JP4745526B2 - Separator plate centrifuge and separator plate used therefor - Google Patents

Separator plate centrifuge and separator plate used therefor Download PDF

Info

Publication number
JP4745526B2
JP4745526B2 JP2001142105A JP2001142105A JP4745526B2 JP 4745526 B2 JP4745526 B2 JP 4745526B2 JP 2001142105 A JP2001142105 A JP 2001142105A JP 2001142105 A JP2001142105 A JP 2001142105A JP 4745526 B2 JP4745526 B2 JP 4745526B2
Authority
JP
Japan
Prior art keywords
separation plate
separation
liquid passage
strip
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001142105A
Other languages
Japanese (ja)
Other versions
JP2002336734A (en
Inventor
正剛 野口
呈 木村
保寿 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kakoki Kaisha Ltd
Original Assignee
Mitsubishi Kakoki Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kakoki Kaisha Ltd filed Critical Mitsubishi Kakoki Kaisha Ltd
Priority to JP2001142105A priority Critical patent/JP4745526B2/en
Publication of JP2002336734A publication Critical patent/JP2002336734A/en
Application granted granted Critical
Publication of JP4745526B2 publication Critical patent/JP4745526B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B7/00Elements of centrifuges
    • B04B7/08Rotary bowls
    • B04B7/12Inserts, e.g. armouring plates
    • B04B7/14Inserts, e.g. armouring plates for separating walls of conical shape

Landscapes

  • Centrifugal Separators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、分離板型遠心分離機およびこれに用いる分離板に係り、特に、分離効率を高め、分離能力を理論計算上の能力に近づけることができる分離板型遠心分離機およびこれに用いる分離板に関する。
【0002】
【従来の技術】
分離板型遠心分離機は、遠心力および沈降面積が共に大きく、船舶用ディーゼルエンジンの燃料油、潤滑油の浄化をはじめ、多くの産業用分野で処理液中の不純物の除去、例えば固形微粒子を取り除く清浄機として採用されている。
【0003】
図6は、このよう分離板型遠心分離機の代表機種である自己排出型(SJ型)の分離板型遠心分離機の回転体を示す断面図、図7は、図6の分離板を示す斜視図、図8は、図7の上方向からの視図である。図6において、この回転体20は、高速で回転する回転体本体21と、該回転体本体21の中央に配置され、下方に拡径部23を有する筒状の案内筒22と、該案内筒22の前記拡径部23の周方向に沿って等間隔に設けられた複数の通液孔25と、前記案内筒22の軸方向に沿って所定間隔で多数積層された分離板26とから主として構成されている。分離板26は、図7に示したように、案内筒22の拡径部23の周方向に沿って設けられた多数の通液孔25に対応する複数の通液孔27および該分離板流通孔27相互間に等間隔に設けられた間隙片28とを有している。
【0004】
なお、図6中30は、原液入口管、31は、案内筒22に設けられたリブ、32は、回転軸、33は、回転体本体21を前記回転軸32に固定する袋ナット、34は、弁シリンダ、35は、軽液排出路である。
【0005】
このような構成の、分離板型遠心分離機の回転体20は、例えば9000rpmで高速回転し、原液入口管30から導入された原液は、案内筒22の拡径部23の下面に沿って外周方向に流通し、リブ31の作用によって案内筒22と共に回転して遠心力が付与される。遠心力が付与され、案内筒22の外周近傍まで到達した原液は、前記案内筒22の通液孔25に流入し、該案内筒通液孔25に対応して形成された、分離板26の通液孔27が連通する流通路を上向流として流れる。このとき原液の一部は最も下の分離板とその上に位置する分離板との間の分離空隙に流入し、他の一部は下から2番目の分離板とその上に位置する分離板との間の分離空隙に流入し、以下順次分離板積層体の分離板相互間に形成される分離空隙に分配され、流入する。
【0006】
分離板相互間の分離空隙に流入した原液は、分離板26の中心方向に向かって流れ、固形分は遠心沈降によって分離空隙を形成する上側分離板の下面に沈降し、該分離板の下面に沿って外周方向に移動し、他の固形分と集合、堆積して分離板の外周端を経て分離板積層体の周囲の空間部に到り、回転体内の最大径部に堆積する。堆積した固形分は、弁シリンダ34の開閉により定期的に排出される。他方、固形分が分離された処理液(以下、軽液ともいう)は、分離空隙の下側分離板26の上面に沿って内周方向に流動し、分離板26の内周と案内筒22との間の軽液排出路35を経て回転体20から流出し、固形分が分離除去された軽液として回収される。
【0007】
このような分離板型遠心分離機における理論計算上の分離能力を得るための条件として、例えば▲1▼分離板が寸法的に均質であり、その表面に傷がなく乱流の原因をつくらないこと、▲2▼被処理原液が案内筒から等量づつ各分離板相互間の空隙に分配されて回転体と等速で回転すること、▲3▼分離板相互間の空隙に分配された被処理原液が同一円周上に均質に広がること、▲4▼各分離板相互間の空隙を流れる同一円周上の全ての粒子が均等な速度で放射線的に中心に向かって流れること、▲5▼被処理原液が完全に均質化されたものであり、SS分(suspended solid )が凝縮しておらず、見掛け比重が真比重に近いこと等が挙げられる。
【0008】
【発明が解決しようとする課題】
通常の被処理液においては、従来の分離板型遠心分離機で、前記した理論計算上の分離能力を得ることができているが、近年は、従来の分離板型遠心分離機では分離能力が不十分となるような、より細かい粒子を含有する被処理液の分離など、より高い分離性能が要求されてきている。従って、本発明の課題は、従来の分離板型遠心分離機では不十分となるような被処理液でも分離処理できる分離性能をもった分離板型遠心分離機およびこれに用いる分離板を提供することにある。
【0009】
【課題を解決するための手段】
上記課題を解決するため本発明者は、分離板の間隙片形状と分離板の通液孔位置と分離板相互間に流入した原液の拡散状況との関係等について鋭意研究した結果、分離板の間隙片を、笠状を呈する前記分離板の円錐母線に沿った短冊状として隣接する分離板相互間に前記短冊状間隙片で仕切られた複数の分離間隙を形成するとともに、前記分離板の通液孔を、各分離間隙の回転体回転方向前方の短冊状間隙片の近傍に設けることにより、被処理原液と分離板との等速回転を損なうことなく、分離板の全遠心沈降面積が均等に利用されることを見出し、本発明に到達した。
【0010】
すなわち、本願で特許請求する発明は、以下のとおりである。
(1)高速で回転する回転体と、該回転体の中央に配置され、下方に拡径部を有する筒状の案内筒と、該案内筒の前記拡径部の周方向に沿って等間隔に設けられた複数の通液孔と、前記案内筒の軸方向に沿って所定間隔で多数積層され、該案内筒の前記通液孔と対応する位置に設けられた複数の通液孔および該通液孔相互間に等間隔に配置された間隙片とを備えた笠状の分離板とを有する分離板型遠心分離機において、前記分離板の間隙片を、該分離板の円錐母線に沿った短冊状として隣接する分離板相互間に前記短冊状間隙片で仕切られた複数の単位分離領域を形成するとともに、前記通液孔を、各単位分離領域の回転体回転方向前方の前記短冊状間隙片の近傍に設けて分離板の内壁面に向かって沈降する固形分粒子が受ける原液流の影響を、前記通液孔を前記単位分離領域を仕切る隣接する短冊状間隙片相互の中間部に設けた場合よりも小さくしたことを特徴とする分離板型遠心分離機。
(2)前記通液孔は、前記分離板の外周端に沿って設けられていることを特徴とする(1)記載の分離板型遠心分離機。
(3)前記短冊状間隙片が、前記分離板の円錐母線に対し、前記分離板の回転方向に向かって所定角度傾斜して設けられていることを特徴とする(1)又は(2)に記載の分離板型遠心分離機。
【0011】
(4)高速で回転する回転体と、該回転体の中央に配置され、下方に拡径部を有する筒状の案内筒と、該案内筒の前記拡径部の周方向に沿って等間隔に設けられた複数の通液孔と、前記案内筒の軸方向に沿って所定間隔で多数積層され、案内筒の前記通液孔と対応する位置に設けられた複数の通液孔および該通液孔相互間に等間隔に配置された間隙片とを備えた笠状の分離板とを有する分離板型遠心分離機の前記分離板において、前記間隙片を、当該分離板の円錐母線に沿った短冊状とし、前記通液孔を、前記短冊状間隙片の分離板回転方向後方に隣接して設けて分離板の内壁面に向かって沈降する固形分粒子が受ける原液流の影響を、前記通液孔を前記単位分離領域を仕切る隣接する短冊状間隙片相互の中間部に設けた場合よりも小さくしたことを特徴とする分離板型遠心分離機の分離板。
(5)前記通液孔は、当該分離板の外周端に沿って設けられていることを特徴とする(4)記載の分離板型遠心分離機の分離板。
(6)前記短冊状間隙片が、当該分離板の前記円錐母線に対し、前記分離板の回転方向に向かって所定角度傾斜して設けられていることを特徴とする(4)又は(5)に記載の分離板型遠心分離機の分離板。
【0012】
【発明の実施の形態】
図1は、本発明の一実施例を示す分離板型遠心分離機の分離板を示す斜視図、図2は、その上方向からの視図である。図において、この分離板(ディスク)1は、例えば厚さ0.5mmのステンレス鋼からなる笠状、すなわち上端部を開放底面に平行な直線で切除した円錐形状を呈しており、間隙片を、分離板の円錐母線に沿った短冊状間隙片2とし、分離板通液孔3を、前記短冊状間隙片2の分離板回転方向後方に隣接して設けたものである。5は、案内筒との位置決め用の切欠部である。なお、4は、分離板の回転方向を示す矢印である。
【0013】
このような分離板1を回転体本体に装填する際は、図3に示したように、分離板1の切欠部5を、案内筒6の中心軸に沿ってその外面に設けられた、図示省略した位置決め用突出部に嵌合するように多数組み込んで積層し、案内筒6の拡径部7上に所定枚数、例えば100枚を積層した分離板積層体8を構成する。このとき案内筒6の通液孔9は、分離板1の通液孔3が連通した原液流通路10と連通する位置に形成される。分離板1相互の間隔は、分離板1に設けられた短冊状間隙片2によって確保され、例えば0.6mmである。
【0014】
このようにして構成された分離板積層体8は、上述した図6の回転体本体内に組み込まれ原液の清浄、例えば潤滑油中の固形分の除去に適用される。以下、図6を参照しつつ、本発明の分離板を適用した分離板型遠心分離機の作用を説明する。
【0015】
図1の分離板1を所定枚数積層した分離板積層体8が装填された遠心分離機の回転体に、その上方の液入口管から原液として例えば金属粉等の固形分を不純物として含む潤滑油を供給すると、該潤滑油は、案内筒6の拡径部7の下面に沿って外周方向に流れると同時に案内筒の内壁面に沿って設けられたリブの作用によって案内筒7と共に高速、例えば約9000rpmで回転し、遠心力が付与される。遠心力が付与され、案内筒6の拡径部7の外周近傍まで到達した被処理潤滑油は、前記案内筒6の通液孔9に流入し、分離板積層体8に形成された原液流通路10を上向流として流れるとともに、各分離板1の通液孔3から分離板相互間に形成された、短冊状間隙片2で仕切られた分離間隙(以下、単位分離領域ともいう)に均等に分散され、軽液分は他の軽液粒子と集合しながら分離板1の中心方向に向かって流れ、案内筒6と分離板積層体8の内径との間の軽液排出路(図6参照)を経て処理後潤滑油として回収される。一方、重量成分である固形分は、軽液の流れに沿って単位分離領域内を分離板積層体の中心方向に流れ、遠心力を受けて上側分離板1の下面に沈降し、該分離板1の下面に沿って、他の固形分粒子と集合しつつ分離板1の外周方向に移動し、分離板積層体8の周囲に形成された空間部に堆積し、必要に応じてまたは定期的に排出される。
【0016】
本実施例によれば、分離板1の間隙片を短冊状としたことと、分離板1の通液孔3を、各単位分離領域の回転体回転方向前方の短冊状間隙片2に隣接して設けたことの相乗効果により、例えば、関東ローム粉などの標準粉体11種の固形分等のより細かい粒子を含有する被処理液の分離が可能となり、また安定した分離性能を得ることができる。従って、例えば従来、2段分離処理していたものを1段で処理することができるようになるか、または2段目の負荷を著しく低減することができる。
【0017】
すなわち、本実施例によれば、分離板1の間隙片を短冊状としたことにより、隣接する分離板相互間に、前記短冊状間隙片で仕切られた複数の単位分離領域が形成され、該単位分離領域に流入した被処理液が隣接する単位分離領域に流入した被処理液の影響を受けず、高い遠心力を有した状態が維持されるので分離効率が向上する。
【0018】
また、分離板1の通液孔3を、各単位分離領域の回転体回転方向前方の短冊状間隙片2に隣接して設けたことにより、通液孔3から流出して単位分離領域内に分散された原液が単位分離領域の全分離板表面に均一に分散されるとともに、軽液と分離されて上側分離板の内面に沈降した固形分の分離板外周方向への移動経路と供給、分散される原液の流通経路とが直接交叉する機会を著しく減少することができるので、固形分の分離効率が向上し、例えば潤滑油中の有機物、1μm以下の無機化合物、金属粉等でも効率よく分離、除去することができる。
【0019】
本発明において、案内筒拡径部および分離板の通液孔は、その外周端に沿って設けることが好ましい。これによって分離板の有効沈降面積を広くとることができる。また、短冊状間隙片の上面外周部に面取り処理を施すことが好ましい。これにより、単位分離領域の、隣接する単位分離領域との仕切りが完全なものとなり、被処理液の乱流を阻止し、分離効率の向上を図ることができる。
【0020】
次に、図4(A)、(B)を用いて本発明の原理を説明する。
【0021】
図4(B)は、通液孔3を間隙片2相互の中央部に設けた分離板を用いた遠心分離機の分離状況を示す説明図である。図において、分離板1の通液孔3から単位分離領域内に分散された原液中の固形分のうち、例えば通液孔3の図中右側a点を沈降開始点とする固形分粒子は、通液孔3の前方を横切って内側(図中上方向)に移動しながら、上側分離板の内壁面に向かって沈降し、例えば沈降完了点である点bで分離板の内壁面に到達する。このとき固形分粒子は、前記通液孔3から供給された原液の流れの影響を直接受けるので、沈降完了点bまでの距離はその影響を受けない場合に比べてはるかに長くなる。細かい粒子、軽液と比重差の小さい粒子ほど原液流の影響を受け易く、沈降完了点bが遠くなるので、所定粒径以下の細かい粒子は単位沈降領域内(分離板内)で沈降完了点に到達できず、軽液と共に分離板積層体から流出することになる。また、単位沈降領域内で上側分離板の内壁面に到達し、該内壁面に沿って分離板外周方向(図中下方向)に移動する沈降粒子も、前記通液孔3から導入される原液の流れと直接交叉するように流れるので、その一部が原液流に伴って分離板内周方向へ流され、一旦分離されたにも拘らず軽液に混入し、分離効率を低下させる虞がある。このように、単位沈降領域を形成する二つの短冊状間隙片2のほぼ中央に通液孔3を設けた場合は、通液孔3の図中右側半分に沈降開始点aまたは沈降完了点bが位置する固形分粒子の流れが原液流の影響を直接受けることになり、分離効率向上の妨げとなっていた。
【0022】
これに対して図4(A)に示した本発明の分離板は、単位沈降領域を形成する短冊状間隙片2の回転体回転方向前流側の間隙片に隣接して通液孔3を設けたことにより、該通液孔3から導入、分散される原液中の、例えば沈降開始点を点aとする固形分粒子は通液孔3から導入された原液流と直接交叉することなく原液の流れに沿って内周方向に移動し、かつ分離板の内壁面に向かって沈降するので、固形分粒子が受ける原液流の影響が上述した図4(B)の場合に比べてはるかに小さくなる。従って、同一径の固形分粒子であれば、図4(B)の場合に比べて沈降完了点bまでの距離が著しく短くなる。また、沈降後の固形分粒子が分離板の外周まで移動する際にも原液流と直接交叉することがないので原液流の影響を受けることはない。このように本発明の分離板を採用することにより、分離板1の内周端までに沈降完了点bに到る固形分の粒子径が図4(B)の場合よりも小さくなり、固形分の分離効率が向上する。
【0023】
ここで、通液孔3を単位沈降領域の回転方向前方側短冊状間隙片に隣接して設けたことによる分離効率への影響について試算する。
【0024】
いま、分離板の内径を66φ、外径を152φとし、固形分粒子が分離板の垂直母線に沿って最短距離を移動すると仮定した場合の沈降距離Lは(通液孔3を分離板の最外殻に設け、通液孔の大きさを無視するものとする)、
L=(1/2)・(152−66)=43(mm)となる。
【0025】
原液中の固形分の移動速度Vを1.62(m/sec)と仮定すると、単位沈降領域における固形分粒子の滞留時間Tは、
T=L/V=43/(1.62×100)=0.265(sec)となる。
従って、通液孔3から流出し、その周囲に分散された原液中の固形分粒子は、0.265(sec)以内に沈降完了点に到達しない限り、沈降することなく軽液に同伴して排出されることになる。
【0026】
ここで通液孔3を短冊状間隙片2相互の中央に設けた分離板(図4B)において、原液流の影響を受ける固形分粒子は、通液孔3の図中右側に供給、分散された、全体の50%であり、そのうちの20%が分離されることなく軽液に同伴すると仮定すると、
(1−0.5×0.2)×100=90(%)
((100/90)−1)×100=11.1(%)となって、本発明を採用することにより、分離効率が約10%向上する。なお、分離板の通液孔および間隙片のみを変更した同一条件の分離性能試験では、本発明の分離板を用いた場合の分離効率は図4(B)の分離板を用いた場合に比べて約20%上昇した。
【0027】
本発明において、図5に示したように、短冊状間隙片2を分離板1の円錐母線に対し所定角度傾斜して設けることもできる。これによって、沈降開始点aから沈降完了点bに至った固形分粒子が早めに短冊状間隙片2に到達し、その後は前記間隙片2に沿って外周方向に移動するので、分離された固形分粒子が受ける原液流の影響がより少なくなって固形分の分離効率がさらに向上する。
【0028】
【発明の効果】
本願の請求項1に記載の発明によれば、分離板相互間に間隙片で区切られた複数の分離間隙が設けられ、該分離間隙に導入された被処理液が、隣接する単位分離領域に流入した被処理液の影響を受けず、高い遠心力を有した状態を維持することができ、しかも固形分粒子の移動経路を直接原液流と交叉させることなく原液の流路と固形分の流出流路を分離することができるので、固形分粒子の沈降完了点までの距離が短くなり、分離効率が著しく向上する。
【0029】
本願の請求項に記載の発明によれば、上記発明と同様、従来技術と比較してより高い分離性能を得ることができる。
【図面の簡単な説明】
【図1】本発明の一実施例を示す分離板の斜視図。
【図2】図1の上方向視図。
【図3】分離板積層体を示す説明図。
【図4】本発明の原理を示す説明図。
【図5】本発明の実施の態様を示す説明図。
【図6】分離板型遠心分離機の回転体の説明図。
【図7】従来技術を示す説明図。
【図8】図7の上方向視図。
【符号の説明】
1…分離板、2…短冊状間隙片、3…通液孔、4…分離板の回転方向を示す矢印、5…切欠部、6…案内筒、7…案内筒の拡径部、8…分離板積層体、9…案内筒の通液孔、10…原液流通路、20…回転体、21…回転体本体、22…案内筒、23…案内筒の拡径部、25…案内筒の通液孔、26…分離板、27…分離板の通液孔、28…間隙片、29…切欠部、30…原液入口管、31…案内筒のリブ、32…回転軸、33…袋ナット、34…弁シリンダ、35…軽液排出路。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a separation plate type centrifugal separator and a separation plate used therefor, and more particularly, a separation plate type centrifugal separator capable of improving separation efficiency and bringing separation ability close to theoretical calculation ability and separation used in the separation plate type separation device. Regarding the board.
[0002]
[Prior art]
Separation plate centrifuges have a large centrifugal force and sedimentation area, and are used to remove impurities in processing liquids, such as purification of fuel oil and lubricating oil for marine diesel engines, as well as removal of solid particulates in many industrial fields. It is adopted as a cleaner to remove.
[0003]
FIG. 6 is a cross-sectional view showing a rotating body of a self-discharge type (SJ type) separation plate type centrifuge, which is a representative model of such a separation plate type centrifuge, and FIG. 7 shows the separation plate of FIG. FIG. 8 is a perspective view from the top of FIG. In FIG. 6, the rotating body 20 includes a rotating body main body 21 that rotates at high speed, a cylindrical guide cylinder 22 that is disposed in the center of the rotating body main body 21 and that has a diameter-expanding portion 23 below, and the guide cylinder. 22 are mainly composed of a plurality of liquid passage holes 25 provided at equal intervals along the circumferential direction of the enlarged diameter portion 23 and a plurality of separation plates 26 stacked at predetermined intervals along the axial direction of the guide tube 22. It is configured. As shown in FIG. 7, the separation plate 26 includes a plurality of liquid passage holes 27 corresponding to a large number of liquid passage holes 25 provided along the circumferential direction of the enlarged diameter portion 23 of the guide tube 22 and the separation plate flow. There are gap pieces 28 provided at equal intervals between the holes 27.
[0004]
In FIG. 6, 30 is a stock solution inlet pipe, 31 is a rib provided on the guide tube 22, 32 is a rotary shaft, 33 is a cap nut for fixing the rotary body 21 to the rotary shaft 32, and 34 is The valve cylinder 35 is a light liquid discharge path.
[0005]
The rotator 20 of the separation plate type centrifuge having such a configuration rotates at a high speed of, for example, 9000 rpm, and the stock solution introduced from the stock solution inlet pipe 30 has an outer periphery along the lower surface of the enlarged diameter portion 23 of the guide tube 22. It circulates in the direction and rotates together with the guide tube 22 by the action of the rib 31 to give a centrifugal force. The undiluted solution that has been subjected to centrifugal force and has reached the vicinity of the outer periphery of the guide tube 22 flows into the liquid passage hole 25 of the guide tube 22, and is formed on the separation plate 26 formed corresponding to the guide tube liquid passage hole 25. It flows as an upward flow through the flow passage in which the liquid passage hole 27 communicates. At this time, a part of the stock solution flows into the separation gap between the lowermost separation plate and the separation plate located above it, and the other part is the second separation plate from the bottom and the separation plate located above it. Flows into the separation gap between the two, and is sequentially distributed and flows into the separation gap formed between the separation plates of the separation plate laminate.
[0006]
The undiluted solution that has flowed into the separation gap between the separation plates flows toward the center of the separation plate 26, and the solid content settles on the lower surface of the upper separation plate forming the separation void by centrifugal sedimentation, and on the lower surface of the separation plate. Along the outer circumferential direction, gathers and accumulates with other solid contents, reaches the space around the separation plate stack through the outer peripheral edge of the separation plate, and deposits on the largest diameter portion in the rotating body. The accumulated solid content is periodically discharged by opening and closing the valve cylinder 34. On the other hand, the treatment liquid from which the solid content has been separated (hereinafter also referred to as light liquid) flows in the inner circumferential direction along the upper surface of the lower separation plate 26 of the separation gap, and the inner circumference of the separation plate 26 and the guide tube 22. It flows out of the rotating body 20 through the light liquid discharge path 35 between the two and is recovered as a light liquid from which the solid content has been separated and removed.
[0007]
As a condition for obtaining the separation capacity in the theoretical calculation in such a separation plate type centrifuge, for example, (1) the separation plate is dimensionally homogeneous, its surface is not damaged, and no cause of turbulence is generated. (2) The undiluted solution to be treated is distributed from the guide tube to the gaps between the separating plates in equal amounts and rotated at the same speed as the rotating body. (3) The coating solution distributed to the gaps between the separating plates. The processing stock solution spreads uniformly on the same circumference, (4) all particles on the same circumference flowing through the gaps between the separators flow radially toward the center at an equal speed, (5) ▼ The undiluted solution to be treated is completely homogenized, the SS solid (suspended solid) is not condensed, and the apparent specific gravity is close to the true specific gravity.
[0008]
[Problems to be solved by the invention]
In a normal liquid to be processed, the conventional separation plate type centrifuge can obtain the above-mentioned theoretical separation ability. However, in recent years, the conventional separation plate type centrifuge has a separation ability. There has been a demand for higher separation performance, such as separation of a liquid to be processed containing finer particles that becomes insufficient. Accordingly, an object of the present invention is to provide a separation plate type centrifugal separator having a separation performance capable of performing separation treatment even with a liquid to be treated, which is insufficient with a conventional separation plate type centrifugal separator, and a separation plate used therefor. There is.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventor has conducted intensive research on the relationship between the gap piece shape of the separation plate, the position of the flow hole of the separation plate and the diffusion state of the stock solution flowing between the separation plates. The gap pieces are formed in a strip shape along the conical bus of the separation plate having a cap shape, and a plurality of separation gaps partitioned by the strip-like gap pieces are formed between adjacent separation plates. By providing the liquid holes in the vicinity of the strip-shaped gap piece in front of the rotating body of each separation gap, the total centrifugal sedimentation area of the separation plate is equalized without impairing the constant speed rotation of the raw solution to be treated and the separation plate. The present invention has been found.
[0010]
That is, the invention claimed in the present application is as follows.
(1) A rotating body that rotates at a high speed, a cylindrical guide tube that is disposed at the center of the rotating body and has a diameter-expanding portion below, and an equal interval along the circumferential direction of the diameter-expanding portion of the guide tube A plurality of liquid passage holes provided in the guide cylinder, and a plurality of liquid passage holes provided at positions corresponding to the liquid passage holes of the guide cylinder, and a plurality of liquid passage holes provided at predetermined intervals along the axial direction of the guide cylinder; A separator-type centrifuge having a cap-shaped separation plate provided with gap pieces arranged at equal intervals between the liquid passage holes, wherein the gap pieces of the separation plate are arranged along the conical generatrix of the separation plate. A plurality of unit separation regions partitioned by the strip-shaped gap pieces are formed between adjacent separation plates as a strip shape, and the liquid passage holes are formed in the strip shape in front of the rotation direction of each unit separation region in the rotating body. effect of raw liquid to solid particles to settle toward the inner wall surface of the separation plate is provided in the vicinity of the gap piece is subjected , Separation plate type centrifuge, characterized in that it has less than the case of providing the liquid passing hole in an intermediate portion of the strip-shaped gaps piece mutually adjacent partitioning the unit separation area.
(2) The separator plate type centrifugal separator according to (1), wherein the liquid passage hole is provided along an outer peripheral end of the separator plate.
(3) In (1) or (2), the strip-shaped gap piece is provided to be inclined at a predetermined angle toward the rotation direction of the separation plate with respect to the conical bus of the separation plate. The separation plate type centrifuge described.
[0011]
(4) A rotating body that rotates at a high speed, a cylindrical guide tube that is disposed in the center of the rotating body and has an enlarged diameter portion below, and an equal interval along the circumferential direction of the enlarged diameter portion of the guide tube A plurality of liquid passage holes provided in the guide cylinder and a plurality of liquid passage holes stacked at predetermined intervals along the axial direction of the guide cylinder, and a plurality of liquid passage holes provided at positions corresponding to the liquid passage holes of the guide cylinder and the passage in the separation plate of the separating plate type centrifugal separator having a bevel-shaped separation plate and a gap piece equally spaced between liquid holes mutually the gap piece, along the conical generatrix of the separation plate and a strip-like, pre-SL through liquid holes, the effects of the stock solution flow solids particles to settle toward the inner wall surface of the separation plate is provided adjacent to the separator plate rotation direction rear side of the strip-shaped gap piece is subjected, The liquid passage hole is made smaller than the case where it is provided at an intermediate portion between adjacent strip-shaped gap pieces that partition the unit separation region. Separating plate of the separation plate type centrifuge, characterized in that.
(5) The separation plate of the separation plate type centrifuge according to (4), wherein the liquid passage hole is provided along an outer peripheral end of the separation plate.
(6) The strip-shaped gap piece is provided to be inclined at a predetermined angle toward the rotation direction of the separation plate with respect to the conical bus of the separation plate (4) or (5) Separation plate of the separation plate type centrifuge described in 1.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a perspective view showing a separation plate of a separation plate type centrifuge showing an embodiment of the present invention, and FIG. 2 is a view from above. In the figure, this separating plate (disc) 1 has a cap shape made of stainless steel having a thickness of 0.5 mm, for example, a conical shape in which the upper end is cut by a straight line parallel to the open bottom surface, A strip-shaped gap piece 2 is provided along the conical bus bar of the separation plate, and a separation plate liquid passage hole 3 is provided adjacent to the rear side of the strip-shaped gap piece 2 in the rotation direction of the separation plate. Reference numeral 5 denotes a notch for positioning with the guide tube. In addition, 4 is an arrow which shows the rotation direction of a separation plate.
[0013]
When loading such a separating plate 1 into a rotating body body, as shown in FIG. 3, the notch portion 5 of the separating plate 1 is provided on the outer surface along the central axis of the guide tube 6. A separation plate laminate 8 in which a predetermined number, for example, 100, is laminated on the diameter-expanded portion 7 of the guide tube 6 so as to be fitted and laminated so as to be fitted to the omitted positioning protrusions. At this time, the liquid passage hole 9 of the guide tube 6 is formed at a position where it communicates with the raw liquid flow passage 10 through which the liquid passage hole 3 of the separation plate 1 communicates. The interval between the separation plates 1 is ensured by the strip-shaped gap pieces 2 provided on the separation plate 1 and is, for example, 0.6 mm.
[0014]
Separating plate laminate 8 configured in this way is incorporated into the above-described rotating body main body of FIG. 6 and applied to the cleaning of the stock solution, for example, the removal of the solid content in the lubricating oil. Hereinafter, the operation of the separation plate type centrifugal separator to which the separation plate of the present invention is applied will be described with reference to FIG.
[0015]
Lubricating oil containing solids such as metal powder as impurities from a liquid inlet pipe above the rotating body of a centrifuge loaded with a separator plate 8 in which a predetermined number of separator plates 1 shown in FIG. 1 are stacked. The lubricating oil flows in the outer peripheral direction along the lower surface of the enlarged diameter portion 7 of the guide cylinder 6 and at the same time, with the guide cylinder 7 at a high speed, for example, by the action of the rib provided along the inner wall surface of the guide cylinder. It rotates at about 9000 rpm and a centrifugal force is applied. The lubricating oil to be treated that has been applied with centrifugal force and has reached the vicinity of the outer periphery of the enlarged diameter portion 7 of the guide cylinder 6 flows into the liquid passage hole 9 of the guide cylinder 6, and the undiluted liquid flow formed in the separator plate laminate 8. In the separation gap (hereinafter also referred to as a unit separation area) partitioned by strip-shaped gap pieces 2 formed between the separation plates from the liquid flow holes 3 of the separation plates 1 while flowing as an upward flow in the path 10. Evenly dispersed, the light liquid component flows toward the center of the separation plate 1 while gathering with other light liquid particles, and the light liquid discharge path between the guide tube 6 and the inner diameter of the separation plate laminate 8 (see FIG. 6) and is recovered as a lubricating oil after treatment. On the other hand, the solid component, which is a heavy component, flows in the unit separation region in the center direction of the separation plate laminate along the flow of the light liquid, and settles on the lower surface of the upper separation plate 1 by receiving centrifugal force. 1 moves along the lower surface of the separator 1 while gathering with other solid content particles in the outer circumferential direction of the separator plate 1, and accumulates in a space formed around the separator plate laminate 8, as necessary or periodically To be discharged.
[0016]
According to this embodiment, the gap piece of the separation plate 1 is formed in a strip shape, and the liquid passage hole 3 of the separation plate 1 is adjacent to the strip-like gap piece 2 in the front of the rotating direction of each unit separation region. For example, it is possible to separate a liquid to be treated containing finer particles such as solids of 11 kinds of standard powders such as Kanto loam powder, and to obtain stable separation performance. it can. Therefore, for example, the conventional two-stage separation process can be processed in one stage, or the load on the second stage can be significantly reduced.
[0017]
That is, according to the present embodiment, by forming the gap piece of the separation plate 1 into a strip shape, a plurality of unit separation regions partitioned by the strip-like gap piece are formed between adjacent separation plates, The liquid to be processed that has flowed into the unit separation region is not affected by the liquid to be processed that has flowed into the adjacent unit separation region, and the state having a high centrifugal force is maintained, so that the separation efficiency is improved.
[0018]
Further, since the liquid passage hole 3 of the separation plate 1 is provided adjacent to the strip-shaped gap piece 2 in the rotation direction of the rotating body of each unit separation region, it flows out of the liquid passage hole 3 and enters the unit separation region. The dispersed stock solution is uniformly dispersed on the entire surface of the separation plate in the unit separation region, and the moving path and supply / dispersion in the outer peripheral direction of the solid content separated from the light liquid and settled on the inner surface of the upper separation plate The opportunity for direct crossover with the distribution route of the undiluted solution can be significantly reduced, so that the separation efficiency of solids can be improved. For example, organic substances in lubricating oil, inorganic compounds of 1 μm or less, metal powder, etc. can be separated efficiently. Can be removed.
[0019]
In this invention, it is preferable to provide the guide cylinder enlarged diameter part and the liquid passage hole of the separation plate along the outer peripheral end thereof. As a result, the effective sedimentation area of the separation plate can be increased. Moreover, it is preferable to chamfer the upper surface outer peripheral part of the strip-shaped gap piece. As a result, the partition between the unit separation regions and the adjacent unit separation regions becomes perfect, so that the turbulent flow of the liquid to be treated can be prevented and the separation efficiency can be improved.
[0020]
Next, the principle of the present invention will be described with reference to FIGS.
[0021]
FIG. 4B is an explanatory diagram showing a separation state of a centrifuge using a separation plate in which a liquid passage hole 3 is provided at the center between the gap pieces 2. In the figure, among the solid content in the stock solution dispersed in the unit separation region from the liquid flow hole 3 of the separation plate 1, for example, solid particles having a sedimentation start point on the right a point in the figure of the liquid flow hole 3, While moving inward (upward in the figure) across the front of the liquid passage hole 3, the liquid settles toward the inner wall surface of the upper separation plate, and reaches the inner wall surface of the separation plate, for example, at a point b which is a settling completion point. . At this time, since the solid particles are directly affected by the flow of the stock solution supplied from the liquid passage hole 3, the distance to the sedimentation completion point b is much longer than that in the case where it is not affected. Finer particles and particles with a smaller specific gravity difference from light liquid are more susceptible to the undiluted liquid flow, and the sedimentation completion point b is farther away. Therefore, fine particles smaller than the predetermined particle size are settled within the unit sedimentation area (in the separation plate) Therefore, it will flow out of the separator laminate together with the light liquid. In addition, the settled particles that reach the inner wall surface of the upper separation plate in the unit sedimentation region and move in the outer circumferential direction of the separation plate (downward in the figure) along the inner wall surface are also undiluted solution introduced from the liquid passage hole 3. Part of it flows in the inner circumferential direction of the separation plate along with the raw liquid flow, and even if it is once separated, it may be mixed into the light liquid and reduce the separation efficiency. is there. In this way, when the fluid passage hole 3 is provided at the approximate center of the two strip-shaped gap pieces 2 forming the unit sedimentation region, the sedimentation start point a or the sedimentation completion point b is provided in the right half of the fluid passage hole 3 in the figure. The flow of the solid content particles where is located is directly affected by the stock solution flow, which hinders the improvement of the separation efficiency.
[0022]
On the other hand, the separation plate of the present invention shown in FIG. 4 (A) has the liquid passage hole 3 adjacent to the gap piece on the upstream side in the rotating body rotation direction of the strip-like gap piece 2 forming the unit sedimentation region. By providing, solid particles having, for example, a sedimentation start point as a point a in the stock solution introduced and dispersed from the fluid passage hole 3 are not directly crossed with the stock solution stream introduced from the fluid passage hole 3. Since the liquid moves in the inner circumferential direction along the flow and settles toward the inner wall surface of the separation plate, the influence of the raw liquid flow received by the solid particles is much smaller than in the case of FIG. 4B described above. Become. Therefore, if the solid content particles have the same diameter, the distance to the settling completion point b is remarkably shortened as compared with the case of FIG. Further, when the solid particles after settling move to the outer periphery of the separation plate, they are not directly crossed with the stock solution flow, so that they are not affected by the stock solution flow. Thus, by adopting the separation plate of the present invention, the particle size of the solid content reaching the sedimentation completion point b by the inner peripheral end of the separation plate 1 becomes smaller than in the case of FIG. The separation efficiency is improved.
[0023]
Here, the influence on the separation efficiency by providing the liquid passage hole 3 adjacent to the strip-shaped gap piece on the front side in the rotation direction of the unit settling region is estimated.
[0024]
Now, assuming that the inner diameter of the separation plate is 66φ, the outer diameter is 152φ, and the solid particles move the shortest distance along the vertical generating line of the separation plate, the settling distance L is (the flow hole 3 is the maximum of the separation plate). Provided in the outer shell, ignoring the size of the fluid passage hole),
L = (1/2) · (152-66) = 43 (mm).
[0025]
Assuming that the moving speed V of the solid content in the stock solution is 1.62 (m / sec), the residence time T of the solid content particles in the unit sedimentation region is:
T = L / V = 43 / (1.62 × 100) = 0.265 (sec).
Accordingly, the solid particles in the stock solution that have flowed out from the liquid passage hole 3 and dispersed around the liquid hole 3 are accompanied by the light liquid without settling unless they reach the settling completion point within 0.265 (sec). Will be discharged.
[0026]
Here, in the separation plate (FIG. 4B) in which the liquid passage hole 3 is provided at the center between the strip-shaped gap pieces 2, the solid content particles affected by the stock solution flow are supplied and dispersed on the right side of the liquid passage hole 3 in the figure. Assuming that 50% of the total and 20% of them are accompanied by light liquid without being separated,
(1-0.5 × 0.2) × 100 = 90 (%)
By adopting the present invention, ((100/90) -1) × 100 = 11.1 (%), the separation efficiency is improved by about 10%. In the separation performance test under the same conditions in which only the liquid passage holes and the gap pieces of the separation plate are changed, the separation efficiency when using the separation plate of the present invention is higher than that when using the separation plate of FIG. About 20%.
[0027]
In the present invention, as shown in FIG. 5, the strip-shaped gap pieces 2 can be provided to be inclined at a predetermined angle with respect to the conical bus of the separating plate 1. As a result, the solid content particles that have reached the settling completion point b from the settling start point a reach the strip-shaped gap piece 2 early, and thereafter move along the gap piece 2 in the outer circumferential direction. The influence of the stock solution flow received by the fractional particles is reduced, and the solids separation efficiency is further improved.
[0028]
【The invention's effect】
According to the invention described in claim 1 of the present application, a plurality of separation gaps divided by gap pieces are provided between the separation plates, and the liquid to be processed introduced into the separation gaps is adjacent to the unit separation area. It is possible to maintain a high centrifugal force without being affected by the liquid to be treated, and the flow path of the stock solution and the outflow of the solid content without crossing the solid particle flow path directly with the stock solution flow. Since the flow path can be separated, the distance to the solid particle settling point is shortened, and the separation efficiency is remarkably improved.
[0029]
According to the invention described in claim 4 of the present application, as in the case of the above-described invention, higher separation performance can be obtained as compared with the prior art.
[Brief description of the drawings]
FIG. 1 is a perspective view of a separation plate showing an embodiment of the present invention.
2 is a top view of FIG.
FIG. 3 is an explanatory view showing a separator laminate.
FIG. 4 is an explanatory diagram showing the principle of the present invention.
FIG. 5 is an explanatory diagram showing an embodiment of the present invention.
FIG. 6 is an explanatory diagram of a rotating body of a separation plate type centrifuge.
FIG. 7 is an explanatory diagram showing a conventional technique.
8 is a top view of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Separation plate, 2 ... Strip-shaped gap piece, 3 ... Liquid passage hole, 4 ... Arrow which shows the rotation direction of a separation plate, 5 ... Notch part, 6 ... Guide cylinder, 7 ... Diameter expansion part of a guide cylinder, 8 ... Separator plate laminated body, 9 ... liquid passage hole of guide tube, 10 ... undiluted solution flow path, 20 ... rotating body, 21 ... rotating body body, 22 ... guide tube, 23 ... diameter-expanded portion of guide tube, 25 ... guide tube Liquid passage hole, 26 ... Separation plate, 27 ... Liquid passage hole of separation plate, 28 ... Gap piece, 29 ... Notch, 30 ... Raw liquid inlet pipe, 31 ... Rib of guide tube, 32 ... Rotating shaft, 33 ... Cap nut 34 ... Valve cylinder, 35 ... Light liquid discharge passage.

Claims (6)

高速で回転する回転体と、該回転体の中央に配置され、下方に拡径部を有する筒状の案内筒と、該案内筒の前記拡径部の周方向に沿って等間隔に設けられた複数の通液孔と、前記案内筒の軸方向に沿って所定間隔で多数積層され、該案内筒の前記通液孔と対応する位置に設けられた複数の通液孔および該通液孔相互間に等間隔に配置された間隙片とを備えた笠状の分離板とを有する分離板型遠心分離機において、
前記分離板の間隙片を、該分離板の円錐母線に沿った短冊状として隣接する分離板相互間に前記短冊状間隙片で仕切られた複数の単位分離領域を形成するとともに、前記通液孔を、各単位分離領域の回転体回転方向前方の前記短冊状間隙片の近傍に設けて分離板の内壁面に向かって沈降する固形分粒子が受ける原液流の影響を、前記通液孔を前記単位分離領域を仕切る隣接する短冊状間隙片相互の中間部に設けた場合よりも小さくしたことを特徴とする分離板型遠心分離機。
A rotating body that rotates at a high speed, a cylindrical guide tube that is disposed at the center of the rotating body and has an enlarged diameter portion below, and is provided at equal intervals along the circumferential direction of the enlarged diameter portion of the guide tube. A plurality of liquid passage holes and a plurality of liquid passage holes stacked at predetermined intervals along the axial direction of the guide cylinder, and the liquid passage holes provided at positions corresponding to the liquid passage holes of the guide cylinder and the liquid passage holes In a separation plate centrifuge having a cap-shaped separation plate with gap pieces arranged at equal intervals between each other,
A plurality of unit separation regions partitioned by the strip-shaped gap pieces are formed between adjacent separation plates as a strip shape along the conical bus line of the separation plate, and the liquid passage hole. Is provided in the vicinity of the strip-shaped gap piece in front of the rotating body rotation direction of each unit separation region , and the influence of the raw liquid flow received by the solid particles that settle toward the inner wall surface of the separation plate A separation plate type centrifugal separator characterized in that it is smaller than a case where it is provided at an intermediate portion between adjacent strip-shaped gap pieces partitioning a unit separation region .
前記通液孔は、前記分離板の外周端に沿って設けられていることを特徴とする請求項1記載の分離板型遠心分離機。The separator plate type centrifugal separator according to claim 1, wherein the liquid passage hole is provided along an outer peripheral end of the separator plate. 前記短冊状間隙片が、前記分離板の円錐母線に対し、前記分離板の回転方向に向かって所定角度傾斜して設けられていることを特徴とする請求項1又は2に記載の分離板型遠心分離機。The separation plate mold according to claim 1, wherein the strip-shaped gap pieces are provided to be inclined at a predetermined angle toward the rotation direction of the separation plate with respect to the conical bus of the separation plate. centrifuge. 高速で回転する回転体と、該回転体の中央に配置され、下方に拡径部を有する筒状の案内筒と、該案内筒の前記拡径部の周方向に沿って等間隔に設けられた複数の通液孔と、前記案内筒の軸方向に沿って所定間隔で多数積層され、案内筒の前記通液孔と対応する位置に設けられた複数の通液孔および該通液孔相互間に等間隔に配置された間隙片とを備えた笠状の分離板とを有する分離板型遠心分離機の前記分離板において、
前記間隙片を、当該分離板の円錐母線に沿った短冊状とし、前記通液孔を、前記短冊状間隙片の分離板回転方向後方に隣接して設けて分離板の内壁面に向かって沈降する固形分粒子が受ける原液流の影響を、前記通液孔を前記単位分離領域を仕切る隣接する短冊状間隙片相互の中間部に設けた場合よりも小さくしたことを特徴とする分離板型遠心分離機の分離板。
A rotating body that rotates at a high speed, a cylindrical guide tube that is disposed at the center of the rotating body and has an enlarged diameter portion below, and is provided at equal intervals along the circumferential direction of the enlarged diameter portion of the guide tube. A plurality of liquid passage holes and a plurality of liquid passage holes stacked at predetermined intervals along the axial direction of the guide cylinder, and provided at positions corresponding to the liquid passage holes of the guide cylinder, and the liquid passage holes mutually. In the separation plate of the separation plate type centrifuge having a cap-shaped separation plate with gap pieces arranged at equal intervals between them,
The gap piece, and the separation plate strip shape along the cone generatrix of the previous SL through liquid holes, toward the inner wall surface of the separation plate is provided adjacent to the separator plate rotation direction rear side of the strip-shaped gap piece Separation plate type characterized in that the influence of the raw liquid flow received by the settled solid content particles is made smaller than that in the case where the liquid passage hole is provided in an intermediate portion between adjacent strip-shaped gap pieces partitioning the unit separation region. Separation plate of centrifuge.
前記通液孔は、当該分離板の外周端に沿って設けられていることを特徴とする請求項4記載の分離板型遠心分離機の分離板。The separation plate of the separation plate type centrifuge according to claim 4, wherein the liquid passage hole is provided along an outer peripheral end of the separation plate. 前記短冊状間隙片が、当該分離板の前記円錐母線に対し、前記分離板の回転方向に向かって所定角度傾斜して設けられていることを特徴とする請求項4又は5に記載の分離板型遠心分離機の分離板。6. The separation plate according to claim 4, wherein the strip-shaped gap pieces are provided to be inclined at a predetermined angle toward the rotation direction of the separation plate with respect to the conical bus of the separation plate. Separator plate of the centrifugal separator.
JP2001142105A 2001-05-11 2001-05-11 Separator plate centrifuge and separator plate used therefor Expired - Lifetime JP4745526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001142105A JP4745526B2 (en) 2001-05-11 2001-05-11 Separator plate centrifuge and separator plate used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001142105A JP4745526B2 (en) 2001-05-11 2001-05-11 Separator plate centrifuge and separator plate used therefor

Publications (2)

Publication Number Publication Date
JP2002336734A JP2002336734A (en) 2002-11-26
JP4745526B2 true JP4745526B2 (en) 2011-08-10

Family

ID=18988463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001142105A Expired - Lifetime JP4745526B2 (en) 2001-05-11 2001-05-11 Separator plate centrifuge and separator plate used therefor

Country Status (1)

Country Link
JP (1) JP4745526B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100360244C (en) * 2004-07-27 2008-01-09 潘雨力 Centrifugal separator
SE532500C2 (en) * 2008-07-16 2010-02-09 Alfa Laval Corp Ab Centrifugal separator
JP4794647B2 (en) * 2009-04-17 2011-10-19 定男 篠原 Separator plate centrifuge, its separator plate and solid-liquid separation method
JP4794652B2 (en) * 2009-05-11 2011-10-19 定男 篠原 Separator plate centrifuge and its separator plate
JP4921521B2 (en) 2009-05-29 2012-04-25 定男 篠原 Separation plate manufacturing method for separation plate type centrifuge
JP2011092798A (en) * 2009-10-27 2011-05-12 Keiji Kosan Kk Centrifuge
TWI414362B (en) * 2011-05-18 2013-11-11 Ind Tech Res Inst Extraction apparatus
CN112648044B (en) * 2019-10-11 2022-02-25 东京滤器株式会社 Oil separator
JP7311638B2 (en) * 2020-01-24 2023-07-19 三菱化工機株式会社 centrifuge

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5637217A (en) * 1995-01-25 1997-06-10 Fleetguard, Inc. Self-driven, cone-stack type centrifuge
SE509162C2 (en) * 1997-04-04 1998-12-14 Alfa Laval Ab Centrifugal separator with fluid-filled transmission chamber

Also Published As

Publication number Publication date
JP2002336734A (en) 2002-11-26

Similar Documents

Publication Publication Date Title
KR102110370B1 (en) Separator device for gas purification
JP4794647B2 (en) Separator plate centrifuge, its separator plate and solid-liquid separation method
US9186604B1 (en) Hydroclone with vortex flow barrier
RU2423165C1 (en) Method and device for cleaning fluid in centrifugal separator
JP4794652B2 (en) Separator plate centrifuge and its separator plate
US9782699B2 (en) Liquid refinement
JP6480594B2 (en) Centrifuge for purifying gas
JP4745526B2 (en) Separator plate centrifuge and separator plate used therefor
JP2012143722A (en) Foreign particle separator and system for clarifying fluid to be treated
CN104394996A (en) Laminar-flow centrifugal separator
US3484040A (en) Multiple chamber centrifuge
CN1600445A (en) Centrifugal separator
CN202860347U (en) Agglomerate cyclone separator
JP4406976B2 (en) Solid separation device
JP2009090268A (en) Cyclone type filter device
WO1982002343A1 (en) Industrial coolant fluid recovery system
CN102872668B (en) Agglomerate cyclone separator
JP2009172453A (en) Floating substance removing apparatus
JP2009050826A (en) Magnetic granule separator
US4375411A (en) Device for limiting vortex flow
JPH0240248A (en) Centrifugal separator
KR101627150B1 (en) Centrirugal seperator
RU2161537C1 (en) Separator for multicomponent liquid medium
RU2124949C1 (en) Liquid nonhomogeneous medium separator
JPS646919Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110502

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110512

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4745526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term