JP2002063924A - Heat and electric supply fuel cell generator and its operation method - Google Patents

Heat and electric supply fuel cell generator and its operation method

Info

Publication number
JP2002063924A
JP2002063924A JP2000246186A JP2000246186A JP2002063924A JP 2002063924 A JP2002063924 A JP 2002063924A JP 2000246186 A JP2000246186 A JP 2000246186A JP 2000246186 A JP2000246186 A JP 2000246186A JP 2002063924 A JP2002063924 A JP 2002063924A
Authority
JP
Japan
Prior art keywords
fuel cell
heat
reformer
power generation
efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000246186A
Other languages
Japanese (ja)
Other versions
JP4052784B2 (en
Inventor
Kazuhiro Tajima
一弘 田島
Taketoshi Ouki
丈俊 黄木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000246186A priority Critical patent/JP4052784B2/en
Publication of JP2002063924A publication Critical patent/JP2002063924A/en
Application granted granted Critical
Publication of JP4052784B2 publication Critical patent/JP4052784B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide an operation method and a heat/electric supply fuel cell generator for it wherein the ratio of generation efficiency and heat recovery efficiency can be controlled without investment for another equipment in the heat/electric supply fuel cell generator which can supply electric energy and heat energy. SOLUTION: In the operation method of a heat/electric supply fuel cell generator which generates electricity by introducing reformed gas from a reformer into the fuel cell and at the same time supplies hot water by collecting heat, this is the operation method of the heat/electric supply fuel cell generator to control the ratio of generating efficiency and heat recovery efficiency, and the heat/electric supply fuel cell generator in order to perform the method by controlling air volume supplied to a reformer burner.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、改質器からの改質
ガスを燃料電池に導入して発電するとともに、熱を回収
して温水を供給する熱電併給型燃料電池発電装置の運転
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating a combined heat and power supply type fuel cell power generator for supplying a reformed gas from a reformer to a fuel cell to generate power, recovering heat and supplying hot water. .

【0002】[0002]

【従来の技術】近年、改質器及び燃料電池を組み合わせ
たエネルギー供給システムの開発が進められている。こ
のエネルギー供給システムは、天然ガス等の原燃ガスを
改質器において改質触媒の存在下、水蒸気と反応させ、
水素に富んだ改質ガスに変換し、この改質ガスを燃料電
池の燃料極(アノード)に供給し、一方、燃料電池の空
気極(カソード)には酸化性ガス、たとえば空気を導入
して、化学反応から直接電流を取り出すものである。こ
のエネルギー供給システムでは、改質器及び燃料電池か
ら排出される排気ガスが高温であるため、この排気ガス
から熱エネルギーを回収することにより、給湯や暖房等
へ利用することが可能になる。従って、このようなエネ
ルギー供給システムによれば、例えば、電力会社からの
電源供給を受けることができない地域に設けられる家屋
や臨時施設等へも電気エネルギー及び熱エネルギーを供
給でき、また、このエネルギー供給システムにより電力
需要が多い昼間の時間帯にのみ発電し、電力需要の少な
い夜間の時間帯には電力会社からの電力供給を受けれ
ば、昼夜間における電力需要の平準化という社会的な要
請に応えることもできる。
2. Description of the Related Art In recent years, an energy supply system combining a reformer and a fuel cell has been developed. This energy supply system reacts raw fuel gas such as natural gas with steam in the presence of a reforming catalyst in a reformer,
The fuel gas is converted into a hydrogen-rich reformed gas, and this reformed gas is supplied to the fuel electrode (anode) of the fuel cell. On the other hand, an oxidizing gas such as air is introduced into the air electrode (cathode) of the fuel cell. , Which draws current directly from a chemical reaction. In this energy supply system, since the exhaust gas discharged from the reformer and the fuel cell has a high temperature, by recovering thermal energy from the exhaust gas, it becomes possible to use it for hot water supply, heating and the like. Therefore, according to such an energy supply system, for example, electric energy and heat energy can be supplied to a house or a temporary facility provided in an area where power supply from a power company cannot be received. The system generates electricity only during the daytime hours when power demand is high, and receives power from a power company during the nighttime when power demand is low, responding to the social demands for leveling power demand during the daytime and nighttime. You can also.

【0003】前記エネルギー供給システムにおいては、
高温である燃料排ガスの排熱を回収することにより全体
のエネルギー効率(用いた全燃料のエネルギーに対する
得られた電気エネルギーと熱エネルギーの和)の向上が
可能であるが、全体のエネルギー効率の向上だけでな
く、電気エネルギーおよび熱エネルギーそれぞれの効
率、すなわち発電効率および熱回収効率の各々が所定の
大きさを達成することが求められている。また、前記エ
ネルギー供給システムを用いるにあたり、使用者の生活
パターンに応じて、発電効率重視の運転を行うかあるい
は熱回収効率重視の運転を行う場合がある。たとえば、
より多くの熱エネルギーを必要とする家庭においては、
従来のシステムでは別に用意した給湯器などにより不足
分を補う必要があり、使用者に新たな設備投資を強いる
ものであった。したがって、前記エネルギー供給システ
ムの運転において、全体の熱効率を大きく変えずに発電
効率重視の運転あるいは熱回収効率重視の運転に容易に
切り換えが可能なエネルギー供給システムが求められて
いるが、現在、そのようなことが可能なエネルギー供給
システムは実現していない。
In the energy supply system,
By recovering the exhaust heat of the high temperature fuel exhaust gas, it is possible to improve the overall energy efficiency (sum of the obtained electric energy and thermal energy with respect to the energy of all the fuel used), but the overall energy efficiency is improved. Not only that, it is required that the respective efficiencies of electric energy and heat energy, that is, each of the power generation efficiency and the heat recovery efficiency achieve a predetermined magnitude. In addition, when using the energy supply system, there may be a case where an operation with an emphasis on power generation efficiency or an operation with an emphasis on heat recovery efficiency is performed according to the life pattern of the user. For example,
In homes that need more heat energy,
In the conventional system, it is necessary to make up for the shortage by using a separately prepared hot water heater or the like, thereby forcing the user to make a new capital investment. Therefore, in the operation of the energy supply system, there is a demand for an energy supply system that can be easily switched to an operation that emphasizes power generation efficiency or an operation that emphasizes heat recovery efficiency without largely changing the overall thermal efficiency. An energy supply system that can do this has not been realized.

【0004】[0004]

【発明が解決しようとする課題】本発明は前記問題点に
鑑みなされたものであり、その目的は、電気エネルギー
と熱エネルギーを併給可能な熱電併給型燃料電池発電装
置において、新たな設備投資を行うことなく、発電効率
および熱回収効率の比を制御することが可能な運転方法
およびそのための熱電併給型燃料電池発電装置を提供す
ることにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to provide a combined heat and power type fuel cell power generator capable of supplying both electric energy and heat energy with new capital investment. An object of the present invention is to provide an operation method capable of controlling the ratio between the power generation efficiency and the heat recovery efficiency without performing the operation, and a combined heat and power supply type fuel cell power generation device therefor.

【0005】[0005]

【課題を解決するための手段】前記課題は以下の熱電併
給型燃料電池発電装置およびその運転方法を提供するこ
とにより解決される。 (1)少なくとも燃料電池および熱回収装置を有する熱
電併給型燃料電池発電装置であって、発電効率と熱回収
効率の比を制御する手段を有することを特徴とする熱電
併給型燃料電池発電装置。 (2)発電効率と熱回収効率の比を制御する手段は、前
記燃料電池に改質ガスを供給する改質器用の改質器バー
ナへの空気の供給量を制御する手段を有することを特徴
とする前記(1)に記載の熱電併給型燃料電池発電装
置。 (3)改質器からの改質ガスを燃料電池に導入して発電
するとともに、熱を回収して温水を供給する熱電併給型
燃料電池発電装置の運転方法において、改質器バーナに
供給する空気量を制御することにより、発電効率と熱回
収効率の比を制御することを特徴とする熱電併給型燃料
電池発電装置の運転方法。
The above object can be attained by providing the following cogeneration type fuel cell power generator and its operating method. (1) A cogeneration fuel cell power generator having at least a fuel cell and a heat recovery device, comprising means for controlling the ratio of power generation efficiency to heat recovery efficiency. (2) The means for controlling the ratio between the power generation efficiency and the heat recovery efficiency includes means for controlling the amount of air supplied to a reformer burner for a reformer that supplies reformed gas to the fuel cell. The combined heat and power supply type fuel cell power generator according to the above (1). (3) In the operation method of the combined heat and power supply type fuel cell power generation device for supplying the reformed gas from the reformer to the fuel cell to generate power, recovering heat and supplying hot water, the reformed gas is supplied to the reformer burner. A method for operating a combined heat and power fuel cell power generator, characterized by controlling the ratio of power generation efficiency to heat recovery efficiency by controlling the amount of air.

【0006】[0006]

【発明の実施の形態】本発明の燃料電池発電装置の運転
方法は、特に新たな設備投資を行うことなく、改質器バ
ーナへの空気供給量を制御することにより、発電効率と
熱回収効率の比率を制御することができ、発電効率重視
の運転あるいは熱回収効率重視の運転に容易に切り換え
が可能となる。
BEST MODE FOR CARRYING OUT THE INVENTION The method of operating a fuel cell power generator according to the present invention controls the amount of air supplied to a reformer burner without particularly investing in new equipment, thereby improving power generation efficiency and heat recovery efficiency. Can be controlled, and it is possible to easily switch to an operation that emphasizes power generation efficiency or an operation that emphasizes heat recovery efficiency.

【0007】改質器は、天然ガス、都市ガス、メタノー
ル、LPG、ブタン等の原燃ガスを水蒸気とともに、改
質反応温度(通常700〜750℃)にまで昇温させた
改質器触媒に接触させて、水素ガスに富んだ改質ガスを
生成するための装置である。通常、改質器触媒を入れた
管等の触媒容器中に原燃ガスを通すことにより改質反応
が行われる。改質反応に先立ち触媒が反応温度に達する
まで触媒容器を加熱するが、この加熱は、燃料ガス、通
常は原燃ガスの一部をバイパスさせ、改質器に取りつけ
られたバーナに供給し、同時にバーナに空気を送って、
燃焼させ燃焼ガスの熱により触媒容器を加熱する。触媒
容器を加熱した燃焼ガスは改質器を出て排ガスとなり、
熱交換器(後に説明する図2の17、32参照)におい
て熱交換され、最終的に排気される。改質器の触媒容器
に原燃ガスおよび水蒸気を導入して改質ガスを生成さ
せ、これを燃料電池に導入して発電が開始すると、燃料
電池から未反応の水素ガスを含む燃料電池排ガスが排出
されるが、この排ガスを改質器バーナに供給して燃焼さ
せる。この燃料電池排ガスだけでは改質器触媒を所定の
反応温度にまで昇温させることができない場合は、前記
の原燃ガスを追加する。
[0007] The reformer is used to convert a raw gas such as natural gas, city gas, methanol, LPG, or butane, together with water vapor, to a reforming reaction temperature (generally 700 to 750 ° C). This is a device for generating a reformed gas rich in hydrogen gas by contact. Normally, the reforming reaction is performed by passing the raw fuel gas through a catalyst container such as a tube containing a reformer catalyst. Prior to the reforming reaction, the catalyst vessel is heated until the catalyst reaches the reaction temperature.This heating bypasses a part of the fuel gas, usually the raw fuel gas, and supplies it to the burner attached to the reformer, At the same time send air to the burner,
The catalyst vessel is heated by the combustion and the heat of the combustion gas. The combustion gas that has heated the catalyst container exits the reformer and becomes exhaust gas.
The heat is exchanged in a heat exchanger (see 17 and 32 in FIG. 2 described later) and finally exhausted. The raw fuel gas and steam are introduced into the catalyst container of the reformer to generate a reformed gas, which is then introduced into the fuel cell to start power generation. This exhaust gas is supplied to a reformer burner and burned. When it is not possible to raise the temperature of the reformer catalyst to a predetermined reaction temperature only with the fuel cell exhaust gas, the raw fuel gas is added.

【0008】一般に改質器バーナへの空気供給量は、改
質器バーナに供給する燃料ガスを完全燃焼させるに必要
な空気量を1とした場合、通常およそ1.1ないし1.
8の範囲になるような量(このことを「空気比が1.1
〜1.8」という。)である。この範囲における空気比
の設定は、燃焼排ガス中に含まれる一酸化炭素量および
燃焼状態に基づいて適宜決定される。本発明は、前記空
気比の範囲において、改質器バーナに対する空気供給量
を制御することにより、発電効率と熱回収効率の比率を
制御することを特徴とする。
In general, the amount of air supplied to the reformer burner is generally about 1.1 to 1.1, assuming that the amount of air required to completely burn the fuel gas supplied to the reformer burner is 1.
8 (this is referred to as "the air ratio is 1.1
~ 1.8 ". ). The setting of the air ratio in this range is appropriately determined based on the amount of carbon monoxide contained in the combustion exhaust gas and the combustion state. The present invention is characterized in that the ratio of the power generation efficiency to the heat recovery efficiency is controlled by controlling the amount of air supplied to the reformer burner within the range of the air ratio.

【0009】改質器バーナをある空気比において、改質
器触媒を反応温度に保つように燃焼させている状態か
ら、その空気比より大きい量の空気を供給すると、改質
器を通るガス量が多くなり改質器内をより速く燃焼ガス
が通過する結果、燃焼ガスが触媒容器において熱交換す
る時間が短くなる。そうすると、触媒容器に供給される
熱は少なくなり、改質反応における水素生成率は少なく
なり、その結果発電量は減り、発電効率は下がる。一
方、触媒容器に与えられなかった熱は熱交換器におい
て、たとえば水を昇温させ、その結果熱回収は増加し、
熱回収効率を上昇させる。なお、空気量を増やす前と後
において、発電量を一定にしたいのであれば、改質反応
温度を確保するためにバーナに供給する燃料ガスの量を
増やせばよい。逆に、改質器バーナに供給する空気比を
下げると、燃焼ガスが触媒容器において熱交換する時間
が長くなり、改質反応に必要な熱以上の熱が触媒容器に
与えられる一方、熱交換器における排熱回収は空気比を
下げる前に比較して低減するので、熱回収効率は下がる
ことになる。また、改質器バーナに供給する燃料ガスの
量を減らすことができるので、結果的に発電効率を上げ
ることができる。そして、全体の効率がほぼ一定の場
合、発電効率を上げれば発電量は増え、一方、熱回収効
率は下がって得られる熱量は少なくなる。また、発電効
率を下げれば発電量は少なくなり、一方、熱回収効率は
上がり得られる熱量は多くなる。
When the reformer burner is burned at a certain air ratio so as to keep the reformer catalyst at the reaction temperature, if a larger amount of air is supplied, the amount of gas passing through the reformer is reduced. As a result, the combustion gas passes through the reformer faster, and as a result, the time during which the combustion gas exchanges heat in the catalyst container is reduced. Then, the heat supplied to the catalyst container is reduced, and the rate of hydrogen generation in the reforming reaction is reduced. As a result, the power generation amount is reduced, and the power generation efficiency is reduced. On the other hand, the heat not given to the catalyst vessel in the heat exchanger, for example, raises the temperature of the water, resulting in increased heat recovery,
Increase heat recovery efficiency. If it is desired to keep the power generation constant before and after increasing the amount of air, the amount of fuel gas supplied to the burner may be increased in order to secure the reforming reaction temperature. Conversely, when the air ratio supplied to the reformer burner is reduced, the time for which the combustion gas exchanges heat in the catalyst container is prolonged. Since the waste heat recovery in the vessel is reduced before the air ratio is reduced, the heat recovery efficiency is reduced. Further, since the amount of fuel gas supplied to the reformer burner can be reduced, power generation efficiency can be increased as a result. When the overall efficiency is substantially constant, increasing the power generation efficiency increases the amount of power generation, while decreasing the heat recovery efficiency and reducing the amount of heat obtained. Also, if the power generation efficiency is reduced, the amount of power generation is reduced, while the heat recovery efficiency is increased and the amount of heat that can be obtained is increased.

【0010】図1は、前記空気比の範囲のある特定の空
気比から、空気比(空気量)を増加あるいは減少させた
場合の、発電効率および熱回収効率の変化を示す概念図
である。図1中A点は、前記空気比範囲(1.1〜1.
8)内にある特定の空気比をさす。また、この場合、全
体効率は概ね一定のものとする。Aの空気比から徐々に
空気比を増加させると、発電効率は低下する方向に、熱
回収効率は増加する方向に変化する。またAの空気比か
ら空気比を低下させると、発電効率は増加する方向に、
熱回収効率は低下する方向に変化する。たとえば前記範
囲の空気比においては、空気比を15%低下させると、
発電効率は8%増加し、熱回収効率は8%低下する。ま
た、空気比を15%増加させると、発電効率は8%低下
し、熱回収効率は8%増加する。
FIG. 1 is a conceptual diagram showing changes in the power generation efficiency and the heat recovery efficiency when the air ratio (air amount) is increased or decreased from a specific air ratio within the above air ratio range. Point A in FIG. 1 corresponds to the air ratio range (1.1-1.
8) refers to a specific air ratio within. In this case, the overall efficiency is assumed to be substantially constant. When the air ratio is gradually increased from the air ratio of A, the power generation efficiency changes in a direction to decrease, and the heat recovery efficiency changes in a direction to increase. When the air ratio is reduced from the air ratio of A, the power generation efficiency increases.
The heat recovery efficiency changes in a decreasing direction. For example, in the above range of air ratio, if the air ratio is reduced by 15%,
Power generation efficiency increases by 8%, and heat recovery efficiency decreases by 8%. When the air ratio is increased by 15%, the power generation efficiency is reduced by 8%, and the heat recovery efficiency is increased by 8%.

【0011】本発明の運転方法においては、発電効率と
熱回収効率の比がいくつかの特定の比になるようにあら
かじめ設定しても、また、前記比が連続的に変化するよ
うに制御してもよい。たとえば図3に示すようなシーケ
ンス制御を行うことにより、前記のような空気比の範囲
内において設定された発電効率と熱回収効率で運転する
モード(通常モード)、前記空気比より空気比を下げて
発電効率重視の運転を行うモード(発電効率重視モー
ド)、および前記空気比より空気比を上げるあるいは燃
料ガスの供給量を増加させて熱回収効率重視の運転を行
うモード(熱回収効率重視モード)の3つのモードが選
択可能なように制御してもよい。なお、通常モードは設
置地域、場所、あるいは使用状況などを考慮して決定さ
れる。前記3つのモードにより運転を行う場合、たとえ
ば、通常モードでは発電効率を20〜23%、熱回収効
率を20〜23%に、発電効率重視の運転を行うモード
では発電効率を27〜30%、熱回収効率を14〜17
%に、熱回収効率重視の運転を行うモードでは発電効率
を14〜17%、熱回収効率を27〜30%に設定する
ことが可能である。また、前記の発電効率重視モードお
よび/または熱回収効率重視モードを、さらにいくつか
のモードにしてもよい。さらに、このようなモード選択
でなく、発電効率と熱回収効率の比を連続的に変化させ
るようにしてもよい。
In the operation method of the present invention, the ratio between the power generation efficiency and the heat recovery efficiency may be set in advance so as to be some specific ratio, or the ratio may be controlled so as to be continuously changed. You may. For example, by performing the sequence control as shown in FIG. 3, a mode (normal mode) in which the power generation efficiency and the heat recovery efficiency are set within the range of the air ratio as described above (normal mode), the air ratio is reduced from the air ratio. A mode in which power generation efficiency is emphasized (power generation efficiency mode), and a mode in which heat recovery efficiency is emphasized by raising the air ratio from the air ratio or increasing the supply amount of fuel gas (heat recovery efficiency importance mode). ) May be controlled so as to be selectable. Note that the normal mode is determined in consideration of an installation area, a place, a use state, and the like. When the operation is performed in the three modes, for example, the power generation efficiency is 20 to 23% in the normal mode, the heat recovery efficiency is 20 to 23%, and the power generation efficiency is 27 to 30% in the mode in which the power generation efficiency is emphasized. 14-17 heat recovery efficiency
%, It is possible to set the power generation efficiency to 14 to 17% and the heat recovery efficiency to 27 to 30% in the mode in which the heat recovery efficiency-oriented operation is performed. Further, the power generation efficiency emphasis mode and / or the heat recovery efficiency emphasis mode may be further changed to some modes. Further, instead of such mode selection, the ratio between the power generation efficiency and the heat recovery efficiency may be continuously changed.

【0012】このように、本発明の運転方法において
は、特に新たな設備投資を行うことなく、改質器バーナ
の空気供給量を制御することにより、容易に発電効率お
よび熱回収効率の比を制御することができるので、発電
効率重視の運転および熱回収効率重視の運転に転換させ
ることが容易に行うことができる。
As described above, in the operation method of the present invention, the ratio between the power generation efficiency and the heat recovery efficiency can be easily adjusted by controlling the air supply amount of the reformer burner without making a new capital investment. Since the control can be performed, the operation can be easily switched to the operation that emphasizes the power generation efficiency and the operation that emphasizes the heat recovery efficiency.

【0013】次に、本発明の運転方法が適用される、改
質器からの改質ガスを燃料電池に導入して発電するとと
もに、熱を回収して温水を供給する熱電併給型燃料電池
発電装置の一例を示す。図2は固体高分子型燃料電池を
用いる発電装置の一例を示すが、本発明の運転方法は、
固体高分子型燃料電池だけでなくリン酸塩型燃料電池を
用いる発電装置に適用できることは勿論である。前記発
電装置の各部の構成をその作動とともに説明する。起動
時は、脱硫器2で脱硫した原燃ガス1を管路13を経て
改質器バーナ12に導き、同時に空気送風機14により
空気をバーナに供給して点火し燃焼ガスを生成させ、こ
れを改質器3に通す。燃焼ガスは改質器3の触媒容器を
加熱し、改質触媒の温度を反応温度にまで上昇させる。
バーナ12において燃焼したガスは熱交換器17および
熱交換器32を通って排ガスとして排出される。熱交換
器17では水タンク21からの水と熱交換し、熱交換器
32では貯湯タンク98からの水と熱交換する。
Next, a reformed gas from a reformer is introduced into a fuel cell to which the operating method of the present invention is applied to generate power, and heat and heat is supplied to the fuel cell to generate hot water. 1 shows an example of an apparatus. FIG. 2 shows an example of a power generator using a polymer electrolyte fuel cell.
It is needless to say that the present invention can be applied not only to a polymer electrolyte fuel cell but also to a power generator using a phosphate fuel cell. The configuration of each part of the power generator will be described together with its operation. At the time of start-up, the raw fuel gas 1 desulfurized by the desulfurizer 2 is led to the reformer burner 12 via the pipe line 13, and at the same time, air is supplied to the burner by the air blower 14 to ignite and generate combustion gas. Pass through the reformer 3. The combustion gas heats the catalyst container of the reformer 3 and raises the temperature of the reforming catalyst to the reaction temperature.
The gas burned in the burner 12 is discharged as exhaust gas through the heat exchanger 17 and the heat exchanger 32. The heat exchanger 17 exchanges heat with water from the water tank 21, and the heat exchanger 32 exchanges heat with water from the hot water storage tank 98.

【0014】また、改質器3に脱硫器2で脱硫された原
燃ガス1を昇圧ポンプ10を介して導入するとともに、
改質器3に水蒸気を導入する。改質器の触媒層の温度は
改質反応温度にまで昇温しているので、改質反応が生じ
水素ガスに富んだ改質ガスが生成する。改質器3への水
蒸気の導入は、改質器3に接続した熱交換器17に水タ
ンク21からの水をポンプ22を介して供給し、熱交換
器17で蒸発させ、得られた水蒸気を改質器3への原燃
ガス管路へ導入することにより行われる。改質器バーナ
の点火と改質器への原燃ガスの導入は同時でもよく、ま
た、改質器触媒の温度が改質反応に達したときでも、さ
らにその間でもよい。改質ガスは、ガス組成が安定する
までは燃料電池6に導入することができないので、改質
器3、一酸化炭素変成器4および一酸化炭素除去器5の
各触媒層の温度が安定するまでは、開閉弁91は閉じら
れ開閉弁36が開かれ、一酸化炭素除去器からのガスは
管路35を経てPG(プロセスガス)バーナに送られ送
風機37により供給された空気により燃焼させられ、そ
の燃焼ガスは熱交換器46を通り、貯湯タンク98から
の水と熱交換した後、排ガス45として排気される。
In addition, the raw fuel gas 1 desulfurized by the desulfurizer 2 is introduced into the reformer 3 through the pressure pump 10 and
Steam is introduced into the reformer 3. Since the temperature of the catalyst layer of the reformer has risen to the reforming reaction temperature, a reforming reaction occurs and a reformed gas rich in hydrogen gas is generated. The introduction of steam into the reformer 3 is performed by supplying water from the water tank 21 to the heat exchanger 17 connected to the reformer 3 via the pump 22, evaporating the water in the heat exchanger 17, and obtaining the obtained steam. Is introduced into the raw fuel gas line to the reformer 3. The ignition of the reformer burner and the introduction of the raw fuel gas into the reformer may be performed simultaneously, or when the temperature of the reformer catalyst reaches the reforming reaction, or during that time. Since the reformed gas cannot be introduced into the fuel cell 6 until the gas composition is stabilized, the temperatures of the catalyst layers of the reformer 3, the carbon monoxide converter 4, and the carbon monoxide remover 5 are stabilized. Until this time, the on-off valve 91 is closed and the on-off valve 36 is opened, and the gas from the carbon monoxide remover is sent to the PG (process gas) burner via the line 35 and burned by the air supplied by the blower 37. The combustion gas passes through the heat exchanger 46, exchanges heat with water from the hot water storage tank 98, and is then exhausted as exhaust gas 45.

【0015】一酸化炭素変成器4および一酸化炭素除去
器5の各触媒層の温度が安定した段階で、開閉弁91が
開かれ改質ガスは燃料電池6に導入され発電が開始す
る。燃料電池6の温度が安定するまでは、開閉弁92は
閉じられ、開閉弁39が開かれ、未反応水素ガスが残留
する燃料電池からの排ガスは管路38を通り、前記した
のと同様にPGバーナで燃焼させられる。安定的な定常
運転に移行した時点において開閉弁91、92が開か
れ、開閉弁36、39が閉じられて燃料電池のアノード
6aを経た未反応ガスは管路15を経てバーナ12に供
給される。未反応ガスは全量バーナで燃焼させるが、こ
れだけでは改質器触媒層の温度を改質反応温度に保つこ
とができない場合には、原燃ガスがバーナ12に供給さ
れる。カソード6bから排出された空気は、燃料電池本
体6の発熱反応によって温度上昇しているので、管路2
6を経て熱交換器27を通した後、排気される。
When the temperature of each catalyst layer of the carbon monoxide converter 4 and the carbon monoxide remover 5 is stabilized, the on-off valve 91 is opened and the reformed gas is introduced into the fuel cell 6 to start power generation. Until the temperature of the fuel cell 6 is stabilized, the on-off valve 92 is closed, the on-off valve 39 is opened, and the exhaust gas from the fuel cell in which the unreacted hydrogen gas remains passes through the pipe 38, and the same as described above. Burned by PG burner. At the time of transition to stable steady operation, the open / close valves 91 and 92 are opened, the open / close valves 36 and 39 are closed, and the unreacted gas that has passed through the anode 6 a of the fuel cell is supplied to the burner 12 through the pipe 15. . All the unreacted gas is burned by the burner. However, if the temperature of the reformer catalyst layer cannot be maintained at the reforming reaction temperature by itself, the raw fuel gas is supplied to the burner 12. Since the temperature of the air discharged from the cathode 6b has risen due to the exothermic reaction of the fuel cell body 6, the pipe 2
After passing through the heat exchanger 27 via 6, the air is exhausted.

【0016】また、本発明の熱電併給型燃料電池発電装
置の運転においては、改質ガスからの熱、燃料電池から
の熱は各熱交換器を用いて回収し、湯として供給する。
改質器と燃料電池を結ぶラインに設けられた熱交換器1
8、19、20を通って、水タンク21からの水がポン
プ23、24、25により循環し、その結果、このライ
ンを通る改質ガスは冷却され、一方水タンク21の水は
加熱される。また、水タンク21の水はポンプ42によ
り熱交換器41内を循環し、貯湯タンクの水と熱交換す
る。また、カソード6bからの排ガスは、ガス管路26
に接続された熱交換器27の中を通って、その中を通る
水と熱交換する。貯湯タンク98からの水はポンプ28
により熱交換器27内を、ポンプ33により熱交換器3
2内を、ポンプ43により熱交換器41内を、ポンプ4
7により熱交換器46内を、それぞれ循環し、加熱させ
られる。さらに、燃料電池6の冷却部6cにはポンプ4
8を介して水タンク21の水が循環する。改質器からの
排ガス管路31には熱交換器32が接続され、熱交換器
32には、貯湯タンク98からの水がポンプ33を介し
て循環し、排熱回収が行われる。
Further, in the operation of the combined heat and power supply type fuel cell power generator of the present invention, heat from the reformed gas and heat from the fuel cell are recovered using each heat exchanger and supplied as hot water.
Heat exchanger 1 provided on the line connecting the reformer and the fuel cell
Through 8, 19, 20 the water from the water tank 21 is circulated by the pumps 23, 24, 25 so that the reformed gas passing through this line is cooled while the water in the water tank 21 is heated . The water in the water tank 21 is circulated in the heat exchanger 41 by the pump 42 and exchanges heat with the water in the hot water storage tank. Exhaust gas from the cathode 6b is supplied to the gas line 26.
And heat exchange with the water passing therethrough. The water from the hot water storage tank 98 is supplied to the pump 28
Inside the heat exchanger 27, and the heat exchanger 3
2 inside the heat exchanger 41 by the pump 43,
7, the heat is circulated in the heat exchanger 46 and heated. Further, a pump 4 is provided in the cooling section 6c of the fuel cell 6.
8 circulates water in the water tank 21. A heat exchanger 32 is connected to an exhaust gas line 31 from the reformer, and water from a hot water storage tank 98 circulates through the heat exchanger 32 via a pump 33 to recover exhaust heat.

【0017】本発明においては、前記の安定な定常運転
の期間において前記の発電効率および熱回収効率の比の
制御を行うことが好ましい。以上において、固体高分子
型燃料電池発電システムについて説明したが、リン酸塩
型燃料電池発電システムにおいても同様に発電効率と熱
回収効率の比を制御することができる。リン酸塩型燃料
電池発電システムにおいては、一酸化炭素除去器は設け
られず、一酸化炭素変成器のみが設けられる点が異なる
だけである。
In the present invention, it is preferable to control the ratio between the power generation efficiency and the heat recovery efficiency during the stable steady-state operation. While the solid polymer fuel cell power generation system has been described above, the ratio between the power generation efficiency and the heat recovery efficiency can be similarly controlled in the phosphate fuel cell power generation system. In the phosphate type fuel cell power generation system, the only difference is that the carbon monoxide remover is not provided, and only the carbon monoxide converter is provided.

【0018】次に、前記図3で示すシーケンス制御を行
う本発明の運転方法について説明する。通常モードは、
前記のような空気比の範囲内(1.1〜1.8)におい
て選択した特定の空気比で、所定の発電効率と熱回収効
率に設定した運転モードに従って運転し、発電を行うと
同時に熱回収すなわち温水も供給する。次に使用者が選
択スイッチにより発電効率重視の運転あるいは熱回収効
率重視の運転を選択すると、選択したモードに従って運
転が行われる。発電効率重視の運転あるいは熱回収効率
重視の運転においてあらかじめ各効率が設定される。熱
電併給型燃料電池発電装置の運転制御の概念は図4によ
って示される。図4中、100はマイコンで、判断手段
102、データ記憶手段104、運転モード制御手段1
06を有する。140は改質器、142は改質器バーナ
で、改質器バーナ用送風機146および燃料ガス流量制
御弁144を備えている。150は一酸化炭素変成器、
160は一酸化炭素除去器、170は燃料電池、130
は運転スイッチ、120は選択スイッチ、200は貯湯
タンク、300は系統連係用インバータをそれぞれ示
す。使用者が選択スイッチ120により発電効率重視の
運転モードを選択すると、設定されたその効率に基づき
あらかじめ設定された規定量の空気が減るように、改質
器バーナ142の送風機146を制御する。この場合、
改質器バーナに供給する燃料ガスを減らすことが可能で
あるので、その制御を制御弁144によって行う。ま
た、使用者が熱回収効率重視の運転モードを選択する
と、同様に、設定されたその効率に基づきあらかじめ設
定された規定量の空気が増加するように、送風機146
を制御する。また、この場合発電出力を通常モードの場
合と同じにしたい場合には、改質器バーナに供給する燃
料ガスを規定量増やす制御を制御弁144によって行
う。また、本発明の熱電併給型燃料電池発電装置は、少
なくとも燃料電池および熱回収装置を有し、かつ発電効
率と熱回収効率の比を制御する手段を有することを特徴
とする。前記発電効率と熱回収効率の比を制御する手段
は、燃料電池に改質ガスを供給する改質器用の改質器バ
ーナへの空気の供給量を制御する手段を有するものが好
ましい。
Next, an operation method of the present invention for performing the sequence control shown in FIG. 3 will be described. Normal mode is
At a specific air ratio selected within the range of the air ratio (1.1 to 1.8) as described above, operation is performed in accordance with an operation mode set to a predetermined power generation efficiency and heat recovery efficiency, and power generation is performed simultaneously with power generation. Recovery or hot water is also provided. Next, when the user selects the operation that emphasizes the power generation efficiency or the operation that emphasizes the heat recovery efficiency using the selection switch, the operation is performed according to the selected mode. The respective efficiencies are set in advance in the operation that emphasizes the power generation efficiency or the operation that emphasizes the heat recovery efficiency. FIG. 4 shows the concept of operation control of a cogeneration fuel cell power generator. In FIG. 4, reference numeral 100 denotes a microcomputer, which is a determination unit 102, a data storage unit 104, an operation mode control unit 1
06. Reference numeral 140 denotes a reformer, 142 denotes a reformer burner, which includes a blower 146 for the reformer burner and a fuel gas flow control valve 144. 150 is a carbon monoxide converter,
160 is a carbon monoxide remover, 170 is a fuel cell, 130
Denotes an operation switch, 120 denotes a selection switch, 200 denotes a hot water storage tank, and 300 denotes a system linking inverter. When the user selects an operation mode in which power generation efficiency is emphasized by the selection switch 120, the blower 146 of the reformer burner 142 is controlled such that a predetermined amount of air is reduced based on the set efficiency. in this case,
Since the fuel gas supplied to the reformer burner can be reduced, the control is performed by the control valve 144. Further, when the user selects the operation mode that emphasizes the heat recovery efficiency, the blower 146 is likewise increased so that a predetermined amount of air increases in advance based on the set efficiency.
Control. Further, in this case, when it is desired to make the power generation output the same as in the normal mode, the control valve 144 controls to increase the fuel gas supplied to the reformer burner by a specified amount. Further, a combined heat and power supply type fuel cell power generator according to the present invention is characterized in that it has at least a fuel cell and a heat recovery device, and further has means for controlling a ratio between power generation efficiency and heat recovery efficiency. The means for controlling the ratio between the power generation efficiency and the heat recovery efficiency preferably includes means for controlling the amount of air supplied to a reformer burner for a reformer that supplies reformed gas to a fuel cell.

【0019】[0019]

【実施例】以下に実施例を示し本発明をさらに具体的に
説明するが、本発明はこれらの実施例により限定される
ものではない。 実施例1 図2に示すような熱電併給型燃料電池発電装置を用い、
改質器バーナの空気比を1.5にして定常運転を行っ
た。この際の発電効率は22%であり、また、熱回収効
率は22%であった。この状態から、改質器バーナの空
気比を15%増加させると、発電効率は14%に、ま
た、熱回収効率は30%に変化した。また、前記定常運
転から空気比を15%減らすと、発電効率は30%に、
また熱回収効率は14%に変化した。
The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the present invention is limited to these Examples. Example 1 Using a cogeneration type fuel cell power generator as shown in FIG.
Steady operation was performed with the air ratio of the reformer burner set to 1.5. At this time, the power generation efficiency was 22%, and the heat recovery efficiency was 22%. From this state, when the air ratio of the reformer burner was increased by 15%, the power generation efficiency changed to 14%, and the heat recovery efficiency changed to 30%. When the air ratio is reduced by 15% from the steady operation, the power generation efficiency is reduced to 30%.
Also, the heat recovery efficiency changed to 14%.

【0020】[0020]

【発明の効果】本発明の方法によると、熱電併給型燃料
電池発電装置の運転において、特に新たな設備投資を行
うことなく、改質器バーナの空気供給量を制御すること
により、容易に発電効率および熱回収効率の比を制御す
ることができるので、発電効率重視の運転あるいは熱回
収効率重視の運転に容易に転換させることができる。
According to the method of the present invention, in the operation of a cogeneration type fuel cell power generator, power generation can be easily performed by controlling the air supply amount of the reformer burner without particularly investing new facilities. Since the ratio between the efficiency and the heat recovery efficiency can be controlled, the operation can be easily switched to the operation that emphasizes the power generation efficiency or the operation that emphasizes the heat recovery efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 改質器バーナの空気比を変化させた場合の発
電効率および熱回収効率の変化を示す概念図である。
FIG. 1 is a conceptual diagram showing changes in power generation efficiency and heat recovery efficiency when the air ratio of a reformer burner is changed.

【図2】 本発明の運転方法が適用される熱電併給型燃
料電池発電装置の一例を示す概念図である。
FIG. 2 is a conceptual diagram showing an example of a cogeneration type fuel cell power generator to which the operation method of the present invention is applied.

【図3】 本発明の運転方法におけるシーケンス制御の
一例を示す。
FIG. 3 shows an example of sequence control in the operation method of the present invention.

【図4】 熱電併給型燃料電池発電装置の運転制御を示
す概念図である。
FIG. 4 is a conceptual diagram showing operation control of a cogeneration fuel cell power generator.

【符号の説明】[Explanation of symbols]

3、140:改質器 4、150:一酸化炭素変成器 5、160:一酸化炭素除去器 6、170:燃料電池 12、142:改質器バーナ 14、146:改質器バーナ用送風機 98、200:貯湯タンク 100:マイコン 120:選択スイッチ 3, 140: reformer 4, 150: carbon monoxide converter 5, 160: carbon monoxide remover 6, 170: fuel cell 12, 142: reformer burner 14, 146: blower for reformer burner 98 , 200: Hot water storage tank 100: Microcomputer 120: Selection switch

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも燃料電池および熱回収装置を
有する熱電併給型燃料電池発電装置であって、発電効率
と熱回収効率の比を制御する手段を有することを特徴と
する熱電併給型燃料電池発電装置。
1. A cogeneration fuel cell power generator having at least a fuel cell and a heat recovery device, comprising: means for controlling a ratio of power generation efficiency to heat recovery efficiency. apparatus.
【請求項2】 発電効率と熱回収効率の比を制御する手
段は、前記燃料電池に改質ガスを供給する改質器用の改
質器バーナへの空気の供給量を制御する手段を有するこ
とを特徴とする請求項1に記載の熱電併給型燃料電池発
電装置。
2. The means for controlling the ratio between power generation efficiency and heat recovery efficiency includes means for controlling the amount of air supplied to a reformer burner for a reformer that supplies reformed gas to the fuel cell. The combined heat and power type fuel cell power generator according to claim 1, characterized in that:
【請求項3】 改質器からの改質ガスを燃料電池に導入
して発電するとともに、熱を回収して温水を供給する熱
電併給型燃料電池発電装置の運転方法において、改質器
バーナに供給する空気量を制御することにより、発電効
率と熱回収効率の比を制御することを特徴とする熱電併
給型燃料電池発電装置の運転方法。
3. A method for operating a co-generation fuel cell power generation system in which a reformed gas from a reformer is introduced into a fuel cell to generate power, and heat is recovered and hot water is supplied. A method of operating a combined heat and power fuel cell power generator, characterized in that the ratio of power generation efficiency to heat recovery efficiency is controlled by controlling the amount of supplied air.
JP2000246186A 2000-08-15 2000-08-15 Combined heat and power fuel cell power generator and method of operating the same Expired - Fee Related JP4052784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000246186A JP4052784B2 (en) 2000-08-15 2000-08-15 Combined heat and power fuel cell power generator and method of operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000246186A JP4052784B2 (en) 2000-08-15 2000-08-15 Combined heat and power fuel cell power generator and method of operating the same

Publications (2)

Publication Number Publication Date
JP2002063924A true JP2002063924A (en) 2002-02-28
JP4052784B2 JP4052784B2 (en) 2008-02-27

Family

ID=18736554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000246186A Expired - Fee Related JP4052784B2 (en) 2000-08-15 2000-08-15 Combined heat and power fuel cell power generator and method of operating the same

Country Status (1)

Country Link
JP (1) JP4052784B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005528739A (en) * 2002-04-12 2005-09-22 モトローラ・インコーポレイテッド Fuel cell power supply
JP2006073215A (en) * 2004-08-31 2006-03-16 Matsushita Electric Ind Co Ltd Fuel cell system
JP2006073316A (en) * 2004-09-01 2006-03-16 Tokyo Gas Co Ltd Fuel cell cogeneration system and its control method
US7393603B1 (en) 2006-12-20 2008-07-01 Bloom Energy Corporation Methods for fuel cell system optimization
WO2012091063A1 (en) * 2010-12-28 2012-07-05 Jx日鉱日石エネルギー株式会社 Fuel cell system
JP2017188368A (en) * 2016-04-08 2017-10-12 大阪瓦斯株式会社 Fuel battery system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005528739A (en) * 2002-04-12 2005-09-22 モトローラ・インコーポレイテッド Fuel cell power supply
JP2006073215A (en) * 2004-08-31 2006-03-16 Matsushita Electric Ind Co Ltd Fuel cell system
JP4742540B2 (en) * 2004-08-31 2011-08-10 パナソニック株式会社 Fuel cell system
JP2006073316A (en) * 2004-09-01 2006-03-16 Tokyo Gas Co Ltd Fuel cell cogeneration system and its control method
US7393603B1 (en) 2006-12-20 2008-07-01 Bloom Energy Corporation Methods for fuel cell system optimization
WO2008079207A1 (en) * 2006-12-20 2008-07-03 Bloom Energy Corporation Methods for fuel cell system optimization
WO2012091063A1 (en) * 2010-12-28 2012-07-05 Jx日鉱日石エネルギー株式会社 Fuel cell system
JPWO2012091063A1 (en) * 2010-12-28 2014-06-05 Jx日鉱日石エネルギー株式会社 Fuel cell system
JP5738319B2 (en) * 2010-12-28 2015-06-24 Jx日鉱日石エネルギー株式会社 Fuel cell system
JP2017188368A (en) * 2016-04-08 2017-10-12 大阪瓦斯株式会社 Fuel battery system

Also Published As

Publication number Publication date
JP4052784B2 (en) 2008-02-27

Similar Documents

Publication Publication Date Title
JP2020505741A (en) Methods and systems for the production and simultaneous production of hydrogen, electricity
JPH1197044A (en) Fuel cell and hot water supply cogeneration system
US6833209B2 (en) Fuel-cell co-generation system, of electrical energy and hot water
JP4052784B2 (en) Combined heat and power fuel cell power generator and method of operating the same
JP2000018718A (en) Hot water equipment with generation function
JP6943285B2 (en) Fuel cell system and fuel cell system control method
JP2001313053A (en) Fuel cell system
JP3530458B2 (en) Method and apparatus for starting polymer electrolyte fuel cell
JP2002008686A (en) Controlling method of fuel cell system and its equipment
JP3992423B2 (en) Method and apparatus for starting operation of fuel cell system
JPH09161832A (en) Fuel cell generating device, and its operation method and operation control method
JP3789706B2 (en) CO conversion unit and polymer electrolyte fuel cell power generation system
JP2001185167A (en) Fuel cell cogeneration system
JP2001143731A (en) Fuel cell system
JP3679792B2 (en) Solid polymer fuel cell power generator
JP2004213985A (en) Fuel cell system
JP3897149B2 (en) Solid oxide fuel cell and Stirling engine combined system
JP4049526B2 (en) Method for starting reformer for fuel cell
JP3939333B2 (en) Hot water system
JPH10275625A (en) Fuel cell generator
JP3649980B2 (en) Reformer and polymer electrolyte fuel cell power generation system
JP2001210340A (en) Exhaust heat recovery system of solid polymer type fuel cell
JP3561706B2 (en) Polymer electrolyte fuel cell power generator
JP2004164868A (en) Hot water storage method in co-generation system, and its device
JPH08339815A (en) Fuel cell power generation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees