JP4737849B2 - Method for producing positive electrode active material for alkaline secondary battery - Google Patents

Method for producing positive electrode active material for alkaline secondary battery Download PDF

Info

Publication number
JP4737849B2
JP4737849B2 JP2001050077A JP2001050077A JP4737849B2 JP 4737849 B2 JP4737849 B2 JP 4737849B2 JP 2001050077 A JP2001050077 A JP 2001050077A JP 2001050077 A JP2001050077 A JP 2001050077A JP 4737849 B2 JP4737849 B2 JP 4737849B2
Authority
JP
Japan
Prior art keywords
particles
hydroxide
positive electrode
cobalt
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001050077A
Other languages
Japanese (ja)
Other versions
JP2002255562A (en
Inventor
孝明 田中
純一 今泉
得代志 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Chemical Corp
Original Assignee
Tanaka Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Chemical Corp filed Critical Tanaka Chemical Corp
Priority to JP2001050077A priority Critical patent/JP4737849B2/en
Publication of JP2002255562A publication Critical patent/JP2002255562A/en
Application granted granted Critical
Publication of JP4737849B2 publication Critical patent/JP4737849B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アルカリ二次電池用正極活性物質の製造方法に係り、さらに詳しくは、高次酸化水酸化コバルト(γ−オキシ水酸化コバルト)被覆を有する水酸化ニッケル粒子の製造方法に関する。
【0002】
【従来の技術】
従来から水酸化ニッケルを主成分とする活物質を正極に使用したアルカリ二次電池、たとえばニッケル−カドミウム電池やニッケル−水素電池が多用されている。特に近年では、携帯用エレクトロニクス機器、たとえば携帯電話、携帯オーディオなどの電源として、粉末状の活物質を発泡ニッケル等の基体に充填した、あるいはペースト状にしてパンチングメタル等に担持させた非焼結型のニッケル電極が、従来の焼結型ニッケル電極に比較して活物質の充填密度が大きく、高容量化が期待できることから多用されるようになってきている。しかしながら、非焼結型のニッケル電極のさらなる高容量化を達成する目的で、高充填された活物質の利用率をさらに向上させる種々の提案がなされている。
【0003】
特開平8−148145号公報には、コバルトおよび/またはコバルト化合物を表面に偏在させた粒状水酸化ニッケルからなる活物質、ならびにコバルト化合物溶液に粒状水酸化ニッケルを含有させた懸濁液にアルカリを添加して粒状水酸化ニッケルを核として水酸化コバルトを析出させ、さらにアルカリ金属水酸化物と酸素の存在下に加熱して水酸化コバルトを高次酸化する活物質の製造方法が開示されている。
【0004】
特開平10−261414号公報は、回分式流動乾燥装置、ニーダーおよびナウターミキサー(商品名、ホソカワミクロン(株)製)を使用し、水酸化ニッケルと水酸化コバルトとの混合粒子にアルカリ金属水溶液および加熱空気を導入して粒子を直接加熱して水酸化コバルトを高次酸化するアルカリ熱処理方法を、特開平11−329425号公報および特開平11−97008号公報は、アルカリ熱処理にマイクロウェーブ照射による直接加熱を使用する方法を開示している。
【0005】
【発明が解決しようとする課題】
前述の各方法では粉粒体を装置内で流動化しそれらの融着を防止するために大量の空気を装置内に導入して、その全量を反応温度にまで加熱している。その結果、比較的に大型の空気加熱装置またはマイクロウェーブ照射装置を必要とし、消費エネルギー量も大きく、正極活物質の製造コストを上昇させている。
【0006】
本発明は、アルカリ二次電池用正極活性物質の改良された製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者等は、前記目的を達成すべく鋭意研究した結果、ジャケット付き縦型高速混合造粒装置の排気口の周辺部に空気導入口を設けた装置を用い、水酸化コバルトの高次酸化をジャケットからの間接加熱のみで実施した結果、回分式流動乾燥装置による直接加熱法を採用した場合と同等の物性を有する正極物質が得られることを見出し、本発明を完成した。
【0008】
本発明は、
(a) 上蓋に空気導入口および排気口を設けたジャケット付き縦型高速混合造粒装置のジャケットに水蒸気を導入し、本体内部を50〜130℃に加熱する工程、
(b) ジャケットへの水蒸気の導入を継続しながら、本体内にα−水酸化コバルト被着水酸化ニッケル粒子を投入して撹拌を開始し、α−水酸化コバルト被着水酸化ニッケル粒子を40〜120℃に加熱する工程、
(c) スプレーノズルからアルカリ金属水酸化物水溶液をα−水酸化コバルト被着水酸化ニッケル粒子上に噴霧しながら、撹拌を継続して粒子を球形化する工程、および
(d) 排気を開始し装置内に空気を導入しながら撹拌およびジャケットへの水蒸気の導入を継続し、α−水酸化コバルトをγ−オキシ水酸化コバルトに高次酸化しそして粒子を乾燥させる工程、
を含み、マイクロ波による補助加熱を使用しないことを特徴とするアルカリ二次電池用正極物質の製造方法である。
【0009】
【発明の実施形態】
本発明のアルカリ二次電池用正極活性物質製造で使用する縦型高速混合造粒装置の一態様を添付の図1に基いて説明する。
縦型高速混合造粒装置1は、上蓋、平底および円筒胴部からなる容器本体2、粉粒体用撹拌機3および容器本体2の平底部2bおよび円筒胴部2cの外周部に設けられた本体加熱用ジャケット4で構成される。
【0010】
本体上蓋には、原料投入口5、液体スプレーノズル6および排気口7が配置され、さらに少なくとも1つの空気導入口8が設けられる。排気口7は、図示のないフィルターを介して排気ブロワ−に連結される。上蓋には、さらに図示のない温度検出ノズル、圧力計ノズルを配置する。
【0011】
容器本体2の底部は、撹拌羽根の形状にもよるが、通常平底である。
円筒胴部は、底部から一定の高さまで垂直円筒であればよく、上部は円錐形または逆円錐形の胴部で構成されていてもよい。
【0012】
粉粒体用撹拌機3は、一般的に、粉粒体の混合造粒に使用されるS字型、ロッド型、アンカー型などの撹拌羽根を備え、撹拌軸および減速機を介して電動機に連結される。撹拌機座は上蓋または平底部のいずれに設けられていてもよい。また容器本体2内にはチョッパー9が配置される。
本体加熱用ジャケット3は、加熱用蒸気入口、ドレン口、および図示のない圧力検出ノズルおよび圧力計ノズルを備える。
【0013】
本発明において、縦型高速混合造粒装置1として、一般に市販されているジャケット付き縦型高速混合造粒装置に、排気口7および少なくとも1つの空気導入口8の本体上蓋への設置して使用することができる。空気導入口8は、図1に示したように本体上蓋の排気口7の周りに複数の細孔を配置してもよい。
【0014】
空気導入口8の本体上蓋への設置により、排気時に空気導入口8から導入される空気の大部分は加熱されないまま反応ガスと共に排気され、反応に必要な空気のみが本体内に循環する結果、ジャケット3からの加熱のみで反応に要求される熱を十分に供給することができる。
【0015】
本発明のアルカリ二次電池用正極活性物質の製造方法は、上記ジャケット付き縦型高速混合造粒装置を使用する。
工程(a)において、ジャケット3に水蒸気を導入し容器本体2の内部を50〜130℃、好ましくは70〜120℃、さらに好ましくは80〜100℃に加熱する。本体内部の加熱温度が低過ぎると続く工程(b)における加熱時間が長くなりすぎ、必要以上の高温への加熱は続く工程(b)における原料投入作業に危険を伴うので好ましくない。
【0016】
続く工程(b)において、ジャケット3への水蒸気の導入を継続しながら、原料投入口3からα−水酸化コバルト被着水酸化ニッケル粒子を投入して撹拌を開始し、α−水酸化コバルト被着水酸化ニッケル粒子を40〜120℃、好ましくは60〜110℃、さらに好ましくは80〜100℃に加熱する。
【0017】
原料として、α−水酸化コバルト粒子と水酸化ニッケル粒子との混合物を使用するのではなく、水酸化ニッケル粒子を含む水性スラリーにコバルト塩、たとえば硫酸コバルトを加えて溶解させ、次いでアルカリを添加してpHを10.5〜11.5に調整することにより水酸化ニッケル粒子を核としてα−水酸化コバルト結晶を生成させ、水酸化ニッケル粒子の表面に被着させる、いわゆる湿式中和法で製造したα−水酸化コバルト被着水酸化ニッケル粒子を使用する。
【0018】
加熱温度は、続く工程(c)以降における反応および乾燥速度を考慮すると、高いほうが好ましいが一定の温度以上であればよく、必要以上の高温への加熱は加熱用水蒸気の蒸気圧を高くすることが要求されるので好ましくない。
【0019】
工程(c)において、撹拌を継続しながらスプレーノズル6からアルカリ金属水酸化物水溶液をα−水酸化コバルト被着水酸化ニッケル粒子上に噴霧する。この操作により、水酸化ニッケル粒子に被着したα−水酸化コバルトはアルカリ金属水溶液を吸着してゲル化し、水酸化ニッケル粒子表面に被膜を形成する。さらにチョッパー9により粒子は個々の粒子に粉砕・分散され、そしてほぼ真球に近い形状に球形化される。
【0020】
アルカリ金属水酸化物水溶液として、水酸化ナトリウム水溶液、水酸化カリウム水溶液などを使用でき、好ましくは32%以上の高濃度水酸化ナトリウム水溶液、さらに好ましくは48%以上水酸化ナトリウム水溶液を使用する。アルカリ金属水酸化物水溶液の濃度が過少な場合、粒子が部分的に溶解して塊状物を生成し、また乾燥粒子を得るために大量の水分を蒸発させなければならないので好ましくない。
【0021】
工程(d)において、排気を開始して装置内に空気を導入しながら撹拌およびジャケットへの水蒸気の導入を継続する。それにより、粒子と空気との接触によりα−水酸化コバルト層を高次酸化し、そして粒子を乾燥する。
【0022】
工程(d)に続いて、得られた粒子を水洗、脱水および乾燥する後工程を実施することにより、乾燥した目的のアルカリ二次電池用正極物質粒子、すなわち水酸化ニッケルを核としその表面に均一なγ−オキシ水酸化コバルト層を有するほぼ球形の粒子が得られる。
【0023】
上記の方法により得られたアルカリ二次電池用正極物質粒子は、表1に示すように従来の回分式流動法で得られた正極物質粒子と同等の物性を有する。
【0024】
【表1】

Figure 0004737849
【0025】
【実施例】
本発明を実施例によりさらに詳細に説明する。
なお、実施例で使用した各測定方法は以下にまとめた。
【0026】
(TAP密度、BULK密度):以下の手順で測定した。
測定機器は、SEISHIN TAPDENSER KYT3000を用いた。
48meshのふるいで測定粉を20mlセルに自然落下充填する。KYT3000で200回タッピングし、充填体積を測定する。
TAP密度 = 充填量(g)/充填体積(ml)
BULK密度 = 充填量(g)/20(セル体積)(ml)
【0027】
(平均粒径):以下の手順で測定した。
レーザー粒度分析計(セイシン製 PRO−7000S)をセットしてブランク測定する。超音波分散槽に界面活性剤(エキストラン)2〜3滴添加する。数mlサンプルを投入し、超音波分散を行いながら粒度分布を測定する。重量50%相当径を平均粒径として読み取る。
【0028】
(半値幅(101)):以下の手順で測定した。
測定用セルに測定紛を塗布する。X線回折装置(島津製XD−D1)にて38.4°での半値幅を測定する。
測定条件
ターゲット:Cu、管電圧:40kV、管電流:30mA、発散スリット: 1deg.、散乱スリット:1deg.、受光スリット:0.3mm、走査軸:θ−2θ、走査範囲:30〜45deg.、走査モード:連続、走査速度:2deg./min、サンプリング幅:0.043deg.、プリセット時間:0.4sec.、フルスケール:2.0kcps.
処理条件
平滑化点数:17点、バックグラウンド除去:自動、Kα1−Kα2分離:
実行
【0029】
(抵抗値):抵抗値は以下の手順で測定する。
サンプル5gを0.1gの単位まで秤量し、内径30mm、高さ3mmの塩化ビニル製円筒に入れる。プレス機で上記円筒の両端から100kNの圧力をかけ、得られるペレット状のサンプルを更にSUS製円筒で挟み100kNの圧力をかける。これをデジタルマルチメータを使用して活物質間抵抗値を測定する。
【0030】
実施例 1
装置:図1に示す構造の本体加熱用ジャケット4を備えた製造装置1を準備した。この装置の基本仕様は下記の通りである。
Figure 0004737849
【0031】
上記製造装置1のジャケット4に、0.4kg/cm2G(110℃)の飽和蒸気を供給して本体容器2の内部を加熱し、内部温度が80℃に達した時点に球状水酸化コバルト被着水酸化ニッケル粒子80kgを投入した。撹拌機を起動して回転数250rpmで撹拌を開始し、ジャケット3への飽和水蒸気の供給を継続して約10分間で内部温度を80℃まで加温した。
内部温度が80℃に達した時点に、上記撹拌を継続しながらスプレーノズル6から48%水酸化ナトリウム水溶液7.5kgを約2分間で供給して、温度の上昇した水酸化コバルト被着水酸化ニッケル粒子上に満遍なくコーティングした。
水酸化ナトリウム水溶液の全量を供給した後、排気を開始し、それに伴って空気導入口8から空気を容器本体内に導入しながら、撹拌機の回転数を220rpmに低下させて撹拌を継続し、本体内温度を80℃の一定温度に維持し、本体内の水分を蒸発させ、約30分で乾燥粒子を得た。
得られた乾燥粒子を、水中に投入、撹拌して付着しているアルカリ分などの不純物を水中に溶解させた後、粒子を沈降させ上澄み液をデカントした。次いで沈降した粒子をプレスを用いて脱水し約10%の水分を含有するケーキを回収し、このケーキを熱風乾燥機を使用して水分含有率が1%以下になるまで乾燥し、目的の高次酸化水酸化コバルト被覆水酸化ニッケル粒子を得た。
得られた粒子の諸特性を、原料粒子の特性および従来の回分式流動乾燥装置を使用して製造した粒子の特性と共に表2中に示す。
【0032】
【表2】
Figure 0004737849
【0033】
表2に示したように、本発明の装置および方法を用いて得られた正極物質粒子は、従来法で得られた粒子に匹敵する粒子特性、特にTAP密度を有している。また、反応に要した製品当たりの蒸気消費量は加熱空気により粒子を流動化させる従来法の約1/2であった。
【0034】
【発明の効果】
本発明は、装置本体内における粒子の流動を撹拌力に依存し大量の空気の加熱を必要としないので消費エネルギーが小さく、マイクロ波による補助加熱を使用する必要がなく正極物質の製造コスト低下させる。
本発明は、アルカリ電池用正極物質の安価な製造方法を提供するものであり、その産業的意義はきわめて大きい。
【図面の簡単な説明】
【図1】本発明で使用する縦型高速混合造粒装置の一態様を示す断面図である。
【符号の説明】
1:縦型高速混合造粒装置
2:容器本体
3:撹拌機
4:本体加熱用ジャケット
5:原料投入口
6:スプレーノズル
7:排気口
8:空気導入口
9:チョッパー[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a positive electrode active material for an alkaline secondary battery, and more particularly, to a method for producing nickel hydroxide particles having a high-order cobalt oxide hydroxide (γ-cobalt oxyhydroxide) coating.
[0002]
[Prior art]
Conventionally, an alkaline secondary battery using an active material mainly composed of nickel hydroxide as a positive electrode, for example, a nickel-cadmium battery or a nickel-hydrogen battery, has been frequently used. Particularly in recent years, as a power source for portable electronic devices such as mobile phones and portable audio devices, non-sintered powdery active material filled in a base material such as foamed nickel or carried in punched metal or the like in paste form The type of nickel electrode is increasingly used because it has a higher packing density of the active material and can be expected to have a higher capacity than a conventional sintered type nickel electrode. However, various proposals have been made to further improve the utilization rate of the highly filled active material in order to achieve a further increase in capacity of the non-sintered nickel electrode.
[0003]
Japanese Patent Application Laid-Open No. 8-148145 discloses an active material composed of granular nickel hydroxide in which cobalt and / or a cobalt compound is unevenly distributed on the surface, and a suspension in which granular nickel hydroxide is contained in a cobalt compound solution. A method for producing an active material is disclosed in which cobalt hydroxide is precipitated by adding granular nickel hydroxide as a nucleus, and further heated in the presence of an alkali metal hydroxide and oxygen to highly oxidize cobalt hydroxide. .
[0004]
JP-A-10-261414 uses a batch fluid dryer, a kneader and a Nauta mixer (trade name, manufactured by Hosokawa Micron Co., Ltd.), and an alkali metal aqueous solution and a mixed particle of nickel hydroxide and cobalt hydroxide. JP-A-11-329425 and JP-A-11-97008 disclose an alkali heat treatment method in which heated air is introduced to directly heat particles to highly oxidize cobalt hydroxide. A method of using heating is disclosed.
[0005]
[Problems to be solved by the invention]
In each of the above-described methods, a large amount of air is introduced into the apparatus in order to fluidize the powder particles in the apparatus and prevent their fusion, and the entire amount is heated to the reaction temperature. As a result, a relatively large air heating device or microwave irradiation device is required, the amount of energy consumption is large, and the manufacturing cost of the positive electrode active material is increased.
[0006]
An object of this invention is to provide the improved manufacturing method of the positive electrode active material for alkaline secondary batteries.
[0007]
[Means for Solving the Problems]
As a result of diligent research to achieve the above object, the present inventors have used a device in which an air inlet is provided in the periphery of the exhaust port of a jacketed high-speed mixing granulator, and uses cobalt oxide for higher-order oxidation of cobalt hydroxide. As a result of carrying out the process only by indirect heating from the jacket, it was found that a positive electrode material having physical properties equivalent to those obtained when the direct heating method using a batch fluidized drying apparatus was adopted was completed.
[0008]
The present invention
(A) introducing water vapor into a jacket of a jacketed vertical high-speed mixing granulator provided with an air inlet and an exhaust port on the upper lid, and heating the inside of the main body to 50 to 130 ° C;
(B) While continuing the introduction of water vapor into the jacket, the α-cobalt hydroxide-deposited nickel hydroxide particles were introduced into the main body and stirring was started. Heating to ~ 120 ° C,
(C) A step of spheroidizing the particles by continuing stirring while spraying the alkali metal hydroxide aqueous solution onto the α-cobalt hydroxide-deposited nickel hydroxide particles from the spray nozzle, and (d) starting the exhaust. Continuing stirring and introduction of water vapor into the jacket while introducing air into the apparatus, subjecting α-cobalt hydroxide to higher oxidation to γ-cobalt oxyhydroxide and drying the particles;
And a method for producing a positive electrode material for an alkaline secondary battery, wherein auxiliary heating by microwaves is not used.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of a vertical high-speed mixing granulator used in the production of a positive electrode active material for an alkaline secondary battery according to the present invention will be described with reference to FIG.
A vertical high-speed mixing granulator 1 is provided on the outer periphery of a container body 2 composed of an upper lid, a flat bottom, and a cylindrical body, a powder agitator 3 and a flat bottom 2b of the container body 2, and a cylindrical body 2c. Consists of a body heating jacket 4.
[0010]
A raw material charging port 5, a liquid spray nozzle 6 and an exhaust port 7 are disposed on the upper lid of the main body, and at least one air introduction port 8 is further provided. The exhaust port 7 is connected to an exhaust blower through a filter (not shown). Further, a temperature detection nozzle and a pressure gauge nozzle (not shown) are arranged on the upper lid.
[0011]
The bottom of the container body 2 is usually a flat bottom although it depends on the shape of the stirring blade.
The cylindrical body may be a vertical cylinder from the bottom to a certain height, and the upper part may be constituted by a conical or inverted conical body.
[0012]
The granular material agitator 3 is generally equipped with S-shaped, rod-shaped, anchor-shaped, etc. agitation blades used for mixing and granulating granular materials, and is connected to an electric motor via a stirring shaft and a speed reducer. Connected. The stirrer seat may be provided on either the upper lid or the flat bottom. A chopper 9 is disposed in the container body 2.
The main body heating jacket 3 includes a heating steam inlet, a drain port, and a pressure detection nozzle and a pressure gauge nozzle (not shown).
[0013]
In the present invention, the vertical high-speed mixing and granulating apparatus 1 is installed in a jacket-type vertical high-speed mixing and granulating apparatus that is generally available on the body upper cover of the exhaust port 7 and at least one air introduction port 8. can do. As shown in FIG. 1, the air introduction port 8 may have a plurality of fine holes arranged around the exhaust port 7 of the upper lid of the main body.
[0014]
As a result of the installation of the air inlet 8 on the top lid of the main body, most of the air introduced from the air inlet 8 during exhaust is exhausted together with the reaction gas without being heated, and only the air necessary for the reaction circulates in the main body. Heat required for the reaction can be sufficiently supplied only by heating from the jacket 3.
[0015]
The manufacturing method of the positive electrode active material for alkaline secondary batteries of the present invention uses the above-mentioned jacketed vertical high-speed mixing granulator.
In the step (a), water vapor is introduced into the jacket 3 to heat the inside of the container body 2 to 50 to 130 ° C., preferably 70 to 120 ° C., more preferably 80 to 100 ° C. If the heating temperature inside the main body is too low, the heating time in the subsequent step (b) becomes too long, and heating to an unnecessarily high temperature is not preferable because it involves danger in the raw material charging operation in the subsequent step (b).
[0016]
In the subsequent step (b), while continuing the introduction of water vapor into the jacket 3, the α-cobalt hydroxide-deposited nickel hydroxide particles are introduced from the raw material inlet 3 and stirring is started. The nickel hydroxide particles are heated to 40 to 120 ° C, preferably 60 to 110 ° C, more preferably 80 to 100 ° C.
[0017]
Rather than using a mixture of α-cobalt hydroxide particles and nickel hydroxide particles as a raw material, a cobalt salt such as cobalt sulfate is dissolved in an aqueous slurry containing nickel hydroxide particles, and then alkali is added. By adjusting the pH to 10.5 to 11.5, α-cobalt hydroxide crystals are produced using nickel hydroxide particles as nuclei and deposited on the surface of the nickel hydroxide particles. Α-cobalt hydroxide-coated nickel hydroxide particles are used.
[0018]
The heating temperature is preferably higher in consideration of the reaction and the drying rate in the subsequent step (c), but may be higher than a certain temperature, and heating to a higher temperature than necessary should increase the vapor pressure of the steam for heating. Is not preferable.
[0019]
In the step (c), an alkali metal hydroxide aqueous solution is sprayed from the spray nozzle 6 onto the α-cobalt hydroxide-coated nickel hydroxide particles while stirring is continued. By this operation, the α-cobalt hydroxide deposited on the nickel hydroxide particles adsorbs the alkali metal aqueous solution and gels, thereby forming a coating on the surface of the nickel hydroxide particles. Further, the chopper 9 pulverizes and disperses the particles into individual particles and spheroidizes them into a shape close to a true sphere.
[0020]
As the alkali metal hydroxide aqueous solution, a sodium hydroxide aqueous solution, a potassium hydroxide aqueous solution, or the like can be used, preferably a high concentration sodium hydroxide aqueous solution of 32% or more, more preferably 48% or more. If the concentration of the alkali metal hydroxide aqueous solution is too low, the particles are partially dissolved to form a lump, and a large amount of water must be evaporated to obtain dry particles, which is not preferable.
[0021]
In step (d), evacuation is started and air is introduced into the apparatus while stirring and introduction of water vapor into the jacket are continued. Thereby, the α-cobalt hydroxide layer is highly oxidized by contact of the particles with air, and the particles are dried.
[0022]
Subsequent to the step (d), the obtained particles are washed with water, dehydrated and dried, and then subjected to a post-process, whereby the dried positive electrode material particles for the alkaline secondary battery, that is, nickel hydroxide is used as a nucleus on the surface. Nearly spherical particles with a uniform γ-cobalt oxyhydroxide layer are obtained.
[0023]
As shown in Table 1, the positive electrode material particles for alkaline secondary batteries obtained by the above method have the same physical properties as the positive electrode material particles obtained by the conventional batch flow method.
[0024]
[Table 1]
Figure 0004737849
[0025]
【Example】
The invention is explained in more detail by means of examples.
In addition, each measuring method used in the Example was summarized below.
[0026]
(TAP density, BULK density): Measured by the following procedure.
As a measuring instrument, SEISHIN TAPDENSER KYT3000 was used.
The measurement powder is naturally dropped and filled into a 20 ml cell with a 48 mesh sieve. Tapping 200 times with KYT3000 and measuring the filling volume.
TAP density = filling amount (g) / filling volume (ml)
BULK density = filling amount (g) / 20 (cell volume) (ml)
[0027]
(Average particle diameter): measured by the following procedure.
A laser particle size analyzer (PRO-7000S manufactured by Seishin) is set and blank measurement is performed. Add 2-3 drops of surfactant (Extran) to the ultrasonic dispersion tank. Add a few ml sample and measure the particle size distribution while ultrasonic dispersion. The diameter equivalent to 50% by weight is read as the average particle diameter.
[0028]
(Half-width (101)): Measured according to the following procedure.
Apply measurement powder to the measurement cell. The full width at half maximum at 38.4 ° is measured with an X-ray diffractometer (XD-D1 manufactured by Shimadzu).
Measurement conditions Target: Cu, tube voltage: 40 kV, tube current: 30 mA, divergence slit: 1 deg., Scattering slit: 1 deg., Light receiving slit: 0.3 mm, scanning axis: θ-2θ, scanning range: 30 to 45 deg., Scan mode: continuous, scan speed: 2 deg./min, sampling width: 0.043 deg., Preset time: 0.4 sec., Full scale: 2.0 kcps.
Processing conditions Number of smoothed points: 17 points, background removal: automatic, Kα1-Kα2 separation:
Execute [0029]
(Resistance value): The resistance value is measured by the following procedure.
A 5 g sample is weighed to the nearest 0.1 g and placed in a vinyl chloride cylinder having an inner diameter of 30 mm and a height of 3 mm. A pressure of 100 kN is applied from both ends of the cylinder with a press machine, and the obtained pellet-like sample is further sandwiched between SUS cylinders and a pressure of 100 kN is applied. The resistance value between active materials is measured for this using a digital multimeter.
[0030]
Example 1
Apparatus: A manufacturing apparatus 1 having a main body heating jacket 4 having the structure shown in FIG. 1 was prepared. The basic specifications of this device are as follows.
Figure 0004737849
[0031]
Saturated steam of 0.4 kg / cm 2 G (110 ° C.) is supplied to the jacket 4 of the manufacturing apparatus 1 to heat the inside of the main body container 2, and when the internal temperature reaches 80 ° C., spherical cobalt hydroxide 80 kg of deposited nickel hydroxide particles were added. The stirrer was started and stirring was started at a rotational speed of 250 rpm. The supply of saturated steam to the jacket 3 was continued and the internal temperature was raised to 80 ° C. in about 10 minutes.
When the internal temperature reaches 80 ° C., while continuing the above stirring, 7.5 kg of 48% aqueous sodium hydroxide solution is supplied from the spray nozzle 6 in about 2 minutes to increase the temperature of the cobalt hydroxide-deposited hydroxide. Evenly coated on the nickel particles.
After supplying the entire amount of the sodium hydroxide aqueous solution, evacuation is started, and while stirring, air is introduced into the container body from the air inlet 8 and the stirring speed is reduced to 220 rpm. The body temperature was maintained at a constant temperature of 80 ° C., the water in the main body was evaporated, and dry particles were obtained in about 30 minutes.
The obtained dried particles were put into water and stirred to dissolve impurities such as alkalis adhering thereto, and then the particles were settled and the supernatant liquid was decanted. Next, the settled particles are dehydrated using a press to recover a cake containing about 10% of moisture, and the cake is dried using a hot air dryer until the moisture content is 1% or less. Next, nickel hydroxide particles coated with cobalt hydroxide hydroxide were obtained.
The various characteristics of the obtained particles are shown in Table 2 together with the characteristics of the raw material particles and the characteristics of the particles produced using a conventional batch fluid drying apparatus.
[0032]
[Table 2]
Figure 0004737849
[0033]
As shown in Table 2, the cathode material particles obtained using the apparatus and method of the present invention have particle characteristics comparable to those obtained by the conventional method, in particular, the TAP density. Further, the steam consumption per product required for the reaction was about ½ of the conventional method in which particles are fluidized by heated air.
[0034]
【The invention's effect】
The present invention depends on the stirring force for the flow of particles in the main body of the apparatus and does not require a large amount of air heating, so that the energy consumption is small, and it is not necessary to use auxiliary heating by microwaves, thereby reducing the production cost of the positive electrode material. .
The present invention provides an inexpensive method for producing a positive electrode material for an alkaline battery, and its industrial significance is extremely large.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing one embodiment of a vertical high-speed mixing granulator used in the present invention.
[Explanation of symbols]
1: Vertical high-speed mixing granulator 2: Container body 3: Stirrer 4: Body heating jacket 5: Raw material inlet 6: Spray nozzle 7: Exhaust port 8: Air inlet 9: Chopper

Claims (6)

(a) 上蓋に空気導入口および排気口を設けたジャケット付き縦型高速混合造粒装置のジャケットに水蒸気を導入し、本体内部を50〜130℃に加熱する工程、
(b)ジャケットへの水蒸気の導入を継続しながら、本体内にα−水酸化コバルト被着水酸化ニッケル粒子を投入して撹拌を開始し、α−水酸化コバルト被着水酸化ニッケル粒子を40〜120℃に加熱する工程、
(c)スプレーノズルからアルカリ金属水酸化物水溶液をα−水酸化コバルト被着水酸化ニッケル粒子上に噴霧しながら、撹拌を継続して粒子を球形化する工程、および(d)排気を開始し装置内に空気を導入しながら撹拌およびジャケットへの水蒸気の導入を継続し、α−水酸化コバルトをγ−オキシ水酸化コバルトに高次酸化しそして粒子を乾燥させる工程、を含み、マイクロ波による補助加熱を使用しないことを特徴とするアルカリ二
次電池用正極物質の製造方法。
(A) introducing water vapor into a jacket of a jacketed vertical high-speed mixing granulator provided with an air inlet and an exhaust port on the upper lid, and heating the inside of the main body to 50 to 130 ° C;
(B) While continuing the introduction of water vapor into the jacket, the α-cobalt hydroxide-deposited nickel hydroxide particles were introduced into the main body and stirring was started. Heating to ~ 120 ° C,
(C) While spraying the alkali metal hydroxide aqueous solution from the spray nozzle onto the α-cobalt hydroxide-deposited nickel hydroxide particles, the step of continuously stirring and spheroidizing the particles; and (d) starting the exhaust. A step of continuously stirring and introducing water vapor into the jacket while introducing air into the apparatus, and subjecting α-cobalt hydroxide to higher-order oxidation to γ-cobalt oxyhydroxide and drying the particles. A method for producing a positive electrode material for an alkaline secondary battery, wherein no auxiliary heating is used.
原料のα−水酸化コバルト被着水酸化ニッケル粒子が、湿式中和法により得られた水酸化ニッケル粒子を核としその表面にα−水酸化コバルトを被着させた粒子である請求項1記載の方法。  2. The raw material α-cobalt hydroxide-coated nickel hydroxide particles are particles obtained by depositing α-cobalt hydroxide on the surface of nickel hydroxide particles obtained by wet neutralization. the method of. 工程(c)で噴霧する水酸化アルカリ金属水溶液が、32〜48%水酸化ナトリウム水溶液である請求項1記載の方法。  The method according to claim 1, wherein the alkali metal hydroxide aqueous solution sprayed in step (c) is a 32-48% sodium hydroxide aqueous solution. 得られたアルカリ二次電池用正極物質のTAP密度が、2.2〜2.4g/ccである請求項1記載の方法。  The method according to claim 1, wherein the TAP density of the obtained positive electrode material for an alkaline secondary battery is 2.2 to 2.4 g / cc. 得られたアルカリ二次電池用正極物質のBULK密度が、1.6〜1.8g/ccである請求項1記載の方法。The method according to claim 1, wherein the obtained BULK density of the positive electrode material for an alkaline secondary battery is 1.6 to 1.8 g / cc. 得られたアルカリ二次電池用正極物質の平均粒径が、9〜13μmである請求項1記載の方法。The method according to claim 1, wherein the average particle diameter of the obtained positive electrode material for an alkaline secondary battery is 9 to 13 μm.
JP2001050077A 2001-02-26 2001-02-26 Method for producing positive electrode active material for alkaline secondary battery Expired - Fee Related JP4737849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001050077A JP4737849B2 (en) 2001-02-26 2001-02-26 Method for producing positive electrode active material for alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001050077A JP4737849B2 (en) 2001-02-26 2001-02-26 Method for producing positive electrode active material for alkaline secondary battery

Publications (2)

Publication Number Publication Date
JP2002255562A JP2002255562A (en) 2002-09-11
JP4737849B2 true JP4737849B2 (en) 2011-08-03

Family

ID=18911095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001050077A Expired - Fee Related JP4737849B2 (en) 2001-02-26 2001-02-26 Method for producing positive electrode active material for alkaline secondary battery

Country Status (1)

Country Link
JP (1) JP4737849B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110585752A (en) * 2018-06-12 2019-12-20 丰能科技股份有限公司 Structure of drying sprayer

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5134213B2 (en) * 2006-06-13 2013-01-30 株式会社田中化学研究所 Cathode active material for alkaline batteries
CN113003616B (en) * 2021-05-25 2021-07-20 河南科隆新能源股份有限公司 Method for improving specific surface area of lithium ion battery anode material precursor
KR102445449B1 (en) * 2022-03-04 2022-09-20 대성기계공업 주식회사 cathode material integrated processing device
KR102445447B1 (en) * 2022-03-04 2022-09-20 대성기계공업 주식회사 cathode material integrated processing device
KR102445448B1 (en) * 2022-03-04 2022-09-20 대성기계공업 주식회사 cathode material integrated processing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148145A (en) * 1994-09-20 1996-06-07 Sanyo Electric Co Ltd Nickel electrode active material, nickel electrode and nickel-alkaline battery using the material, and manufacture thereof
JPH1197008A (en) * 1996-12-24 1999-04-09 Matsushita Electric Ind Co Ltd Alkaline storage battery, positive electrode active material of it, and manufacture of them
JP2001052695A (en) * 1999-08-10 2001-02-23 Tanaka Chemical Corp Manufacture of positive electrode active material for alkaline storage battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148145A (en) * 1994-09-20 1996-06-07 Sanyo Electric Co Ltd Nickel electrode active material, nickel electrode and nickel-alkaline battery using the material, and manufacture thereof
JPH1197008A (en) * 1996-12-24 1999-04-09 Matsushita Electric Ind Co Ltd Alkaline storage battery, positive electrode active material of it, and manufacture of them
JP2001052695A (en) * 1999-08-10 2001-02-23 Tanaka Chemical Corp Manufacture of positive electrode active material for alkaline storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110585752A (en) * 2018-06-12 2019-12-20 丰能科技股份有限公司 Structure of drying sprayer

Also Published As

Publication number Publication date
JP2002255562A (en) 2002-09-11

Similar Documents

Publication Publication Date Title
JP3223858B2 (en) Alkaline storage battery, its positive electrode active material, and method for producing the same
CN101501790A (en) Nanostructured metal oxides comprising internal voids and methods of use thereof
JPH0973900A (en) Manufacture of nickel electrode active material for alkaline storage battery
CN111430677B (en) Negative electrode material and preparation method thereof, negative electrode and lithium ion battery
CN101417820B (en) Method for preparing multi-morphology nano manganese dioxide
CN102050437A (en) Carbon composite material, and preparation method and application thereof
JP4737849B2 (en) Method for producing positive electrode active material for alkaline secondary battery
CN110364365B (en) Method for preparing single-layer porous cobalt oxyhydroxide nanosheet by electrochemical oxidation method
EP0942481B1 (en) Production method of active material for positive electrode of alkaline secondary battery
CN109921019A (en) The preparation method of negative electrode tab
CN116364916A (en) Cubic cobalt nickel sulfide and few-layer Ti for room temperature sodium-sulfur battery 3 C 2 T x Preparation method of MXene nano-sheet composite material
JP4412877B2 (en) Method for producing positive electrode active material for alkaline storage battery and alkaline storage battery using the positive electrode active material obtained by this production method
JP3066021B2 (en) Method for producing active material for positive electrode of alkaline secondary battery, method for producing alkaline secondary battery using positive electrode containing the active material
JP2000268820A (en) Manufacture of positive electrode active material for alkaline storage battery
JP3040760B2 (en) Method for producing active material for positive electrode of alkaline secondary battery, method for producing alkaline secondary battery using positive electrode containing the active material
CN110129603A (en) A kind of production method and products thereof of silver tungsten contact material
JP2001052695A (en) Manufacture of positive electrode active material for alkaline storage battery
JP2000243391A (en) Manufacture of positive electrode active material for alkaline secondary battery
JP3541584B2 (en) Method for producing active material for nickel electrode of alkaline storage battery
JP2008251392A (en) Active material for nickel positive electrode, and manufacturing method thereof
JP2001167760A (en) Electrode active substance for use in alkaline secondary battery and method of preparing the same
JP3557072B2 (en) Nickel electrode active material for alkaline storage battery and method for producing the same
JPH09320583A (en) Nickel electrode
JP3032421B2 (en) Manufacturing method of nickel positive electrode for batteries
JP2000058062A (en) Non-sintered nickel positive electrode for alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101203

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110119

TRDD Decision of grant or rejection written
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110418

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110426

R150 Certificate of patent or registration of utility model

Ref document number: 4737849

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees