JP4744420B2 - Manufacturing method of high temperature damping manganese-based alloy - Google Patents

Manufacturing method of high temperature damping manganese-based alloy Download PDF

Info

Publication number
JP4744420B2
JP4744420B2 JP2006305096A JP2006305096A JP4744420B2 JP 4744420 B2 JP4744420 B2 JP 4744420B2 JP 2006305096 A JP2006305096 A JP 2006305096A JP 2006305096 A JP2006305096 A JP 2006305096A JP 4744420 B2 JP4744420 B2 JP 4744420B2
Authority
JP
Japan
Prior art keywords
manganese
based alloy
range
temperature
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006305096A
Other languages
Japanese (ja)
Other versions
JP2008121056A (en
Inventor
福星 殷
智 岩崎
信夫 佐久間
高明 檜原
琢哉 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Toyota Motor Corp
Original Assignee
National Institute for Materials Science
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science, Toyota Motor Corp filed Critical National Institute for Materials Science
Priority to JP2006305096A priority Critical patent/JP4744420B2/en
Priority to PCT/JP2007/071828 priority patent/WO2008056785A1/en
Publication of JP2008121056A publication Critical patent/JP2008121056A/en
Application granted granted Critical
Publication of JP4744420B2 publication Critical patent/JP4744420B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/04Influencing the temperature of the metal, e.g. by heating or cooling the mould
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C22/00Alloys based on manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Continuous Casting (AREA)

Description

本発明は、制振機能の作動温度の上限が100℃以上の高温制振マンガン基合金とその製造方法に関する。   The present invention relates to a high-temperature damping manganese-based alloy whose upper limit of the operating temperature of the damping function is 100 ° C. or more and a method for producing the same.

マンガン基合金は、安定な制振機能と優れた力学的特性を有することから、実用化に最も近い制振合金として注目され、その実用化に向けての研究開発が盛んに進められている。例えば、マンガン基合金の添加金属元素の組成を最適化してその加工性を改善すること(特許文献1)と、合金強度を向上させるために硬質第二相粒子を添加すること(特許文献2)、成型加工性と熱処理前後の寸法精度を改善するための熱処理(特許文献3)、マンガン基双晶型制振合金を高温加熱し、その後定速徐冷する熱処理方法(特許文献4)などが提案されている。   Manganese-based alloys have a stable damping function and excellent mechanical properties, and thus are attracting attention as vibration damping alloys that are closest to practical use, and research and development for their practical use are actively promoted. For example, optimizing the composition of the additive metal element of the manganese-based alloy to improve its workability (Patent Document 1) and adding hard second-phase particles to improve the alloy strength (Patent Document 2) Heat treatment (Patent Document 3) for improving moldability and dimensional accuracy before and after heat treatment, heat treatment method (Patent Document 4) of heating manganese-based twin-type vibration damping alloy at a high temperature and then cooling at a constant rate Proposed.

マンガン基合金の制振機能については、合金の双晶組織に由来すると考えられている。このことから、マンガン基合金の制振機能の作動温度範囲は、双晶組織が形成される温度範囲に一致すると考えられる。そして、双晶組織が形成される温度範囲の上限温度は、マンガン基合金の高温γ相から双晶を呈する低温γ相に相変態する臨界温度(相変態温度)であるので、マンガン基合金の制振機能の作動温度範囲の上限は、マンガン基合金の相変態温度に一致すると考えられる。現に、マンガン−銅合金では相変態温度以上の温度範囲では制振機能はほとんど作動せず、相変態温度より低い温度範囲で制振機能が安定に作動することがわかっている。従って、マンガン基合金の相変態温度を調整することにより、その制振機能の作動温度の上限値をコントロールすることができると考えられる。ただ、一般にマンガン基合金の相変態温度は、その合金組成(マンガンの含有量の増量など)や製造時の熱処理工程における条件によって調整されるが、マンガンの含有量を増量させると合金の鋳造性、加工性が悪化するので実用的ではない。そこで、一般には製造時の熱処理工程における条件によって相変態温度が調整される。すなわち、製造時の熱処理工程における条件によって、マンガン基合金の制振機能の作動温度範囲の上限値をコントロールすることができると考えられる。   The damping function of a manganese-based alloy is thought to originate from the twin structure of the alloy. From this, it is considered that the operating temperature range of the damping function of the manganese-based alloy coincides with the temperature range in which the twin structure is formed. The upper limit temperature of the temperature range in which the twin structure is formed is the critical temperature (phase transformation temperature) at which the high temperature γ phase of the manganese based alloy undergoes a transformation to the low temperature γ phase exhibiting twins. The upper limit of the operating temperature range of the damping function is considered to coincide with the phase transformation temperature of the manganese-based alloy. In fact, it has been found that in a manganese-copper alloy, the damping function hardly operates in the temperature range above the phase transformation temperature, and the damping function operates stably in a temperature range lower than the phase transformation temperature. Therefore, it is considered that the upper limit value of the operating temperature of the damping function can be controlled by adjusting the phase transformation temperature of the manganese-based alloy. However, in general, the phase transformation temperature of a manganese-based alloy is adjusted depending on the alloy composition (increased manganese content, etc.) and the conditions in the heat treatment process during manufacturing. However, increasing the manganese content increases the castability of the alloy. Since workability deteriorates, it is not practical. Therefore, in general, the phase transformation temperature is adjusted according to the conditions in the heat treatment process during production. That is, it is considered that the upper limit value of the operating temperature range of the damping function of the manganese-based alloy can be controlled by the conditions in the heat treatment process at the time of manufacture.

制振合金は、自動車、航空機などのエンジンや発電プラントなどの分野で大きなニーズがあると言われているが、これらの分野で利用されるためには、100℃以上の高温環境下において制振機能が作動しなければならない。しかしながら、従来の制振性のマンガン基合金として知られているソノストン合金(Mn-37Cu-4Al-3Fe-2Ni重量比)やインクラ
ミュート合金(Cu-45Mn-2Al重量比)などのマンガン基合金は、相変態温度が100℃よ
りも低いため、このような高温環境下では制振機能は作動しない。また、従来のマンガン基合金の製造技術においては、相変態温度を上げるために高温環境下で長時間エージングする時効処理が行われていたが、例えば特許文献1に記載のマンガン基合金(Mn-20Cu-5Ni-2Fe原子比)を400℃の環境下で200時間の時効処理を行っても相変態温度は10
0℃を超えないことがわかっている。このように従来のマンガン基合金の製造技術では、相変態温度を100℃以上に上げることができず、100℃以上の高温環境下において制振機能が作動するマンガン基合金を製造することができなかった。
特許第2849698号公報 特許第3345640号公報 特開2003−226951号公報 特開2005−23362号公報
Damping alloys are said to have great needs in the fields of engines and power plants for automobiles, aircraft, etc., but in order to be used in these fields, damping materials are used in a high temperature environment of 100 ° C. or higher. The function must work. However, manganese-based alloys such as sonostone alloys (Mn-37Cu-4Al-3Fe-2Ni weight ratio) and inclamute alloys (Cu-45Mn-2Al weight ratio) known as conventional vibration-damping manganese-based alloys Since the phase transformation temperature is lower than 100 ° C., the vibration damping function does not operate under such a high temperature environment. Further, in the conventional manufacturing technique for manganese-based alloys, an aging treatment is performed in which aging is performed for a long time in a high-temperature environment in order to increase the phase transformation temperature. For example, a manganese-based alloy (Mn- (20Cu-5Ni-2Fe atomic ratio) is subjected to an aging treatment for 200 hours in an environment of 400 ° C., the phase transformation temperature is 10
It has been found that it does not exceed 0 ° C. As described above, the conventional manganese-based alloy manufacturing technology cannot increase the phase transformation temperature to 100 ° C. or higher, and can manufacture a manganese-based alloy whose damping function operates in a high temperature environment of 100 ° C. or higher. There wasn't.
Japanese Patent No. 2849698 Japanese Patent No. 3345640 JP 2003-226951 A Japanese Patent Laid-Open No. 2005-23362

本発明は、以上の通りの背景から従来の問題点を理解し、マンガン基合金の相変態温度を100℃以上に上げることができ、100℃以上の高温環境下において制振機能を発現するマンガン基合金とその製造方法を提供することを課題としている。   The present invention understands conventional problems from the background as described above, can increase the phase transformation temperature of a manganese-based alloy to 100 ° C. or higher, and exhibits a damping function in a high-temperature environment of 100 ° C. or higher. It is an object to provide a base alloy and a manufacturing method thereof.

本発明者らは、マンガン基合金の合金組織を制御することにより、マンガン基合金の相変態温度を向上させることができる点に着目し、鋭意検討を重ねた。その結果、マンガン基合金の内部に、高マンガン組成部を分布させることにより、マンガン基合金の相変態温度を100℃以上に上げることができることを突き止めた。従来、マンガンの含有量を増加させると相変態温度が上昇することは知られていたが、合金のマンガン含有量が増えると鋳造性や加工性が低下するので、実用性のない合金組成となっていた。しかしながら、合金全体のマンガン含有量を増やすことなく、局所的にマンガンの含有量の多い部分を生成させることにより、合金の鋳造性と加工性を維持しつつ合金の相変態温度を上げることができることを、本発明者らは見出したのである。マンガン基合金の相変態温度以下の温度では、双晶組織が維持されて制振機能が作動するので、マンガン基合金の相変態温度を100℃以上に上げることにより、制振機能の作動温度の上限値が100℃以上のマンガン基合金が得られるのである。   The inventors focused on the fact that the phase transformation temperature of a manganese-based alloy can be improved by controlling the alloy structure of the manganese-based alloy, and conducted extensive studies. As a result, it was found that the phase transformation temperature of the manganese-based alloy can be raised to 100 ° C. or more by distributing the high manganese composition part inside the manganese-based alloy. Previously, it was known that increasing the manganese content would increase the phase transformation temperature, but increasing the manganese content of the alloy would reduce castability and workability, resulting in an impractical alloy composition. It was. However, it is possible to raise the phase transformation temperature of the alloy while maintaining the castability and workability of the alloy by locally generating a portion with a high manganese content without increasing the manganese content of the entire alloy. The present inventors have found out. At a temperature lower than the phase transformation temperature of the manganese-based alloy, the twinning structure is maintained and the damping function operates. Therefore, by raising the phase transformation temperature of the manganese-based alloy to 100 ° C. or higher, the operating temperature of the damping function is reduced. A manganese-based alloy having an upper limit of 100 ° C. or higher is obtained.

本発明は、以上のとおりの知見を踏まえて完成されたものであって、以下のことを特徴としている。   The present invention has been completed based on the knowledge as described above, and has the following characteristics.

第1:銅15〜25重量%、マンガン60重量%以上を含有し、ニッケル、鉄及びアルミニウムのうちの1種類以上を、ニッケル0<Ni≦7重量%、鉄0<Fe≦5重量%、アルミニウム0<Al≦5重量%の範囲内で含有し、不可避的不純物が含有されてもよいマンガン基合金の製造方法において、原料金属を溶融混合し、冷却させて鋳造するに際し、冷却工程における1150℃から900℃までの冷却時の平均冷却速度を0.05〜0.5℃/秒の範囲内とし、350〜650℃の範囲内の温度で20〜50時間の範囲内の時間の時効処理を施すことを特徴とするマンガン基合金の製造方法。First: containing 15 to 25% by weight of copper, 60% by weight or more of manganese, one or more kinds of nickel, iron and aluminum, nickel 0 <Ni ≦ 7% by weight, iron 0 <Fe ≦ 5% by weight, In the method for producing a manganese-based alloy that contains aluminum in the range of 0 <Al ≦ 5 wt% and may contain inevitable impurities, when the raw metal is melted and cooled and cast, 1150 in the cooling step The average cooling rate during cooling from ℃ to 900 ℃ is in the range of 0.05 to 0.5 ℃ / second, and the aging treatment is performed at a temperature in the range of 350 to 650 ℃ for a time in the range of 20 to 50 hours. The manufacturing method of the manganese base alloy characterized by performing these.

第2:マンガンを60重量%以上70.53重量%以下の範囲で含有し、銅、ニッケル、鉄をそれぞれ、銅22.35〜25重量%、ニッケル5.16〜7重量%、鉄1.96〜5重量%の範囲で含有し、不可避的不純物が含有されてもよいマンガン基合金の製造方法において、原料金属を溶融混合し、冷却させて鋳造するに際し、冷却工程における1150℃から900℃までの冷却時の平均冷却速度を0.05〜0.5℃/秒の範囲内とし、350〜650℃の範囲内の温度で20〜50時間の範囲内の時間の時効処理を施すことを特徴とするマンガン基合金の製造方法。
第3:マンガンを60重量%以上70.53重量%以下の範囲で含有し、銅、ニッケル、鉄をそれぞれ、銅22.35〜25重量%、ニッケル5.16〜7重量%、鉄1.96〜5重量%の範囲で含有し、かつ不可避的不純物を含んでなるマンガン―銅―ニッケル―鉄系の4元マンガン基合金の製造方法において、原料金属を溶融混合し、冷却させて鋳造するに際し、冷却工程における1150℃から900℃までの冷却時の平均冷却速度を0.05〜0.5℃/秒の範囲内とし、350〜650℃の範囲内の温度で20〜50時間の範囲内の時間の時効処理を施すことを特徴とするマンガン基合金の製造方法。
Second: Manganese is contained in the range of 60 wt% or more and 70.53 wt% or less, and copper, nickel, and iron are respectively copper 22.35-25 wt%, nickel 5.16-7 wt%, iron 1. In the method for producing a manganese-based alloy containing 96 to 5% by weight and optionally containing unavoidable impurities, when the raw material metal is melt-mixed and cooled and cast, it is 1150 ° C to 900 ° C in the cooling step. The average cooling rate during cooling up to 0.05 to 0.5 ° C./second is applied, and an aging treatment is performed at a temperature in the range of 350 to 650 ° C. for a time in the range of 20 to 50 hours. A method for producing a manganese-based alloy.
Third: Manganese is contained in the range of 60 wt% or more and 70.53 wt% or less, and copper, nickel, and iron are respectively copper 22.35-25 wt%, nickel 5.16-7 wt%, iron 1. In a method for producing a manganese-copper-nickel-iron-based quaternary manganese-based alloy containing 96 to 5% by weight and containing inevitable impurities, the raw material metals are melt-mixed, cooled and cast. In this case, the average cooling rate at the time of cooling from 1150 ° C. to 900 ° C. in the cooling step is in the range of 0.05 to 0.5 ° C./second, and the temperature is in the range of 350 to 650 ° C. for 20 to 50 hours. The manufacturing method of the manganese base alloy characterized by performing the aging treatment of the inside time.

上記第1の発明によれば、マンガン基合金が銅15〜25重量%、マンガン60重量%以上を含有し、ニッケル、鉄、およびアルミニウムのうちの1種類以上を、ニッケル0〜7重量%、鉄0〜5重量%、アルミニウム0〜5重量%の範囲内で含有するため、マンガン基合金の加工性が向上し、制振機能が安定に作動する。また、上記の組成のマンガン基合金の製造方法において、原料金属を溶融混合し、冷却させて鋳造するに際し、冷却工程における1150℃から900℃までの冷却時の平均冷却速度を0.05〜0.5℃/秒の範囲内とすることにより、100℃以上の高温環境下においても制振機能が安定に作動する。   According to the first invention, the manganese-based alloy contains 15 to 25% by weight of copper and 60% by weight or more of manganese, and one or more of nickel, iron, and aluminum are mixed with 0 to 7% by weight of nickel, Since it contains in the range of 0 to 5% by weight of iron and 0 to 5% by weight of aluminum, the workability of the manganese-based alloy is improved and the vibration damping function operates stably. In the method for producing a manganese-based alloy having the above composition, when the raw metal is melt-mixed and cooled and cast, the average cooling rate during cooling from 1150 ° C. to 900 ° C. in the cooling step is set to 0.05 to 0. By setting the speed within the range of 0.5 ° C./second, the vibration control function operates stably even in a high temperature environment of 100 ° C. or higher.

上記第2の発明によれば、100℃以上の高温環境下における制振機能がさらに向上したマンガン基合金が製造される
また、上記第3の発明によれば、マンガン基合金の100℃の温度環境における損出係数が0.03以上であり、100℃以上の高温環境下における制振機能がさらに向上したマンガン基合金が製造される
According to the second aspect of the present invention, a manganese-based alloy having a further improved damping function in a high temperature environment of 100 ° C. or higher is manufactured .
Also, the according to the third aspect, the coefficient output loss at 100 ° C. in a temperature environment of the manganese-based alloy is not less than 0.03, manganese based alloy damping function is further improved under 100 ° C. temperatures higher than Is manufactured .

本発明のマンガン基合金はマンガンを60重量%以上含有する。マンガンの含有量が60重量%未満の場合は、高マンガン組成部を分布させることができないので、相変態温度を100℃以上に上げることは困難である。マンガンの含有量を60重量%以上とすることにより、高マンガン組成部を合金内部に分布させることができ、制振機能の作動温度の上限値(損失係数−温度グラフにおいて、損失係数が0.03の時の温度。以下、制振作
動上限温度という。)を100℃以上にすることができる。なお、マンガンの含有量は、制振合金全体の原子比として75%以下であることが、制振合金の鋳造性、加工性の点から好ましい。
The manganese-based alloy of the present invention contains 60% by weight or more of manganese. When the manganese content is less than 60% by weight, it is difficult to raise the phase transformation temperature to 100 ° C. or higher because the high manganese composition part cannot be distributed. By setting the manganese content to 60% by weight or more, the high manganese composition part can be distributed inside the alloy, and the upper limit value of the operating temperature of the damping function (in the loss coefficient-temperature graph, the loss coefficient is 0. 0). The temperature at the time of 03. (hereinafter referred to as the vibration suppression operation upper limit temperature) can be set to 100 ° C. or higher. The manganese content is preferably 75% or less as an atomic ratio of the entire damping alloy from the viewpoint of castability and workability of the damping alloy.

マンガン基合金はマンガンの他に、銅を15〜25重量%含有し、用途など必要に応じてさらにニッケル、鉄、およびアルミニウムのうちの1種類以上を、ニッケル0〜7重量%、鉄0〜5重量%、アルミニウム0〜5重量%の範囲内で含有する。本発明においては、この範囲において、ニッケル、鉄およびアルミニウムのうちの1種以上を必らず含むものであってもよいし、これらを全く含まない(各々0重量%)ものであってもよい。本発明においては、このような組成において、制振機能の他に制振合金に要求される加工性、力学的特性が向上する。特に、ニッケル、鉄が含有されることにより、制振合金の加工性、制振機能の安定性が改善される。   The manganese-based alloy contains 15 to 25% by weight of copper in addition to manganese, and further contains one or more of nickel, iron, and aluminum as needed, such as nickel 0 to 7% by weight, iron 0 to 5% by weight and aluminum in the range of 0 to 5% by weight. In the present invention, within this range, one or more of nickel, iron and aluminum may be necessarily included, or none of these may be included (each 0% by weight). . In the present invention, in such a composition, workability and mechanical properties required for the damping alloy are improved in addition to the damping function. In particular, by containing nickel and iron, the workability of the damping alloy and the stability of the damping function are improved.

本発明のマンガン基合金は、所定の添加量の原料元素を溶融混合し、冷却して鋳造することにより製造される。溶融混合後の冷却工程において、1150℃から900℃までの冷却時における平均冷却速度を0.05〜0.5℃/秒の範囲内とする。平均冷却速度を
0.5℃/秒以下とすることにより、マンガン基合金の内部に高マンガン組成部が形成されて、マンガン基合金の相変態温度が上がる。一方、平均冷却速度を0.05℃/秒以上
とすることにより、マンガン基合金の生産サイクルタイムが短縮され、効率的な製造が可能になる。鋳造後のマンガン基合金に対して、350〜650℃の範囲内の温度で20〜50時間の範囲内の時間の時効処理を施す。この時効処理を行うことにより、確実に制振作動上限温度を100℃以上にすることができる。
The manganese-based alloy of the present invention is produced by melting and mixing a predetermined amount of raw material elements, cooling and casting. In the cooling step after the melt mixing, the average cooling rate at the time of cooling from 1150 ° C. to 900 ° C. is set in the range of 0.05 to 0.5 ° C./second. By setting the average cooling rate to 0.5 ° C./second or less, a high manganese composition part is formed inside the manganese-based alloy, and the phase transformation temperature of the manganese-based alloy is increased. On the other hand, by setting the average cooling rate to 0.05 ° C./second or more, the production cycle time of the manganese-based alloy is shortened, and efficient production becomes possible. The manganese-based alloy after casting is subjected to an aging treatment at a temperature in the range of 350 to 650 ° C. for a time in the range of 20 to 50 hours. By performing this aging treatment, it is possible to reliably set the vibration suppression operation upper limit temperature to 100 ° C. or higher.

マンガン基合金の相変態温度を100℃以上とすることにより、100℃の温度環境におけるマンガン基合金の損失係数は0.03以上となることが好ましい。ここで「損失係数」とは、マンガン基合金の貯蔵剪断弾性率(G’)と損失剪断弾性率(G”)の比、G”/G’のことであり、通常tanδで表され、材料が変形する際に材料がどのくらいエネ
ルギーを吸収するかを示す。
By setting the phase transformation temperature of the manganese-based alloy to 100 ° C. or higher, the loss factor of the manganese-based alloy in a temperature environment of 100 ° C. is preferably 0.03 or higher. Here, the “loss factor” is the ratio of the storage shear modulus (G ′) to the loss shear modulus (G ″) of the manganese-based alloy, G ″ / G ′, and is usually expressed by tan δ. Shows how much energy the material absorbs when deforms.

また、冷却工程に関しては、この後800℃から室温までの冷却を、45℃/時間より遅い冷却速度もしくは20時間以上の時間で行うことが、制振作動上限温度を確実に100℃以上にするために好ましい。   As for the cooling step, after that, cooling from 800 ° C. to room temperature is performed at a cooling rate slower than 45 ° C./hour or a time of 20 hours or more, so that the vibration suppression operation upper limit temperature is surely set to 100 ° C. or more. Therefore, it is preferable.

次に、本発明の実施例を説明する。もちろん、本発明がこれらの例示に限定されることはない。   Next, examples of the present invention will be described. Of course, the present invention is not limited to these examples.

それぞれ電解純金属であるマンガン、銅、ニッケル、鉄を、重量比がMn70.53−Cu22.35−Ni5.16−Fe1.96になるように全体量12kgを秤量し、マグ
ネシア坩堝に入れ、アルゴンガス雰囲気中で、高周波誘導加熱により溶融混合を行った。溶融混合時の溶融温度は1250℃〜1300℃の範囲内に制御した。溶湯が十分に混合された後、溶湯を加熱セラミック鋳型に流し込んで鋳造した。鋳型の内部は略直方体とし、内部寸法は縦216mm、横156mm、厚さ26mmとした。なお、鋳型には予め、溶湯の温度を測定するためにステンレス鋼シース型熱電対を3箇所((1)鋳型表層、(2)鋳型内部の合金インゴットの2側面(縦辺と横辺からなる2つの側面)の中心位置を連結した中心線上の、側面から合金インゴットの厚さの1/4だけ深部の位置、(3)鋳型内部の合金インゴットの2側面(縦辺と横辺からなる2つの側面)の中心位置を連結した中心線上の、側面から合金インゴットの厚さの1/2だけ深部の位置)に設置した。冷却速度のデータは、(2)の位置、すなわち鋳型内部の合金インゴットの2側面(縦辺と横辺からなる2つの側面)の中心位置を連結した中心線上の、側面から合金インゴットの厚さの1/4だけ深部の位置における温度測定値を用いて算出した。冷却工程における温度履歴を図1に示した。冷却工程における1150℃から900℃までの冷却時の平均冷却速度は、0.1℃/秒であった。これにより、マンガン基合金(試料1−0)を得た。
Each of the electrolytic pure metals, manganese, copper, nickel, and iron, weighed 12 kg so that the weight ratio is Mn70.53-Cu22.35-Ni5.16-Fe1.96, placed in a magnesia crucible, and argon In a gas atmosphere, melt mixing was performed by high frequency induction heating. The melt temperature during melt mixing was controlled within the range of 1250 ° C to 1300 ° C. After the molten metal was sufficiently mixed, the molten metal was cast into a heated ceramic mold. The interior of the mold was a substantially rectangular parallelepiped, and the internal dimensions were 216 mm long, 156 mm wide, and 26 mm thick. In addition, in order to measure the temperature of the molten metal, a stainless steel sheath type thermocouple is provided in three places ((1) mold surface layer, (2) two side surfaces of the alloy ingot inside the mold (vertical side and horizontal side). On the center line connecting the center positions of the two side surfaces, a position deeper by 1/4 of the thickness of the alloy ingot from the side surface, (3) two side surfaces of the alloy ingot inside the mold (2 consisting of a vertical side and a horizontal side) On the center line connecting the center positions of the two side surfaces) to a position deep from the side surface by a half of the thickness of the alloy ingot). The data of the cooling rate is the thickness of the alloy ingot from the side surface on the center line connecting the positions of (2), that is, the center positions of the two side surfaces of the alloy ingot inside the mold (two side surfaces consisting of the vertical side and the horizontal side). It calculated using the temperature measurement value in the position of a deep part only 1/4. The temperature history in the cooling process is shown in FIG. The average cooling rate during cooling from 1150 ° C. to 900 ° C. in the cooling step was 0.1 ° C./second. As a result, a manganese-based alloy (Sample 1-0) was obtained.

マンガン基合金の製造において、鋳型を水冷金属鋳型としたことの他は、試料1−0と同様の製造を行った。冷却工程における1150℃から900℃までの冷却時の平均冷却速度は、20℃/秒であった(図1)。これにより、マンガン基合金(試料2−0)を得た。   Manufacture of the manganese-based alloy was performed in the same manner as Sample 1-0 except that the mold was a water-cooled metal mold. The average cooling rate during cooling from 1150 ° C. to 900 ° C. in the cooling step was 20 ° C./second (FIG. 1). As a result, a manganese-based alloy (Sample 2-0) was obtained.

上記のマンガン基合金(試料1−0および2−0)の表面を電解研磨により研磨し、その研磨面を光学顕微鏡により観察することにより、鋳造されたマンガン基合金の合金組織を評価した。観察像を図2に示す。この組織の局所的マンガン組成を電子線プローブマイクロアナライザーで分析し、マンガンの組成分布を調べ、その分布の不均一性(組成分布度)を算出した。ここで「組成分布度」は、マンガン基合金中の局所的元素組成を、電子プローブマイクロアナライザー(EPMA)で、合金の多数箇所にわたり測定を行い、測定値から算出されるマンガンの重量百分率を横軸に、その重量百分率に対応する測定点数の全測定点数に対する割合を縦軸にプロットした時(図3)の、そのピーク曲線の半値幅として算出した。試料1−0、試料2−0について算出したところ、それぞれ9.65%
、3.57%であった。制振作動上限温度を100℃以上にするためには、組成分布度は5%以上であることが好ましい
鋳造されたマンガン基合金のインゴットから、縦60mm、横10mm、高さ1mmの短冊状試験
片を制振機能評価用テストピースとして機械加工により切出した。DMA(固体粘弾性測定装置)を用いて、3点曲げ振動モードにおいて1.2×10−4の振動歪み振幅で強制
振動を与えた。応力振幅とゆがみ振幅の比からヤング率E(図4)が求められ、応力振幅と歪み振幅の位相差から損失係数に相当するtanδ(図5)が制振機能として求められた
。測定条件は、−100℃から200℃までの温度範囲で5℃/分のペースで昇温し、振動周波数を0.1、1.0、10Hzの三条件で測定した。
The surface of the above manganese-based alloys (Samples 1-0 and 2-0) was polished by electrolytic polishing, and the polished surface was observed with an optical microscope to evaluate the alloy structure of the cast manganese-based alloy. An observation image is shown in FIG. The local manganese composition of this tissue was analyzed with an electron probe microanalyzer, the manganese composition distribution was examined, and the heterogeneity (composition distribution) of the distribution was calculated. Here, “composition distribution” refers to the local elemental composition in a manganese-based alloy, measured by many points of the alloy with an electron probe microanalyzer (EPMA), and the weight percentage of manganese calculated from the measured value is The ratio of the number of measurement points corresponding to the weight percentage to the total number of measurement points on the axis was calculated as the half-value width of the peak curve when plotted on the vertical axis (FIG. 3). When calculated for sample 1-0 and sample 2-0, 9.65% each.
3.57%. In order to make the upper limit temperature of vibration suppression operation 100 ° C or more, the composition distribution is preferably 5% or more. From the cast manganese-based alloy ingot, the strip test is 60mm long, 10mm wide, 1mm high. The piece was cut out by machining as a test piece for evaluating the damping function. Using a DMA (solid viscoelasticity measuring device), forced vibration was applied with a vibration strain amplitude of 1.2 × 10 −4 in the three-point bending vibration mode. The Young's modulus E (FIG. 4) was determined from the ratio between the stress amplitude and the distortion amplitude, and tan δ (FIG. 5) corresponding to the loss factor was determined as the damping function from the phase difference between the stress amplitude and the strain amplitude. Measurement conditions were as follows. The temperature was raised at a rate of 5 ° C./min in the temperature range from −100 ° C. to 200 ° C., and the vibration frequency was measured under three conditions of 0.1, 1.0, and 10 Hz.

試料2−0の、平均冷却速度が高い合金サンプルは、室温以下の低温環境下において高い制振特性を示す一方、ヤング率は試料1−0の低い平均冷却速度の合金サンプルより約30GPa低いことがわかった。これは急冷凝固により結晶の成長に顕著な異方性が生じたためと考えられる。   The alloy sample with a high average cooling rate of Sample 2-0 exhibits high vibration damping characteristics in a low temperature environment below room temperature, while the Young's modulus is about 30 GPa lower than the alloy sample with a low average cooling rate of Sample 1-0. I understood. This is thought to be due to the remarkable anisotropy of crystal growth caused by rapid solidification.

また、上記のマンガン基合金(試料1−0)について、鋳造後に時効処理を400℃で2時間行い、マンガン基合金の試料1−1を得た。   The manganese-based alloy (Sample 1-0) was subjected to aging treatment at 400 ° C. for 2 hours after casting to obtain a manganese-based alloy sample 1-1.

同様にして、鋳造後に時効処理を400℃で、5時間行った試料1−2、10時間行った試料1−3、20時間行った試料1−4、50時間行った試料1−5を得た。   Similarly, after casting, aging treatment was performed at 400 ° C. for 5 hours, sample 1-2, 10 hours sample 1-3, 20 hours sample 1-4, 50 hours sample 1-5. It was.

さらにまた、上記のマンガン基合金(試料2−0)について、鋳造後に時効処理を400℃で2時間行い、マンガン基合金の試料2−1を得た。同様にして、5時間行った試料2−2、10時間行った試料2−3、20時間行った、試料2−4、50時間行った試料2−5を得た。   Furthermore, the manganese-based alloy (Sample 2-0) was subjected to aging treatment at 400 ° C. for 2 hours after casting to obtain a manganese-based alloy sample 2-1. Similarly, Sample 2-2 performed for 5 hours, Sample 2-3 performed for 10 hours, Sample 2-4 performed for 20 hours, and Sample 2-5 performed for 50 hours were obtained.

以上の試料1−0〜5並びに試料2−0〜5の各々のマンガン基合金の温度に対するTanδ(損失係数)を評価した。試料1−0〜5についてのデータを図6に示す。この結果から、時効処理の時間が、高温環境下における損失係数に影響することが明らかとなり、20〜50時間の時効処理を行うことにより、100℃(373K)以上の環境下で損失係数が0.03以上となるので十分な制振機能が作動することが確認された。   Tan δ (loss factor) with respect to the temperature of each of the manganese-based alloys of Samples 1-0 to 5 and Samples 2-0 to 5 was evaluated. The data for samples 1-0 to 5 is shown in FIG. From this result, it is clear that the time of aging treatment affects the loss factor in a high temperature environment, and the loss factor is 0 in an environment of 100 ° C. (373 K) or higher by performing aging treatment for 20 to 50 hours. Since it became 0.03 or more, it was confirmed that a sufficient damping function was activated.

一方、試料2−0〜5のマンガン基合金の温度に対する損失係数のデータを図7に示す。この結果から、鋳造の冷却工程の1150℃から900℃までの平均冷却速度が20℃/秒と速い場合には、時効処理を行っても、100℃(373K)以上の環境下で損失係数が0.03に到達しないことが確認された。   On the other hand, the loss coefficient data with respect to the temperature of the manganese-based alloys of Samples 2-0 to 5 are shown in FIG. From this result, when the average cooling rate from 1150 ° C. to 900 ° C. in the casting cooling process is as fast as 20 ° C./second, the loss factor is 100 ° C. (373 K) or more even in the aging treatment. It was confirmed that 0.03 was not reached.

試料1−0および試料2−0の合金製造時の温度履歴を表示した図である。It is the figure which displayed the temperature history at the time of alloy manufacture of sample 1-0 and sample 2-0. 試料1−0および試料2−0にて製造したマンガン基合金の表面を電解研磨により研磨し、その研磨表面を光学顕微鏡で観察した観察像である。It is the observation image which grind | polished the surface of the manganese base alloy manufactured by the sample 1-0 and the sample 2-0 by electropolishing, and observed the grinding | polishing surface with the optical microscope. 試料1−0および試料2−0にて製造されたマンガン基合金中の局所的元素組成を、電子プローブマイクロアナライザー(EPMA)で、合金の多数箇所にわたり測定を行い、測定値から算出されるマンガンの重量百分率を横軸に、その重量百分率に対応する測定点数の全測定点数に対する割合を縦軸にプロットした図である。Manganese calculated from the measured values by measuring the local elemental composition in the manganese-based alloys produced in Sample 1-0 and Sample 2-0 over many locations of the alloy with an electron probe microanalyzer (EPMA) It is the figure which plotted the ratio with respect to the total number of measurement points of the number of measurement points corresponding to the weight percentage on the vertical axis on the horizontal axis. 試料1−0および試料2−0にて製造されたマンガン基合金の、温度とヤング率の関係を表したグラフである。It is the graph showing the relationship between temperature and Young's modulus of the manganese base alloy manufactured by sample 1-0 and sample 2-0. 試料1−0および試料2−0にて製造されたマンガン基合金の、温度と損失係数の関係を表したグラフである。It is the graph showing the relationship between temperature and a loss coefficient of the manganese base alloy manufactured by sample 1-0 and sample 2-0. 試料1−0〜5にて製造されたマンガン基合金の、温度と損失係数の関係を表したグラフである。It is the graph showing the relationship between temperature and a loss coefficient of the manganese base alloy manufactured by sample 1-0. 試料2−0および8〜12にて製造されたマンガン基合金の、温度と損失係数の関係を表したグラフである。It is the graph showing the relationship between temperature and a loss factor of the manganese base alloy manufactured by sample 2-0 and 8-12.

Claims (3)

銅15〜25重量%、マンガン60重量%以上を含有し、ニッケル、鉄及びアルミニウムのうちの1種類以上を、ニッケル0<Ni≦7重量%、鉄0<Fe≦5重量%、アルミニウム0<Al≦5重量%の範囲内で含有し、不可避的不純物が含有されてもよいマンガン基合金の製造方法において、原料金属を溶融混合し、冷却させて鋳造するに際し、冷却工程における1150℃から900℃までの冷却時の平均冷却速度を0.05〜0.5℃/秒の範囲内とし、350〜650℃の範囲内の温度で20〜50時間の範囲内の時間の時効処理を施すことを特徴とするマンガン基合金の製造方法。It contains 15 to 25% by weight of copper, 60% by weight or more of manganese, and one or more kinds of nickel, iron and aluminum are nickel 0 <Ni ≦ 7% by weight, iron 0 <Fe ≦ 5% by weight, aluminum 0 < In the method for producing a manganese-based alloy that contains Al ≦ 5% by weight and may contain inevitable impurities, the raw metal is melt-mixed, cooled, and cast at 1150 ° C. to 900 ° C. The average cooling rate at the time of cooling to 0 ° C. is in the range of 0.05 to 0.5 ° C./second, and an aging treatment is performed at a temperature in the range of 350 to 650 ° C. for a time in the range of 20 to 50 hours. A method for producing a manganese-based alloy characterized by the following. マンガンを60重量%以上70.53重量%以下の範囲で含有し、銅、ニッケル、鉄をそれぞれ、銅22.35〜25重量%、ニッケル5.16〜7重量%、鉄1.96〜5重量%の範囲で含有し、不可避的不純物が含有されてもよいマンガン基合金の製造方法において、原料金属を溶融混合し、冷却させて鋳造するに際し、冷却工程における1150℃から900℃までの冷却時の平均冷却速度を0.05〜0.5℃/秒の範囲内とし、350〜650℃の範囲内の温度で20〜50時間の範囲内の時間の時効処理を施すことを特徴とするマンガン基合金の製造方法。Manganese is contained in the range of 60 wt% or more and 70.53 wt% or less, and copper, nickel and iron are respectively copper 22.35-25 wt%, nickel 5.16-7 wt%, iron 1.96-5 In the manufacturing method of a manganese-based alloy that may be contained in the range of% by weight and may contain inevitable impurities, when the raw material metal is melt-mixed and cooled and cast, cooling from 1150 ° C. to 900 ° C. in the cooling step The average cooling rate at the time is in the range of 0.05 to 0.5 ° C./second, and an aging treatment is performed at a temperature in the range of 350 to 650 ° C. for a time in the range of 20 to 50 hours. Manufacturing method of manganese-based alloy. マンガンを60重量%以上70.53重量%以下の範囲で含有し、銅、ニッケル、鉄をそれぞれ、銅22.35〜25重量%、ニッケル5.16〜7重量%、鉄1.96〜5重量%の範囲で含有し、かつ不可避的不純物を含んでなるマンガン―銅―ニッケル―鉄系の4元マンガン基合金の製造方法において、原料金属を溶融混合し、冷却させて鋳造するに際し、冷却工程における1150℃から900℃までの冷却時の平均冷却速度を0.05〜0.5℃/秒の範囲内とし、350〜650℃の範囲内の温度で20〜50時間の範囲内の時間の時効処理を施すことを特徴とする4元マンガン基合金の製造方法。Manganese is contained in the range of 60 wt% or more and 70.53 wt% or less, and copper, nickel and iron are respectively copper 22.35-25 wt%, nickel 5.16-7 wt%, iron 1.96-5 In the manufacturing method of a manganese-copper-nickel-iron quaternary manganese-based alloy containing in the range of wt% and containing inevitable impurities, the raw metal is melt-mixed, cooled, and cooled when cast. The average cooling rate during cooling from 1150 ° C. to 900 ° C. in the process is in the range of 0.05 to 0.5 ° C./second, and the temperature is in the range of 350 to 650 ° C. and the time is in the range of 20 to 50 hours. A method for producing a quaternary manganese-based alloy, characterized in that:
JP2006305096A 2006-11-10 2006-11-10 Manufacturing method of high temperature damping manganese-based alloy Expired - Fee Related JP4744420B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006305096A JP4744420B2 (en) 2006-11-10 2006-11-10 Manufacturing method of high temperature damping manganese-based alloy
PCT/JP2007/071828 WO2008056785A1 (en) 2006-11-10 2007-11-09 Manganese-base alloy and process for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006305096A JP4744420B2 (en) 2006-11-10 2006-11-10 Manufacturing method of high temperature damping manganese-based alloy

Publications (2)

Publication Number Publication Date
JP2008121056A JP2008121056A (en) 2008-05-29
JP4744420B2 true JP4744420B2 (en) 2011-08-10

Family

ID=39364595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006305096A Expired - Fee Related JP4744420B2 (en) 2006-11-10 2006-11-10 Manufacturing method of high temperature damping manganese-based alloy

Country Status (2)

Country Link
JP (1) JP4744420B2 (en)
WO (1) WO2008056785A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5076609B2 (en) * 2007-04-17 2012-11-21 大同特殊鋼株式会社 Mn-Cu vibration damping alloy and manufacturing method thereof
CN104152764B (en) * 2014-08-31 2016-02-03 中南大学 A kind of P/m Porous copper-manganese damping material and preparation method thereof
RU2639751C1 (en) * 2016-07-20 2017-12-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тульский государственный университет" (ТулГУ) METHOD FOR HEAT TREATMENT OF SHEETS OF Mn-Cu SYSTEM ALLOYS
CN109913674A (en) * 2019-02-24 2019-06-21 宝鸡市嘉诚稀有金属材料有限公司 A kind of preparation method of the alumal of aerospace grade high Mn content
CN113652562B (en) * 2021-07-16 2022-01-28 西安钢研功能材料股份有限公司 Protective smelting and pouring method of manganese-nickel-copper alloy
CN114107770A (en) * 2021-08-18 2022-03-01 上海大学 Preparation method of composite phase-change reinforced high-damping manganese-nickel-based damping alloy

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4871310A (en) * 1971-12-28 1973-09-27
JPS51133120A (en) * 1975-05-16 1976-11-18 Komatsu Ltd Mn-cu silent alloy
JPS5311810A (en) * 1976-07-20 1978-02-02 Komatsu Mfg Co Ltd High damping capacity alloy
JPS6050868B2 (en) * 1977-09-16 1985-11-11 三菱重工業株式会社 Heat treatment method for anti-vibration alloy
JP2849698B2 (en) * 1994-02-28 1999-01-20 科学技術庁金属材料技術研究所長 Manganese-based vibration-damping alloy and its manufacturing method
JP2002146498A (en) * 2000-11-08 2002-05-22 Seishin:Kk Workpiece made of high damping alloy
JP4450157B2 (en) * 2003-07-01 2010-04-14 大同特殊鋼株式会社 Heat treatment method for manganese-based twin-type damping alloy

Also Published As

Publication number Publication date
WO2008056785A1 (en) 2008-05-15
JP2008121056A (en) 2008-05-29

Similar Documents

Publication Publication Date Title
US9396827B2 (en) Cu—Ti based copper alloy sheet material and method for producing the same, and electric current carrying component
JP4744420B2 (en) Manufacturing method of high temperature damping manganese-based alloy
US20080298999A1 (en) Method for Producing a Copper Alloy Having a High Damping Capacity
CN109594002B (en) Multi-principal-element medium-entropy alloy and preparation method thereof
JPWO2011068134A1 (en) Copper alloy sheet having low Young&#39;s modulus and method for producing the same
JP6628902B2 (en) Low thermal expansion alloy
JP2010196112A (en) HIGH STRENGTH Al-Cu-Mg ALLOY EXTRUDED MATERIAL AND METHOD FOR PRODUCING THE SAME
JP2011012321A (en) Copper alloy material and production method therefor
KR20160131076A (en) Metal wire rod composed of iridium or iridium alloy
JP2015505905A (en) Aluminum fin alloy and manufacturing method thereof
JP2019178399A (en) Copper alloy for electronic and electric device, copper ally stripe material for electronic and electric device, component for electronic and electric device, terminal, and bus bar
WO2015142804A1 (en) High strength, homogeneous copper-nickel-tin alloy and production process
JP5059035B2 (en) Highly elastic / constant elastic alloy, its manufacturing method and precision instrument
JPWO2019073754A1 (en) Ti-Ni alloy, wire rod using it, energizing actuator and temperature sensor, and manufacturing method of Ti-Ni alloy
KR20180125484A (en) Copper alloy and manufacturing method thereof
CN114182139B (en) Precipitation strengthening nickel-based high-temperature alloy and preparation method thereof
CN111212923B (en) Casting die material and copper alloy material
CN102534292A (en) Copper alloy for electrical and electronic component, and method for producing the same
JP2012255212A (en) High-elasticity and constant-modulus alloy and manufacturing method therefor, and precision instrument
JP2020056076A (en) Low thermal expansion cast
JP2001262277A (en) Low thermal expansion alloy excellent in machinability and its producing method
JP7469072B2 (en) Aluminum alloy forgings and their manufacturing method
JP5164144B2 (en) Co-Cr-Mo casting alloy for living body
JP7218270B2 (en) Copper alloy rolled sheet and quality judgment method thereof
JP3749922B2 (en) High strength and high damping capacity Fe-Cr-Mn-Co alloy and method for producing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees