JP4742540B2 - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP4742540B2
JP4742540B2 JP2004251557A JP2004251557A JP4742540B2 JP 4742540 B2 JP4742540 B2 JP 4742540B2 JP 2004251557 A JP2004251557 A JP 2004251557A JP 2004251557 A JP2004251557 A JP 2004251557A JP 4742540 B2 JP4742540 B2 JP 4742540B2
Authority
JP
Japan
Prior art keywords
air
combustion
carbon monoxide
fuel ratio
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004251557A
Other languages
Japanese (ja)
Other versions
JP2006073215A (en
Inventor
哲也 上田
正高 尾関
彰成 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004251557A priority Critical patent/JP4742540B2/en
Publication of JP2006073215A publication Critical patent/JP2006073215A/en
Application granted granted Critical
Publication of JP4742540B2 publication Critical patent/JP4742540B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、水素と酸素とを反応させ発電を行う燃料電池システムに関する。   The present invention relates to a fuel cell system that generates electricity by reacting hydrogen and oxygen.

従来の燃料電池システムの構成は、図5に示される。   The configuration of a conventional fuel cell system is shown in FIG.

51は改質器で、原燃料ガス流量調整手段52を設けた原燃料ガス経路53と、酸素濃度検出器54を設けた燃焼排ガス経路55とが接続されている。56は、燃料極57と空気極58を有する燃料電池である。このような構成において、原燃料ガスは、改質器51で水素リッチガスに変換され、燃料電池56の燃料極57で水素を一部消費したあと、残った水素は改質器51で燃焼され燃焼排ガス経路55から排出される。この時、燃焼排ガス中の酸素濃度を酸素濃度検出器54で検出し、適正酸素濃度になるように原燃料ガス流量調整手段52が原燃料ガス流量を調整することによって、安定した燃焼を継続させることができる(例えば、特許文献1参照)。
特開2000−36313号公報
A reformer 51 is connected to a raw fuel gas path 53 provided with a raw fuel gas flow rate adjusting means 52 and a combustion exhaust gas path 55 provided with an oxygen concentration detector 54. Reference numeral 56 denotes a fuel cell having a fuel electrode 57 and an air electrode 58. In such a configuration, the raw fuel gas is converted into hydrogen-rich gas by the reformer 51, and after the hydrogen is partially consumed by the fuel electrode 57 of the fuel cell 56, the remaining hydrogen is burned by the reformer 51 and burned. It is discharged from the exhaust gas path 55. At this time, the oxygen concentration in the combustion exhaust gas is detected by the oxygen concentration detector 54, and the raw fuel gas flow rate adjusting means 52 adjusts the raw fuel gas flow rate so as to obtain an appropriate oxygen concentration, thereby continuing stable combustion. (For example, refer to Patent Document 1).
JP 2000-36313 A

しかしながら、前記従来の燃料電池システムでは、燃焼不良によって燃焼排ガスから一酸化炭素が発生する可能性がある場合は、燃料電池システムの周囲に存在する人に対する安全確保のため燃焼排ガス経路に一酸化炭素検出器を設ける必要がある。そのために、酸素濃度検出器と一酸化炭素検出器の2つのセンサーが必要となり、コストが高くなるという課題を有していた。   However, in the conventional fuel cell system, when there is a possibility that carbon monoxide is generated from the combustion exhaust gas due to poor combustion, the carbon monoxide is placed in the combustion exhaust gas path in order to ensure safety for people existing around the fuel cell system. It is necessary to provide a detector. For this purpose, two sensors, an oxygen concentration detector and a carbon monoxide detector, are required, and there is a problem that the cost increases.

本発明は、前記従来の課題を解決するもので、安定燃焼と安全性を確保した上でコストを低減させる燃料電池システムを提供することを目的とする。   The present invention solves the above-described conventional problems, and an object of the present invention is to provide a fuel cell system capable of reducing costs while ensuring stable combustion and safety.

前記従来の課題を解決するために、本発明の燃料電池システムは、原燃料を用いて改質反応により水素リッチガスを生成する改質部と、
前記改質部に原燃料を供給する原燃料供給手段と、
前記改質部を加熱する燃焼部と、
前記燃焼部に空気を供給する燃焼空気供給手段と、
前記燃焼部の燃焼排ガスに含まれる一酸化炭素濃度を検知する一酸化炭素濃度検知手段と、
前記改質部から供給される水素リッチガスと酸化剤ガスとを反応させ発電する燃料電池と、
制御部と、
原燃料流量検知手段で検知された原燃料流量と、電気出力検知手段で検知された電気出力に基づき、発電効率を演算する発電効率演算手段を備え、
前記制御部は、前記一酸化炭素濃度検知手段が、第1の閾値以上の一酸化炭素濃度を検知した場合、一酸化炭素濃度が低減するように前記燃焼部の空燃比制御を行い、前記一酸化炭素濃度検知手段が、前記第1の閾値より高い第2の閾値以上の一酸化炭素濃度を検知した場合、運転を停止させ、
前記制御部は、燃料過剰側で第1の閾値より小さい一酸化炭素濃度になる第1の限界空燃比と、空気過剰側で第1の閾値より小さい一酸化炭素濃度になる第2の限界空燃比との間の安定燃焼領域に収まるように燃焼部の空燃比を制御し、
前記制御部は、第1の限界空燃比と第2の限界空燃比との間の安定燃焼領域において、前記発電効率演算手段で演算される発電効率が高くなる高発電効率領域に収まるように燃
焼部の空燃比を制御することを特徴とする。
In order to solve the conventional problems, a fuel cell system of the present invention includes a reforming unit that generates a hydrogen-rich gas by a reforming reaction using raw fuel,
Raw fuel supply means for supplying raw fuel to the reforming section;
A combustion section for heating the reforming section;
Combustion air supply means for supplying air to the combustion section;
Carbon monoxide concentration detection means for detecting the concentration of carbon monoxide contained in the combustion exhaust gas of the combustion section;
A fuel cell that generates electricity by reacting a hydrogen-rich gas and an oxidant gas supplied from the reforming unit;
A control unit;
Based on the raw fuel flow rate detected by the raw fuel flow rate detection means and the electrical output detected by the electrical output detection means, the power generation efficiency calculation means for calculating the power generation efficiency ,
The control unit performs air-fuel ratio control of the combustion unit to reduce the carbon monoxide concentration when the carbon monoxide concentration detection unit detects a carbon monoxide concentration equal to or higher than a first threshold, and When the carbon oxide concentration detecting means detects a carbon monoxide concentration equal to or higher than a second threshold value higher than the first threshold value, the operation is stopped,
The control unit has a first limit air-fuel ratio at which the carbon monoxide concentration is smaller than the first threshold value on the fuel excess side, and a second limit sky at which the carbon monoxide concentration is smaller than the first threshold value on the air excess side. Control the air-fuel ratio of the combustion section so that it falls within the stable combustion region between the fuel ratio,
In the stable combustion region between the first critical air-fuel ratio and the second critical air-fuel ratio, the control unit performs fuel combustion so that the power generation efficiency calculated by the power generation efficiency calculating means is within a high power generation efficiency region.
The air-fuel ratio of the firing part is controlled .

また、本発明の別の燃料電池システムは、原燃料を用いて改質反応により水素リッチガスを生成する改質部と、Another fuel cell system of the present invention includes a reforming unit that generates a hydrogen-rich gas by a reforming reaction using raw fuel,
前記改質部に原燃料を供給する原燃料供給手段と、  Raw fuel supply means for supplying raw fuel to the reforming section;
前記改質部を加熱する燃焼部と、  A combustion section for heating the reforming section;
前記燃焼部に空気を供給する燃焼空気供給手段と、  Combustion air supply means for supplying air to the combustion section;
前記燃焼部の燃焼排ガスに含まれる一酸化炭素濃度を検知する一酸化炭素濃度検知手段と、  Carbon monoxide concentration detection means for detecting the concentration of carbon monoxide contained in the combustion exhaust gas of the combustion section;
前記改質部から供給される水素リッチガスと酸化剤ガスとを反応させ発電する燃料電池と、  A fuel cell that generates electricity by reacting a hydrogen-rich gas and an oxidant gas supplied from the reforming unit;
制御部と  With control
原燃料流量検知手段で検知された原燃料流量と、電気出力検知手段で検知された電気出力に基づき、発電効率を演算する発電効率演算手段を備え、  Based on the raw fuel flow rate detected by the raw fuel flow rate detection means and the electrical output detected by the electrical output detection means, the power generation efficiency calculating means for calculating the power generation efficiency
前記制御部は、前記一酸化炭素濃度検知手段が、第1の閾値以上の一酸化炭素濃度を検知した場合、一酸化炭素濃度が低減するように前記燃焼部の空燃比制御を行い、前記一酸化炭素濃度検知手段が、前記第1の閾値より高い第2の閾値以上の一酸化炭素濃度を検知した場合、運転を停止させ、  The control unit performs air-fuel ratio control of the combustion unit to reduce the carbon monoxide concentration when the carbon monoxide concentration detection unit detects a carbon monoxide concentration equal to or higher than a first threshold, and When the carbon oxide concentration detecting means detects a carbon monoxide concentration equal to or higher than a second threshold value higher than the first threshold value, the operation is stopped,
前記制御部は、燃料過剰側で第1の閾値より小さい一酸化炭素濃度になる第1の限界空燃比と、空気過剰側で第1の閾値より小さい一酸化炭素濃度になる第2の限界空燃比との間の安定燃焼領域に収まるように燃焼部の空燃比を制御し、  The control unit has a first limit air-fuel ratio at which the carbon monoxide concentration is smaller than the first threshold value on the fuel excess side, and a second limit sky at which the carbon monoxide concentration is smaller than the first threshold value on the air excess side. Control the air-fuel ratio of the combustion section so that it falls within the stable combustion region between the fuel ratio,
前記制御部は、発電運転中に、燃焼部の空燃比を強制的に変化させ、燃料過剰側で第1の閾値より小さい一酸化炭素濃度になる第1の限界空燃比と、空気過剰側で第1の閾値より小さい一酸化炭素濃度になる第2の限界空燃比とを検出し、第1の限界空燃比と第2の限界空燃比との間を安定燃焼領域として設定し、  The control unit forcibly changes the air-fuel ratio of the combustion unit during the power generation operation, the first limit air-fuel ratio at which the carbon monoxide concentration is smaller than the first threshold value on the fuel excess side, and the air excess side. Detecting a second limit air-fuel ratio at which the carbon monoxide concentration is less than the first threshold, and setting a range between the first limit air-fuel ratio and the second limit air-fuel ratio as a stable combustion region;
前記制御部は、発電運転中に燃焼部の空燃比を強制的に変化させ、発電効率演算手段で発電効率を演算し、安定燃焼領域において、前記発電効率演算手段で演算される発電効率が高くなる領域を高発電効率領域として設定することを特徴とする。  The control section forcibly changes the air-fuel ratio of the combustion section during power generation operation, calculates the power generation efficiency by the power generation efficiency calculation means, and the power generation efficiency calculated by the power generation efficiency calculation means is high in the stable combustion region. This region is set as a high power generation efficiency region.

また、本発明は、燃料電池から排出される残水素を燃焼部へ供給するオフガス供給経路とをさらに備え、燃焼部の空燃比制御は、原燃料供給手段による原燃料流量の増減、前記燃焼空気供給手段による燃焼空気流量の増減の少なくともいずれかにより行われることを特徴とする。   The present invention further includes an off-gas supply path for supplying residual hydrogen discharged from the fuel cell to the combustion section, and the air-fuel ratio control of the combustion section is performed by increasing or decreasing the raw fuel flow rate by the raw fuel supply means, the combustion air It is performed by at least one of increase and decrease of the combustion air flow rate by the supply means.

本構成によって、1個の一酸化炭素濃度検知手段で安定燃焼と安全性を確保することができる。   With this configuration, stable combustion and safety can be ensured by one carbon monoxide concentration detection means.

本発明の燃料電池システムによれば、安定燃焼と安全性を確保した上でコストを低減させることができる。また、安定燃焼を確保した上で、発電効率を最も高く維持するという効果も奏することができる。   According to the fuel cell system of the present invention, cost can be reduced while ensuring stable combustion and safety. Further, it is possible to achieve the effect of maintaining the highest power generation efficiency while ensuring stable combustion.

以下本発明の実施の形態について、図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1における燃料電池システムの構成図である。
(Embodiment 1)
FIG. 1 is a configuration diagram of a fuel cell system according to Embodiment 1 of the present invention.

図1において、11は、改質触媒を有する改質部で、改質部11は、燃焼部12から排出される燃焼排ガス経路13を流れる燃焼ガスからの熱を利用して改質反応を進める。改質部11の上流には原燃料供給手段14および原燃料供給経路15が接続され、改質部11の下流にはCO変成部16が接続されており、さらに、CO変成部16の下流にCO除去部17が接続されている。そして、CO除去部17は、水素供給経路19を介して燃料電池18に接続され、CO除去部17から水素リッチガスが燃料電池18に供給される。また、燃料電池18は、空気供給経路20を介して空気供給手段21に、接続されている。燃焼部12には、燃焼空気供給手段22とオフガス供給経路23が接続され、オフガス供給経路23のもう一方の端部は燃料電池18に接続されている。24は、燃料電池18に電気的に接続された電力出力制御手段である。25は、燃焼排ガス経路13の出口に取付けられた一酸化炭素濃度検知手段である。26は、制御部であり、原燃料供給部14、燃焼空気供給手段22、及び電気出力制御手段24の出力を制御する。31は、発電効率演算手段で、原燃料供給経路15に設けられた原燃料流量検知手段32と、電気出力制御手段24の出力側に設けられた電気出力検知手段33に電気的に接続されている。   In FIG. 1, reference numeral 11 denotes a reforming unit having a reforming catalyst. The reforming unit 11 advances the reforming reaction using heat from the combustion gas flowing through the combustion exhaust gas path 13 discharged from the combustion unit 12. . A raw fuel supply means 14 and a raw fuel supply path 15 are connected upstream of the reforming unit 11, a CO conversion unit 16 is connected downstream of the reforming unit 11, and further downstream of the CO conversion unit 16. A CO removing unit 17 is connected. The CO removing unit 17 is connected to the fuel cell 18 via the hydrogen supply path 19, and hydrogen rich gas is supplied from the CO removing unit 17 to the fuel cell 18. The fuel cell 18 is connected to the air supply means 21 via the air supply path 20. A combustion air supply means 22 and an off gas supply path 23 are connected to the combustion unit 12, and the other end of the off gas supply path 23 is connected to the fuel cell 18. Reference numeral 24 denotes power output control means electrically connected to the fuel cell 18. Reference numeral 25 denotes a carbon monoxide concentration detection means attached to the outlet of the combustion exhaust gas passage 13. A control unit 26 controls the outputs of the raw fuel supply unit 14, the combustion air supply unit 22, and the electrical output control unit 24. Reference numeral 31 denotes a power generation efficiency calculation means, which is electrically connected to the raw fuel flow rate detection means 32 provided in the raw fuel supply path 15 and the electric output detection means 33 provided on the output side of the electric output control means 24. Yes.

つぎに、図1における燃料電池システムの運転動作について説明する。原燃料供給手段14から供給される都市ガス、プロパンガス、アルコール等に例示される少なくとも炭素及び水素から構成される有機化合物を含む原燃料は、原燃料供給経路15を通って改質部11へ供給され、改質部11の中で燃焼部12によって加熱され、改質反応を起こし水素リッチガス(改質ガス)に変換され、CO変成部16およびCO除去部17で改質部11から供給される水素リッチガス中の一酸化炭素が除去された後、水素供給経路19を通って燃料電池18へ供給される。一方、空気供給手段21から供給される空気は、空気供給経路20を通って燃料電池18へ供給される。   Next, the operation of the fuel cell system in FIG. 1 will be described. The raw fuel containing an organic compound composed of at least carbon and hydrogen exemplified by city gas, propane gas, alcohol and the like supplied from the raw fuel supply means 14 passes through the raw fuel supply path 15 to the reforming unit 11. Supplied, heated by the combustion unit 12 in the reforming unit 11, undergoes a reforming reaction and converted into hydrogen-rich gas (reformed gas), and is supplied from the reforming unit 11 by the CO conversion unit 16 and the CO removal unit 17. After the carbon monoxide in the hydrogen rich gas is removed, it is supplied to the fuel cell 18 through the hydrogen supply path 19. On the other hand, the air supplied from the air supply means 21 is supplied to the fuel cell 18 through the air supply path 20.

このように供給された水素リッチガス中の水素と空気中の酸素は燃料電池18内で電気化学反応を起こし電気を発生し、発生した電気は電気出力制御手段24から家庭などの供給電力として使用される。燃料電池18で反応に使われなかった残りの水素はオフガス供給経路23を通って燃焼部12に供給され、改質部11の加熱燃料として用いられる。なお、ここで燃焼排ガス中の一酸化炭素濃度は、一酸化炭素濃度検知手段25によって行われる。また、燃料電池システムの発電効率は、原燃料流量検知手段32により入力エネルギーを計測し、電気出力検知手段33により出力エネルギーを計測し、これらの値から発電効率演算手段31によって演算を行う。   The hydrogen in the hydrogen-rich gas and the oxygen in the air thus supplied cause an electrochemical reaction in the fuel cell 18 to generate electricity, and the generated electricity is used as electric power supplied from the electric output control means 24 to the home. The The remaining hydrogen that has not been used for the reaction in the fuel cell 18 is supplied to the combustion unit 12 through the off-gas supply path 23 and used as heating fuel for the reforming unit 11. Here, the carbon monoxide concentration in the combustion exhaust gas is determined by the carbon monoxide concentration detection means 25. The power generation efficiency of the fuel cell system is calculated by measuring the input energy by the raw fuel flow rate detection means 32, measuring the output energy by the electrical output detection means 33, and calculating the power generation efficiency by the power generation efficiency calculation means 31.

この図1の燃料電池システムの運転動作において、一酸化炭素濃度検知手段25が検知する燃焼排ガス中の一酸化炭素濃度特性を図2のグラフに示す。図2において、横軸は空燃比すなわち燃焼用空気と燃料である水素リッチガスとの比率で、右方向は空気過剰側、左方向は燃料過剰側を示す。縦軸は燃焼排ガス中の一酸化炭素濃度を示す。一般の燃焼機器と同様、空燃比が空気過剰または燃料過剰になると燃焼状態が不安定になり、水素リッチガスに残存する炭化水素が不完全燃焼をおこし、一酸化炭素濃度が増加するため、一酸化炭素濃度はグラフ両端が高くグラフ中央部が低いU字形の挙動を示す。   The graph of FIG. 2 shows the carbon monoxide concentration characteristics in the combustion exhaust gas detected by the carbon monoxide concentration detecting means 25 in the operation of the fuel cell system of FIG. In FIG. 2, the horizontal axis represents the air-fuel ratio, that is, the ratio of combustion air and hydrogen-rich gas as fuel, the right direction indicates the excess air side and the left direction indicates the excess fuel side. The vertical axis represents the carbon monoxide concentration in the combustion exhaust gas. As with ordinary combustion equipment, if the air-fuel ratio is excessive or excessive, the combustion state becomes unstable, and hydrocarbons remaining in the hydrogen-rich gas cause incomplete combustion, increasing the carbon monoxide concentration. The carbon concentration shows a U-shaped behavior with both ends of the graph being high and the center of the graph being low.

図2のグラフにおける一酸化炭素濃度の第2の閾値とは、これ以上燃焼排ガス中の一酸化炭素濃度が上昇すると燃料電池システムの周囲に存在する人体に危険が及ぶと判断される濃度で、グラフ上のA点とH点の外側の空燃比領域で危険状態となる。この領域で運転する状況になった場合は、安全のためシステムを停止させることが望ましい。   The second threshold value of the carbon monoxide concentration in the graph of FIG. 2 is a concentration at which the human body existing around the fuel cell system is judged to be dangerous if the carbon monoxide concentration in the combustion exhaust gas further increases. A dangerous state occurs in the air-fuel ratio region outside the points A and H on the graph. When operating in this area, it is desirable to stop the system for safety.

一酸化炭素濃度の第1の閾値とは、これ以上空燃比バランスが崩れると安定燃焼状態が維持できなくなる一酸化炭素濃度で、グラフ上のB点とG点の外側の空燃比領域で不安定燃焼状態となる。燃焼状態を安定させるためには、このB点とG点の内側で、第1の閾値より小さい一酸化炭素濃度になる燃料過剰側での第1の限界空燃比C点と、空気過剰側での第2の限界空燃比F点の間の安定燃焼領域に収まるよう燃焼部12における空燃比を調整し、燃焼制御する必要がある。さらに、望ましくは、C点、F点の内側で、図2のグラフのボトムに当たる燃料過剰側での第3の限界空燃比D点と空気過剰側での第4の限界空燃比E点の間の最安定燃焼領域に収まるよう、燃焼部12の空燃比を制御する。なお、S点は発電効率が最高になる点で、一般的に空気過剰になると燃焼室を冷却し効率が低下するため、通常は安定燃焼領域内の燃料過剰側に存在する。   The first threshold value of the carbon monoxide concentration is the carbon monoxide concentration at which the stable combustion state cannot be maintained if the air-fuel ratio balance is further lost, and is unstable in the air-fuel ratio region outside the points B and G on the graph. It becomes a combustion state. In order to stabilize the combustion state, the first limit air-fuel ratio C point on the fuel excess side where the carbon monoxide concentration is smaller than the first threshold value inside the points B and G, and the air excess side It is necessary to control the combustion by adjusting the air-fuel ratio in the combustion section 12 so that it falls within the stable combustion region between the second limit air-fuel ratio F. Further, preferably, between the third critical air-fuel ratio D point on the excess fuel side and the fourth critical air-fuel ratio E point on the excess air side, which is the bottom of the graph of FIG. The air-fuel ratio of the combustion section 12 is controlled so as to be within the most stable combustion region. The point S is the point where the power generation efficiency is the highest. Generally, when the air is excessive, the combustion chamber is cooled and the efficiency is lowered. Therefore, the point S is usually present on the fuel excess side in the stable combustion region.

つぎに、燃焼状態を安定燃焼領域に維持するための制御方法について説明する。燃焼用空気と燃料である水素リッチガスとの比率(空燃比)の設定は以下の制御によって行われる。図1の燃料電池システムにおいて、燃焼部12の燃料である燃料電池18のアノードからの排水素リッチガス量は、原燃料供給手段14による原燃料流量の増減によって決定される。一方、燃焼用空気量は、燃焼空気供給手段22による燃焼空気流量の増減によって決定される。これらの、原燃料供給手段14、燃焼空気供給手段22の少なくとも1つ(必要に応じて両方の組合せ)を制御手段26により制御することによって、空燃比を制御することができる。   Next, a control method for maintaining the combustion state in the stable combustion region will be described. The ratio (air-fuel ratio) between combustion air and hydrogen-rich gas as fuel is set by the following control. In the fuel cell system of FIG. 1, the amount of exhaust hydrogen rich gas from the anode of the fuel cell 18 that is the fuel of the combustion unit 12 is determined by the increase or decrease of the raw fuel flow rate by the raw fuel supply means 14. On the other hand, the amount of combustion air is determined by the increase or decrease of the combustion air flow rate by the combustion air supply means 22. By controlling at least one of these raw fuel supply means 14 and combustion air supply means 22 (a combination of both as required) by the control means 26, the air-fuel ratio can be controlled.

この空燃比制御において、燃焼状態を安定燃焼領域に維持するための具体的手段を、図3の制御フローチャートにもとづき説明する。図3において、制御部26は、発電運転中(S1)にCO濃度が第1の閾値以上かどうかを判定し(S2)、CO濃度が第1の閾値以上であった場合は、さらにこのCO濃度が第2の閾値以上かどうかを判定し(S3)、CO濃度が第2の閾値以上であった場合は、安全のため緊急停止S4を行う。CO濃度が第2の閾値未満(図2におけるA点〜B点間とG点〜H点間)であった場合は、制御部26は、燃焼部12の空燃比を調整し、燃焼状態を安定燃焼領域に戻す制御を行う。まず、前記原燃料制御、燃焼空気制御のうちから、適正な空燃比制御手段を選定する(S5)。図3の制御フローチャートでは、一例として燃焼空気供給手段22による燃焼空気流量制御について述べている。なお、どの手段が適正であるかは、制御応答性や他特性への影響などを勘案して判断するもので、必要に応じて両方の手段の組合せを行うこともある。   In this air-fuel ratio control, specific means for maintaining the combustion state in the stable combustion region will be described based on the control flowchart of FIG. In FIG. 3, the control unit 26 determines whether or not the CO concentration is equal to or higher than the first threshold during power generation operation (S1) (S2). If the CO concentration is equal to or higher than the first threshold, this CO further It is determined whether or not the concentration is greater than or equal to the second threshold (S3). If the CO concentration is greater than or equal to the second threshold, emergency stop S4 is performed for safety. When the CO concentration is less than the second threshold (between points A and B and between points G and H in FIG. 2), the control unit 26 adjusts the air-fuel ratio of the combustion unit 12 to change the combustion state. Control to return to the stable combustion region. First, an appropriate air-fuel ratio control means is selected from the raw fuel control and the combustion air control (S5). In the control flowchart of FIG. 3, combustion air flow rate control by the combustion air supply means 22 is described as an example. Note that which means is appropriate is determined in consideration of control responsiveness and influence on other characteristics, and a combination of both means may be performed as necessary.

燃焼空気供給手段22は、燃焼空気流量を制御するもので、燃焼部12に供給される燃焼空気の流量を増加させれば、空燃比は空気過剰側へと変化し、燃焼部12に供給される燃焼空気の流量を減少させれば、空燃比は燃料過剰側へと変化する。   The combustion air supply means 22 controls the flow rate of the combustion air. If the flow rate of the combustion air supplied to the combustion unit 12 is increased, the air-fuel ratio changes to the excess air side and is supplied to the combustion unit 12. If the flow rate of the combustion air is reduced, the air-fuel ratio changes to the excess fuel side.

図3の制御フローチャートにおいて、制御部26により空燃比制御手段として燃焼空気流量制御を選定(S5)した場合、制御部26は、燃焼空気流量を減少(S6)すなわち燃料過剰側へ変化させ、一酸化炭素濃度検知手段25により測定された燃焼排ガス中のCO濃度が減少するようであれば(S7)、燃焼部12における空燃比は図2グラフのG点〜H点間の状態であると判断し、この空燃比が第2の限界空燃比Fに達するまで(すなわちCO濃度が第2の限界空燃比F点でのCO濃度に低減されるまで)、燃焼空気流量の減少を継続して(S8)、空燃比を燃料過剰側へ制御することによって、安定燃焼領域に戻して運転を継続させる。   In the control flowchart of FIG. 3, when the control unit 26 selects the combustion air flow rate control as the air-fuel ratio control means (S5), the control unit 26 decreases the combustion air flow rate (S6), that is, changes it to the excess fuel side. If the CO concentration in the combustion exhaust gas measured by the carbon oxide concentration detecting means 25 decreases (S7), it is determined that the air-fuel ratio in the combustion section 12 is in a state between points G and H in the graph of FIG. Until the air-fuel ratio reaches the second limit air-fuel ratio F (that is, until the CO concentration is reduced to the CO concentration at the second limit air-fuel ratio F), the combustion air flow rate continues to decrease ( S8) By controlling the air-fuel ratio to the excess fuel side, the operation is continued by returning to the stable combustion region.

同様に制御部26により燃焼空気流量を減少(S6)すなわち燃料過剰側へ変化させ、一酸化炭素濃度検知手段25により測定された燃焼排ガス中のCO濃度が前記とは逆に増加するようであれば(S7)、制御部26は、燃焼部12における空燃比は、図2グラフのA点〜B点間の状態であると判断し、今度はこの空燃比が第1の限界空燃比Cに達するまで(すなわちCO濃度が第1の限界空燃比C点でのCO濃度に低減されるまで)、燃焼空気流量の増加を継続させ(S11)、空燃比を空気過剰側へ制御することによって、安定燃焼領域に戻して運転を継続させる。   Similarly, if the control unit 26 decreases the combustion air flow rate (S6), that is, changes it to the excess fuel side, the CO concentration in the combustion exhaust gas measured by the carbon monoxide concentration detecting means 25 seems to increase contrary to the above. (S7), the control unit 26 determines that the air-fuel ratio in the combustion unit 12 is in a state between points A and B in the graph of FIG. 2, and this air-fuel ratio is now set to the first limit air-fuel ratio C. By increasing the combustion air flow rate until it reaches (that is, until the CO concentration is reduced to the CO concentration at the first critical air-fuel ratio C point) (S11), and by controlling the air-fuel ratio to the excess air side, Return to the stable combustion region and continue operation.

なお、上述とは逆に最初に燃焼空気流量を増加させてもよい(S9)。その際に、一酸化炭素検知手段25により検知されたCO濃度が減少するようであれば(S10)、制御部26は、燃焼部12における空燃比は図2グラフのA点〜B点間の状態であると判断し、この空燃比が第1の限界空燃比Cに達するまで(すなわちCO濃度が第1の限界空燃比C点でのCO濃度に低減されるまで)、燃焼空気流量の増加を継続して(S11)、空燃比を空気過剰側へ制御することによって、安定燃焼領域に戻して運転を継続させる。   Contrary to the above, the combustion air flow rate may be increased first (S9). At this time, if the CO concentration detected by the carbon monoxide detection means 25 decreases (S10), the control unit 26 determines that the air-fuel ratio in the combustion unit 12 is between points A and B in the graph of FIG. Until the air-fuel ratio reaches the first limit air-fuel ratio C (that is, until the CO concentration is reduced to the CO concentration at the first limit air-fuel ratio C), the combustion air flow rate increases. (S11), the air-fuel ratio is controlled to the excess air side to return to the stable combustion region and the operation is continued.

同様に制御部26により燃焼空気流量を増加(S9)すなわち空気過剰側へ変化させ、一酸化炭素濃度検知手段25により測定された燃焼排ガス中のCO濃度が前記とは逆に増加するようであれば(S10)、制御部26は、燃焼部12における空燃比は、図2グラフのG点〜H点間の状態であると判断し、今度はこの空燃比が第2の限界空燃比Fに達するまで(すなわちCO濃度が第2の限界空燃比F点でのCO濃度に低減されるまで)、燃焼空気流量の減少を継続させ(S11)、空燃比を燃料過剰側へ制御することによって、安定燃焼領域に戻して運転を継続させる。   Similarly, the flow rate of combustion air is increased by the control unit 26 (S9), that is, changed to the excess air side, and the CO concentration in the combustion exhaust gas measured by the carbon monoxide concentration detecting means 25 seems to increase contrary to the above. (S10), the control unit 26 determines that the air-fuel ratio in the combustion unit 12 is in a state between points G and H in the graph of FIG. 2, and this air-fuel ratio is now set to the second limit air-fuel ratio F. By continuing to decrease the flow rate of the combustion air until it reaches (that is, until the CO concentration is reduced to the CO concentration at the second limit air-fuel ratio F point) (S11), by controlling the air-fuel ratio to the excess fuel side, Return to the stable combustion region and continue operation.

上述の本実施の形態における燃料電池システムでは、燃焼部12の燃焼排ガス中の一酸化炭素濃度を検知する一酸化炭素濃度検知器25で測定されたCO濃度値に基づいて、制御部26は、燃焼部12の燃焼状態が安定燃焼領域に入るよう燃焼部12の空燃比制御を行うことを特徴とし、その空燃比制御は、空燃比制御に伴うCO濃度の増加あるいは減少といったCO濃度の変化の方向性から、空燃比を安定燃焼領域に戻すための空燃比の調整の方向性を決定することを特徴としている。かかる構成および制御によれば、空燃比制御により燃焼排ガス中の一酸化炭素濃度を低減させ、安定した燃焼状態を維持するとともに、一酸化炭素濃度が人体に危険なレベルに達すると安全のためシステムを停止させるもので、安定燃焼と安全性の確保を1個のセンサーで制御することができ、コストを低減させることができる。   In the fuel cell system according to the present embodiment described above, based on the CO concentration value measured by the carbon monoxide concentration detector 25 that detects the carbon monoxide concentration in the combustion exhaust gas of the combustion unit 12, the control unit 26 The air-fuel ratio control of the combustion section 12 is performed so that the combustion state of the combustion section 12 enters the stable combustion region, and the air-fuel ratio control is performed by changing the CO concentration such as the increase or decrease of the CO concentration accompanying the air-fuel ratio control. From the directionality, the directionality of adjustment of the air-fuel ratio for returning the air-fuel ratio to the stable combustion region is determined. According to such configuration and control, the air-fuel ratio control reduces the carbon monoxide concentration in the combustion exhaust gas to maintain a stable combustion state, and for safety when the carbon monoxide concentration reaches a dangerous level for the human body. Therefore, stable combustion and ensuring safety can be controlled by a single sensor, and the cost can be reduced.

(実施の形態2)
図4は、本発明の実施の形態2における燃料電池システムの制御フローチャートである。図4において、安定燃焼領域制御を行う場合に、まず、一酸化炭素濃度検知手段25により燃焼部12の燃焼排ガス中のCO濃度を測定しながら、制御部26は、燃料過剰側へ強制的に空燃比を変化(実施の形態1の例では燃焼空気流量を減少)させ(S11)、燃料過剰側で第1の閾値より小さい一酸化炭素濃度になる第1の限界空燃比(図2グラフのC点)を検知し(S12)、つぎに、空気過剰側へ強制的に空燃比を変化(実施の形態1の例では燃焼空気流量を増加)させ(S13)、空気過剰側で第1の閾値より小さい一酸化炭素濃度になる第2の限界空燃比(図2グラフのF点)を検知し(S14)、燃焼における安定燃焼領域の認識・設定(S15)を行う。
(Embodiment 2)
FIG. 4 is a control flowchart of the fuel cell system according to Embodiment 2 of the present invention. In FIG. 4, when performing the stable combustion region control, first, the control unit 26 forcibly moves to the fuel excess side while measuring the CO concentration in the combustion exhaust gas of the combustion unit 12 by the carbon monoxide concentration detection means 25. The air-fuel ratio is changed (in the example of the first embodiment, the combustion air flow rate is decreased) (S11), and the first limit air-fuel ratio (on the graph of FIG. 2) becomes a carbon monoxide concentration smaller than the first threshold on the excess fuel side. C point) is detected (S12), then the air-fuel ratio is forcibly changed to the excess air side (in the example of the first embodiment, the combustion air flow rate is increased) (S13), and the first value is detected on the excess air side. A second limit air-fuel ratio (point F in the graph of FIG. 2) at which the carbon monoxide concentration is smaller than the threshold is detected (S14), and the stable combustion region in the combustion is recognized and set (S15).

この時、制御部26は、必要に応じて図2グラフのボトムに当たるD点とE点の間の最安定燃焼領域への制御を行う(図4では図示せず)。なお、順序としては、燃料過剰側へ強制的に空燃比を変化させるか、あるいは空気過剰側へ強制的に空燃比を変化させるかは、どちらが先でも良い。   At this time, the control unit 26 performs control to the most stable combustion region between the points D and E corresponding to the bottom of the graph of FIG. 2 as necessary (not shown in FIG. 4). As for the order, either the air-fuel ratio is forcibly changed to the excess fuel side or the air-fuel ratio is forcibly changed to the excess air side, whichever comes first.

次に、上述の燃焼部を安定燃焼領域に維持するための制御方法に加え、高発電効率になるための制御方法について説明する。これは、制御部26が、第1の限界空燃比C点と、第2の限界空燃比F点の間の安定燃焼領域に収まるよう制御しながら、かつこの安定燃焼領域内で最高発電効率になるS点を含む高発電効率領域内に収まるよう制御するものである。   Next, a control method for achieving high power generation efficiency will be described in addition to the control method for maintaining the combustion section in the stable combustion region. This is because the control unit 26 performs control so that it falls within the stable combustion region between the first critical air-fuel ratio C point and the second critical air-fuel ratio F point, and the maximum power generation efficiency is achieved within this stable combustion region. The control is performed so as to be within the high power generation efficiency region including the S point.

すなわち、制御部26は、再び安定燃焼領域(図2グラフのC点〜F点の間)内で強制的に空燃比を変化(S16)させ、安定燃焼領域内の各ポイントにおける発電効率を発電効率演算手段31によって演算(S17)し、最高発電効率に達した際の空燃比(図2グラフではS点)を基準値としてこの基準値を含む領域を高発電効率領域として設定(S18)し、この領域内に収まるよう運転中に制御する。   That is, the control unit 26 again forcibly changes the air-fuel ratio within the stable combustion region (between points C and F in the graph of FIG. 2) (S16), and generates power generation efficiency at each point in the stable combustion region. The calculation is performed by the efficiency calculating means 31 (S17), and the region including this reference value is set as the high power generation efficiency region (S18) with the air / fuel ratio (S point in the graph of FIG. 2) when the maximum power generation efficiency is reached as the reference value. Control during operation so as to be within this region.

かかる制御によれば、空燃比制御により燃焼排ガス中の一酸化炭素濃度を低減させ、安定した燃焼状態を維持するとともに、発電効率を最も高く設定することができる。   According to such control, it is possible to reduce the carbon monoxide concentration in the combustion exhaust gas by air-fuel ratio control, maintain a stable combustion state, and set the power generation efficiency to the highest.

本発明にかかる燃料電池システムは、安定燃焼と安全性の確保を1個のセンサーで制御するもので、家庭などに電力供給を行う定置用発電システム等として有用である。また、自動車用電源等の用途にも応用できる。   The fuel cell system according to the present invention controls stable combustion and ensuring safety with a single sensor, and is useful as a stationary power generation system that supplies power to a home or the like. It can also be applied to uses such as automobile power supplies.

本発明の実施の形態1および2における燃料電池システムの構成図Configuration diagram of fuel cell system in Embodiments 1 and 2 of the present invention 本発明の実施の形態1および2における燃料電池システムの一酸化炭素濃度特性を示すグラフThe graph which shows the carbon monoxide density | concentration characteristic of the fuel cell system in Embodiment 1 and 2 of this invention 本発明の実施の形態1における燃料電池システムの制御フローチャートControl flow chart of fuel cell system in Embodiment 1 of the present invention 本発明の実施の形態2における燃料電池システムの制御フローチャートControl flow chart of fuel cell system in Embodiment 2 of the present invention 従来の燃料電池システムのシステム構成図System configuration diagram of conventional fuel cell system

符号の説明Explanation of symbols

11 改質部
12 燃焼部
14 原燃料供給手段
18 燃料電池
22 燃焼空気供給手段
23 オフガス供給経路
24 電気出力制御手段
25 一酸化炭素濃度検知手段
31 発電効率演算手段
32 原燃料流量検知手段
33 電気出力検知手段
DESCRIPTION OF SYMBOLS 11 Reforming part 12 Combustion part 14 Raw fuel supply means 18 Fuel cell 22 Combustion air supply means 23 Off-gas supply path 24 Electric output control means 25 Carbon monoxide concentration detection means 31 Power generation efficiency calculation means 32 Raw fuel flow rate detection means 33 Electric output Detection means

Claims (3)

原燃料を用いて改質反応により水素リッチガスを生成する改質部と、
前記改質部に原燃料を供給する原燃料供給手段と、
前記改質部を加熱する燃焼部と、
前記燃焼部に空気を供給する燃焼空気供給手段と、
前記燃焼部の燃焼排ガスに含まれる一酸化炭素濃度を検知する一酸化炭素濃度検知手段と、
前記改質部から供給される水素リッチガスと酸化剤ガスとを反応させ発電する燃料電池と、
制御部と、
原燃料流量検知手段で検知された原燃料流量と、電気出力検知手段で検知された電気出力に基づき、発電効率を演算する発電効率演算手段を備え、
前記制御部は、前記一酸化炭素濃度検知手段が、第1の閾値以上の一酸化炭素濃度を検知した場合、一酸化炭素濃度が低減するように前記燃焼部の空燃比制御を行い、前記一酸化炭素濃度検知手段が、前記第1の閾値より高い第2の閾値以上の一酸化炭素濃度を検知した場合、運転を停止させ、
前記制御部は、燃料過剰側で第1の閾値より小さい一酸化炭素濃度になる第1の限界空燃比と、空気過剰側で第1の閾値より小さい一酸化炭素濃度になる第2の限界空燃比との間の安定燃焼領域に収まるように燃焼部の空燃比を制御し、
前記制御部は、第1の限界空燃比と第2の限界空燃比との間の安定燃焼領域において、前記発電効率演算手段で演算される発電効率が高くなる高発電効率領域に収まるように燃焼部の空燃比を制御する燃料電池システム。
A reforming section that generates hydrogen-rich gas by a reforming reaction using raw fuel;
Raw fuel supply means for supplying raw fuel to the reforming section;
A combustion section for heating the reforming section;
Combustion air supply means for supplying air to the combustion section;
Carbon monoxide concentration detection means for detecting the concentration of carbon monoxide contained in the combustion exhaust gas of the combustion section;
A fuel cell that generates electricity by reacting a hydrogen-rich gas and an oxidant gas supplied from the reforming unit;
A control unit;
Based on the raw fuel flow rate detected by the raw fuel flow rate detection means and the electrical output detected by the electrical output detection means, the power generation efficiency calculation means for calculating the power generation efficiency ,
The control unit performs air-fuel ratio control of the combustion unit to reduce the carbon monoxide concentration when the carbon monoxide concentration detection unit detects a carbon monoxide concentration equal to or higher than a first threshold, and When the carbon oxide concentration detecting means detects a carbon monoxide concentration equal to or higher than a second threshold value higher than the first threshold value, the operation is stopped,
The control unit has a first limit air-fuel ratio at which the carbon monoxide concentration is smaller than the first threshold value on the fuel excess side, and a second limit sky at which the carbon monoxide concentration is smaller than the first threshold value on the air excess side. Control the air-fuel ratio of the combustion section so that it falls within the stable combustion region between the fuel ratio,
The control unit performs combustion so that the power generation efficiency calculated by the power generation efficiency calculating means is within a high power generation efficiency region in a stable combustion region between the first limit air fuel ratio and the second limit air fuel ratio. Cell system for controlling the air-fuel ratio of the unit .
原燃料を用いて改質反応により水素リッチガスを生成する改質部と、
前記改質部に原燃料を供給する原燃料供給手段と、
前記改質部を加熱する燃焼部と、
前記燃焼部に空気を供給する燃焼空気供給手段と、
前記燃焼部の燃焼排ガスに含まれる一酸化炭素濃度を検知する一酸化炭素濃度検知手段と、
前記改質部から供給される水素リッチガスと酸化剤ガスとを反応させ発電する燃料電池
と、
制御部と
原燃料流量検知手段で検知された原燃料流量と、電気出力検知手段で検知された電気出力に基づき、発電効率を演算する発電効率演算手段を備え、
前記制御部は、前記一酸化炭素濃度検知手段が、第1の閾値以上の一酸化炭素濃度を検知した場合、一酸化炭素濃度が低減するように前記燃焼部の空燃比制御を行い、前記一酸化炭素濃度検知手段が、前記第1の閾値より高い第2の閾値以上の一酸化炭素濃度を検知した場合、運転を停止させ、
前記制御部は、燃料過剰側で第1の閾値より小さい一酸化炭素濃度になる第1の限界空燃比と、空気過剰側で第1の閾値より小さい一酸化炭素濃度になる第2の限界空燃比との間の安定燃焼領域に収まるように燃焼部の空燃比を制御し、
前記制御部は、発電運転中に、燃焼部の空燃比を強制的に変化させ、燃料過剰側で第1の閾値より小さい一酸化炭素濃度になる第1の限界空燃比と、空気過剰側で第1の閾値より小さい一酸化炭素濃度になる第2の限界空燃比とを検出し、第1の限界空燃比と第2の限界空燃比との間を安定燃焼領域として設定し、
前記制御部は、発電運転中に燃焼部の空燃比を強制的に変化させ、発電効率演算手段で発電効率を演算し、安定燃焼領域において、前記発電効率演算手段で演算される発電効率が高くなる領域を高発電効率領域として設定する燃料電池システム。
A reforming section that generates hydrogen-rich gas by a reforming reaction using raw fuel;
Raw fuel supply means for supplying raw fuel to the reforming section;
A combustion section for heating the reforming section;
Combustion air supply means for supplying air to the combustion section;
Carbon monoxide concentration detection means for detecting the concentration of carbon monoxide contained in the combustion exhaust gas of the combustion section;
A fuel cell that generates electricity by reacting a hydrogen-rich gas and an oxidant gas supplied from the reforming unit;
With control
Based on the raw fuel flow rate detected by the raw fuel flow rate detection means and the electrical output detected by the electrical output detection means, the power generation efficiency calculation means for calculating the power generation efficiency ,
The control unit performs air-fuel ratio control of the combustion unit to reduce the carbon monoxide concentration when the carbon monoxide concentration detection unit detects a carbon monoxide concentration equal to or higher than a first threshold, and When the carbon oxide concentration detecting means detects a carbon monoxide concentration equal to or higher than a second threshold value higher than the first threshold value, the operation is stopped,
The control unit has a first limit air-fuel ratio at which the carbon monoxide concentration is smaller than the first threshold value on the fuel excess side, and a second limit sky at which the carbon monoxide concentration is smaller than the first threshold value on the air excess side. Control the air-fuel ratio of the combustion section so that it falls within the stable combustion region between the fuel ratio,
The control unit forcibly changes the air-fuel ratio of the combustion unit during the power generation operation, the first limit air-fuel ratio at which the carbon monoxide concentration is smaller than the first threshold value on the fuel excess side, and the air excess side. Detecting a second limit air-fuel ratio at which the carbon monoxide concentration is less than the first threshold, and setting a range between the first limit air-fuel ratio and the second limit air-fuel ratio as a stable combustion region;
The control section forcibly changes the air-fuel ratio of the combustion section during power generation operation, calculates the power generation efficiency by the power generation efficiency calculation means, and the power generation efficiency calculated by the power generation efficiency calculation means is high in the stable combustion region. A fuel cell system that sets this area as the high power generation efficiency area.
燃料電池のアノードから排出されるオフガスを前記燃焼部へ供給するオフガス供給経路とをさらに備え、燃焼部の空燃比制御は、原燃料供給手段による原燃料流量の増減、前記燃焼空気供給手段による燃焼空気流量の増減の少なくともいずれかにより行われる請求項1または2に記載の燃料電池システム。 An off-gas supply path for supplying off-gas discharged from the anode of the fuel cell to the combustion section, and the air-fuel ratio control of the combustion section is performed by increasing / decreasing the raw fuel flow rate by the raw fuel supply means and combustion by the combustion air supply means the fuel cell system according to claim 1 or 2 Ru performed by at least one of increase and decrease of the air flow rate.
JP2004251557A 2004-08-31 2004-08-31 Fuel cell system Expired - Fee Related JP4742540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004251557A JP4742540B2 (en) 2004-08-31 2004-08-31 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004251557A JP4742540B2 (en) 2004-08-31 2004-08-31 Fuel cell system

Publications (2)

Publication Number Publication Date
JP2006073215A JP2006073215A (en) 2006-03-16
JP4742540B2 true JP4742540B2 (en) 2011-08-10

Family

ID=36153631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004251557A Expired - Fee Related JP4742540B2 (en) 2004-08-31 2004-08-31 Fuel cell system

Country Status (1)

Country Link
JP (1) JP4742540B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5292173B2 (en) * 2009-05-13 2013-09-18 アイシン精機株式会社 Fuel cell system
JP5444873B2 (en) * 2009-06-22 2014-03-19 パナソニック株式会社 FUEL CELL SYSTEM AND METHOD FOR OPERATING FUEL CELL SYSTEM
JP5748055B2 (en) * 2011-06-30 2015-07-15 Toto株式会社 Solid oxide fuel cell
JP5748054B2 (en) * 2011-06-30 2015-07-15 Toto株式会社 Solid oxide fuel cell
EP3136485B1 (en) * 2014-04-25 2018-10-31 Panasonic Corporation Solid oxide fuel cell

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6297268A (en) * 1985-10-23 1987-05-06 Toshiba Corp Controller for fuel cell power generating plant
JPH0320973A (en) * 1989-04-21 1991-01-29 Internatl Fuel Cells Corp Fuel cell power plant and operating method thereof
JPH085058A (en) * 1994-06-17 1996-01-12 Gastar Corp Combustion control apparatus for burner combustion device
JP2000036313A (en) * 1998-07-21 2000-02-02 Mitsubishi Electric Corp Phosphoric acid fuel cell power generation set
JP2001324139A (en) * 2000-05-16 2001-11-22 Tokyo Gas Co Ltd Combustion controller
JP2002063924A (en) * 2000-08-15 2002-02-28 Sanyo Electric Co Ltd Heat and electric supply fuel cell generator and its operation method
JP2004039420A (en) * 2002-07-03 2004-02-05 Mitsubishi Heavy Ind Ltd Fuel cell power generation system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6297268A (en) * 1985-10-23 1987-05-06 Toshiba Corp Controller for fuel cell power generating plant
JPH0320973A (en) * 1989-04-21 1991-01-29 Internatl Fuel Cells Corp Fuel cell power plant and operating method thereof
JPH085058A (en) * 1994-06-17 1996-01-12 Gastar Corp Combustion control apparatus for burner combustion device
JP2000036313A (en) * 1998-07-21 2000-02-02 Mitsubishi Electric Corp Phosphoric acid fuel cell power generation set
JP2001324139A (en) * 2000-05-16 2001-11-22 Tokyo Gas Co Ltd Combustion controller
JP2002063924A (en) * 2000-08-15 2002-02-28 Sanyo Electric Co Ltd Heat and electric supply fuel cell generator and its operation method
JP2004039420A (en) * 2002-07-03 2004-02-05 Mitsubishi Heavy Ind Ltd Fuel cell power generation system

Also Published As

Publication number Publication date
JP2006073215A (en) 2006-03-16

Similar Documents

Publication Publication Date Title
US6960400B2 (en) Fuel cell power generation system and control method thereof
CA2277671C (en) Control apparatus and control method for reformer
US8349505B2 (en) Power generation system of fuel cell and control method thereof
JP4951917B2 (en) Fuel reforming system
JP6857846B2 (en) Fuel cell system and how to operate it
US8148023B2 (en) Regulating an oxidizer in an electrochemical cell pumping system
JP4870909B2 (en) Fuel cell power generator
JP4742540B2 (en) Fuel cell system
US6607855B2 (en) Control system for fuel cell
JP3939978B2 (en) Fuel cell power generation system and operation method thereof
JP4727642B2 (en) Operation method of hydrogen production power generation system
JP3443237B2 (en) Solid polymer fuel cell power generation system
JP2007200771A (en) Reforming catalyst temperature control system and control method of fuel cell power generator
JP3999513B2 (en) Fuel cell power generation system and operation method thereof
JP2006331728A (en) Fuel cell system
JP2008269887A (en) Fuel cell system
JP3991047B2 (en) Humidifier for fuel cell
JP2007073302A (en) Fuel reforming system
JP4135243B2 (en) Control device for reformer
JP6382623B2 (en) FUEL CELL SYSTEM, FUEL CELL SYSTEM CONTROL DEVICE, AND FUEL CELL SYSTEM CONTROL METHOD
JP5592760B2 (en) Fuel cell power generation system
JP2003192309A (en) Controller of fuel reforming apparatus in fuel cell system
JP6197171B2 (en) Fuel cell system
JP4122951B2 (en) Flow control valve control system and fuel reformer using the same
JP5021895B2 (en) Fuel cell power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070829

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070912

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110318

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees