JP3614401B2 - Tritium decontamination decontamination method - Google Patents

Tritium decontamination decontamination method Download PDF

Info

Publication number
JP3614401B2
JP3614401B2 JP2001391212A JP2001391212A JP3614401B2 JP 3614401 B2 JP3614401 B2 JP 3614401B2 JP 2001391212 A JP2001391212 A JP 2001391212A JP 2001391212 A JP2001391212 A JP 2001391212A JP 3614401 B2 JP3614401 B2 JP 3614401B2
Authority
JP
Japan
Prior art keywords
tritium
decontamination
photocatalyst
ultraviolet rays
glove box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001391212A
Other languages
Japanese (ja)
Other versions
JP2003194991A (en
Inventor
亮 千代
俊也 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2001391212A priority Critical patent/JP3614401B2/en
Publication of JP2003194991A publication Critical patent/JP2003194991A/en
Application granted granted Critical
Publication of JP3614401B2 publication Critical patent/JP3614401B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、トリチウムの防染方法および除染方法に関し、特に核融合関連およびトリチウム取扱施設におけるトリチウムの蓄積を抑え、またはトリチウムの除去を行うトリチウム防染除染方法に関する。
【0002】
【従来の技術】
重水素−トリチウム核融合炉のプラズマ対向材料、特にダイバータなどには大量のトリチウムが水や炭化水素の形で堆積するが、安全性確保の観点からトリチウムインベントリを低減することが要求される。また、炉の補修・交換に伴い、かなりの量のトリチウムを含む材料が排出されるので、核融合炉の稼働率を向上させるためにも炉中においてのみならず、取り外した部材を処理するグローブボックスにおいて、トリチウム除染を効率よく行う方法が必要とされる。
【0003】
核融合炉のプラズマ対向機器の交換修理作業は、真空容器内からホットセルと呼ばれる建家に移送して行うことになる。従って、修理交換作業前の機器内のトリチウム量をできるだけ少なく抑えることが重要である。また、核融合炉の稼働率を高めるためにも真空容器内におけるトリチウム除染処理の効率化が要求されている。
【0004】
従来、トリチウムの除染に用いられる方法に、同位体希釈法、化学除染法、ベーキング法、紫外線照射法などがある。
同位体希釈法は、大量の水素もしくは水を流して放射性物質であるトリチウムを希釈して処理する方法であり、化学除染法は酸などの除染液で表層を洗浄する方法であるが、いずれも処理後のガスや液の二次廃棄物の発生量が大きくなることが問題である。
ベーキング法は、汚染した構造物を加熱してトリチウム化合物を気化し脱離させてパージする方法で、高温にする必要から適用できる材質に制限がありまた加熱のために大きなエネルギが必要になる問題がある。
【0005】
さらに、紫外線照射法は、トリチウム化合物に紫外線を照射し化学結合エネルギより大きなエネルギを与えることによりC−H結合を切断して、水素ガスあるいは炭化水素ガスとして気化する方法である。
プラズマ・核融合学会誌、第76巻第10号(2000年10月)第1021−1028頁には、アセチレンガス雰囲気中でスパッタリングさせて炭素膜を形成することにより共堆積層を模擬した試料に0.2mJの172nm紫外線を20分間照射することにより、試料表面に付着していた水、一酸化炭素、二酸化炭素の他に、炭素膜から大量の水素と少量の炭化水素が放出されることが観察されたことが記載されている。
【0006】
しかし、従来の紫外線照射法は、高い水準のエネルギを必要とし、また反応に必要な時間が長いという問題がある。
また、紫外線は表面から数原子層しか除染効果がないと考えられているところから、紫外線照射法においても大量の堆積がなされた後には十分な除染が困難になる。
【0007】
【発明が解決しようとする課題】
そこで、本発明が解決しようとする課題は、紫外線照射法を用いたトリチウムの除染方法、特に核融合関連およびトリチウム取扱施設におけるトリチウム除染方法において、より効率的にトリチウムの蓄積を抑え、またトリチウムの除去を行う方法を提供することである。
【0008】
【課題を解決するための手段】
上記課題を解決するため、本発明のトリチウム防染除染方法は、トリチウムに接触する面に金属酸化物光触媒を塗布し、その接触面に紫外線を照射することにより、接触面上へのトリチウム含有有機化合物の堆積を妨げ、もしくは接触面に堆積したトリチウム化合物の分解を促進することを特徴とする。
接触面に塗布する光触媒は、特に、アナターゼ型酸化チタンを含む光触媒であることが好ましい。
【0009】
光触媒は、紫外線が表面に照射されたときに発生するラジカル物質により、有機物の分解を促進するものである。多くの酸化物が光触媒として利用可能であるが、酸化チタンが機能性と安全性の面で優れており好適である。酸化チタンには、アナターゼ型、ルチル型、ブルッカイト型の3種類の結晶体と、アモルファス体とがあるが、特にアナターゼ型の酸化チタンが最も強い光触媒活性を有することが知られている。
本願出願人の所有する特許第2918112号の明細書には、アナターゼ型酸化チタン光触媒の効果が記載されている。
【0010】
核融合炉のプラズマ対向機器やその他のトリチウム取扱装置などにおけるトリチウム汚染は、トリチウムが水素として含有された有機物が表面に付着・堆積することが原因である。
本発明は、トリチウム汚染の可能性のある構造材の表層に光触媒をコーティングしておき、太陽光あるいは紫外線ランプやレーザ光などの紫外線を照射することにより、表面に付着したトリチウム含有有機化合物を触媒作用を利用して効率的に分解し、表面に堆積することを防止する。
また、表面に堆積したトリチウム化合物に対しても、光触媒の働きで効率的に分解して、CO、HO、炭化水素ガス等の気体になって、構造体表面に遊離するので、スイープガスを流して回収することによって、トリチウム除染をすることができる。
【0011】
なお、回収したスイープガスは放射能漏れを防ぐため適切な処理を行う必要があるが、その量は同位体希釈法などと比較すると極めて小さいので、処理装置の負荷は小さい。
また、従来の紫外線照射法と比較すると、除染時間が大幅に短くなる上、投入エネルギも節減することができる。
本発明の方法は、重水素−トリチウム核融合炉のトリチウム通路内壁もしくは核融合炉の構造体などトリチウム汚染体を処理するグローブボックスの内壁などに適用することにより、大きな効果を有する。
【0012】
たとえば、核融合炉などに適用する場合に、設備の稼働中にも紫外線を照射しておくことにより表面に接触したトリチウム化合物を付着する前に効率よく分解するため汚染されにくくなり、トリチウム化合物の堆積を防止しトリチウムインベントリーを低くを抑えることができる。
また、間歇的に所定時間紫外線照射をすることにより、付着した有機系とリチウムを分解して除染することができる。
さらに、部品の補修・交換などのため設備を休止したときにも光触媒を塗布した面に紫外線を照射することにより容易に除染することができる。
【0013】
また、トリチウム汚染物の処理装置においても、トリチウムに接触する可能性のあるグローブボックスなどの部材表面に光触媒を塗布しておいて、常にあるいは必要なときに太陽光や紫外線ランプの紫外線を照射すれば、トリチウム化合物が堆積することを防止しあるいは付着したトリチウム化合物を除去することができる。
なお、本発明の方法は、光触媒を表面に塗布して紫外線を照射するだけで、高温処理など過酷な条件を必要としないので、鋼材に限らず、ガラス、樹脂など、各種材料に適用することができる。しかも、対象とする材料が変わっても手順は同じため、操業が容易で処理コストも低減することができる。
また、本発明の方法は、核融合関連施設以外でも、使用済核燃料再処理施設および機器、重水炉機器など、トリチウムの防染・除染が必要となる施設・機器に広く適用可能な方法である。
【0014】
【発明の実施の形態】
以下、本発明のトリチウム除染方法について実施例に基づき図面を参照して詳細に説明する。
図1は本発明の実施例を説明する斜視図、図2は光触媒作用を説明する図面、図3は光触媒の効果を説明するグラフである。
【0015】
本発明方法はトリチウム汚染を受ける可能性がある構造材などに適用できると共に、トリチウム汚染物体を処理するグローブボックス1に適用することができる。
図1に示すように、グローブボックス1を透明のアクリル樹脂板2で形成する。グロ−ブボックス1には、手を挿入できる開口3とその先にゴムなど樹脂でできた機密性の高い手袋が設けられていて、内部の対象物を手で扱っても雰囲気がボックス外に漏洩しないようになっている。
【0016】
アクリル樹脂板2の内面にはスラリー化した酸化チタン光触媒を塗布して100℃程度の温度で処理し光触媒層5を形成してある。酸化チタン光触媒としてアナターゼ型酸化チタンを使用すると、光触媒効果が大きくまたスラリー化が容易なので好ましい。
光触媒層の透明度は高いため、グローブボックス内の対象物を目視しながら手で扱うことができる。なお、表面にスプレーして自然乾燥して形成した光触媒層でも光触媒効果は十分持続する。
【0017】
グローブボックスの外には、紫外線ランプ6が設けられていて、紫外線がアクリル樹脂板2と光触媒層5を貫いてグローブボックス内の処理対象物とボックスの内壁を照射する。なお、紫外線ランプ6に代えて、太陽光7を導入してもよい。太陽光には有機物の分解反応に寄与する紫外線その他の光成分が大量に含まれるからである。
なお、図示していないが、グローブボックス1には、スイープガスを導入するノズルと、トリチウムが混入したガスに含まれるトリチウムを処理するトリチウム処理装置に送出するための配管が設けられている。
【0018】
図2に示すように、構造材11の表面に形成された光触媒層12にトリチウムHを含む有機体H−(C)が接触した状態で紫外線が入射すると、酸化反応が活性化して有機体が、H−Cや、H−H、H−OH、COなどに分解するので、光触媒層12の表面に堆積しない(ここで、a,b,c,d,eは適宜の整数)。したがって、紫外線を照射した状態で設備の運転を行うと、設備内部のトリチウムインベントリーは著しく減少する。
【0019】
なお、紫外線を照射しないと、トリチウムは有機物化合物として構造材11の上に付着し徐々に堆積する。
しかし、構造材11に光触媒層12を形成しておけば、トリチウム化合物が大量に堆積する前に紫外線を照射するようにして、それまでに堆積したトリチウム化合物の分解を促進して除去し、トリチウムインベントリーを減少させることができる。紫外線は表面の数原子層しか除染効果がないとされるが、間歇的に紫外線照射することにより、表面層以上に堆積することを防止して効果的にトリチウム除染を行うことができる。
【0020】
また、光触媒層12を表面に形成した構造体11にトリチウム化合物が堆積したものも、グローブボックスに収納し紫外線UVを照射して処理することができる。紫外線を照射すると、堆積物の表面層から分解してH−Cや、H−H、H−OHなどが分離し表面に浮遊する。これら気体成分はスイープガスでトリチウム処理装置に回収する。堆積物は表面から徐々に分解が進み、適当な時間処理するとトリチウム除染が終了する。
なお、グローブボックス内壁にも光触媒層が形成されているので、堆積物の処理に伴い発生するトリチウム成分が内壁表面に堆積することを妨げ、効果的にトリチウム防染が行われる。
【0021】
紫外線による有機物分解反応に対する光触媒の効果を確認するため、アセトアルデヒドを使った比較試験を行った。
図3は、光触媒を使用して紫外線でアセトアルデヒドを分解したときの実験結果を示す。横軸は時間経過を表し、縦軸は容器内のガス中のアセトアルデヒド濃度と炭酸ガス濃度を表す。
容量2リッターのガラス容器を2個準備し、一方の容器は、光触媒としてアナターゼ型酸化チタンを用い、酸化チタン粉末をスラリー化したもの(川崎重工業株式会社製フォリウム(商標名))を容器内面に塗布後乾燥させて光触媒層とした。
【0022】
2個のガラス容器それぞれに、アセトアルデヒドを550ppmだけ封入し、低圧水銀灯の紫外線を0.3mW/cmの強度で照射し、容器内のアセトアルデヒド濃度と分解生成物である炭酸ガスの濃度の変化を測定した。
図から、光触媒層を持たないガラス容器の方は、紫外線照射を開始してもアセトアルデヒドAAが徐々に減少し炭酸ガスCOはわずかずつ増加し続けることから分解反応はゆっくりと進行することが分かる。
これに対して、光触媒をコーティングしたガラス容器の方は、紫外線を照射すると直ちにアセトアルデヒド濃度が激減し、10分後にはほぼゼロになり、炭酸ガスも急激に増加することが分かる。
なお、アセトアルデヒド濃度が紫外線照射前に既に差があるのは、アセトアルデヒドが光触媒に吸着されるためと考えられる。
図3に示す試験結果から、アセトアルデヒドの分解反応は、光触媒の効果が著しいことが確認された。
【0023】
このように紫外線による光化学反応を促進する光触媒を対象とする構造体表面や容器内壁に塗布しておくことにより、トリチウム化合物の分解は著しく高速化し反応効率が向上すると共に、防染・除染のために必要となるエネルギも大幅に減少する。
なお、アナターゼ型酸化チタン結晶粒子は特に高度な触媒作用を有するが、他のルチル型、ブルッカイト型結晶体や、アモルファス体も光触媒作用を有することが知られている。またチタン以外の金属の酸化物にも光触媒作用を有するものがある。
また、光触媒コーティング処理には高温に加熱する必要がないので、グローブボックスや構造体は広く各種の材料を用いることが可能となり、装置の目的に対応して最適のものを選ぶことができる。
【0024】
【発明の効果】
以上説明した通り、本発明の紫外線照射法を用いたトリチウムの防染除染方法により、トリチウム汚染の可能性のある装置、特に核融合関連およびトリチウム取扱施設におけるトリチウム汚染をより効率的に抑制してトリチウムの蓄積を抑え、またトリチウムの除去を行うことができる。
また、使用済核燃料再処理施設・機器、重水炉機器などにも同様に適用してトリチウムの防染・除染ができる。
【図面の簡単な説明】
【図1】本発明の実施例のトリチウム除染方法を適用したグローブボックスを表す斜視図である。
【図2】本発明における光触媒の作用を説明する図面である。
【図3】光触媒の効果を説明するグラフである。
【符号の説明】
1 グロ−ブボックス
2 透明アクリル樹脂板
3 開口
4 手袋
5 内壁の光触媒層
6 紫外線ランプ
7 太陽光
11 構造材
12 光触媒層
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a tritium decontamination method and a decontamination method, and more particularly to a tritium decontamination decontamination method that suppresses tritium accumulation or removes tritium in nuclear fusion-related and tritium handling facilities.
[0002]
[Prior art]
A large amount of tritium accumulates in the form of water or hydrocarbons on the plasma facing material of a deuterium-tritium fusion reactor, especially diverters, but it is required to reduce the tritium inventory from the viewpoint of ensuring safety. In addition, since a considerable amount of tritium-containing material is discharged as the reactor is repaired or replaced, not only in the reactor but also in the glove that treats the removed member in order to improve the operation rate of the fusion reactor. There is a need for a method for efficiently performing tritium decontamination in a box.
[0003]
The repair work of the plasma facing device of the fusion reactor is carried out by transferring it from the vacuum vessel to a building called a hot cell. Therefore, it is important to minimize the amount of tritium in the equipment before repair and replacement work. In order to increase the operating rate of the fusion reactor, it is required to improve the efficiency of the tritium decontamination process in the vacuum vessel.
[0004]
Conventional methods used for tritium decontamination include isotope dilution, chemical decontamination, baking, and ultraviolet irradiation.
The isotope dilution method is a method of diluting and processing radioactive tritium by flowing a large amount of hydrogen or water, and the chemical decontamination method is a method of washing the surface layer with a decontamination solution such as an acid, In any case, there is a problem that the generation amount of secondary waste of gas or liquid after treatment becomes large.
The baking method is a method in which contaminated structures are heated to vaporize and desorb tritium compounds and purge them, and there is a limit to the materials that can be applied due to the need for high temperatures, and a large amount of energy is required for heating. There is.
[0005]
Furthermore, the ultraviolet irradiation method is a method in which a tritium compound is irradiated with ultraviolet rays to give energy larger than the chemical bond energy, thereby breaking the C—H bond and vaporizing it as hydrogen gas or hydrocarbon gas.
The Journal of Plasma and Fusion Research, Vol. 76, No. 10 (October 2000), pp. 1021-1028 describes a sample that simulates a co-deposition layer by sputtering in an acetylene gas atmosphere to form a carbon film. Irradiation with 0.2 mJ of 172 nm ultraviolet rays for 20 minutes can release a large amount of hydrogen and a small amount of hydrocarbons from the carbon film in addition to water, carbon monoxide, and carbon dioxide adhering to the sample surface. It is described that it was observed.
[0006]
However, the conventional ultraviolet irradiation method has a problem that a high level of energy is required and the time required for the reaction is long.
In addition, since ultraviolet rays are considered to have a decontamination effect only from a few atomic layers from the surface, it is difficult to sufficiently decontaminate after a large amount of deposition even in the ultraviolet irradiation method.
[0007]
[Problems to be solved by the invention]
Therefore, the problem to be solved by the present invention is to suppress the accumulation of tritium more efficiently in the tritium decontamination method using the ultraviolet irradiation method, particularly in the fusion-related and tritium decontamination methods in the tritium handling facility, It is to provide a method for removing tritium.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the tritium decontamination / decontamination method of the present invention is a method in which a metal oxide photocatalyst is applied to a surface that comes into contact with tritium, and the contact surface is irradiated with ultraviolet rays, thereby containing tritium on the contact surface. It is characterized by preventing the deposition of organic compounds or promoting the decomposition of tritium compounds deposited on the contact surface.
The photocatalyst applied to the contact surface is particularly preferably a photocatalyst containing anatase type titanium oxide.
[0009]
The photocatalyst promotes the decomposition of the organic substance by a radical substance generated when the surface is irradiated with ultraviolet rays. Many oxides can be used as photocatalysts, but titanium oxide is preferable because of its excellent functionality and safety. Titanium oxide includes three types of crystals, anatase type, rutile type, and brookite type, and an amorphous type, and it is known that anatase type titanium oxide has the strongest photocatalytic activity.
The specification of Japanese Patent No. 2918112 owned by the present applicant describes the effect of the anatase-type titanium oxide photocatalyst.
[0010]
Tritium contamination in plasma facing devices of fusion reactors and other tritium handling devices is caused by the deposition and deposition of organic substances containing tritium as hydrogen.
In the present invention, a photocatalyst is coated on the surface layer of a structural material possibly contaminated with tritium, and the tritium-containing organic compound attached to the surface is catalyzed by irradiating with ultraviolet rays such as sunlight or an ultraviolet lamp or laser light. Decomposes efficiently using the action and prevents deposition on the surface.
Also, the tritium compound deposited on the surface is efficiently decomposed by the action of the photocatalyst and becomes a gas such as CO 2 , H 2 O, hydrocarbon gas, etc. and is released to the surface of the structure. Tritium decontamination can be performed by flowing and collecting the gas.
[0011]
The recovered sweep gas needs to be appropriately treated to prevent leakage of radioactivity, but the amount of the collected sweep gas is extremely small compared to the isotope dilution method and the like, so the load on the processing apparatus is small.
Further, compared with the conventional ultraviolet irradiation method, the decontamination time is significantly shortened, and the input energy can be reduced.
The method of the present invention has a great effect when applied to an inner wall of a tritium passage of a deuterium-tritium fusion reactor or an inner wall of a glove box for treating a tritium contaminant such as a structure of a fusion reactor.
[0012]
For example, when applied to a nuclear fusion reactor, etc., by irradiating ultraviolet rays while the equipment is in operation, the tritium compound that comes in contact with the surface is efficiently decomposed before adhering to it, making it difficult to contaminate. It prevents deposition and keeps the tritium inventory low.
Further, by intermittently irradiating with ultraviolet rays for a predetermined time, the attached organic system and lithium can be decomposed and decontaminated.
Furthermore, even when the equipment is stopped for repair or replacement of parts, it can be easily decontaminated by irradiating the surface coated with the photocatalyst with ultraviolet rays.
[0013]
Also, in a tritium contaminant treatment apparatus, a photocatalyst is applied to the surface of a glove box or other member that may come into contact with tritium, and is irradiated with sunlight or ultraviolet rays from an ultraviolet lamp at all times or when necessary. For example, it is possible to prevent the tritium compound from being deposited or to remove the attached tritium compound.
In addition, since the method of the present invention only applies a photocatalyst to the surface and irradiates ultraviolet rays and does not require harsh conditions such as high-temperature treatment, it is not limited to steel materials but can be applied to various materials such as glass and resin. Can do. Moreover, since the procedure is the same even if the target material is changed, the operation is easy and the processing cost can be reduced.
The method of the present invention is a method that can be widely applied to facilities and equipment that require anti-tritium decontamination and decontamination, such as spent nuclear fuel reprocessing facilities and equipment, heavy water reactor equipment, etc., other than fusion-related facilities. is there.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the tritium decontamination method of the present invention will be described in detail with reference to the drawings based on examples.
FIG. 1 is a perspective view for explaining an embodiment of the present invention, FIG. 2 is a drawing for explaining the photocatalytic action, and FIG. 3 is a graph for explaining the effect of the photocatalyst.
[0015]
The method of the present invention can be applied to a structural material or the like that may be subjected to tritium contamination, and can be applied to a glove box 1 that treats a tritium-contaminated object.
As shown in FIG. 1, a glove box 1 is formed with a transparent acrylic resin plate 2. The glove box 1 is provided with an opening 3 into which a hand can be inserted and a highly sensitive glove made of a resin such as rubber at the end of the glove box 1 so that the atmosphere remains outside the box even if the object inside is handled by hand. It is designed not to leak.
[0016]
A slurry titanium oxide photocatalyst is applied to the inner surface of the acrylic resin plate 2 and treated at a temperature of about 100 ° C. to form a photocatalyst layer 5. It is preferable to use anatase type titanium oxide as the titanium oxide photocatalyst because it has a large photocatalytic effect and can be easily slurried.
Since the transparency of the photocatalyst layer is high, it can be handled by hand while visually observing the object in the glove box. Note that the photocatalytic effect is sufficiently sustained even in a photocatalytic layer formed by spraying on the surface and naturally drying.
[0017]
An ultraviolet lamp 6 is provided outside the glove box, and the ultraviolet rays pass through the acrylic resin plate 2 and the photocatalyst layer 5 to irradiate the processing object in the glove box and the inner wall of the box. In place of the ultraviolet lamp 6, sunlight 7 may be introduced. This is because sunlight contains a large amount of ultraviolet light and other light components that contribute to the decomposition reaction of organic matter.
Although not shown, the glove box 1 is provided with a nozzle for introducing a sweep gas and a pipe for sending to a tritium processing apparatus for processing tritium contained in the gas mixed with tritium.
[0018]
As shown in FIG. 2, when ultraviolet rays are incident on the photocatalyst layer 12 formed on the surface of the structural material 11 in the state where the organic substance H 3- (C a H b O c ) containing tritium H 3 is in contact, an oxidation reaction There organism by activated, and H 3 -C d H e, H 3 -H, H 3 -OH, since decomposed like CO 2, not deposited on the surface of the photocatalyst layer 12 (where, a, b , C, d, and e are appropriate integers). Therefore, when the facility is operated in the state of being irradiated with ultraviolet rays, the tritium inventory inside the facility is significantly reduced.
[0019]
In addition, if it does not irradiate with an ultraviolet-ray, a tritium will adhere and deposit on the structural material 11 as an organic compound.
However, if the photocatalytic layer 12 is formed on the structural material 11, the tritium compound is irradiated with ultraviolet rays before a large amount of tritium compound is deposited, and the decomposition of the tritium compound deposited so far is promoted and removed. Inventory can be reduced. Ultraviolet rays are considered to have a decontamination effect on only a few atomic layers on the surface. However, tritium decontamination can be effectively carried out by intermittently irradiating with ultraviolet rays to prevent deposition on the surface layer or more.
[0020]
Also, a structure in which a tritium compound is deposited on a structure 11 having a photocatalyst layer 12 formed on the surface thereof can be stored in a glove box and irradiated with ultraviolet rays UV. Upon irradiation with ultraviolet rays, and H 3 -C d H e is decomposed from the surface layer of the sediment, H 3 -H, like H 3 -OH to float on the separation surface. These gaseous components are collected in a tritium processing apparatus with a sweep gas. Deposits gradually decompose from the surface, and tritium decontamination is completed when treated for an appropriate time.
In addition, since the photocatalyst layer is also formed on the inner wall of the glove box, the tritium component generated by the processing of the deposit is prevented from being deposited on the inner wall surface, so that tritium staining is effectively performed.
[0021]
In order to confirm the effect of the photocatalyst on the organic matter decomposition reaction by ultraviolet rays, a comparative test using acetaldehyde was conducted.
FIG. 3 shows the experimental results when acetaldehyde was decomposed with ultraviolet rays using a photocatalyst. The horizontal axis represents the passage of time, and the vertical axis represents the acetaldehyde concentration and the carbon dioxide concentration in the gas in the container.
Two glass containers with a capacity of 2 liters were prepared, and one container used anatase-type titanium oxide as a photocatalyst and slurried titanium oxide powder (Forium (trade name) manufactured by Kawasaki Heavy Industries, Ltd.) on the inner surface of the container. After application, it was dried to obtain a photocatalyst layer.
[0022]
In each of the two glass containers, only 550 ppm of acetaldehyde is sealed, and UV light from a low-pressure mercury lamp is irradiated at an intensity of 0.3 mW / cm 2 to change the concentration of acetaldehyde in the container and the concentration of carbon dioxide gas as a decomposition product. It was measured.
From the figure, it can be seen that in the glass container without the photocatalyst layer, the decomposition reaction proceeds slowly because acetaldehyde AA gradually decreases and carbon dioxide CO 2 continues to increase little by little even when UV irradiation is started. .
On the other hand, in the glass container coated with the photocatalyst, it can be seen that the concentration of acetaldehyde decreases drastically as soon as the ultraviolet rays are irradiated, it becomes almost zero after 10 minutes, and the carbon dioxide gas increases rapidly.
In addition, it is considered that the acetaldehyde concentration is already different before the ultraviolet irradiation because acetaldehyde is adsorbed by the photocatalyst.
From the test results shown in FIG. 3, it was confirmed that the photocatalytic effect was remarkable in the decomposition reaction of acetaldehyde.
[0023]
By applying the photocatalyst that promotes the photochemical reaction by ultraviolet rays to the surface of the structure and the inner wall of the container, the decomposition of the tritium compound is significantly accelerated and the reaction efficiency is improved. The energy required for this is also greatly reduced.
In addition, although anatase type titanium oxide crystal particles have a particularly high degree of catalytic action, it is known that other rutile type, brookite type crystal bodies, and amorphous bodies also have a photocatalytic action. Some oxides of metals other than titanium have a photocatalytic action.
In addition, since it is not necessary to heat the photocatalyst coating to a high temperature, a wide variety of materials can be used for the glove box and the structure, and the optimum one can be selected according to the purpose of the apparatus.
[0024]
【The invention's effect】
As described above, the tritium decontamination and decontamination method using the ultraviolet irradiation method of the present invention more effectively suppresses tritium contamination in devices that are likely to be contaminated with tritium, particularly in fusion-related and tritium handling facilities. Therefore, accumulation of tritium can be suppressed and tritium can be removed.
In addition, it can be applied to spent nuclear fuel reprocessing facilities / equipment, heavy water reactor equipment, etc. in the same way to prevent and decontaminate tritium.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a glove box to which a tritium decontamination method according to an embodiment of the present invention is applied.
FIG. 2 is a drawing for explaining the action of the photocatalyst in the present invention.
FIG. 3 is a graph illustrating the effect of a photocatalyst.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Globe box 2 Transparent acrylic resin board 3 Opening 4 Gloves 5 Photocatalyst layer 6 of inner wall Ultraviolet lamp 7 Sunlight 11 Structure material 12 Photocatalyst layer

Claims (4)

トリチウムに接触する面に金属酸化物光触媒を塗布し、該接触面に紫外線を照射して、該接触面上へのトリチウム含有有機化合物の堆積を妨げ、もしくは該接触面に堆積したトリチウム含有有機化合物の分解を促進することを特徴とするトリチウム防染除染方法。A metal oxide photocatalyst is applied to the surface in contact with tritium, and the contact surface is irradiated with ultraviolet rays to prevent the deposition of the tritium-containing organic compound on the contact surface, or the tritium-containing organic compound deposited on the contact surface Tritium decontamination decontamination method characterized by promoting decomposition of 前記酸化金属光触媒が、アナターゼ型酸化チタンであることを特徴とする請求項1記載のトリチウム防染除染方法。The tritium anti-decontamination method according to claim 1, wherein the metal oxide photocatalyst is anatase type titanium oxide. 前記トリチウムに接触する面が、重水素−トリチウム核融合炉のトリチウム通路内壁、もしくはトリチウム汚染体を処理するグローブボックスの内壁であることを特徴とする請求項1または2記載のトリチウム防染除染方法。3. The tritium anti-decontamination decontamination method according to claim 1, wherein the surface in contact with the tritium is an inner wall of a tritium passage of a deuterium-tritium fusion reactor or an inner wall of a glove box for treating tritium contaminants. Method. 前記紫外線が太陽光に含まれるものであることを特徴とする請求項1から3のいずれかに記載のトリチウム防染除染方法。The tritium decontamination method according to any one of claims 1 to 3, wherein the ultraviolet rays are contained in sunlight.
JP2001391212A 2001-12-25 2001-12-25 Tritium decontamination decontamination method Expired - Fee Related JP3614401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001391212A JP3614401B2 (en) 2001-12-25 2001-12-25 Tritium decontamination decontamination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001391212A JP3614401B2 (en) 2001-12-25 2001-12-25 Tritium decontamination decontamination method

Publications (2)

Publication Number Publication Date
JP2003194991A JP2003194991A (en) 2003-07-09
JP3614401B2 true JP3614401B2 (en) 2005-01-26

Family

ID=27598871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001391212A Expired - Fee Related JP3614401B2 (en) 2001-12-25 2001-12-25 Tritium decontamination decontamination method

Country Status (1)

Country Link
JP (1) JP3614401B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4744341B2 (en) * 2006-04-04 2011-08-10 川崎重工業株式会社 Radioactive contaminant handling apparatus and decontamination method thereof
CN104865645A (en) * 2015-06-18 2015-08-26 杨华忠 Optical fiber welding explosion-proof tank used in coal mine, chemical engineering and other flammable and explosive environments
CN108690229B (en) * 2018-06-12 2020-05-29 中国热带农业科学院农产品加工研究所 Tritium shielding modified natural latex and preparation method thereof, and radiation shielding tool prepared from latex

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193B2 (en) * 1993-01-18 1996-01-10 株式会社日立製作所 Nuclear fuel reprocessing waste liquid treatment method
JPH08231205A (en) * 1995-02-28 1996-09-10 Kuniaki Watanabe Noncatalytic oxidation of tritium, device therefor and system for removing tritium
JP2918112B1 (en) * 1998-05-25 1999-07-12 川崎重工業株式会社 Method for producing anatase-type titanium oxide
JP3859902B2 (en) * 1998-06-23 2006-12-20 株式会社東芝 Chemical decontamination method and apparatus for structural parts of radiation handling facilities

Also Published As

Publication number Publication date
JP2003194991A (en) 2003-07-09

Similar Documents

Publication Publication Date Title
US6699398B1 (en) Effective dry etching process of actinide oxides and their mixed oxides in CF4/O2/N2 plasma
US5523513A (en) Decontamination processes
JPH05503252A (en) A method of treating an aqueous liquid in the presence of a photocatalyst using a combination of light energy and ultrasonic energy for the decomposition of halogenated organic compounds in the aqueous liquid.
JPS6158800B2 (en)
JP3614401B2 (en) Tritium decontamination decontamination method
CN102449705A (en) Method and apparatus for suppressing adhesion of radioactive substance
JP2003098294A (en) Decontamination method using ozone and apparatus therefor
EP1386674B1 (en) Structure cleaning method
Kar et al. Performance study on photocatalysis of phenol solution in a UV irradiated reactor
Lv et al. Molten salts for efficient removal of radioactive contaminants from stainless steel surface: Mechanisms and applications
Oh et al. Assessment of chlorination technique for decontamination of radioactive concrete waste using simulated concrete waste
JP4125953B2 (en) Surface treatment agent and method for metal waste generated in a nuclear power plant and chemical grinding apparatus
KR101185501B1 (en) Method for the improvement of laser decontamination performance
Krasznai et al. UV/ozone treatment to decontaminate tritium contaminated surfaces
JP2023526015A (en) How to reduce radioactive waste
JP4494334B2 (en) Equipment for treating harmful substances such as organic halogen compounds
BE1011754A3 (en) Method and metal surfaces decontamination installation.
JP5096652B2 (en) Treatment agent and treatment method for aluminum member surface
KR101999846B1 (en) Facilities and method for waste liquid treatment
JP2021143858A (en) Chemical decontamination method
JP4744341B2 (en) Radioactive contaminant handling apparatus and decontamination method thereof
JPH032596A (en) Decontamination device for metal contaminated with radioactivity
FR2701155A1 (en) Method and installation for decontaminating worn vessel heads of light-water nuclear reactors
Gentile et al. Oxidative decontamination of tritiated materials employing ozone gas
Peurrung Science to Support DOE Site Cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program Awards-Fiscal Year 1999 Mid-Year Progress Report

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041026

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3614401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees