0.1 (measured at 275 ° C.), 0.1 (measured at 275 ° C.), and 0.2 (245) at 250 ° C. The peel strength of the adhesive film (test piece A) blended with phenolic disulfide is 1.5 (measured at 245 ° C.) at 180 ° C., whereas 0.1 (measured at 275 ° C.). The peel strength was improved by 1.7 (measured at 275 ° C.) and 1.9 (measured at 245 ° C.) and 1.8 (measured at 275 ° C.) when pressed at 250 ° C.
[0033]
【The invention's effect】
The phenol derivative of the formula (21) of the present invention is a novel compound.
The phenol derivative of the formula (11) of the present invention is also a novel compound and becomes a synthetic intermediate of the phenol derivative of the formula (21).
The phenol derivative of formula (11) can be easily synthesized by the method for producing a phenol derivative of formula (11) according to the present invention.
By the method for producing a phenol derivative of formula (21) according to the present invention, a phenol derivative of formula (21) can be easily synthesized.
When the phenol derivative of the formula (21) obtained in the present invention is blended with a resin-based adhesive, it exhibits excellent adhesive force even on a surface layer coated with a metal material. These are useful additives for semiconductor packaging technology.
[Brief description of the drawings]
1 is a GPC chart of a product reactant (phenolic monothiol) in Example 1. FIG. 2 is an IR measurement chart of a product reactant (phenolic monothiol) in Example 1. FIG. 3 is a product reactant in Example 2. GPC chart of (phenolic disulfide) FIG. 4 is an IR measurement chart of the product reaction product (phenolic disulfide) in Example 2.

Claims (2)

式(21)で表されるフェノール誘導体。
Figure 0004748341
〔式中、Rは炭素数が2又は3のメチレン鎖、Rは炭素数が1〜10のメチレン鎖、Gは水素原子、メチル基、エチル基、ブチル基、メトキシ基、エトキシ基、ブトキシ基、水酸基、カルボキシル基、ニトロ基、アミン基、ノニル基、フェニレン基、ベンジル基又はハロゲン原子のいずれかを示す。〕
A phenol derivative represented by the formula (21).
Figure 0004748341
[Wherein R 1 is a methylene chain having 2 or 3 carbon atoms, R 2 is a methylene chain having 1 to 10 carbon atoms , G is a hydrogen atom , a methyl group, an ethyl group, a butyl group, a methoxy group, an ethoxy group, A butoxy group, a hydroxyl group, a carboxyl group, a nitro group, an amine group, a nonyl group, a phenylene group, a benzyl group, or a halogen atom is shown. ]
式(1)又は式(2)
Figure 0004748341
〔式中、Gは水素原子、メチル基、エチル基、ブチル基、メトキシ基、エトキシ基、ブトキシ基、水酸基、カルボキシル基、ニトロ基、アミン基、ノニル基、フェニレン基、ベンジル基又はハロゲン原子のいずれかを示す。〕で表されるフェノール化合物と、式(3)
【化3】
HS−R−SH (3)
〔式中、Rは炭素数が1〜10のメチレン鎖を示す。〕で表されるジチオールとを、加熱して反応させ式(11)のフェノール誘導体製造し、式(11)のフェノール誘導体を、溶媒中、過酸化水素を用いて酸化反応させる、請求項1に記載の式(21)のフェノール誘導体の製造法。
Figure 0004748341
〔式中、R は炭素数が2又は3のメチレン鎖、R は炭素数が1〜10のメチレン鎖、Gは水素原子、メチル基、エチル基、ブチル基、メトキシ基、エトキシ基、ブトキシ基、水酸基、カルボキシル基、ニトロ基、アミン基、ノニル基、フェニレン基、ベンジル基又はハロゲン原子のいずれか又は置換基を示す。〕
Formula (1) or Formula (2)
Figure 0004748341
[Wherein G is a hydrogen atom , methyl group, ethyl group, butyl group, methoxy group, ethoxy group, butoxy group, hydroxyl group, carboxyl group, nitro group, amine group, nonyl group, phenylene group, benzyl group or halogen atom. Indicates either . A phenol compound represented by formula (3)
[Chemical 3]
HS-R 2 -SH (3)
[Wherein R 2 represents a methylene chain having 1 to 10 carbon atoms. A dithiol represented by], heated to produce phenol derivatives reacted formula (11), a phenol derivative of formula (11), in a solvent, to the oxidation reaction with hydrogen peroxide, claim A process for producing a phenol derivative of formula (21) according to 1.
Figure 0004748341
[Wherein R 1 is a methylene chain having 2 or 3 carbon atoms , R 2 is a methylene chain having 1 to 10 carbon atoms, G is a hydrogen atom, a methyl group, an ethyl group, a butyl group, a methoxy group, an ethoxy group, A butoxy group, a hydroxyl group, a carboxyl group, a nitro group, an amine group, a nonyl group, a phenylene group, a benzyl group, a halogen atom, or a substituent is shown. ]
JP2001119198A 2001-04-18 2001-04-18 Phenol derivative having thioether structure or disulfide structure, and production method thereof Expired - Fee Related JP4748341B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001119198A JP4748341B2 (en) 2001-04-18 2001-04-18 Phenol derivative having thioether structure or disulfide structure, and production method thereof
TW91123403A TW593388B (en) 2001-04-18 2002-10-11 Novel sulfur containing phenolic resins and preparation thereof, phenol derivatives containing thioether of disulfide structure and preparation thereof, epoxy resin combinations and adhesive agents

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001119198A JP4748341B2 (en) 2001-04-18 2001-04-18 Phenol derivative having thioether structure or disulfide structure, and production method thereof

Publications (2)

Publication Number Publication Date
JP2002316976A JP2002316976A (en) 2002-10-31
JP4748341B2 true JP4748341B2 (en) 2011-08-17

Family

ID=18969455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001119198A Expired - Fee Related JP4748341B2 (en) 2001-04-18 2001-04-18 Phenol derivative having thioether structure or disulfide structure, and production method thereof

Country Status (1)

Country Link
JP (1) JP4748341B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003327669A (en) * 2002-05-13 2003-11-19 Hitachi Chem Co Ltd Epoxy resin composition and adhesive
JP4748342B2 (en) * 2001-04-24 2011-08-17 日立化成工業株式会社 Novel sulfur-containing phenolic resin and process for producing the same
JP5060039B2 (en) * 2005-10-27 2012-10-31 Hoya株式会社 Method for producing polythiol oligomer
JP5266797B2 (en) * 2008-03-04 2013-08-21 住友ベークライト株式会社 Resin composition, adhesive layer, and semiconductor device manufactured using them
WO2009057530A1 (en) * 2007-10-29 2009-05-07 Sumitomo Bakelite Co., Ltd. Adhesive composition for semiconductor and semicondutor device produced using the adhesive composition
JP5830422B2 (en) * 2012-03-29 2015-12-09 住友精化株式会社 Alcohol derivative and method for producing alcohol derivative

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314800A (en) * 1976-07-28 1978-02-09 Showa Highpolymer Co Ltd Curable resin composition
US4721814A (en) * 1986-01-23 1988-01-26 Ciba-Geigy Corporation Mercaptan-containing polyphenols
US5459173A (en) * 1993-06-22 1995-10-17 Loctite Corporation Stabilizer system for thiol-ene and thiol-nene compositions

Also Published As

Publication number Publication date
JP2002316976A (en) 2002-10-31

Similar Documents

Publication Publication Date Title
JP2585552B2 (en) Polyimide
JPH05186479A (en) New imidazolesilane compound and its production and metal surface treating agent using the same
JP4535245B2 (en) Partially-blocked polyimide-polysiloxane copolymer, process for producing the same, and resin composition containing the copolymer
CN110317535B (en) Silicone-modified polyimide resin composition
US7256248B2 (en) Imide silicone resin and production process therefor
JP3700311B2 (en) Siloxane polyimide and heat-resistant adhesive containing the same
JPH0117455B2 (en)
WO2008041723A1 (en) Two-part thermocurable polyimide resin composition and cured product thereof
JP4748341B2 (en) Phenol derivative having thioether structure or disulfide structure, and production method thereof
US20050222369A1 (en) Novel sulfurized phenolic resin, process for producing the same, phenol derivative having thioeter structure or disulfide structure, process for producing the same, and epoxy resin composition and adhesive
JP2016151046A (en) Surface treatment agent, resin composition, and use of the same
JP2018188626A (en) Silicone-modified polyimide resin composition
JP2013500378A (en) Surface treatment agent composition, method for producing the same, copper foil for printed circuit board, and flexible copper foil laminated film
JP4114464B2 (en) Phenol derivative and method for producing the same
JP4051616B2 (en) Resin composition for coating and metal foil laminate circuit board
JP4225325B2 (en) Siloxane polyimide and heat-resistant adhesive containing the same
JP4103142B2 (en) Process for producing methoxysilyl group-containing silane-modified polyimidesiloxane resin, the resin, the resin composition, a cured film, and a metal foil laminate
US6252033B1 (en) Method for the preparation of polyamic acid and polymide useful for adhesives
JPH08302016A (en) Siloxane-modified polyimide resin composition
JP4749606B2 (en) Epoxy group-containing polyimide copolymer and cured product thereof
JPS6159906B2 (en)
JPH10219225A (en) Adhesive composition
JP2770562B2 (en) Soluble aromatic polyimide and its production method
JPH08120040A (en) Heat-resistant electrical insulating material and production of heat-resistant electrical insulating film from the same
JP4018589B2 (en) Reactive silyl group-containing bisimide compound and method for producing the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060322

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110504

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees