JP4114464B2 - Phenol derivative and method for producing the same - Google Patents

Phenol derivative and method for producing the same Download PDF

Info

Publication number
JP4114464B2
JP4114464B2 JP2002338431A JP2002338431A JP4114464B2 JP 4114464 B2 JP4114464 B2 JP 4114464B2 JP 2002338431 A JP2002338431 A JP 2002338431A JP 2002338431 A JP2002338431 A JP 2002338431A JP 4114464 B2 JP4114464 B2 JP 4114464B2
Authority
JP
Japan
Prior art keywords
group
phenol derivative
resin
general formula
adherend
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002338431A
Other languages
Japanese (ja)
Other versions
JP2004168730A (en
Inventor
尚 熊木
晴昭 陶
秀康 立木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP2002338431A priority Critical patent/JP4114464B2/en
Publication of JP2004168730A publication Critical patent/JP2004168730A/en
Application granted granted Critical
Publication of JP4114464B2 publication Critical patent/JP4114464B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、フェノール誘導体、フェノール誘導体の製造方法、熱可塑性樹脂組成物、感光性樹脂組成物、接着力向上方法及び耐湿性向上方法に関する。
【0002】
【従来の技術】
電気・電子部品の液晶表示器(LCD)や半導体パッケージの接着及び封止のための材料としてフェノール樹脂が広く用いられている。また、電気・電子部品の種々の特性を高めるために特定構造のフェノール誘導体が適用され、難接着面への接着力向上のため、含イオウ化合物の添加を行う場合がある。
【0003】
例えば、導電性接着剤では、基材樹脂としてのエポキシ樹脂の他に、硬化剤としてのポリアリルフェノール樹脂を配合している(特許文献1)。
【0004】
また、TAB用接着剤付きテープにおいては、接着剤の構成成分であるポリアミド樹脂の他に、フェノール炭素−フェノール炭素間に硫黄原子や酸素原子を導入したフェノール誘導体を含有させて、接着性及び絶縁性の改良を図っている(特許文献2)。
【0005】
フレキシブル印刷回路基板用接着剤においては、添加成分であるアクリロニトリルブタジエンゴムの酸化防止剤として、特定構造の含硫黄フェノール誘導体が配合される場合がある(特許文献3)。
【0006】
また、封止用樹脂組成物では、接着性向上のための添加剤として、テトラスルフィド構造を有する化合物(特許文献4)やジスルフィド構造を有する化合物(特許文献5、特許文献6)が用いられている。
【0007】
一方、液晶表示器(LCD)や半導体パッケージの小型化・軽量化に伴い、高密度実装技術が要求されており、最近の異方導電性フィルム(ACF)やダイボンドフィルム等の接着剤に対する被接着対象物の表面層の材料として、銅の他に、銀、金、パラジウム、金パラジウム合金、あるいは窒化珪素等が多く用いられるようになってきている。
【0008】
【特許文献1】
特開平6−322350号公報
【特許文献2】
特開平11−260865号公報
【特許文献3】
特開平7−245478号公報
【特許文献4】
特開2000−136290号公報
【特許文献5】
特開2002−3704号公報
【特許文献6】
特開2002−249548号公報
【0009】
【発明が解決しようとする課題】
しかしながら、銅、銀、金、パラジウム、金パラジウム合金等の金属材料、あるいは窒化珪素等の材料は難接着素材であり、これらの材料で基材が被覆された表面は汚染の影響も受けやすいことから、表面層が上記材料で構成される基材に対して樹脂を接合するにあたり、高い接着性及び優れた安定性を得ることは困難であった。
【0010】
そこで、本発明の目的は、熱硬化性樹脂や感光性樹脂等の樹脂に添加剤として用いることができ、添加後の樹脂に、金、銀、銅、パラジウム、金パラジウム合金、窒化珪素等で被覆された基材に対する高い接着力を付与させることが可能で、接着後の接合物の耐湿性をも向上可能な化合物を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明者らは、上記の目的を達成すべく鋭意研究を重ねた結果、新規化合物である所定構造のフェノール誘導体により、上記目的が達成可能であることを見出し、本発明を完成させた。
【0012】
すなわち、本発明のフェノール誘導体(ジスルフィド構造及びチオエーテル構造を有するフェノール誘導体であり、フェノリックジスルフィドとも称される。)は、下記一般式(1)で表されることを特徴とするものである。かかるフェノール誘導体は、熱硬化性樹脂や感光性樹脂等の樹脂に添加剤として用いることができ、添加後の樹脂に、金、銀、銅、パラジウム、金パラジウム合金、窒化珪素等で被覆された基材に対する高い接着力を付与させることができるのみならず、接着後の接合物の耐湿性を向上することも可能である。
【化6】

Figure 0004114464
【0013】
本発明は、また下記一般式(11)で表される新規化合物たるフェノール誘導体(メルカプト基及びチオエーテル構造を有するフェノール誘導体であり、フェノリックモノチオールとも称される。)を提供し、上記一般式(1)で表されるフェノール誘導体は、下記一般式(11)で表されるフェノール誘導体のジスルフィド化反応により得られるものであることが好ましい。
【化7】
Figure 0004114464
【0014】
ここで、上記一般式(11)で表されるフェノール誘導体は、下記一般式(21)で表されるフェノール化合物(アリル基を有するフェノール化合物)又は一般式(22)で表されるフェノール化合物(ビニル基を有するフェノール化合物)と、下記一般式(31)で表されるジチオールと、を反応させる方法により製造可能である。
【化8】
Figure 0004114464
【化9】
Figure 0004114464
【0015】
なお、上記一般式において、Rエチレン基又は直鎖状のプロピレン基を示し、R及びRはそれぞれ独立にメチレン基、エチレン基、直鎖状のプロピレン基又はフェニレン基を示し、Gは水素原子、メチル基、エチル基、ブチル基、ノニル基、メトキシ基、エトキシ基、ブトキシ基、水酸基、カルボキシル基、ニトロ基、アミノ基又はフェニル基を示す。
【0016】
本発明は上記に加え、上記一般式(1)で表されるフェノール誘導体と、熱硬化性樹脂と、を含むことを特徴とする熱硬化性樹脂組成物、並びに、上記一般式(1)で表されるフェノール誘導体と、感光性樹脂と、を含むことを特徴とする感光性樹脂組成物を提供する。かかる樹脂は、銅、銀、金、金パラジウム合金、窒化珪素等で被覆された基材に対して高い接着力を発揮し、接着後の接合物の耐湿性を向上させることができる。
【0017】
したがって、本発明により、被着体に対する樹脂の接着力向上方法であって、当該樹脂に上記一般式(1)で表されるフェノール誘導体を含有させることを特徴とする方法が提供可能となり、更に、被着体と該被着体に接着した樹脂とを備える樹脂接合物の耐湿性向上方法であって、当該樹脂に上記一般式(1)で表されるフェノール誘導体を含有させることを特徴とする方法が提供可能となる。
【0018】
上記接着力向上方法においては、上記被着体は、金、銀、銅、パラジウム、金パラジウム合金及び窒化ケイ素からなる群より選ばれる材料で基材が被覆された被着体であり、上記樹脂は上記被着体の上記材料面に接着すべき樹脂であることが好ましく、同様に上記耐湿性向上方法においては、上記被着体は、金、銀、銅、パラジウム、金パラジウム合金及び窒化ケイ素からなる群より選ばれる材料で基材が被覆された被着体であり、上記樹脂は上記被着体の上記材料面に接着したものであることが好ましい。
【0019】
【発明の実施の形態】
先ず、一般式(1)で表されるフェノール誘導体及び一般式(11)で表されるフェノール誘導体について、好適な実施形態を説明する。
【0020】
一般式(1)及び(11)において、Rは炭素数2〜3のアルキレン基であり、炭素数3のアルキレン基には直鎖状及び分岐状アルキレン基が含まれるが、アルケニル基へのチオールの付加反応により合成する場合を考慮すれば、Rはエチレン基(−CH−CH−)又は直鎖状のプロピレン基(−CH−CH−CH−)が好ましい。なお、ベンゼン環上の水酸基に対するRの位置は、オルト位、メタ位、パラ位のいずれであってもよい。
【0021】
一般式(1)、(11)及び(31)において、R及びRはそれぞれ独立に炭素数1〜10のアルキレン基又はフェニレン基であり、アルキレン基は炭素数1〜10の直鎖状アルキレン基が好ましい。R及びRは、炭素数1〜6の直鎖状アルキレン基又はフェニレン基であることが好ましく、炭素数1〜4の直鎖状アルキレン基又はフェニレン基であることがより好ましい。アルキレン基としてはメチレン基(−CH−)、エチレン基(−CH−CH−)又は直鎖状のプロピレン基(−CH−CH−CH−)が好ましい。
【0022】
一般式(1)、(11)、(21)及び(22)において、Gは水素原子、メチル基、エチル基、ブチル基、ノニル基、メトキシ基、エトキシ基、ブトキシ基、水酸基、カルボキシル基、ニトロ基、アミノ基、フェニル基、ベンジル基又はハロゲン原子である。接着性及び耐湿性付与の観点から、これらの中では、水素原子、メチル基、エチル基、ブチル基、ノニル基、メトキシ基、エトキシ基、ブトキシ基、水酸基、カルボキシル基、ニトロ基、アミノ基又はフェニル基が好ましく、メチル基、エチル基、ブチル基、ノニル基、メトキシ基、エトキシ基、ブトキシ基がより好ましい。なお、ベンゼン環上の水酸基に対するGの位置は、オルト位、メタ位、パラ位のいずれであってもよい。
【0023】
一般式(1)で表されるフェノール誘導体の具体例としては、下記一般式(1a)で表されるフェノール誘導体(Rが炭素数3のアルキレン基、Gがメトキシ基である誘導体)、下記一般式(1b)で表されるフェノール誘導体(Rが炭素数3のアルキレン基、Gが水素原子である誘導体)が挙げられる。なお、R及びRについては上記と同義である。
【化10】
Figure 0004114464
【化11】
Figure 0004114464
【0024】
また、一般式(11)で表されるフェノール誘導体の具体例としては、下記一般式(11a)で表されるフェノール誘導体(Rが炭素数3のアルキレン基、Gがメトキシ基である誘導体)、下記一般式(11b)で表されるフェノール誘導体(Rが炭素数3のアルキレン基、Gが水素原子である誘導体)が挙げられる。なお、R及びRについては上記と同義であり、後述のように下記一般式(11a)で表されるフェノール誘導体は、一般式(1a)で表されるフェノール誘導体の製造に用いることができ、下記一般式(11b)で表されるフェノール誘導体は、一般式(1b)で表されるフェノール誘導体の製造に用いることができる。
【化12】
Figure 0004114464
【化13】
Figure 0004114464
【0025】
次に、一般式(1)で表されるフェノール誘導体及び一般式(11)で表されるフェノール誘導体の製造方法について説明する。
【0026】
一般式(11)で表されるフェノール誘導体は、一般式(21)又は一般式(22)で表されるフェノール化合物に対して、一般式(31)で表されるジチオールを付加反応させることにより得ることができる。この場合において、一般式(21)で表されるフェノール化合物を用いた場合はRが炭素数3のアルキレン基である一般式(11)のフェノール誘導体が得られ、一般式(22)で表されるフェノール化合物を用いた場合はRが炭素数2のアルキレン基である一般式(11)のフェノール誘導体が得られる。
【0027】
一般式(21)又は一般式(22)で表されるフェノール化合物と上記一般式(31)で表されるジチオールを反応させるに当たり、上記フェノール化合物に対してジチオールを等モル量以上用いることが好ましい。ジチオールを過剰に用いることにより、生成物における一般式(11)で表されるフェノール誘導体の割合(純度)を向上させることができる。
【0028】
反応温度や反応時間等の条件は、上記反応が充分に進行する条件を選べばよく、反応温度は100℃〜200℃、反応時間は30分〜7時間程度とすることができる。
【0029】
より詳しくは、上記反応は、上記フェノール化合物とジチオールとを反応容器に導入し、当該反応容器中にて撹拌、還流させながら加熱して実施することが好ましい。反応は、空気中で行うことができるが、窒素ガス等の不活性ガス雰囲気中で行うのが好適である。所定の時間の経過により、一般式(11)のフェノール誘導体が生成するので、過剰なジチオールは減圧留去するか、適当な溶媒を加えて分取する。得られたフェノール誘導体は、反応物混合系から単離・精製してもよいが、単離・精製することなくこれを原料として、式(1)のフェノール誘導体の製造に供してもよい。
【0030】
一般式(1)で表されるフェノール誘導体は、上述の製造方法等により得られた一般式(11)で表されるフェノール誘導体のジスルフィド化反応(一般式(11)で表されるフェノール誘導体2分子の酸化反応)により得ることができる。
【0031】
かかる反応は、ジメチルスルホキシド(DMSO)を酸化剤及び溶媒として用いることにより実施することが好ましい。この場合において、DMSOの使用量は、一般式(11)で表されるフェノール誘導体に対し2倍モル量が基本であるが、2倍モル以上に過剰に加えておくことが好適である。
【0032】
上記反応における、反応温度や反応時間等の条件は、酸化反応が充分に進行する条件を選べばよく、例えば、反応温度は50℃〜70℃、反応時間は4時間〜8時間程度とすることができる。
【0033】
より詳しくは、上記反応は、一般式(11)で表されるフェノール誘導体を反応容器に秤量し、DMSO中に添加して、攪拌しながら50℃〜70℃で加熱して実施することが好適である。反応の進行過程及び終点は、ゲルパーミエーションクロマトグラフィー(GPC)で確認することができ、反応終了後、純水にて再沈澱を行い、反応生成物を収集して一般式(1)のフェノール誘導体を得ることができる。
【0034】
次に、一般式(1)で表されるフェノール誘導体と熱硬化性樹脂とを含む熱硬化性樹脂組成物(以下単に「熱硬化性樹脂組成物」という。)、並びに、一般式(1)で表されるフェノール誘導体と感光性樹脂とを含む感光性樹脂組成物(以下単に「感光性樹脂組成物」という。)について、好適な実施形態を説明する。
【0035】
熱硬化性樹脂組成物を構成する熱硬化性樹脂としては、公知の熱硬化性樹脂、例えば、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、アミノ樹脂(尿素樹脂、メラミン樹脂)、ポリイミド樹脂等を用いることができる。
【0036】
熱硬化性樹脂組成物は、一般式(1)で表されるフェノール誘導体及び熱硬化性樹脂の他、当該熱硬化性樹脂の硬化促進剤や反応触媒、フィラー、強化繊維(ガラス繊維、炭素繊維等)、増量剤、着色剤等を更に含有するものであってもよい。また、一般式(1)で表されるフェノール誘導体の含有量は、熱硬化性樹脂100重量部に対して、0.01〜50重量部が好ましく、0.05〜30重量部がより好ましく、0.1〜10重量部が更に好ましい。
【0037】
感光性樹脂組成物を構成する感光性樹脂としては、公知の感光性樹脂、例えば、エチレン性不飽和結合等の光ラジカル重合性の基を有したポリマー、光二量化を生じる基を有したポリマー、光カチオン重合開始剤を含有させたエポキシ樹脂等のカチオン重合性樹脂を用いることができる。
【0038】
光ラジカル重合性の基を有したポリマーは、光ラジカル重合性開始剤や光ラジカル重合性モノマーを含有していてもよく、光二量化を生じる基を有したポリマーは光重合性モノマーを含有していてもよい。また、感光性樹脂組成物には、増感剤、発色剤、フィラー、強化繊維(ガラス繊維、炭素繊維等)、増量剤等を添加することができる。
【0039】
なお、一般式(1)で表されるフェノール誘導体の含有量は、感光性樹脂組成物100重量部に対して、0.01〜50重量部が好ましく、0.05〜30重量部がより好ましく、0.1〜10重量部が更に好ましい。
【0040】
以上説明した一般式(1)で表されるフェノール誘導体を樹脂に添加することにより、当該樹脂の被着体に対する接着力を向上させることができ、当該樹脂が被着体に接着した樹脂接合物の耐湿性を向上させることができる。
【0041】
ここで用いられる樹脂としては、上述の熱硬化性樹脂組成物及び感光性樹脂組成物が挙げられ、被着体としては、金、銀、銅、パラジウム、金パラジウム合金又は窒化ケイ素で基材が被覆された被着体が挙げられる。金、銀、銅、パラジウム、金パラジウム合金又は窒化ケイ素は難接着素材であるために、通常の樹脂では良好な接着性(はく離強度等)や耐湿性(プレッシャークッカー試験(PCT)における耐性等)が得られないのに対して、一般式(1)で表されるフェノール誘導体を樹脂に添加することにより、これらの特性を顕著に向上させることができる。
【0042】
【実施例】
以下、本発明の好適な実施例についてさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
【0043】
[一般式(11)で表されるフェノール誘導体の合成]
<実施例1>
2−メトキシ−4−アリルフェノール(オイゲノール)13.3g(0.0810mol)をセパラブルフラスコに秤量し、これに下記式(31a)に示す2,2’−チオジエタンチオール50.0g(0.324mol)を添加した。
【化14】
Figure 0004114464
次いで、4つ口セパラブルフラスコの蓋(セパラブルカバー)側に還流管及び攪拌翼が付いた攪拌棒を取り付け、攪拌シールを介してその攪拌棒を攪拌用モータに繋いだ。この状態で攪拌しながら油浴上にて150℃で加熱し、還流状態で約6時間保持した。反応終了後は、150℃で減圧して過剰なジチオールを留去した。これにより、一般式(11a)においてR及びRがエチレン基である下記式(11a’)で表されるフェノール誘導体を得た。
【化15】
Figure 0004114464
【0044】
<実施例2>
2−メトキシ−4−アリルフェノール(オイゲノール)8.21g(0.0500mol)をセパラブルフラスコに秤量し、これに下記式(31b)に示す4,4’−チオビスベンゼンチオール50.0g(0.200mol)を添加した。
【化16】
Figure 0004114464
次いで、4つ口セパラブルフラスコの蓋(セパラブルカバー)側に還流管及び攪拌翼が付いた攪拌棒を取り付け、攪拌シールを介してその攪拌棒を攪拌用モータに繋いだ。この状態で、攪拌しながら油浴上にて150℃で加熱し、還流状態で約6時間保持した。反応終了後は、メタノール/水の混合溶液を加えて、生成物を再沈澱させ回収した。これにより一般式(11a)においてR及びRがフェニレン基である下記式(11a’’)で表されるフェノール誘導体を得た。
【化17】
Figure 0004114464
【0045】
[一般式(1)で表されるフェノール誘導体の合成]
<実施例3>
実施例1で得られた式(11a’)で表されるフェノール誘導体20g(0785mol)をセパラブルフラスコに秤量し、10倍モル量のジメチルスルホキシド(DMSO)を加え、攪拌しながら約70℃で加熱した。GPCで反応の進行を追い、反応終了を確認後、蒸留水にて反応生成物を再沈澱し回収した。これにより、一般式(1a)においてR及びRがエチレン基である下記式(1a’)で表されるフェノール誘導体を得た。なお、GPCとしては島津製作所製C−R4Aを用い、溶離液にテトラヒドロフラン(THF)、測定濃度は2.0g/Lとした。また、カラムは東ソー社製TSK gel G3000HxL+TSK gel G2000HxL、RIモニタは日立製作所製L−3300、ポンプには日立製作所製L−6000を用いた。
【化18】
Figure 0004114464
【0046】
<実施例4>
実施例2で得られた式(11a’’)で表されるフェノール誘導体20g(0.0386mol)をセパラブルフラスコに秤量し、10倍モル量のジメチルスルホキシド(DMSO)を加えた後、攪拌しながら約70℃で加熱した。実施例3と同様の条件で、GPCにより反応の進行を追い、反応終了を確認後、蒸留水にて反応生成物を再沈澱し回収した。これにより、一般式(1a)においてR及びRがフェニレン基である下記式(1a’’)で表されるフェノール誘導体を得た。
【化19】
Figure 0004114464
【0047】
[接着剤への応用]
<実施例5>
(ポリイミド樹脂の合成)
攪拌装置、窒素導入管、乾燥管を備えた1リットルの4つ口フラスコに、2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパンを41.0g(0.10モル)を入れ、窒素気流下、NMP(N−メチルピロリドン)250gを加えて溶液とした。フラスコを水浴上に移し、激しく攪拌させながら1,2−(エチレン)ビス(トリメリテート二無水物)41.0g(0.10モル)を少量ずつ加えた。酸二無水物がほぼ溶解したら、ゆっくりと攪拌しながら6時間反応させ、ポリアミド溶液を得た。
【0048】
次に、上記ポリアミド溶液が入った4つ口フラスコに蒸留装置を装着し、キシレン220gを加えた。窒素気流下、180℃の油浴上で激しく攪拌しながら、イミド化により生成する縮合水をキシレン共に共沸留去した。その反応液を水中に注ぎ、沈殿したポリマーを濾別乾燥してポリイミド樹脂を得た。
【0049】
(ワニスの調合)
得られたポリイミド樹脂100重量部に対してDMAc(ジメチルアセトアミド)500重量部とTCG−1(フィラー)200重量部とを配合してポリイミドワニスを調合すると共に、この時点で、実施例3で得られた式(1a’)で表されるフェノール誘導体を5重量部配合した。
【0050】
(接着フィルムの作成)
ポリプロピレンフィルム基材上に上記ワニスを30〜50μmの厚さに塗布し、80℃で10分、続いて150℃で30分、加熱乾燥し、室温で冷やした後、乾燥物を基材から剥がして接着フィルムを得た。
【0051】
<比較例1>
式(1a’)で表されるフェノール誘導体を添加しなかった他は、実施例5と同様にして、接着フィルムを得た。
【0052】
(接着フィルムの評価)
実施例5及び比較例1の接着フィルムについて、ピール強度(はく離強度)を測定した。すなわち、接着フィルムを5mm×5mmの大きさに切断し、これを5mm×5mmのシリコンチップと銅リードフレームの間に挟み、1kgの加重をかけて、180℃または250℃で圧着させた後、180℃で一時間加熱して接着フィルムを硬化させた。そして、245℃または275℃、20秒加熱時の引き剥がし強さをプッシュプルゲージで測定した。測定結果を表1に示した。
【表1】
Figure 0004114464
【0053】
[封止材への応用]
<実施例6>
(実施例6−1)
クレゾールノボラックエポキシ樹脂(エポキシ当量215)が19重量%、ノボラック型フェノール樹脂(フェノール当量107)が9重量%、実施例3で得られた式(1a’)で表されるフェノール誘導体が0.2重量%、溶融シリカ粉末が71.2重量%、硬化促進剤が0.3重量%、エステル系ワックス類が0.3重量%となるように、これらを常温で混合し、更に90〜95℃で混練した後、冷却粉砕して成形材料を製造した。
【0054】
(実施例6−2)
クレゾールノボラックエポキシ樹脂(エポキシ当量215)が19重量%、ノボラック型フェノール樹脂(フェノール当量107)が9重量%、実施例4で得られた式(1a’’)で表されるフェノール誘導体が0.2重量%、溶融シリカ粉末が71.2重量%、硬化促進剤が0.3重量%、エステル系ワックス類が0.3重量%となるように、実施例6−1と同様にして、混合した後に混練及び粉砕して成形材料を製造した。
【0055】
(比較例2)
式(1a’)で表されるフェノール誘導体を用いなかった他は、実施例6−1と同様にして(フェノール誘導体以外の材料の比率は実施例6−1と同様)、成形材料を製造した。
【0056】
(接着強度の評価)
実施例6−1、6−2及び比較例2の成形材料を170℃に加熱した金型内にトランスファー注入し、接着面積4mmの成形品をPd又はPd−Auプレプレーティングされた基材上に成形し、175℃で8時間放置した後、せん断接着強度を求めた。
【0057】
(耐湿性の評価)
実施例6−1、6−2及び比較例2の成形材料を用いて、2本以上のアルミニウム配線を有するシリコン製チップ(テスト用素子)をPdプレプレーティングフレームに接着し、175℃2分間トランスファー成形して、成形品を作製し、これに対して175℃8時間の後硬化を行った。得られた成形品に対し40℃、90%RH、100時間の吸湿処理を行い、最高温度240℃のIRリフロー炉を4回通過させた。その後、127℃、2.5気圧の飽和水蒸気中でPCT試験を行い、アルミニウムの腐食による断線を不良とした。PCT試験は成形品数20で行い、100時間、300時間及び500時間後の不良品数を調べた。
【0058】
以上の結果を表2にまとめて示す。なお、表2における耐湿性の欄の数値は、不良品数/成形品数を示すものである。
【表2】
Figure 0004114464
【0059】
【発明の効果】
以上説明したように、本発明によれば、熱硬化性樹脂や感光性樹脂等の樹脂に添加剤として用いることができ、添加後の樹脂に、金、銀、銅、パラジウム、金パラジウム合金、窒化珪素等で被覆された基材に対する高い接着力を付与させることが可能で、接着後の接合物の耐湿性をも向上可能な化合物を提供することが可能になる。かかる化合物は、半導体実装技術に有用な添加剤として用いることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a phenol derivative, a method for producing a phenol derivative, a thermoplastic resin composition, a photosensitive resin composition, a method for improving adhesion, and a method for improving moisture resistance.
[0002]
[Prior art]
Phenolic resin is widely used as a material for bonding and sealing liquid crystal displays (LCD) of electrical and electronic parts and semiconductor packages. In addition, a phenol derivative having a specific structure is applied to enhance various characteristics of electric / electronic parts, and a sulfur-containing compound may be added to improve the adhesion to difficult-to-bond surfaces.
[0003]
For example, in a conductive adhesive, a polyallyl phenol resin as a curing agent is blended in addition to an epoxy resin as a base resin (Patent Document 1).
[0004]
In addition, in a tape with an adhesive for TAB, in addition to the polyamide resin which is a constituent component of the adhesive, a phenol derivative in which a sulfur atom or an oxygen atom is introduced between phenol carbon and phenol carbon is contained so as to have adhesiveness and insulation. The improvement of property is aimed at (patent document 2).
[0005]
In the adhesive for flexible printed circuit boards, a sulfur-containing phenol derivative having a specific structure may be blended as an antioxidant for acrylonitrile butadiene rubber, which is an additive component (Patent Document 3).
[0006]
Moreover, in the sealing resin composition, a compound having a tetrasulfide structure (Patent Document 4) or a compound having a disulfide structure (Patent Document 5, Patent Document 6) is used as an additive for improving adhesiveness. Yes.
[0007]
On the other hand, with the miniaturization and weight reduction of liquid crystal display (LCD) and semiconductor packages, high-density mounting technology is required, and adhesion to adhesives such as recent anisotropic conductive films (ACF) and die bond films is required. As a material for the surface layer of the object, silver, gold, palladium, gold-palladium alloy, silicon nitride, and the like are often used in addition to copper.
[0008]
[Patent Document 1]
JP-A-6-322350 [Patent Document 2]
Japanese Patent Laid-Open No. 11-260865 [Patent Document 3]
JP-A-7-245478 [Patent Document 4]
JP 2000-136290 A [Patent Document 5]
Japanese Patent Laid-Open No. 2002-3704 [Patent Document 6]
Japanese Patent Laid-Open No. 2002-249548
[Problems to be solved by the invention]
However, metal materials such as copper, silver, gold, palladium, gold-palladium alloy, or materials such as silicon nitride are difficult-to-adhere materials, and the surface on which the substrate is coated with these materials is also susceptible to contamination. Therefore, it has been difficult to obtain high adhesiveness and excellent stability when the resin is bonded to the substrate whose surface layer is made of the above material.
[0010]
Therefore, the object of the present invention can be used as an additive to a resin such as a thermosetting resin or a photosensitive resin, and the resin after the addition is made of gold, silver, copper, palladium, gold-palladium alloy, silicon nitride, etc. An object of the present invention is to provide a compound capable of imparting a high adhesive force to a coated substrate and improving the moisture resistance of a bonded product after bonding.
[0011]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have found that the above object can be achieved by a phenol derivative having a predetermined structure, which is a novel compound, and completed the present invention.
[0012]
That is, the phenol derivative of the present invention (a phenol derivative having a disulfide structure and a thioether structure and also referred to as phenolic disulfide) is characterized by being represented by the following general formula (1). Such a phenol derivative can be used as an additive to a resin such as a thermosetting resin or a photosensitive resin, and the resin after the addition is coated with gold, silver, copper, palladium, gold-palladium alloy, silicon nitride, or the like. Not only can a high adhesive force be applied to the substrate, it is also possible to improve the moisture resistance of the bonded product after bonding.
[Chemical 6]
Figure 0004114464
[0013]
The present invention also provides a phenol derivative (a phenol derivative having a mercapto group and a thioether structure, also referred to as phenolic monothiol), which is a novel compound represented by the following general formula (11). The phenol derivative represented by 1) is preferably obtained by disulfide reaction of a phenol derivative represented by the following general formula (11).
[Chemical 7]
Figure 0004114464
[0014]
Here, the phenol derivative represented by the general formula (11) is a phenol compound represented by the following general formula (21) (phenol compound having an allyl group) or a phenol compound represented by the general formula (22) ( It can be produced by a method of reacting a phenol compound having a vinyl group) with a dithiol represented by the following general formula (31).
[Chemical 8]
Figure 0004114464
[Chemical 9]
Figure 0004114464
[0015]
In the above general formula, R 1 represents an ethylene group or a linear propylene group , R 2 and R 3 each independently represent a methylene group, an ethylene group, a linear propylene group or a phenylene group, and G Represents a hydrogen atom, methyl group, ethyl group, butyl group, nonyl group, methoxy group, ethoxy group, butoxy group, hydroxyl group, carboxyl group, nitro group, amino group or phenyl group.
[0016]
In addition to the above, the present invention includes a thermosetting resin composition comprising a phenol derivative represented by the general formula (1) and a thermosetting resin, and the general formula (1). The photosensitive resin composition characterized by including the phenol derivative represented and photosensitive resin is provided. Such a resin exhibits a high adhesive force to a base material coated with copper, silver, gold, gold-palladium alloy, silicon nitride or the like, and can improve the moisture resistance of the bonded product after bonding.
[0017]
Therefore, according to the present invention, it is possible to provide a method for improving the adhesion of a resin to an adherend, characterized in that the resin contains the phenol derivative represented by the general formula (1). A method for improving the moisture resistance of a resin bonded article comprising an adherend and a resin adhered to the adherend, wherein the resin contains a phenol derivative represented by the general formula (1). Can be provided.
[0018]
In the method for improving adhesion, the adherend is an adherend having a base coated with a material selected from the group consisting of gold, silver, copper, palladium, gold-palladium alloy and silicon nitride, and the resin Is preferably a resin to be adhered to the material surface of the adherend. Similarly, in the moisture resistance improving method, the adherend is made of gold, silver, copper, palladium, gold-palladium alloy, and silicon nitride. It is preferable that the substrate is coated with a material selected from the group consisting of: and the resin is bonded to the material surface of the adherend.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
First, suitable embodiment is described about the phenol derivative represented by General formula (1) and the phenol derivative represented by General formula (11).
[0020]
In the general formulas (1) and (11), R 1 is an alkylene group having 2 to 3 carbon atoms, and the alkylene group having 3 carbon atoms includes linear and branched alkylene groups. Considering the case of synthesis by addition reaction of thiol, R 1 is preferably an ethylene group (—CH 2 —CH 2 —) or a linear propylene group (—CH 2 —CH 2 —CH 2 —). The position of R 1 with respect to the hydroxyl group on the benzene ring may be any of the ortho position, meta position, and para position.
[0021]
In the general formulas (1), (11) and (31), R 2 and R 3 are each independently an alkylene group having 1 to 10 carbon atoms or a phenylene group, and the alkylene group is a straight chain having 1 to 10 carbon atoms. An alkylene group is preferred. R 2 and R 3 are preferably a linear alkylene group having 1 to 6 carbon atoms or a phenylene group, and more preferably a linear alkylene group having 1 to 4 carbon atoms or a phenylene group. The alkylene group is preferably a methylene group (—CH 2 —), an ethylene group (—CH 2 —CH 2 —) or a linear propylene group (—CH 2 —CH 2 —CH 2 —).
[0022]
In the general formulas (1), (11), (21) and (22), G represents a hydrogen atom, a methyl group, an ethyl group, a butyl group, a nonyl group, a methoxy group, an ethoxy group, a butoxy group, a hydroxyl group, a carboxyl group, A nitro group, an amino group, a phenyl group, a benzyl group or a halogen atom; Among these, from the viewpoint of imparting adhesiveness and moisture resistance, among them, hydrogen atom, methyl group, ethyl group, butyl group, nonyl group, methoxy group, ethoxy group, butoxy group, hydroxyl group, carboxyl group, nitro group, amino group or A phenyl group is preferable, and a methyl group, an ethyl group, a butyl group, a nonyl group, a methoxy group, an ethoxy group, and a butoxy group are more preferable. In addition, the position of G with respect to the hydroxyl group on the benzene ring may be any of ortho, meta, and para positions.
[0023]
Specific examples of the phenol derivative represented by the general formula (1) include a phenol derivative represented by the following general formula (1a) (a derivative in which R 1 is an alkylene group having 3 carbon atoms and G is a methoxy group), Examples thereof include phenol derivatives represented by the general formula (1b) (derivatives in which R 1 is an alkylene group having 3 carbon atoms, and G is a hydrogen atom). R 2 and R 3 have the same meaning as described above.
[Chemical Formula 10]
Figure 0004114464
Embedded image
Figure 0004114464
[0024]
Specific examples of the phenol derivative represented by the general formula (11) include a phenol derivative represented by the following general formula (11a) (a derivative in which R 1 is an alkylene group having 3 carbon atoms and G is a methoxy group). And phenol derivatives (derivatives in which R 1 is an alkylene group having 3 carbon atoms and G is a hydrogen atom) represented by the following general formula (11b). In addition, about R < 2 > and R < 3 >, it is synonymous with the above, and the phenol derivative represented by the following general formula (11a) is used for manufacture of the phenol derivative represented by general formula (1a) as mentioned later. The phenol derivative represented by the following general formula (11b) can be used for the production of the phenol derivative represented by the general formula (1b).
Embedded image
Figure 0004114464
Embedded image
Figure 0004114464
[0025]
Next, the manufacturing method of the phenol derivative represented by General formula (1) and the phenol derivative represented by General formula (11) is demonstrated.
[0026]
The phenol derivative represented by the general formula (11) is obtained by adding a dithiol represented by the general formula (31) to the phenol compound represented by the general formula (21) or the general formula (22). Obtainable. In this case, when the phenol compound represented by the general formula (21) is used, a phenol derivative of the general formula (11) in which R 1 is an alkylene group having 3 carbon atoms is obtained, and is represented by the general formula (22). When the phenol compound to be used is used, a phenol derivative of the general formula (11) in which R 1 is an alkylene group having 2 carbon atoms is obtained.
[0027]
In reacting the phenol compound represented by the general formula (21) or the general formula (22) with the dithiol represented by the general formula (31), it is preferable to use the dithiol in an equimolar amount or more with respect to the phenol compound. . By using dithiol excessively, the ratio (purity) of the phenol derivative represented by the general formula (11) in the product can be improved.
[0028]
Conditions such as reaction temperature and reaction time may be selected so that the reaction proceeds sufficiently. The reaction temperature can be 100 ° C. to 200 ° C., and the reaction time can be about 30 minutes to 7 hours.
[0029]
More specifically, the reaction is preferably carried out by introducing the phenol compound and dithiol into a reaction vessel, and heating while stirring and refluxing in the reaction vessel. The reaction can be carried out in air, but is preferably carried out in an inert gas atmosphere such as nitrogen gas. Since the phenol derivative of the general formula (11) is formed with the passage of a predetermined time, excess dithiol is distilled off under reduced pressure or is collected by adding an appropriate solvent. The obtained phenol derivative may be isolated and purified from the reactant mixture system, but it may be used as a raw material for the production of the phenol derivative of the formula (1) without isolation and purification.
[0030]
The phenol derivative represented by the general formula (1) is a disulfide reaction of the phenol derivative represented by the general formula (11) obtained by the above-described production method (phenol derivative 2 represented by the general formula (11)). Molecular oxidation reaction).
[0031]
Such a reaction is preferably carried out by using dimethyl sulfoxide (DMSO) as an oxidizing agent and a solvent. In this case, the amount of DMSO used is basically a 2-fold molar amount relative to the phenol derivative represented by the general formula (11), but it is preferable to add it excessively to a 2-fold mole or more.
[0032]
Conditions such as reaction temperature and reaction time in the above reaction may be selected such that the oxidation reaction proceeds sufficiently. For example, the reaction temperature is 50 ° C. to 70 ° C., and the reaction time is about 4 hours to 8 hours. Can do.
[0033]
More specifically, the reaction is preferably carried out by weighing the phenol derivative represented by the general formula (11) into a reaction vessel, adding it to DMSO, and heating at 50 ° C. to 70 ° C. with stirring. It is. The progress and end point of the reaction can be confirmed by gel permeation chromatography (GPC). After completion of the reaction, reprecipitation is performed with pure water, the reaction product is collected, and the phenol of the general formula (1) is collected. Derivatives can be obtained.
[0034]
Next, a thermosetting resin composition containing a phenol derivative represented by the general formula (1) and a thermosetting resin (hereinafter simply referred to as “thermosetting resin composition”), and the general formula (1) A preferred embodiment of a photosensitive resin composition (hereinafter simply referred to as “photosensitive resin composition”) containing a phenol derivative represented by formula (I) and a photosensitive resin will be described.
[0035]
Examples of the thermosetting resin constituting the thermosetting resin composition include known thermosetting resins such as epoxy resins, phenol resins, unsaturated polyester resins, polyurethane resins, amino resins (urea resins, melamine resins), polyimides. Resin or the like can be used.
[0036]
The thermosetting resin composition includes a phenol derivative represented by the general formula (1) and a thermosetting resin, a curing accelerator, a reaction catalyst, a filler, a reinforcing fiber (glass fiber, carbon fiber) of the thermosetting resin. Etc.), bulking agents, colorants and the like. Moreover, 0.01-50 weight part is preferable with respect to 100 weight part of thermosetting resins, and, as for content of the phenol derivative represented by General formula (1), 0.05-30 weight part is more preferable, 0.1-10 weight part is still more preferable.
[0037]
As the photosensitive resin constituting the photosensitive resin composition, a known photosensitive resin, for example, a polymer having a radically polymerizable group such as an ethylenically unsaturated bond, a polymer having a group causing photodimerization, A cationically polymerizable resin such as an epoxy resin containing a photocationic polymerization initiator can be used.
[0038]
The polymer having a radical photopolymerizable group may contain a radical photopolymerizable initiator or a radical photopolymerizable monomer, and the polymer having a group that causes photodimerization contains a photopolymerizable monomer. May be. In addition, a sensitizer, a color former, a filler, a reinforcing fiber (glass fiber, carbon fiber, etc.), an extender, and the like can be added to the photosensitive resin composition.
[0039]
In addition, 0.01-50 weight part is preferable with respect to 100 weight part of photosensitive resin compositions, and, as for content of the phenol derivative represented by General formula (1), 0.05-30 weight part is more preferable. 0.1 to 10 parts by weight is more preferable.
[0040]
By adding the phenol derivative represented by the general formula (1) described above to the resin, the adhesive strength of the resin to the adherend can be improved, and the resin bonded product in which the resin adheres to the adherend. The moisture resistance of can be improved.
[0041]
Examples of the resin used here include the thermosetting resin composition and the photosensitive resin composition described above, and examples of the adherend include gold, silver, copper, palladium, gold-palladium alloy, or silicon nitride. Examples include coated adherends. Since gold, silver, copper, palladium, gold-palladium alloy or silicon nitride is a difficult-to-adhere material, good adhesiveness (peeling strength, etc.) and moisture resistance (resistance in pressure cooker test (PCT), etc.) with ordinary resins However, these characteristics can be remarkably improved by adding a phenol derivative represented by the general formula (1) to the resin.
[0042]
【Example】
EXAMPLES Hereinafter, although the preferable Example of this invention is described in detail, this invention is not limited to these Examples.
[0043]
[Synthesis of Phenol Derivative Represented by General Formula (11)]
<Example 1>
13.3 g (0.0810 mol) of 2-methoxy-4-allylphenol (eugenol) was weighed into a separable flask, and 50.0 g of 2,2′-thiodiethanethiol represented by the following formula (31a) (0 .324 mol) was added.
Embedded image
Figure 0004114464
Next, a stirring rod with a reflux tube and a stirring blade was attached to the lid (separable cover) side of the four-necked separable flask, and the stirring rod was connected to a stirring motor through a stirring seal. While stirring in this state, the mixture was heated on an oil bath at 150 ° C. and held at reflux for about 6 hours. After completion of the reaction, the excess dithiol was distilled off under reduced pressure at 150 ° C. As a result, a phenol derivative represented by the following formula (11a ′) in which R 2 and R 3 in the general formula (11a) are ethylene groups was obtained.
Embedded image
Figure 0004114464
[0044]
<Example 2>
8.21 g (0.0500 mol) of 2-methoxy-4-allylphenol (eugenol) was weighed into a separable flask, and 50.0 g of 4,4′-thiobisbenzenethiol represented by the following formula (31b) (0 .200 mol) was added.
Embedded image
Figure 0004114464
Next, a stirring rod with a reflux tube and a stirring blade was attached to the lid (separable cover) side of the four-necked separable flask, and the stirring rod was connected to a stirring motor through a stirring seal. In this state, the mixture was heated on an oil bath at 150 ° C. with stirring, and kept at reflux for about 6 hours. After completion of the reaction, a mixed solution of methanol / water was added to reprecipitate and recover the product. As a result, a phenol derivative represented by the following formula (11a ″) in which R 2 and R 3 in the general formula (11a) are phenylene groups was obtained.
Embedded image
Figure 0004114464
[0045]
[Synthesis of phenol derivative represented by general formula (1)]
<Example 3>
20 g (0785 mol) of the phenol derivative represented by the formula (11a ′) obtained in Example 1 was weighed into a separable flask, 10-fold molar amount of dimethyl sulfoxide (DMSO) was added, and the mixture was stirred at about 70 ° C. Heated. Following the progress of the reaction by GPC and confirming the completion of the reaction, the reaction product was reprecipitated and recovered with distilled water. Thus, a phenol derivative represented by the following formula (1a ′) in which R 2 and R 3 in the general formula (1a) are ethylene groups was obtained. Note that C-R4A manufactured by Shimadzu Corporation was used as GPC, tetrahydrofuran (THF) was used as an eluent, and the measurement concentration was 2.0 g / L. Further, TSK gel G3000HxL + TSK gel G2000HxL manufactured by Tosoh Corporation was used as the column, L-3300 manufactured by Hitachi Ltd. was used as the RI monitor, and L-6000 manufactured by Hitachi Ltd. was used as the pump.
Embedded image
Figure 0004114464
[0046]
<Example 4>
20 g (0.0386 mol) of the phenol derivative represented by the formula (11a ″) obtained in Example 2 was weighed into a separable flask, 10-fold molar amount of dimethyl sulfoxide (DMSO) was added, and the mixture was stirred. While heating at about 70 ° C. Under the same conditions as in Example 3, the progress of the reaction was followed by GPC, and after the completion of the reaction was confirmed, the reaction product was reprecipitated and recovered with distilled water. As a result, a phenol derivative represented by the following formula (1a ″) in which R 2 and R 3 in the general formula (1a) are phenylene groups was obtained.
Embedded image
Figure 0004114464
[0047]
[Application to adhesives]
<Example 5>
(Synthesis of polyimide resin)
Into a 1 liter four-necked flask equipped with a stirrer, a nitrogen inlet tube, and a drying tube was placed 41.0 g (0.10 mol) of 2,2-bis (4- (4-aminophenoxy) phenyl) propane. In a nitrogen stream, 250 g of NMP (N-methylpyrrolidone) was added to prepare a solution. The flask was transferred to a water bath, and 41.0 g (0.10 mol) of 1,2- (ethylene) bis (trimellitate dianhydride) was added little by little with vigorous stirring. When the acid dianhydride was almost dissolved, the mixture was reacted for 6 hours with slow stirring to obtain a polyamide solution.
[0048]
Next, a distillation apparatus was attached to the four-necked flask containing the polyamide solution, and 220 g of xylene was added. Condensed water produced by imidization was distilled off azeotropically with xylene while stirring vigorously on a 180 ° C. oil bath under a nitrogen stream. The reaction solution was poured into water, and the precipitated polymer was separated by filtration and dried to obtain a polyimide resin.
[0049]
(Varnish formulation)
A polyimide varnish was prepared by blending 500 parts by weight of DMAc (dimethylacetamide) and 200 parts by weight of TCG-1 (filler) with respect to 100 parts by weight of the obtained polyimide resin. 5 parts by weight of the obtained phenol derivative represented by the formula (1a ′) was blended.
[0050]
(Creation of adhesive film)
The above varnish is applied on a polypropylene film substrate to a thickness of 30-50 μm, dried at 80 ° C. for 10 minutes, then at 150 ° C. for 30 minutes, cooled at room temperature, and then the dried product is peeled off from the substrate. To obtain an adhesive film.
[0051]
<Comparative Example 1>
An adhesive film was obtained in the same manner as in Example 5 except that the phenol derivative represented by the formula (1a ′) was not added.
[0052]
(Evaluation of adhesive film)
For the adhesive films of Example 5 and Comparative Example 1, peel strength (peeling strength) was measured. That is, the adhesive film is cut into a size of 5 mm × 5 mm, sandwiched between a 5 mm × 5 mm silicon chip and a copper lead frame, applied with a weight of 1 kg, and pressed at 180 ° C. or 250 ° C. The adhesive film was cured by heating at 180 ° C. for 1 hour. And the peeling strength at the time of 245 degreeC or 275 degreeC and 20 second heating was measured with the push pull gauge. The measurement results are shown in Table 1.
[Table 1]
Figure 0004114464
[0053]
[Application to sealing materials]
<Example 6>
(Example 6-1)
The cresol novolac epoxy resin (epoxy equivalent 215) was 19% by weight, the novolac type phenolic resin (phenol equivalent 107) was 9% by weight, and the phenol derivative represented by the formula (1a ′) obtained in Example 3 was 0.2%. These were mixed at room temperature so that the content was 71.2% by weight, the fused silica powder was 71.2% by weight, the curing accelerator was 0.3% by weight, and the ester wax was 0.3% by weight. After being kneaded in the above, the mixture was cooled and pulverized to produce a molding material.
[0054]
(Example 6-2)
The cresol novolac epoxy resin (epoxy equivalent 215) was 19% by weight, the novolac type phenolic resin (phenol equivalent 107) was 9% by weight, and the phenol derivative represented by the formula (1a ″) obtained in Example 4 was 0. Mixing in the same manner as in Example 6-1 so that 2% by weight, fused silica powder was 71.2% by weight, the curing accelerator was 0.3% by weight, and the ester wax was 0.3% by weight. Thereafter, kneading and pulverization were performed to produce a molding material.
[0055]
(Comparative Example 2)
A molding material was produced in the same manner as in Example 6-1 except that the phenol derivative represented by the formula (1a ′) was not used (the ratio of materials other than the phenol derivative was the same as in Example 6-1). .
[0056]
(Evaluation of adhesive strength)
The molding materials of Examples 6-1 and 6-2 and Comparative Example 2 were transfer-injected into a mold heated to 170 ° C., and a molded article having an adhesion area of 4 mm 2 was Pd or Pd-Au pre-plated base material After molding on top and leaving at 175 ° C. for 8 hours, the shear bond strength was determined.
[0057]
(Evaluation of moisture resistance)
Using the molding materials of Examples 6-1 and 6-2 and Comparative Example 2, a silicon chip (test element) having two or more aluminum wirings was adhered to a Pd preplating frame and 175 ° C. for 2 minutes. A molded product was produced by transfer molding, and post-curing was performed at 175 ° C. for 8 hours. The obtained molded article was subjected to moisture absorption treatment at 40 ° C. and 90% RH for 100 hours, and passed through an IR reflow furnace having a maximum temperature of 240 ° C. four times. Thereafter, a PCT test was performed in saturated steam at 127 ° C. and 2.5 atm, and disconnection due to corrosion of aluminum was regarded as defective. The PCT test was performed with 20 molded products, and the number of defective products after 100 hours, 300 hours, and 500 hours was examined.
[0058]
The above results are summarized in Table 2. The numerical values in the column of moisture resistance in Table 2 indicate the number of defective products / number of molded products.
[Table 2]
Figure 0004114464
[0059]
【The invention's effect】
As described above, according to the present invention, it can be used as an additive to a resin such as a thermosetting resin or a photosensitive resin, and the resin after the addition is gold, silver, copper, palladium, a gold-palladium alloy, It is possible to provide a compound capable of imparting a high adhesive force to a substrate coated with silicon nitride or the like and improving the moisture resistance of the bonded product after bonding. Such a compound can be used as an additive useful for semiconductor packaging technology.

Claims (10)

下記一般式(1)で表されるフェノール誘導体。
Figure 0004114464
[式中、Rエチレン基又は直鎖状のプロピレン基、R及びRはそれぞれ独立にメチレン基、エチレン基、直鎖状のプロピレン基又はフェニレン基、Gは水素原子、メチル基、エチル基、ブチル基、ノニル基、メトキシ基、エトキシ基、ブトキシ基、水酸基、カルボキシル基、ニトロ基、アミノ基又はフェニル基、をそれぞれ示す。]
A phenol derivative represented by the following general formula (1).
Figure 0004114464
[Wherein, R 1 is an ethylene group or a linear propylene group , R 2 and R 3 are each independently a methylene group, an ethylene group, a linear propylene group or a phenylene group, G is a hydrogen atom, a methyl group, An ethyl group, a butyl group, a nonyl group, a methoxy group, an ethoxy group, a butoxy group, a hydroxyl group, a carboxyl group, a nitro group, an amino group, or a phenyl group are shown. ]
下記一般式(11)で表されるフェノール誘導体のジスルフィド化反応により得られることを特徴とする請求項1記載のフェノール誘導体。
Figure 0004114464
[式中、Rエチレン基又は直鎖状のプロピレン基、R及びRはそれぞれ独立にメチレン基、エチレン基、直鎖状のプロピレン基又はフェニレン基、Gは水素原子、メチル基、エチル基、ブチル基、ノニル基、メトキシ基、エトキシ基、ブトキシ基、水酸基、カルボキシル基、ニトロ基、アミノ基又はフェニル基、をそれぞれ示す。]
The phenol derivative according to claim 1, wherein the phenol derivative is obtained by a disulfation reaction of a phenol derivative represented by the following general formula (11).
Figure 0004114464
[Wherein, R 1 is an ethylene group or a linear propylene group , R 2 and R 3 are each independently a methylene group, an ethylene group, a linear propylene group or a phenylene group, G is a hydrogen atom, a methyl group, An ethyl group, a butyl group, a nonyl group, a methoxy group, an ethoxy group, a butoxy group, a hydroxyl group, a carboxyl group, a nitro group, an amino group, or a phenyl group are shown. ]
下記一般式(11)で表されるフェノール誘導体。
Figure 0004114464
[式中、Rエチレン基又は直鎖状のプロピレン基、R及びRはそれぞれ独立にメチレン基、エチレン基、直鎖状のプロピレン基又はフェニレン基、Gは水素原子、メチル基、エチル基、ブチル基、ノニル基、メトキシ基、エトキシ基、ブトキシ基、水酸基、カルボキシル基、ニトロ基、アミノ基又はフェニル基、をそれぞれ示す。]
A phenol derivative represented by the following general formula (11).
Figure 0004114464
[Wherein, R 1 is an ethylene group or a linear propylene group , R 2 and R 3 are each independently a methylene group, an ethylene group, a linear propylene group or a phenylene group, G is a hydrogen atom, a methyl group, An ethyl group, a butyl group, a nonyl group, a methoxy group, an ethoxy group, a butoxy group, a hydroxyl group, a carboxyl group, a nitro group, an amino group, or a phenyl group are shown. ]
請求項3記載のフェノール誘導体の製造方法であって、
下記一般式(21)又は一般式(22)で表されるフェノール化合物と、下記一般式(31)で表されるジチオールと、を反応させることを特徴とする方法。
Figure 0004114464
Figure 0004114464
[式中、R及びRはそれぞれ独立にメチレン基、エチレン基、直鎖状のプロピレン基又はフェニレン基、Gは水素原子、メチル基、エチル基、ブチル基、ノニル基、メトキシ基、エトキシ基、ブトキシ基、水酸基、カルボキシル基、ニトロ基、アミノ基又はフェニル基、をそれぞれ示す。]
A method for producing a phenol derivative according to claim 3,
A method comprising reacting a phenol compound represented by the following general formula (21) or general formula (22) with a dithiol represented by the following general formula (31).
Figure 0004114464
Figure 0004114464
[Wherein, R 2 and R 3 are each independently a methylene group, ethylene group, linear propylene group or phenylene group, G is a hydrogen atom, methyl group, ethyl group, butyl group, nonyl group, methoxy group, ethoxy group, Each represents a group, a butoxy group, a hydroxyl group, a carboxyl group, a nitro group, an amino group or a phenyl group. ]
請求項1又は2記載のフェノール誘導体と、熱硬化性樹脂と、を含むことを特徴とする熱硬化性樹脂組成物。  A thermosetting resin composition comprising the phenol derivative according to claim 1 or 2 and a thermosetting resin. 請求項1又は2記載のフェノール誘導体と、感光性樹脂と、を含むことを特徴とする感光性樹脂組成物。  A photosensitive resin composition comprising the phenol derivative according to claim 1 or 2 and a photosensitive resin. 被着体に対する樹脂の接着力向上方法であって、前記樹脂に請求項1又は2記載のフェノール誘導体を含有させることを特徴とする方法。  A method for improving the adhesion of a resin to an adherend, wherein the phenol derivative according to claim 1 or 2 is contained in the resin. 前記被着体は、金、銀、銅、パラジウム、金パラジウム合金及び窒化ケイ素からなる群より選ばれる材料で基材が被覆された被着体であり、前記樹脂は前記被着体の前記材料面に接着すべき樹脂であることを特徴とする請求項7記載の方法。  The adherend is an adherend having a base coated with a material selected from the group consisting of gold, silver, copper, palladium, gold-palladium alloy, and silicon nitride, and the resin is the material of the adherend. 8. A method according to claim 7, characterized in that the resin is to be adhered to the surface. 被着体と該被着体に接着した樹脂とを備える樹脂接合物の耐湿性向上方法であって、前記樹脂に請求項1又は2記載のフェノール誘導体を含有させることを特徴とする方法。  A method for improving the moisture resistance of a resin bonded article comprising an adherend and a resin adhered to the adherend, wherein the resin contains the phenol derivative according to claim 1 or 2. 前記被着体は、金、銀、銅、パラジウム、金パラジウム合金及び窒化ケイ素からなる群より選ばれる材料で基材が被覆された被着体であり、前記樹脂は前記被着体の前記材料面に接着したものであることを特徴とする請求項9記載の方法。  The adherend is an adherend having a base coated with a material selected from the group consisting of gold, silver, copper, palladium, gold-palladium alloy, and silicon nitride, and the resin is the material of the adherend. 10. A method according to claim 9, wherein the method is bonded to a surface.
JP2002338431A 2002-11-21 2002-11-21 Phenol derivative and method for producing the same Expired - Fee Related JP4114464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002338431A JP4114464B2 (en) 2002-11-21 2002-11-21 Phenol derivative and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002338431A JP4114464B2 (en) 2002-11-21 2002-11-21 Phenol derivative and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004168730A JP2004168730A (en) 2004-06-17
JP4114464B2 true JP4114464B2 (en) 2008-07-09

Family

ID=32701663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002338431A Expired - Fee Related JP4114464B2 (en) 2002-11-21 2002-11-21 Phenol derivative and method for producing the same

Country Status (1)

Country Link
JP (1) JP4114464B2 (en)

Also Published As

Publication number Publication date
JP2004168730A (en) 2004-06-17

Similar Documents

Publication Publication Date Title
JP4120780B2 (en) Method for producing polyimide resin having phenolic hydroxyl group
KR100653255B1 (en) Novel sulfurized phenolic resin, process for producing the same, phenol derivative having thioether structure or disulfide structure, process for producing the same, and epoxy resin composition and adhesive
JP4219660B2 (en) Wafer dicing die bond sheet
JP4737447B2 (en) Polyimide resin having a phenolic hydroxyl group and a polyimide resin composition
JP4535245B2 (en) Partially-blocked polyimide-polysiloxane copolymer, process for producing the same, and resin composition containing the copolymer
WO2008041723A1 (en) Two-part thermocurable polyimide resin composition and cured product thereof
JP3862004B2 (en) Heat resistant resin composition and adhesive film using the same
JP4235808B2 (en) Adhesive composition and adhesive film
JP4012206B2 (en) LOC double-sided tape and method for producing the same
WO2004096919A1 (en) Resin composition and adhesive film
JP4748341B2 (en) Phenol derivative having thioether structure or disulfide structure, and production method thereof
KR20100113985A (en) Thermal conductive adhesive
JP5045924B2 (en) Method for producing polyimide resin having phenolic hydroxyl group
JP4114464B2 (en) Phenol derivative and method for producing the same
KR102556129B1 (en) Imide oligomers, curing agents, adhesives, and methods for preparing imide oligomers
KR0158370B1 (en) Bisimide compounds, and production thereof
JP3535281B2 (en) Adhesive tape and liquid adhesive for electronic parts
JP4586966B2 (en) Adhesive composition and adhesive film
JP4530126B2 (en) Adhesive composition and adhesive film
JPH08302016A (en) Siloxane-modified polyimide resin composition
JP3532792B2 (en) Adhesive and adhesive tape for electronic parts
JP7480040B2 (en) Polyfunctional active ester compound, resin composition, cured product, and build-up film
JP4347941B2 (en) Adhesive tape
JPH11246840A (en) Adhesive for electronic part and adhesive tape
TW593388B (en) Novel sulfur containing phenolic resins and preparation thereof, phenol derivatives containing thioether of disulfide structure and preparation thereof, epoxy resin combinations and adhesive agents

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees