JP4744341B2 - Radioactive contaminant handling apparatus and decontamination method thereof - Google Patents

Radioactive contaminant handling apparatus and decontamination method thereof Download PDF

Info

Publication number
JP4744341B2
JP4744341B2 JP2006103433A JP2006103433A JP4744341B2 JP 4744341 B2 JP4744341 B2 JP 4744341B2 JP 2006103433 A JP2006103433 A JP 2006103433A JP 2006103433 A JP2006103433 A JP 2006103433A JP 4744341 B2 JP4744341 B2 JP 4744341B2
Authority
JP
Japan
Prior art keywords
radioactive
wall surface
water
radioactive contaminant
decontamination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006103433A
Other languages
Japanese (ja)
Other versions
JP2007278770A (en
Inventor
俊也 角田
武志 松本
誠一郎 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2006103433A priority Critical patent/JP4744341B2/en
Publication of JP2007278770A publication Critical patent/JP2007278770A/en
Application granted granted Critical
Publication of JP4744341B2 publication Critical patent/JP4744341B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Description

この発明は、放射性汚染物取扱設備に洗浄除染手段を備えた放射性汚染物取扱装置に関するものであり、グローブボックスなどの放射性汚染物取扱設備の内壁面(鋼板、ガラス板、アクリル樹脂板などの平滑な壁面)にトリチウム等の放射性物質が付着して堆積した場合でも、これを容易、迅速に除去することができるものである。 TECHNICAL FIELD The present invention relates to a radioactive contaminant handling apparatus provided with a cleaning and decontaminating means in a radioactive contaminant handling facility, and an inner wall surface (steel plate, glass plate, acrylic resin plate, etc.) of the radioactive contaminant handling facility such as a glove box. Even when radioactive material such as tritium adheres to and accumulates on a smooth wall surface, it can be easily and rapidly removed.

例えば、重水素−トリチウム核融合炉のプラズマ対向材料、特にダイバータなどには大量のトリチウムが水や炭化水素の形で堆積するが、安全性確保の観点からトリチウムインベントリを低減することが要求される。また、原子炉等原子力設備の補修・交換等に伴って多量の放射性物質が付着残存する放射性汚染物が排出され、これらが内圧が負圧に保たれているグローブボックスや周辺から隔離されたセルと呼ばれる設備、すなわち放射性汚染物取扱設備内で処理される。グローブボックス等の放射性汚染物取扱設備の内面への放射性物質の付着量が増大すると、作業環境の放射線レベルが高くなるのを避け、作業者の安全確保等のために、上記設備の壁面に付着した放射性物質を定期的に除去する必要がある。そしてこの除去作業(除染作業)は設備の稼働率向上の観点からも能率的、効率的に行われれることが必要である。   For example, a large amount of tritium accumulates in the form of water or hydrocarbons on the plasma facing materials of deuterium-tritium fusion reactors, especially divertors, but it is required to reduce the tritium inventory from the viewpoint of ensuring safety. . In addition, radioactive contaminants with a large amount of radioactive material adhering and remaining are discharged due to repair and replacement of nuclear facilities such as nuclear reactors, and these are isolated from glove boxes and the surroundings where the internal pressure is maintained at a negative pressure. It is processed in equipment called radioactive contamination handling equipment. If the amount of radioactive material attached to the inner surface of a radioactive contaminant handling facility such as a glove box increases, the radiation level in the work environment is avoided, and it adheres to the wall surface of the above facility to ensure the safety of workers. It is necessary to remove the radioactive material regularly. And this removal work (decontamination work) needs to be performed efficiently and efficiently also from a viewpoint of the operation rate improvement of an installation.

従来、トリチウム等の放射性物質が壁面に付着したとき、その放射性汚染物取扱設備(例えばグローブボックス等)の除染(汚染物質除去)に用いられる方法には、同位体希釈法、化学除染法、ベーキング法、紫外線照射法などがある。
同位体希釈法は大量の水を流して放射性物質であるトリチウムを希釈して処理する方法であり、また、化学除染法は酸などの除染液で表層を洗浄する方法であるが、いずれも処理後のガスや洗浄液等の二次的放射性廃棄物(二次的に生じる放射性廃棄物)の発生量が大きくなり、これの処理に多くの時間と費用を要することが問題である。また、ベーキング法は、汚染した構造物を加熱してトリチウム化合物を気化し脱離させてパージする方法で、高温に加熱しなければならない。このためこれを適用できる材質や構造には制限があり、また加熱のために大きな熱エネルギーが必要になるという問題がある。
Conventionally, when radioactive materials such as tritium adhere to the wall, the methods used for decontamination (contamination removal) of radioactive contaminant handling equipment (eg glove box) are the isotope dilution method and chemical decontamination method. , Baking method and ultraviolet irradiation method.
The isotope dilution method is a method of diluting and processing radioactive tritium by flowing a large amount of water, and the chemical decontamination method is a method of cleaning the surface layer with a decontamination solution such as acid. However, the amount of secondary radioactive waste (secondarily generated radioactive waste) such as gas and cleaning liquid after processing becomes large, and it takes a lot of time and money to process it. The baking method is a method in which a contaminated structure is heated to vaporize and desorb a tritium compound and purge it, and must be heated to a high temperature. For this reason, there are limitations on materials and structures to which this can be applied, and there is a problem that large heat energy is required for heating.

さらに、紫外線照射法は放射性物質に紫外線を照射し化学結合エネルギーより大きなエネルギーを与えることによりC−H結合を切断して水素ガスあるいは炭化水素ガスにして気化させて、設備壁面から放射性物質を発散させて除去する方法である。この紫外線照射法をグローブボックスに適用した例を図3に模式的に示している。この従来例では、グローブボックス1が鋼板、アクリル樹脂板又はガラス板などの板材2で構成されており、その内面に光触媒層(例えば、酸化チタン粉末をスラッジ化したものを塗布して形成した層)5が形成されている。側壁の開口3にグローブ4が取り付けられている。グローブボックス内に放射性汚染物が搬入され、上記開口3から手を差し込んでグローブ4を装着し、グローブボックス1内で所定の処理作業が行われる。 Furthermore, the ultraviolet irradiation method irradiates radioactive materials with ultraviolet rays and gives energy larger than the chemical bond energy to break the C—H bonds and vaporize them into hydrogen gas or hydrocarbon gas, thereby releasing the radioactive materials from the equipment wall. This is a method of removing them. Shown schematically in FIG. 3 an example of applying the ultraviolet irradiation archery glove box. In this conventional example, the glove box 1 is composed of a plate material 2 such as a steel plate, an acrylic resin plate, or a glass plate, and a photocatalyst layer (for example, a layer formed by applying a sludge of titanium oxide powder to the inner surface thereof. ) 5 is formed. A globe 4 is attached to the opening 3 on the side wall. Radioactive contaminants are carried into the glove box, a hand is inserted through the opening 3, the glove 4 is attached, and a predetermined processing operation is performed in the glove box 1.

グローブボックス1の内壁面にゴミ(放射性物質)が付着するので、これに定期的に紫外線ランプ6によって紫外線を照射して、内壁面に付着した放射性物質を光学的に分解させてこれを除去する。この従来例では低圧水銀灯の紫外線を0.3mW/cmの強度で照射することで、内壁面に付着したトリチウムを迅速に除去することができるものである。しかし、紫外線の内壁面に付着した放射性物質内への透過深さは比較的浅いので、除染能率を高めるためには、紫外線の高水準エネルギーが必要であり、また反応に必要な時間が長いという問題があり、また、除染作業能率が悪く設備稼働率の点および作業員の健康面からも、除染作業能率を向上させることが必要である。 Since dust (a radioactive substance) adheres to the inner wall surface of the glove box 1, the ultraviolet lamp 6 is periodically irradiated with ultraviolet rays to optically decompose and remove the radioactive substance attached to the inner wall surface. . In this conventional example, tritium adhering to the inner wall surface can be quickly removed by irradiating ultraviolet rays from a low-pressure mercury lamp with an intensity of 0.3 mW / cm 2 . However, since the penetration depth of ultraviolet rays into the radioactive material attached to the inner wall surface is relatively shallow, high level energy of ultraviolet rays is required to increase the decontamination efficiency, and the time required for the reaction is long. In addition, the decontamination work efficiency is poor, and it is necessary to improve the decontamination work efficiency from the viewpoint of equipment operation rate and the health of workers.

また、紫外線照射法による場合、その紫外線は表面から数原子層しか除染効果がないと考えられている。このことから、この紫外線照射法では大量に堆積した後には、これを十分に除去することはできない。残余の放射性付着物を水洗して除去することが考えられるが、これらの設備の内壁面は極めて平滑であり、鋼板、ガラス板、アクリス樹脂板などで濡れ性が低いので多量の洗浄水を使用する必要があり多量の放射性汚染水を生じることになり、その処理に多くの費用を要する。このような事情から、紫外線照射法による場合は、除染作業の仕上げに手作業による拭き取りが欠かせず、広い壁面を有する放射性物取扱設備ではこの拭き取り作業が大きな負担に成っているのが現状である。
特許第3614401号公報
Further, in the case of the ultraviolet irradiation method, it is considered that the ultraviolet rays have a decontamination effect only from a few atomic layers from the surface. For this reason, this ultraviolet irradiation method cannot sufficiently remove it after it is deposited in large quantities. It is conceivable to remove the remaining radioactive deposits with water, but the inner wall surface of these facilities is extremely smooth and uses a large amount of washing water because it has low wettability with steel plates, glass plates, Acris resin plates, etc. This produces a large amount of radioactively polluted water, which requires a lot of cost for its treatment. For this reason, in the case of the ultraviolet irradiation method, wiping by hand is indispensable for finishing the decontamination work, and this wiping work is a heavy burden in radioactive material handling facilities with wide walls. It is.
Japanese Patent No. 3614401

そこで、本発明が解決しようとする課題は、内壁面に光触媒層が形成されていて、紫外線照射法による除染手段を備えている放射性汚染物取扱設備について、
放射性汚染物取扱設備の内壁面に付着した放射性物質を短時間で除去することができ、洗浄水などの二次的な汚染物の発生を少なくしてその処理を簡単容易にしそのコストを低減することができるように、放射性汚染物取扱装置およびその汚染除去方法を工夫することである。
Therefore, an object of the present invention is to provide the inner wall surface to have a photocatalyst layer is formed, for ultraviolet irradiation archery radioactive contaminants and a decontamination unit according to handling equipment,
Radioactive material adhering to the inner wall surface of radioactive contaminant handling equipment can be removed in a short time, reducing the generation of secondary contaminants such as cleaning water, simplifying the treatment and reducing its cost It is to devise a radioactive contaminant handling device and its decontamination method.

上記課題を解決するための手段は、内壁面に光触媒層が形成されていて、紫外線照射法による除染手段を備えているグローブボックスなどの放射性汚染物取扱設備を前提にして、次の(イ)(ロ)(ハ)によるものである。
(イ)上記放射性汚染物取扱設備の内壁面の上端部に、洗浄水を霧状に噴射して水洗浄を行うミストノズル(洗浄水噴霧ノズル)を設けること
(ロ)上記放射性汚染物取扱設備に濾過装置を備えた洗浄水循環装置を設けてあること。
(ハ)上記放射性汚染物取扱設備の内壁面に対する紫外線の照射と、当該内壁面の水洗浄とを同時に行うこと
It means for solving the above problems, have photocatalyst layer is formed on the inner wall surface, on the assumption radioactive contaminants handling equipment, such as tolyl lobes box equipped with decontamination means by ultraviolet irradiation method, the following ( This is due to (b) (b) (c) .
(B) an upper end portion of the inner wall surface of the radioactive contaminants handling equipment, provided the mist nozzles to perform ejection to water wash the washing water is atomized (washing water spray nozzle) Rukoto.
(B) A washing water circulation device equipped with a filtration device is provided in the radioactive contaminant handling facility.
(C) Simultaneously irradiating the inner wall surface of the radioactive contaminant handling facility with ultraviolet rays and washing the inner wall surface with water .

なお、上記の「光触媒」はステンレス鋼板、アクリル樹脂板、ガラス板などの平滑な表面に塗布されていて、紫外線が照射されることによってその表面が超親水性(接触角度が30度以の親水性)を発揮する光触媒であり、結晶系の酸化チタンがその代表的なものであるが、他に、アナターゼ型のもの、ルチル型のもの、ブルッカイト型のもの、アモルファス型のもの等がある。  The above-mentioned “photocatalyst” is applied to a smooth surface such as a stainless steel plate, an acrylic resin plate, a glass plate, etc., and the surface is superhydrophilic (hydrophilic with a contact angle of 30 ° or more when irradiated with ultraviolet rays). The crystalline titanium oxide is a typical photocatalyst, and there are anatase type, rutile type, brookite type, amorphous type and the like.

放射性汚染物取扱設備の壁面は、機械的強度、気密性、除染性等の観点から平滑な鋼板、ガラス板、アクリル樹脂板などで構成されているのが一般的であるが、これらの壁面それ自体は親水性が低くて水をはじくので、水洗効果が低く洗浄精度も低い。しかし、光触媒で被覆された内壁面はこれに紫外線を照射するとその表面が超親水性になるので、その表面を洗浄水で洗うと、当該表面に超極薄水膜が形成され、この超極薄水膜が壁面に沿って流れる。そして、壁面に形成された超極薄水膜によって壁面がほぼ均等に濡れる。このため壁面に付着した汚れ(放射生物など)の間に染みこんでゆき、汚れを速やかに洗い落とす。この汚染除去は水洗浄であるから極めて効率的、能率的になされる。
壁面全面が超極薄水膜で洗浄され、しかも、洗浄水は循環装置で濾過されて繰り返し使用されるから、一つの放射線汚染物取扱設備の一回の洗浄作業で使用される洗浄水量は極めて少量であり、この洗浄水の汚染除去処理は低コストでなされる。
The wall surface of radioactive contaminant handling equipment is generally composed of smooth steel plate, glass plate, acrylic resin plate, etc. from the viewpoint of mechanical strength, air tightness, decontamination, etc. Since it itself has low hydrophilicity and repels water, its washing effect is low and its washing accuracy is low. However, when the inner wall surface covered with the photocatalyst is irradiated with ultraviolet rays, its surface becomes superhydrophilic, so when the surface is washed with washing water, an ultra-thin water film is formed on the surface, and this super A thin water film flows along the wall. And the wall surface gets wet almost uniformly by the ultra-thin water film formed on the wall surface. For this reason, it permeates between dirt (radioactive organisms, etc.) adhering to the wall surface, and quickly removes the dirt. Since this decontamination is a water wash, it is extremely efficient and efficient.
Since the entire wall surface is cleaned with an ultra-thin water film, and the cleaning water is repeatedly filtered and used repeatedly, the amount of cleaning water used in one cleaning operation of one radioactive contaminant handling facility is extremely high. This is a small amount, and the decontamination treatment of the washing water is performed at a low cost.

〔実施態様〕
また、グローブボックス等の放射性汚染物除去設備の壁面の超極薄水膜に振動を加えると、水膜が壁面に対して相対的に振動し、この超極薄水膜の振動が汚れの壁面からの剥離を促進するので、付着した汚れに対する除去効果が著しく向上する。
超極薄水膜の上記振動による汚染物除去効果は、その周波数の如何、振幅の如何によって異なり、最適な振動数、振幅は放射性汚染物取扱設備の壁面の振動特性により、また形成される水膜の厚さによっても異なるから、個々の装置における最適値にその振動数、振幅を調整する必要がある。
Embodiment
In addition, when vibration is applied to the ultra-thin water film on the wall of a radioactive contaminant removal facility such as a glove box, the water film vibrates relative to the wall surface, and the vibration of the ultra-thin water film is Since peeling from the surface is promoted, the effect of removing adhered dirt is remarkably improved.
The effect of removing contaminants due to the above-mentioned vibration of the ultra-thin water film varies depending on the frequency and amplitude, and the optimum frequency and amplitude depend on the vibration characteristics of the wall surface of the radioactive contaminant handling equipment and the water formed. Since it varies depending on the thickness of the film, it is necessary to adjust the frequency and amplitude to the optimum values in each apparatus.

さらに、加振手段については、スピーカーで空気を振動させ、この空気振動で超極薄水膜を振動させるものでもよく、上記壁面の裏側に加振機器を付着させておいてこれを振動させ、壁面の振動で上記極薄水膜に振動を加えるものでもよいが、加振手段の放射性物質による汚染を回避するためには壁面をその外側から加振する方式の方が望ましい。   Furthermore, the vibration means may be one that vibrates air with a speaker, vibrates the ultra-thin water film with this air vibration, vibrates this by attaching a vibration device to the back side of the wall surface, Although vibration may be applied to the ultrathin water film by vibration of the wall surface, in order to avoid contamination of the vibration means by the radioactive material, a method of vibrating the wall surface from the outside is desirable.

次いで、グローブボックスにこの発明を適用した実施例1を図1及び図2を参照しながら説明する。
このグローブボックス(放射性汚染物取扱設備)11はアクリル樹脂板で構成されていて、密閉された作業室であり、その内面全面が結晶系の酸化チタン(光触媒)層(光触媒層)で被覆されている(厚さ0.1ミクロン)。光触媒機能が強く、超親水性になる光触媒として他に、アナターゼ型のもの、ルチル型のもの、ブルッカイト型のもの、アモルファス型のもの等を使用することができる。
グロ−ブボックス11内は空気が外に漏れないように所定の真空度に保持されている。そして、このグローブボックス11の底面12は中央が低い傾斜面であり、中央の窪みに排水口が設けられている。
Then, Example 1 in which the invention is applied to a glove box with reference to FIGS. 1 and 2 will be described.
This glove box (radiopollutant handling equipment) 11 is made of an acrylic resin plate and is a sealed working chamber, and the entire inner surface is covered with a crystalline titanium oxide (photocatalyst) layer (photocatalyst layer). (Thickness 0.1 micron). In addition, an anatase type, a rutile type, a brookite type, an amorphous type, etc. can be used as a photocatalyst having a strong photocatalytic function and becoming superhydrophilic.
The glove box 11 is maintained at a predetermined degree of vacuum so that air does not leak outside. And the bottom surface 12 of this glove box 11 is an inclined surface with a low center, and the drain outlet is provided in the hollow of the center.

上記底面12の中央に洗浄水循環装置の配管13が接続されている。この洗浄水循環装置は循環ポンプ14を有し、上記底面12と循環ポンプ14との間にフィルタ15、貯留タンク16が配置されている。上記フィルタ15はいわゆる濾過フィルタであり、20μm以上のゴミ(放射性物質など)を捕集する濾過能力を有する。
循環ポンプ14の吐出側に開閉弁17を介して汚染水処理装置18が接続されており、また開閉弁19を介して放水管20が接続されている。
グローブボックスの側壁上端に散水ヘッダー21が設けられており、この散水ヘッダーに放水管20が接続されている。そして、上記散水ヘッダー21にミストノズル22が一定間隔で接続されている。そしてこのミストノズル22がグローブボックスの内壁面に向けられており、このミストノズルから洗浄水が霧状に噴出される。
A pipe 13 of the washing water circulation device is connected to the center of the bottom surface 12. This washing water circulation device has a circulation pump 14, and a filter 15 and a storage tank 16 are disposed between the bottom surface 12 and the circulation pump 14. The filter 15 is a so-called filtration filter, and has a filtration capacity for collecting dust (such as radioactive substances) of 20 μm or more.
A contaminated water treatment device 18 is connected to the discharge side of the circulation pump 14 via an opening / closing valve 17, and a water discharge pipe 20 is connected via an opening / closing valve 19.
A watering header 21 is provided at the upper end of the side wall of the glove box, and a water discharge pipe 20 is connected to the watering header. A mist nozzle 22 is connected to the watering header 21 at regular intervals. And this mist nozzle 22 is orient | assigned to the inner wall face of the glove box, and wash water is jetted from this mist nozzle in the shape of a mist.

洗浄工程においては、開閉弁17が閉じられ、19が開かれており、洗浄水は循環ポンプ14によって例えば7kg/cmの水圧に加圧され、放水管20、散水ヘッダー21を経てミストノズル22から粒径50μmのミストとして噴射され、これが内壁面に吹き付けられる。このとき、内壁面は超親水性で濡れ性が非常に高いので、200〜300μmの厚さの極薄水膜が内壁全面にほぼ均一に形成され、これが壁面に沿って流れ落ちる。したがって、少量の洗浄水で極めて高い水洗効果が発揮される。
因みに、アクリル樹脂板による壁面に光触媒層が形成されていない場合は、親水性が高くないので水膜は形成されにくく、また形成されたとしても水膜厚さは約数mm程度である。また、触媒層を形成しているものでも紫外線を照射しない状態では超親水性を備えていないので、水膜厚さは約1mm程度である。これらのいずれも濡れ性が高くないので十分な水洗効果が発揮されず、また、多量の洗浄水を使用することになる。
In the cleaning process, the on-off valve 17 is closed and 19 is opened. The cleaning water is pressurized to a water pressure of, for example, 7 kg / cm 2 by the circulation pump 14, passes through the water discharge pipe 20 and the water spray header 21, and the mist nozzle 22. Is sprayed as a mist having a particle diameter of 50 μm and sprayed onto the inner wall surface. At this time, since the inner wall surface is superhydrophilic and has very high wettability, an ultrathin water film having a thickness of 200 to 300 μm is formed almost uniformly on the entire inner wall surface, and flows down along the wall surface. Therefore, a very high washing effect is exhibited with a small amount of washing water.
Incidentally, when the photocatalyst layer is not formed on the wall surface of the acrylic resin plate, the water film is difficult to be formed because the hydrophilicity is not high, and even if formed, the water film thickness is about several millimeters. Moreover, even if the catalyst layer is formed, the film thickness of the water is about 1 mm because it does not have super hydrophilicity in a state where it is not irradiated with ultraviolet rays. Since none of these has high wettability, a sufficient washing effect is not exhibited, and a large amount of washing water is used.

また、この実施例1は図3の従来例と同様に適宜の紫外線照射装置6を備えており、この紫外線照射装置6で紫外線を内壁面に照射してこれを超親水性にしながら上記の水洗を行う。このように、紫外線照射と水洗を並行して同時に行うことができ、これにより光分解作用による除染および光触媒表面の超親水性化と、壁面の水洗による除染とが同時に行われるので除染能率が高く、したがって、極めて迅速にしかも効果的に除染がなされる。 Further, this Example 1 is provided with an appropriate ultraviolet irradiation device 6 as in the conventional example of FIG. 3, and the above-mentioned water washing is performed while irradiating the inner wall surface with ultraviolet rays and making it super hydrophilic. I do. Thus, in parallel to washing the ultraviolet irradiation can and this simultaneously performed, thereby the superhydrophilicity of decontamination and the photocatalytic surface by photolysis action, since the decontamination washing of the wall are carried out simultaneously dividing The dyeing rate is high, and therefore decontamination is performed very quickly and effectively.

洗浄工程が終了すると、開閉弁19が閉じられ、開閉弁17が開かれて、汚染された洗浄水は汚染水処理装置18に回収される。なお、この汚染水処理装置は最終処理装置であることが望ましいが、必ずしもその必要はない。   When the cleaning process is completed, the on-off valve 19 is closed, the on-off valve 17 is opened, and the contaminated cleaning water is collected by the contaminated water treatment device 18. The contaminated water treatment apparatus is preferably a final treatment apparatus, but it is not always necessary.

なお、グローブボックス11内には散水ヘッダー21、ミストノズル22が付設されており、これらの表面にも汚れが付着する。したがって、これらの表面にも光触媒層を形成して紫外線照射による除染効果が発揮されるようにするのがよい。   In the glove box 11, a watering header 21 and a mist nozzle 22 are attached, and dirt is also attached to these surfaces. Therefore, it is preferable to form a photocatalyst layer on these surfaces so that the decontamination effect by ultraviolet irradiation is exhibited.

次に、洗浄水の水膜を振動させて除染効果を向上させた実施例2を図1及び図2を用いて説明する。この実施例2では壁の外面に発振器30が付設されている。この発振器30としてはその振動の振幅、振動数を調整できるものがよいので、これらを容易に調整できるバイブレータ等の電気的な加振器が適当である。振動数を10〜100Hzの範囲で調整し、加振力を調整することにより、水洗浄能率が著しく向上する。 Next, Example 2 in which the decontamination effect is improved by vibrating the water film of the cleaning water will be described with reference to FIGS. In the second embodiment, an oscillator 30 is attached to the outer surface of the wall. The amplitude of this vibration as an oscillator 30, since it is intended to adjust the frequency, electrical shaker vibrator such that they can easily adjustment is appropriate. By adjusting the vibration frequency in the range of 10 to 100 Hz and adjusting the excitation force, the water washing efficiency is remarkably improved.

は、この発明の実施例による放射性汚染物取扱設備を備える放射性汚染物取扱装置の模式図である。 Is a schematic view of a radioactive contaminant handling device comprising a radioactive contaminant handling equipment according to an embodiment of the present invention. は、この発明の実施例による放射性汚染物取扱設備の洗浄除染手段の模式図である。These are the schematic diagrams of the washing | cleaning decontamination means of the radioactive contaminant handling equipment by the Example of this invention. は、従来の放射性汚染物取扱設備の模式図である。These are the schematic diagrams of the conventional radioactive contaminant handling equipment.

11:グローブボックス
12:底面
13:配管
14:循環ポンプ
15:フィルタ
16:貯留タンク
17,19:開閉弁
18:汚染水処理装置
20:放水管
21:散水ヘッダー
22:ミストノズル
30:加振器
11: Glove box 12: Bottom surface 13: Pipe 14: Circulation pump 15: Filter 16: Storage tank 17, 19: On-off valve 18: Contaminated water treatment device 20: Water discharge pipe 21: Sprinkling header 22: Mist nozzle 30: Exciter

Claims (2)

内壁面に光触媒層が形成されていて、紫外線照射法による除染手段を備えているグローブボックス等の放射性汚染物取扱設備について、
上記放射性汚染物取扱設備の内壁面の上端部に、洗浄水を霧状に噴射して水洗浄を行うミストノズルを設け、
上記放射性汚染物取扱設備に濾過装置を備えた洗浄水循環装置を設けて成り、
上記放射性汚染物取扱設備の内壁面に対する紫外線の照射と、当該内壁面の水洗浄とを行い、
上記放射性汚染物取扱設備が加振器を備えていて、これによって当該放射性汚染物取扱設備の内壁面の超極薄水膜を振動させることを特徴とする放射性汚染物取扱装置。
About radioactive contaminant handling equipment such as a glove box that has a photocatalyst layer formed on the inner wall surface and is equipped with decontamination means by ultraviolet irradiation method,
At the upper end of the inner wall surface of the radioactive contaminant handling facility, a mist nozzle is provided for cleaning water by spraying cleaning water in a mist form.
The above radioactive pollutant handling equipment is provided with a washing water circulation device equipped with a filtration device,
Irradiating the inner wall surface of the radioactive contaminant handling facility with ultraviolet light and washing the inner wall surface with water,
A radioactive contaminant handling apparatus characterized in that the radioactive contaminant handling facility includes a vibrator, and thereby vibrates an ultra-thin water film on the inner wall surface of the radioactive contaminant handling facility.
内壁面が光触媒で被覆されているグローブボックス等の放射性汚染物取扱設備の汚染除去方法について、
上記放射性汚染物取扱設備の内壁面に紫外線を照射しつつ、ミストノズルから洗浄水を霧状に噴射することにより、厚さ200〜300μmの極薄水膜で当該内壁面を水洗浄し、
上記水洗浄時に上記放射性汚染物取扱設備の加振器によって当該放射性汚染物取扱設備の内壁面の超極薄水膜を振動させることを特徴とする放射性汚染物取扱設備の汚染除去方法。
About the decontamination method of radioactive contaminant handling equipment such as a glove box whose inner wall is covered with a photocatalyst,
While irradiating the inner wall surface of the radioactive contaminant handling facility with ultraviolet rays, the inner wall surface is washed with water with an ultrathin water film having a thickness of 200 to 300 μm by spraying cleaning water from the mist nozzle in the form of a mist.
The method of decontamination radioactive contaminants handling equipment characterized that you vibrating the ultra-thin water film of the inner wall surface of the radioactive contaminants handling equipment by vibrator of the radioactive contaminants handling equipment at the water washing.
JP2006103433A 2006-04-04 2006-04-04 Radioactive contaminant handling apparatus and decontamination method thereof Active JP4744341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006103433A JP4744341B2 (en) 2006-04-04 2006-04-04 Radioactive contaminant handling apparatus and decontamination method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006103433A JP4744341B2 (en) 2006-04-04 2006-04-04 Radioactive contaminant handling apparatus and decontamination method thereof

Publications (2)

Publication Number Publication Date
JP2007278770A JP2007278770A (en) 2007-10-25
JP4744341B2 true JP4744341B2 (en) 2011-08-10

Family

ID=38680365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006103433A Active JP4744341B2 (en) 2006-04-04 2006-04-04 Radioactive contaminant handling apparatus and decontamination method thereof

Country Status (1)

Country Link
JP (1) JP4744341B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184499A (en) * 1988-01-18 1989-07-24 Toshiba Corp Parts cleaning device for control rod drive mechanism
JPH1176833A (en) * 1997-09-04 1999-03-23 Toto Ltd Photocatalystic hydrophilic member
JP2001340711A (en) * 2000-05-31 2001-12-11 Toshiba Corp Filter washing device for filter
JP2003194991A (en) * 2001-12-25 2003-07-09 Kawasaki Heavy Ind Ltd Tritium contamination-preventing and decontamination method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3999459B2 (en) * 2000-12-18 2007-10-31 三菱重工業株式会社 Method and apparatus for cleaning photocatalyst film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184499A (en) * 1988-01-18 1989-07-24 Toshiba Corp Parts cleaning device for control rod drive mechanism
JPH1176833A (en) * 1997-09-04 1999-03-23 Toto Ltd Photocatalystic hydrophilic member
JP2001340711A (en) * 2000-05-31 2001-12-11 Toshiba Corp Filter washing device for filter
JP2003194991A (en) * 2001-12-25 2003-07-09 Kawasaki Heavy Ind Ltd Tritium contamination-preventing and decontamination method

Also Published As

Publication number Publication date
JP2007278770A (en) 2007-10-25

Similar Documents

Publication Publication Date Title
RU2429313C2 (en) Procedure for cleaning steel sheet and system of continuous steel sheet cleaning
JP6183606B2 (en) Filtration apparatus and filtration method
US5302324A (en) Method for decontaminating substances contaminated with radioactivity, and method for decontaminating the materials used for said decontamination
CN112845392A (en) Accurate nondestructive laser decontamination method for polluted metal parts on surface of nuclear facility
CN203508041U (en) Flue gas denitrification catalyst cleaning-regeneration device
JP6532516B2 (en) Filtration apparatus and filtration method of liquid to be treated
US7027549B2 (en) Nuclear power plant system and method of operating the same
CN102108517A (en) Process and device for cleaning sintered metal mesh
JP4744341B2 (en) Radioactive contaminant handling apparatus and decontamination method thereof
US5503591A (en) Apparatus for decontaminating substances contaminated with radioactivity
RU2638951C1 (en) Method for deactivating solid radioactive waste with ice granules
JP2008221135A (en) Washing method of dry type electrostatic dust precipitator
JP5674609B2 (en) Dust collector and dust collector cleaning method
CN208131597U (en) Laser cleaner
JP6160017B1 (en) Filtration apparatus and filtration method
JP2004202306A (en) Air cleaner
KR100911657B1 (en) The dry decontamination apparatus of radioactive metallic waste and method thereof
CN114455666A (en) A photocatalyst catalytic degradation jar for handling sewage
JP3920734B2 (en) Water-based paint coating system
JP3614401B2 (en) Tritium decontamination decontamination method
CN105921453A (en) Surface cleaning treatment method for large box of high-power laser device
JP4008448B2 (en) Sea salt particle monitoring method
KR102295425B1 (en) Collector for collecting harmful gas after Fab process of electronic parts
JP7250241B1 (en) LASER PROCESSING RECOVERY DEVICE, LASER PROCESSING SYSTEM AND LASER PROCESSING METHOD
CN211025482U (en) A anticorrosive sack cleaner for msw incineration factory

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110316

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4744341

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250