JP2008251392A - Active material for nickel positive electrode, and manufacturing method thereof - Google Patents

Active material for nickel positive electrode, and manufacturing method thereof Download PDF

Info

Publication number
JP2008251392A
JP2008251392A JP2007092630A JP2007092630A JP2008251392A JP 2008251392 A JP2008251392 A JP 2008251392A JP 2007092630 A JP2007092630 A JP 2007092630A JP 2007092630 A JP2007092630 A JP 2007092630A JP 2008251392 A JP2008251392 A JP 2008251392A
Authority
JP
Japan
Prior art keywords
cobalt
crystal
nickel
particles
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007092630A
Other languages
Japanese (ja)
Other versions
JP5188089B2 (en
Inventor
Mamoru Shimakawa
嶋川  守
Takeshi Usui
臼井  猛
Takaaki Tanaka
孝明 田中
Fumihisa Yonetani
文寿 米谷
Mikio Hata
未来夫 畑
Takashi Kitamoto
隆志 北本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Chemical Corp
Original Assignee
Tanaka Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Chemical Corp filed Critical Tanaka Chemical Corp
Priority to JP2007092630A priority Critical patent/JP5188089B2/en
Publication of JP2008251392A publication Critical patent/JP2008251392A/en
Application granted granted Critical
Publication of JP5188089B2 publication Critical patent/JP5188089B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nickel positive electrode active material having high conductivity and high density rather than the nickel positive electrode active material obtained by a conventional method, to provide an active material for a nickel positive electrode capable of easily obtaining a nickel positive electrode inexpensively, and to provide a manufacturing method thereof. <P>SOLUTION: In a manufacturing method for crystal condensed particles of nickel hydroxide crystal and cobalt hydroxide crystal which are a new nickel positive electrode active material and has tapping density of 1.50-2.50 g/cm<SP>3</SP>and an average particle of 3.0-30.0 μm, a nickel (2+) acid solution, a cobalt (2+) acid solution, and alkaline solution are simultaneously dropped into water of a reaction container under an inert gas atmosphere while they are churned so as to neutralize these solutions in the reaction container, and generated insoluble particles are separated. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明の技術分野は、ニッケル正極用活物質に属する。   The technical field of the present invention belongs to an active material for a nickel positive electrode.

ニッケル正極は、ニッケル水素電池に限らず、ニッケルカドミウム電池、ニッケル亜鉛電池などのアルカリ二次電池の正極として汎用されている。これらの電池は最近のパーソナルコンピュータやデジタルカメラ用として高容量、長寿命であることがますます強く要求されるようになってきた。そこでニッケル正極には、より優れた高容量特性、高温充電性能、放電特性、サイクル寿命、高エネルギー密度等が要求され、またニッケル正極を構成する活物質のより高い利用率が要求されるようになってきている。   Nickel positive electrodes are not limited to nickel metal hydride batteries, but are widely used as positive electrodes for alkaline secondary batteries such as nickel cadmium batteries and nickel zinc batteries. These batteries have been increasingly required to have high capacity and long life for recent personal computers and digital cameras. Therefore, the nickel positive electrode is required to have superior high capacity characteristics, high temperature charge performance, discharge characteristics, cycle life, high energy density, etc., and higher utilization of the active material constituting the nickel positive electrode is required. It has become to.

従来ニッケル正極は焼結式(または、シンター型)、又は非焼結式(またはペースト式)のものが知られている(参照文献:電子とイオンの機能化学シリーズVol.1 いま注目されているニッケル−水素二次電池のすべて 田村英雄 監修)。焼結式は例えばニッケル基板を、ニッケル塩浴(硝酸ニッケル溶液等)と、コバルト塩浴(硝酸コバルト溶液等)へ交互に含浸・乾燥する工程を繰り返し、後アルカリで水酸化ニッケル及びコバルトを固着させるものであり、高出力特性に優れ、かつ長寿命の正極が得られる。その理由は、不導体である水酸化ニッケル(Ni(OH))に隣接するように良伝導体であるCoOOHが存在するため導電性ネットワークが結晶子レベルで形成され、従って活物質の隅々まで電子伝導が行われるため大電流を流しても電子伝導が分散され、高出力特性に優れ、また電子伝導によってNi(OH)の受けるダメージが少ないため寿命が長くなる。一方形成される結晶が軟質なため極板密度が低いため容量が低いという問題点がある。また極板製造工程が長く、Ni及びCo塩浴中の溶液濃度が低下するため歩留まりが悪く製造コストの点で問題である。 Conventionally, nickel cathodes are known to be sintered (or sintered) or non-sintered (or paste) (Reference: Electron and Ion Functional Chemistry Series Vol. 1) All nickel-hydrogen rechargeable batteries supervised by Hideo Tamura). In the sintering method, for example, a nickel substrate is repeatedly impregnated and dried in a nickel salt bath (nickel nitrate solution, etc.) and a cobalt salt bath (cobalt nitrate solution, etc.), and then nickel hydroxide and cobalt are fixed with alkali. Thus, a positive electrode having excellent high output characteristics and a long life can be obtained. The reason is that a conductive network is formed at the crystallite level because CoOOH, which is a good conductor, is present adjacent to nickel hydroxide (Ni (OH) 2 ), which is a nonconductor, and therefore, every corner of the active material Therefore, even if a large current is passed, the electron conduction is dispersed and excellent in high output characteristics. Further, since the Ni (OH) 2 is less damaged by the electron conduction, the life is extended. On the other hand, since the formed crystal is soft, the capacity of the electrode plate is low because the electrode plate density is low. Further, the electrode plate manufacturing process is long, and the solution concentration in the Ni and Co salt baths is lowered, so that the yield is poor and the manufacturing cost is problematic.

非焼結式(ペースト式)のニッケル正極の製造は、粒子表面に導電性を有する水酸化ニッケル又は水酸化ニッケルと導電助剤としてコバルト化合物の混合物をペースト化し、空孔率95%程度の発泡ニッケルに塗布し、その後乾燥・圧延等を経て得られるものである。これは活物質として高密度水酸化ニッケルを用いるため体積当たりの放電容量が高いこと、極板製造工程において化学反応が伴わないので工程管理が容易で製造工程も簡素なため製造コストの点で優れていること、さらには水酸化ニッケル表面をコバルト化合物被覆することにより粒子間の導電性を向上させる点において焼結式よりも優れている。一方、水酸化ニッケル自体は不導体であるため充電初期は表面に近い部分のみが充電状態となり、また放電末期は中心の近い部分は放電されにくい状態となるため、充電時に表面に近い部分は過充電状態となるためにγ型NiOOHが生成しやすい状態となり、これにより好ましくないメモリー効果が発生する原因となる点、また放電時において中心部分が放電されにくく放電容量が低下し、利用率が低下するという点で、さらに改良することが必要とされる。
電子とイオンの機能化学シリーズVol.1 いま注目されているニッケル−水素二次電池のすべて 田村英雄 監修
Non-sintered (paste-type) nickel cathodes are produced by making conductive nickel hydroxide or nickel hydroxide and a mixture of cobalt compounds as conductive aids on the particle surface and foaming with a porosity of about 95%. It is obtained by applying to nickel and then drying / rolling. This is because it uses high-density nickel hydroxide as the active material, so the discharge capacity per volume is high, and since there is no chemical reaction in the electrode plate manufacturing process, the process control is easy and the manufacturing process is simple, so it is excellent in terms of manufacturing cost. In addition, it is superior to the sintered type in that the conductivity between particles is improved by coating the nickel hydroxide surface with a cobalt compound. On the other hand, since nickel hydroxide itself is a nonconductor, only the portion close to the surface is charged at the beginning of charging, and the portion near the center is hardly discharged at the end of discharging. Since it is in a charged state, it becomes a state where γ-type NiOOH is likely to be generated, and this causes an undesirable memory effect. In addition, during discharge, the central portion is difficult to be discharged, the discharge capacity is reduced, and the utilization rate is reduced. Further improvements are needed in this regard.
Electron and ion functional chemistry series Vol. 1 All of the nickel-hydrogen secondary batteries that are currently attracting attention Supervised by Hideo Tamura

本発明は、ニッケル正極用活物質及びその製造方法に関する。   The present invention relates to an active material for a nickel positive electrode and a method for producing the same.

本発明者は、上で説明した従来方法の問題点・欠点のない新規なニッケル正極用活物質(及びその前駆物質を含む)、ニッケル正極を得るべく鋭意研究した結果、全く新たな構造を有する内部導電性である、コバルト内包水酸化ニッケルの製造方法を見いだし、本発明を完成した。   As a result of earnest research to obtain a novel nickel positive electrode active material (and its precursor) and a nickel positive electrode that do not have the problems and disadvantages of the conventional methods described above, the present inventor has a completely new structure. A method for producing cobalt-encapsulated nickel hydroxide, which has internal conductivity, was found and the present invention was completed.

すなわち、本発明に係るニッケル正極用活物質は、タッピング密度が1.50〜2.50g/cmかつ平均粒径が3.00〜30.00μmである、水酸化ニッケル結晶と水酸化コバルト結晶との結晶凝集粒子である。 That is, the nickel positive electrode active material for nickel positive electrode according to the present invention has a tapping density of 1.50 to 2.50 g / cm 3 and an average particle size of 3.00 to 30.00 μm. These are crystal agglomerated particles.

また本発明に係るニッケル正極用活物質は、タッピング密度が1.50〜2.50g/cmかつ平均粒径が3.00〜30.00μmである、水酸化ニッケル結晶と、コバルトの平均価数が2.00価の水酸化コバルト結晶との結晶凝集粒子である。 Further, the nickel positive electrode active material according to the present invention has a nickel hydroxide crystal having a tapping density of 1.50 to 2.50 g / cm 3 and an average particle diameter of 3.00 to 30.00 μm, and an average value of cobalt. It is a crystal aggregated particle with cobalt hydroxide crystals having a number of 2.00.

また本発明に係るニッケル正極用活物質は、タッピング密度が1.50〜2.50g/cmかつ平均粒径が3.00〜30.00μmであり、コバルト化合物で表面が被覆された、水酸化ニッケル結晶と水酸化コバルト結晶との結晶凝集粒子である。 The active material for a nickel positive electrode according to the present invention has a tapping density of 1.50 to 2.50 g / cm 3 , an average particle size of 3.00 to 30.00 μm, and a surface coated with a cobalt compound. Crystal aggregated particles of nickel oxide crystals and cobalt hydroxide crystals.

また本発明に係るニッケル正極用活物質は、タッピング密度が1.50〜2.50g/cmかつ平均粒径が3.00〜30.00μmであり、コバルトの平均価数が2.00〜3.50価のコバルト化合物で表面が被覆された、水酸化ニッケル結晶と水酸化コバルト結晶との結晶凝集粒子である。 The active material for a nickel positive electrode according to the present invention has a tapping density of 1.50 to 2.50 g / cm 3 , an average particle size of 3.00 to 30.00 μm, and an average valence of cobalt of 2.00 to 3. Crystal-aggregated particles of nickel hydroxide crystal and cobalt hydroxide crystal, the surface of which is coated with a 50-valent cobalt compound.

さらに本発明に係る製造方法は、タッピング密度が1.50〜2.50g/cmかつ平均粒径が3.00〜30.00μmである、水酸化ニッケル結晶と水酸化コバルト結晶との結晶凝集粒子の製造方法であって、不活性ガス雰囲気下の反応容器の水へ、攪拌しながら、ニッケル(2+)酸性水溶液と、コバルト(2+)酸性水溶液と、アルカリ水溶液とを同時に滴下して中和し、生成した不溶性の粒子を分離することを特徴とする。 Furthermore, the production method according to the present invention comprises crystal aggregation of nickel hydroxide crystals and cobalt hydroxide crystals having a tapping density of 1.50 to 2.50 g / cm 3 and an average particle size of 3.00 to 30.00 μm. A method for producing particles, in which a nickel (2+) acidic aqueous solution, a cobalt (2+) acidic aqueous solution, and an alkaline aqueous solution are simultaneously added to a reaction vessel water under an inert gas atmosphere while stirring to neutralize the solution. And insoluble particles formed are separated.

また本発明に係る製造方法は、タッピング密度が1.50〜2.50g/cmかつ平均粒径が3.00〜30.00μmである、水酸化ニッケル結晶と、コバルトの平均価数が2.00〜3.50価の水酸化コバルト結晶との結晶凝集粒子の製造方法であって、タッピング密度が1.50〜2.50g/cmかつ平均粒径が3.00〜30.00μmである、水酸化ニッケル結晶と水酸化コバルト結晶との結晶凝集粒子を、アルカリ水溶液存在下で空気酸化することを特徴とする方法である。 Moreover, the manufacturing method according to the present invention has a nickel hydroxide crystal having a tapping density of 1.50 to 2.50 g / cm 3 and an average particle size of 3.00 to 30.00 μm, and an average valence of cobalt of 2 A method for producing crystal agglomerated particles with 0.000 to 3.50 valent cobalt hydroxide crystal, wherein the tapping density is 1.50 to 2.50 g / cm 3 and the average particle size is 3.00 to 30.00 μm. This is a method characterized by air-oxidizing crystal aggregated particles of nickel hydroxide crystal and cobalt hydroxide crystal in the presence of an alkaline aqueous solution.

また本発明に係る製造方法は、タッピング密度が1.50〜2.50g/cmかつ平均粒径が3.00〜30.00μmであり、コバルト化合物で表面が被覆された、水酸化ニッケル結晶と水酸化コバルト結晶との結晶凝集粒子の製造方法であって、水に分散させた、タッピング密度が1.50〜2.50g/cmかつ平均粒径が3.00〜30.00μmである、水酸化ニッケル結晶と水酸化コバルト結晶との結晶凝集粒子に、コバルト(2+)酸性水溶液と、アルカリ水様液とを同時に滴下して、前記結晶凝集粒子表面にコバルト化合物を被覆することを特徴とする方法である。 Further, the production method according to the present invention comprises a nickel hydroxide crystal having a tapping density of 1.50 to 2.50 g / cm 3 and an average particle size of 3.00 to 30.00 μm, and having a surface coated with a cobalt compound. And a cobalt hydroxide crystal, wherein the tapping density is 1.50 to 2.50 g / cm 3 and the average particle size is 3.00 to 30.00 μm. In addition, a cobalt (2+) acidic aqueous solution and an alkaline water-like liquid are simultaneously dropped onto crystal aggregated particles of nickel hydroxide crystal and cobalt hydroxide crystal to coat the surface of the crystal aggregated particle with a cobalt compound. It is a method.

また本発明に係る製造方法は、タッピング密度が1.50〜2.50g/cmかつ平均粒径が3.00〜30.00μmであり、コバルトの平均価数が2.00〜3.50価のコバルト化合物で表面が被覆された、水酸化ニッケル結晶と水酸化コバルト結晶との結晶凝集粒子の製造方法であって、タッピング密度が1.50〜2.50g/cmかつ平均粒径が3.00〜30.00μmであり、コバルト化合物で表面が被覆された、水酸化ニッケル結晶と水酸化コバルト結晶との結晶凝集粒子を、アルカリ水溶液存在下で空気酸化することを特徴とする方法である。 The production method according to the present invention has a tapping density of 1.50 to 2.50 g / cm 3 , an average particle size of 3.00 to 30.00 μm, and an average valence of cobalt of 2.00 to 3.50. A method for producing crystal agglomerated particles of nickel hydroxide crystals and cobalt hydroxide crystals, the surface of which is coated with a valent cobalt compound, wherein the tapping density is 1.50 to 2.50 g / cm 3 and the average particle size is The method is characterized in that the crystal aggregated particles of nickel hydroxide crystal and cobalt hydroxide crystal having a surface of 3.00 to 30.00 μm and coated with a cobalt compound are air-oxidized in the presence of an alkaline aqueous solution. is there.

さらに本発明には、本発明の結晶凝集粒子を用いるアルカリ蓄電池用非焼結式ニッケル極を含む。また、係るアルカリ蓄電池用非焼結式ニッケル極を含むアルカリ蓄電池を含むものである。   Furthermore, the present invention includes a non-sintered nickel electrode for alkaline storage batteries using the crystal aggregated particles of the present invention. Moreover, the alkaline storage battery containing the non-sintered nickel electrode for alkaline storage batteries is included.

本発明の製造方法により得られる結晶凝集粒子は、粒子を形成する水酸化ニッケル結晶と水酸化コバルト結晶とが緊密に凝集し、酸化処理により内部導電性となる。従って本発明の結晶凝集粒子をアルカリ蓄電池用非焼結式ニッケル極として用いることにより、従来の2つの方法(非焼結式及び焼結式)の有利な効果を併せ持つ優れたニッケル正極活物質、ニッケル正極を、容易にかつ安価に得ることができる。   In the crystal aggregated particles obtained by the production method of the present invention, nickel hydroxide crystals and cobalt hydroxide crystals forming the particles are closely aggregated and become internal conductive by oxidation treatment. Therefore, by using the crystal agglomerated particles of the present invention as a non-sintered nickel electrode for an alkaline storage battery, an excellent nickel positive electrode active material having the advantageous effects of the two conventional methods (non-sintered and sintered), A nickel positive electrode can be obtained easily and inexpensively.

本発明の水酸化ニッケル結晶と水酸化コバルト結晶との結晶凝集粒子は次の4種類(以下粒子I〜粒子IVとする)であり、順に説明する。   The crystal agglomerated particles of the nickel hydroxide crystal and the cobalt hydroxide crystal of the present invention are the following four types (hereinafter referred to as particle I to particle IV), which will be described in order.

(水酸化ニッケル結晶と水酸化コバルト結晶との結晶凝集粒子、粒子I)
本発明に係る結晶凝集粒子は、構成成分として水酸化ニッケル結晶と、水酸化コバルト結晶とが緻密に凝集して粒子を形成したものであることを特徴とする。ここでニッケルもコバルトも2+の価数を有する。また以下で説明する本発明の製造方法に依存して、水酸化ニッケル結晶がさらに他の金属を固溶させることができる。かかる固溶金属としては、マグネシウム、アルミニウム、チタン、マンガン、鉄、銅、亜鉛が挙げられる。粒子の形状は以下で説明する本発明の製造方法に依存して、平均粒径5.00〜20.00μmの範囲で調整可能であり、また同じく以下で説明する本発明の製造方法に依存して、ほぼ球状から楕円球状の形状に調整可能である。さらには粒径分布についても以下で説明する本発明の製造方法に依存して狭い範囲の分布から極めて広い範囲の分布まで調整することが可能である。粒子の粒径及び粒径分布の測定方法、測定手段として例えば、電子顕微鏡、粒度分布計を用いることで容易に分析することが可能である。
(Crystal agglomerated particles of nickel hydroxide crystal and cobalt hydroxide crystal, particle I)
The crystal aggregated particles according to the present invention are characterized in that nickel hydroxide crystals and cobalt hydroxide crystals are densely aggregated as constituents to form particles. Here, both nickel and cobalt have a valence of 2+. Further, depending on the production method of the present invention described below, the nickel hydroxide crystal can further dissolve other metals. Examples of the solid solution metal include magnesium, aluminum, titanium, manganese, iron, copper, and zinc. The shape of the particles can be adjusted in the range of an average particle diameter of 5.00 to 20.00 μm depending on the production method of the present invention described below, and also depends on the production method of the present invention described below. Thus, the shape can be adjusted from a substantially spherical shape to an elliptical spherical shape. Furthermore, the particle size distribution can be adjusted from a narrow range to a very wide range depending on the production method of the present invention described below. For example, an electron microscope or a particle size distribution meter can be used for easy analysis as a measuring method and measuring means for the particle size and particle size distribution of the particles.

ニッケル、コバルト、又は他の金属の含有量は特に制限はなく、以下で説明する本発明の製造方法に依存して任意の範囲で調整可能である。具体的にはコバルトが、0.1wt%〜35.0wt%の範囲である。また水酸化ニッケルへの他の固溶金属の含有量は0.0wt%〜15.0wt%の範囲である。かかる含有量の分析は、例えばICP発光分析法を用いることで容易に測定することができる。   There is no restriction | limiting in particular in content of nickel, cobalt, or another metal, It can adjust in arbitrary ranges depending on the manufacturing method of this invention demonstrated below. Specifically, cobalt is in the range of 0.1 wt% to 35.0 wt%. Further, the content of other solid solution metal in nickel hydroxide is in the range of 0.0 wt% to 15.0 wt%. Such content analysis can be easily measured by using, for example, ICP emission analysis.

本発明の結晶凝集粒子の構造上の特徴は、水酸化ニッケル結晶と、水酸化コバルト結晶とが粒子全体に亘り均一(表面部分、内部)に凝集していることであり、水酸化ニッケル結晶と水酸化コバルト結晶との2種類の結晶粒子が単に混合された物ではない。結晶粒子のX線回折測定を用いて分析した結果を図1に示した。水酸化ニッケル結晶と、水酸化コバルト結晶とが際めて微小な結晶(一次粒子又はそれよりもさらに小さな粒子)で緻密かつ均一に凝集していることが分かる。   The structural feature of the crystal aggregated particles of the present invention is that the nickel hydroxide crystal and the cobalt hydroxide crystal are uniformly aggregated (surface portion, inside) over the entire particle. It is not simply a mixture of two types of crystal particles with cobalt hydroxide crystals. The results of analysis using X-ray diffraction measurement of the crystal particles are shown in FIG. It can be seen that the nickel hydroxide crystal and the cobalt hydroxide crystal are densely and uniformly agglomerated with extremely small crystals (primary particles or even smaller particles).

本発明の結晶凝集粒子が緻密であることは、そのバルク密度、タッピング密度により容易に分かる。具体的には本発明の結晶凝集粒子のバルク密度は1.00〜1.90g/cc、タッピング密度は1.70〜2.40g/ccを有し極めて高い。   It can be easily seen from the bulk density and the tapping density that the crystal aggregated particles of the present invention are dense. Specifically, the bulk density of the crystal agglomerated particles of the present invention is 1.00 to 1.90 g / cc, and the tapping density is 1.70 to 2.40 g / cc, which is extremely high.

(水酸化ニッケル結晶と、コバルトの平均価数が2.01〜2.50価の水酸化コバルト結晶との結晶凝集粒子、粒子II)
本発明の結晶凝集粒子IIは、上で説明した粒子Iを酸化することで得られるものであり、構成するコバルトが形式上2+よりも酸化された状態であることを特徴とする結晶凝集粒子である。コバルトの酸化数は以下説明する方法により、測定可能である。コバルトの酸化数は例えばヨードメトリー法(ICP発光分析による正極活物質中に含まれるコバルト量の結果と、正極活物質粉末とヨウ化カリウム粉末に塩酸を加えた溶液を、チオ硫酸ナトリウム溶液を滴定した。そして、終点でのチオ硫酸ナトリウム溶液の滴定量と、先に取得した正極活物質中に含まれるコバルト量とに基づいてコバルトの酸化数を算出する方法)等の分析方法により容易に決定することが可能である。また酸化の程度が高いほど結晶凝集粒子の色は黒く見える。また以下説明する酸化条件を選択することで、粒子の形状(平均粒径、粒径分布)、密度はほぼ維持される。
(Crystal Aggregated Particles of Nickel Hydroxide Crystals and Cobalt Hydroxide Crystals with an Average Valence of Cobalt of 2.01 to 2.50, Particle II)
The crystal aggregated particle II of the present invention is obtained by oxidizing the particle I described above, and is a crystal aggregated particle characterized in that the constituent cobalt is formally oxidized more than 2+. is there. The oxidation number of cobalt can be measured by the method described below. For example, the oxidation number of cobalt is determined by, for example, an iodometry method (the result of the amount of cobalt contained in the positive electrode active material by ICP emission analysis, a solution obtained by adding hydrochloric acid to the positive electrode active material powder and the potassium iodide powder, and the sodium thiosulfate solution is titrated. It is easily determined by analytical methods such as titration of sodium thiosulfate solution at the end point and a method for calculating the oxidation number of cobalt based on the amount of cobalt contained in the positive electrode active material obtained previously. Is possible. Moreover, the higher the degree of oxidation, the blacker the color of the crystal aggregated particles. Moreover, the shape (average particle diameter, particle size distribution) and density of the particles are substantially maintained by selecting the oxidation conditions described below.

さらに本発明の、水酸化ニッケル結晶と、コバルトの平均価数が2.01〜2.50価の水酸化コバルト結晶との結晶凝集粒子はそれ自体で電気伝導性を示すことを特徴とする。電気伝導性の測定は当該分野で知られている通常の方法例えば、1.0gのサンプルを専用冶具にセットし、10kNで加圧した状態で、上下の抵抗値を測定し、サンプル厚さを1cmあたりの比抵抗値として換算、測定した。この条件で得られた比抵抗値は100〜1000Ω・cmであった。この理由は、酸化されたコバルトの水酸化物粒子の存在により内部にいわゆる3次元的導電性ネットワークが形成されるからと考えられる。   Furthermore, the crystal agglomerated particles of the nickel hydroxide crystal of the present invention and the cobalt hydroxide crystal having an average valence of cobalt of 2.01 to 2.50 are characterized by exhibiting electrical conductivity by themselves. The electrical conductivity is measured by an ordinary method known in the art. For example, a sample of 1.0 g is set on a dedicated jig, pressed at 10 kN, and measured the upper and lower resistance values to determine the sample thickness It was converted and measured as a specific resistance value per 1 cm. The specific resistance value obtained under these conditions was 100 to 1000 Ω · cm. This is presumably because a so-called three-dimensional conductive network is formed inside by the presence of oxidized cobalt hydroxide particles.

(コバルト化合物で表面が被覆された、水酸化ニッケル結晶と水酸化コバルト結晶との結晶凝集粒子、粒子III)
本発明の結晶粒子IIIは、上で説明した粒子Iの表面にコバルト化合物で被覆した構造を有することを特徴とする。ここで被覆するコバルト化合物とは、具体的に水酸化コバルトや、オキシ水酸化コバルトであり、特に水酸化コバルトが好ましい。さらにはコバルト化合物には、コバルト以外の金属をも含むことを意味する。具体的にはイットリウム、イッテルビウム、カルシウム、マグネシウムが挙げられる。
(Crystal Aggregated Particles of Nickel Hydroxide Crystals and Cobalt Hydroxide Crystals, Surface III Coated with Cobalt Compound, Particle III)
The crystal particle III of the present invention has a structure in which the surface of the particle I described above is coated with a cobalt compound. The cobalt compound to be coated here is specifically cobalt hydroxide or cobalt oxyhydroxide, and cobalt hydroxide is particularly preferable. Furthermore, it means that the cobalt compound contains a metal other than cobalt. Specific examples include yttrium, ytterbium, calcium, and magnesium.

被覆コバルト化合物の厚さについても特に制限はなく、以下説明する本発明の製造方法により、粒子自体の形状はほぼ維持しつつ被覆の厚さを0.1μm〜1.0μmの範囲で調整可能である。また粒子Iの表面を被覆することから粒子IIIのタップ密度は1.40〜2.40g/cc、バルク密度は0.80〜1.80g/ccを有し極めて高い。   There is no particular limitation on the thickness of the coated cobalt compound, and the thickness of the coating can be adjusted in the range of 0.1 μm to 1.0 μm while maintaining the shape of the particles themselves by the production method of the present invention described below. is there. Further, since the surface of the particle I is coated, the particle III has a very high tap density of 1.40 to 2.40 g / cc and a bulk density of 0.80 to 1.80 g / cc.

(コバルトの平均価数が2.01〜3.50価のコバルト化合物で表面が被覆された、水酸化ニッケル結晶と水酸化コバルト結晶との結晶凝集粒子、粒子IV)
本発明の粒子IVは、上で説明した粒子IIIを酸化することで得られるものであり、構成するコバルト(内部の水酸化コバルト及び/又は表面のコバルト化合物)が形式上2+よりも酸化された状態であることを特徴とする結晶凝集粒子である。コバルトの酸化数は以下説明する製造方法により、2.01〜3.50価の範囲で調整可能である。コバルトの酸化数は例えばヨードメトリー法等の分析方法により容易に決定することが可能である。また酸化の程度が高いほど結晶凝集粒子の色は黒く見える。また以下説明する酸化条件を選択することで、粒子の形状(平均粒径、粒径分布)、密度はほぼ維持される。例えばタップ密度は1.50〜2.50g/cc、バルク密度は0.80〜1.80g/ccを有し極めて高い。
(Crystal Aggregated Particles of Nickel Hydroxide Crystal and Cobalt Hydroxide Crystal with Particles Coated with Cobalt Compounds with an Average Valence of Cobalt of 2.01 to 3.50, Particle IV)
The particle IV of the present invention is obtained by oxidizing the particle III described above, and the constituent cobalt (internal cobalt hydroxide and / or surface cobalt compound) is formally oxidized more than 2+. It is a crystal aggregated particle characterized by being in a state. The oxidation number of cobalt can be adjusted in the range of 2.01 to 3.50 by the manufacturing method described below. The oxidation number of cobalt can be easily determined by an analysis method such as iodometry. Moreover, the higher the degree of oxidation, the blacker the color of the crystal aggregated particles. Moreover, the shape (average particle diameter, particle size distribution) and density of the particles are substantially maintained by selecting the oxidation conditions described below. For example, the tap density is 1.50 to 2.50 g / cc, and the bulk density is 0.80 to 1.80 g / cc, which is extremely high.

さらに本発明の粒子IVは際めて大きな電気伝導性を示すことを特徴とする。電気伝導性の測定は当該分野で知られている通常の方法例えば1.0gのサンプルを専用冶具にセットし、10kNで加圧した状態で、上下の抵抗値を測定し、サンプル厚さを1cmあたりの比抵抗値として換算、測定した。この条件で得られた比抵抗値は2.0〜20.0Ω・cmであった。この理由は、酸化された表面被覆コバルトを介する導電性と、酸化されたコバルトの水酸化物粒子の存在により内部にいわゆる3次元的導電性ネットワークが形成されるからと考えられる。かかる複数の導電性ネットワークの存在は、従来の非焼成式及び焼成式の両方の有利な効果を併せ持つことを意味する。   Furthermore, the particles IV of the present invention are distinguished by a large electrical conductivity. The electrical conductivity is measured by a conventional method known in the art, for example, 1.0 g of a sample is set on a dedicated jig, pressed at 10 kN, the upper and lower resistance values are measured, and the sample thickness is 1 cm. It was converted and measured as a specific resistance value per unit. The specific resistance value obtained under these conditions was 2.0 to 20.0 Ω · cm. This is presumably because a so-called three-dimensional conductive network is formed inside due to the conductivity through oxidized surface-coated cobalt and the presence of oxidized cobalt hydroxide particles. The presence of such a plurality of conductive networks means that both the advantages of both the conventional non-fired type and the fired type are combined.

(製造方法)
本発明に係る粒子I〜IVの製造方法について以下説明する。
(Production method)
A method for producing the particles I to IV according to the present invention will be described below.

(粒子Iの製造方法)
本発明の粒子Iの製造方法は、反応容器内の水へ攪拌しながらニッケル(2+)酸性水溶液と、コバルト(2+)酸性水溶液と、アルカリ水溶液とを同時に滴下して中和、沈殿粒子を形成させることを特徴とする。
(Method for producing particle I)
The method for producing particles I of the present invention is to neutralize and form precipitated particles by simultaneously dropping nickel (2+) acidic aqueous solution, cobalt (2+) acidic aqueous solution and alkaline aqueous solution while stirring into water in the reaction vessel. It is characterized by making it.

たとえば、反応容積15Lの反応槽を使用した場合、反応雰囲気は特に制限はないが、コバルト(2+)が酸化されないように不活性ガスの雰囲気下で行うことが好ましい。不活性ガスとしては例えば窒素ガス、ヘリウムガス、ネオンガス、アルゴンガス、クリプトンガス、キセノンガス、ラドンガスが挙げられる。不活性ガスは反応容器内、または反応水中へ吹き込み導入することが好ましい。本発明においては窒素ガスを反応槽内に吹き込むことが好ましく、ガス流量は1.0〜5.0L/minの範囲が好ましい。   For example, when a reaction tank having a reaction volume of 15 L is used, the reaction atmosphere is not particularly limited, but it is preferably performed in an inert gas atmosphere so that cobalt (2+) is not oxidized. Examples of the inert gas include nitrogen gas, helium gas, neon gas, argon gas, krypton gas, xenon gas, and radon gas. The inert gas is preferably introduced into the reaction vessel or into the reaction water. In the present invention, nitrogen gas is preferably blown into the reaction vessel, and the gas flow rate is preferably in the range of 1.0 to 5.0 L / min.

ニッケル(2+)酸性水溶液を調製するためのニッケル塩については特に制限はなく硫酸ニッケル、塩化ニッケル、硝酸ニッケル等が挙げられる。本発明においては硫酸ニッケルの使用が好ましい。同様にコバルト(2+)酸性水溶液を調製するためのコバルト塩については特に制限はなく硫酸コバルト、塩化コバルト、硝酸コバルト等が挙げられる。本発明においては硫酸コバルトの使用が好ましい。   The nickel salt for preparing the nickel (2+) acidic aqueous solution is not particularly limited, and examples thereof include nickel sulfate, nickel chloride, and nickel nitrate. In the present invention, it is preferable to use nickel sulfate. Similarly, the cobalt salt for preparing the cobalt (2+) acidic aqueous solution is not particularly limited, and examples thereof include cobalt sulfate, cobalt chloride, and cobalt nitrate. In the present invention, the use of cobalt sulfate is preferred.

さらにニッケル水酸化物に固溶させるため、他の金属イオンの塩を上のニッケル(2+)酸性水溶液と混合して使用することができる。他の金属塩としては、硫酸マグネシウム、硫酸アルミニウム、硫酸チタニウム、硫酸マンガン、硫酸鉄、硫酸銅、硫酸亜鉛等が挙げられる。   Furthermore, in order to make it a solid solution in a nickel hydroxide, the salt of another metal ion can be mixed with the above nickel (2+) acidic aqueous solution and used. Examples of other metal salts include magnesium sulfate, aluminum sulfate, titanium sulfate, manganese sulfate, iron sulfate, copper sulfate, and zinc sulfate.

ニッケル(2+)酸性水溶液、コバルト(2+)酸性水溶液、ニッケル水酸化物に固溶させるための他の金属イオンの酸性水溶液の濃度は特に限定されず、反応条件(ニッケルとコバルト、またはその他の金属の含有量、反応槽のサイズ、反応温度、反応溶液の量、攪拌の程度)により適宜選択することができる。具体的には、反応容積15Lの反応槽を使用した場合、これらの濃度は、0.1〜2.0mol/Lの範囲にすることが好ましい。特にニッケル(2+)酸性水溶液、コバルト(2+)酸性水溶液、ニッケル水酸化物に固溶させるための他の金属イオンの酸性水溶液の濃度として、0.7〜2.0mol/L、0.7〜2.0mol/L、0.1〜2.0mol/Lの範囲であることが好ましい。   The concentration of the acidic aqueous solution of nickel (2+) acidic solution, cobalt (2+) acidic aqueous solution, and other metal ions for dissolving in nickel hydroxide is not particularly limited, and reaction conditions (nickel and cobalt, or other metals) Content, reaction vessel size, reaction temperature, amount of reaction solution, degree of stirring). Specifically, when a reaction tank with a reaction volume of 15 L is used, these concentrations are preferably in the range of 0.1 to 2.0 mol / L. In particular, the concentration of acidic aqueous solution of nickel (2+), cobalt (2+) acidic aqueous solution, and other metal ions for dissolving in nickel hydroxide is 0.7 to 2.0 mol / L, 0.7 to It is preferable that it is the range of 2.0 mol / L and 0.1-2.0 mol / L.

アルカリ水溶液としては特に制限はなく、リチウム、ナトリウム、カリウム等の水酸化物の水溶液を好ましく使用可能である。また使用濃度についても特に制限はなく、水酸化物生成及び好ましいpH維持のために適宜選択することが可能である。本発明においては具体的には水酸化ナトリウムの場合、1.5〜15.0mol/Lの範囲が好ましい。反応溶液のpHは10.0〜13.5の範囲に維持することが好ましい。   There is no restriction | limiting in particular as alkaline aqueous solution, The aqueous solution of hydroxides, such as lithium, sodium, potassium, can be used preferably. Moreover, there is no restriction | limiting in particular also about a use density | concentration, It is possible to select suitably for hydroxide production | generation and preferable pH maintenance. In the present invention, specifically, in the case of sodium hydroxide, the range of 1.5 to 15.0 mol / L is preferable. The pH of the reaction solution is preferably maintained in the range of 10.0 to 13.5.

ニッケル(2+)酸性水溶液(場合によりニッケル水酸化物に固溶させる他の金属イオンとの混合水溶液)と、コバルト(2+)酸性水溶液と、アルカリ水溶液とを反応させる方法としては特に制限はないが、反応槽内の攪拌された水中へそれぞれの溶液を別々に滴下することが好ましい。滴下されたそれぞれの溶液は反応槽内で十分攪拌され、中和反応とともに沈殿が生成する。攪拌の程度は反応槽の上部に滴下された各溶液が十分短い時間で溶液全体(半径方向のみならず上下方向においても)に拡散される程度が好ましい。具体的にはプロペラ形状の攪拌装置を1200回転速度で使用することが特に好ましい。反応温度は特に制限はないが、20〜55℃であることが好ましい。また、滴下流速は特に制限はないがニッケル(2+)酸性水溶液の場合、3.0〜50.0ml/分であることが好ましく、コバルト(2+)酸性水溶液(場合によりニッケル水酸化物に固溶させる他の金属イオンとの混合水溶液)の場合、0.3〜10.0ml/分であることが好ましい。   There is no particular limitation on the method of reacting the nickel (2+) acidic aqueous solution (optionally a mixed aqueous solution with other metal ions that are solid-dissolved in nickel hydroxide), the cobalt (2+) acidic aqueous solution, and the alkaline aqueous solution. Preferably, each solution is dropped separately into the stirred water in the reaction vessel. Each of the dropped solutions is sufficiently stirred in the reaction vessel, and a precipitate is formed along with the neutralization reaction. The degree of stirring is preferably such that each solution dropped on the upper part of the reaction vessel is diffused over the entire solution (not only in the radial direction but also in the vertical direction) in a sufficiently short time. Specifically, it is particularly preferable to use a propeller-shaped stirring device at 1200 rotation speed. The reaction temperature is not particularly limited but is preferably 20 to 55 ° C. Further, the dropping flow rate is not particularly limited, but in the case of nickel (2+) acidic aqueous solution, it is preferably 3.0 to 50.0 ml / min, and cobalt (2+) acidic aqueous solution (in some cases, solid solution in nickel hydroxide). In the case of a mixed aqueous solution with other metal ions, it is preferably 0.3 to 10.0 ml / min.

沈殿粒子の粒径および粒径分布は、反応溶液のpH、原料液の滴下流速、回転速度を適宜変更することにより調節可能である。具体的には反応溶液のpHを高くすることで平均粒径を小さく調節することが可能であり、反応溶液のpHを低くすることで平均粒径を大きく調節することが可能である。粒径分布は反応溶液のpH、原料液の滴下流速、回転速度を適宜変更することにより調節可能である。具体的には回転速度を遅くすることで粒径分布を広く調節することが可能であり、回転速度を早くすることで粒径分布を狭く調節することが可能である。   The particle size and particle size distribution of the precipitated particles can be adjusted by appropriately changing the pH of the reaction solution, the dropping flow rate of the raw material liquid, and the rotation speed. Specifically, the average particle size can be adjusted small by increasing the pH of the reaction solution, and the average particle size can be adjusted large by decreasing the pH of the reaction solution. The particle size distribution can be adjusted by appropriately changing the pH of the reaction solution, the dropping flow rate of the raw material liquid, and the rotation speed. Specifically, the particle size distribution can be widely adjusted by reducing the rotation speed, and the particle size distribution can be adjusted narrowly by increasing the rotation speed.

反応はバッチ式でもよく、またオーバーフローパイプによる連続式でもよい。本発明においてはオーバーフローパイプによる連続式が好ましい。オーバーフローパイプを設けた反応槽は例えば、特開平2−6340に記載された装置を好ましく使用することができる。上で説明した反応が進行した後、反応槽上部に設けたオーバーフローパイプより生成した沈殿粒子を連続的に取り出すことが可能である。   The reaction may be batch or continuous using an overflow pipe. In the present invention, a continuous type using an overflow pipe is preferred. As the reaction tank provided with the overflow pipe, for example, the apparatus described in JP-A-2-6340 can be preferably used. After the reaction described above proceeds, it is possible to continuously take out the precipitated particles generated from the overflow pipe provided in the upper part of the reaction tank.

オーバーフローパイプより取り出した沈殿粒子はデカンテーション若しくは通常の濾過手段により反応溶液と分離することができる。さらに通常の乾燥方法により乾燥することが可能である。得られた粒子Iは、そのままでも使用可能である。また適当な粒径及び分布に調製するために公知の手段を用いて分離分級することができる。   The precipitated particles taken out from the overflow pipe can be separated from the reaction solution by decantation or ordinary filtration means. Furthermore, it is possible to dry by a normal drying method. The obtained particles I can be used as they are. In order to prepare an appropriate particle size and distribution, separation and classification can be performed using known means.

本発明の粒子Iの製造方法で使用可能な金属イオンは、上で説明したニッケル、コバルト、その他のニッケル水酸化物に固溶する金属に限定されない。使用可能な金属としては、マグネシウム、アルミニウム、チタニウム、マンガン、鉄、銅、亜鉛が挙げられる。これらの金属イオン水溶液を用いることで、これらの金属水酸化物結晶の結晶凝集粒子が製造可能となる。   The metal ions that can be used in the method for producing the particle I of the present invention are not limited to nickel, cobalt, and other metals that dissolve in nickel hydroxide described above. Usable metals include magnesium, aluminum, titanium, manganese, iron, copper, and zinc. By using these metal ion aqueous solutions, crystal aggregated particles of these metal hydroxide crystals can be produced.

(粒子IIの製造方法)
本発明の粒子IIの製造方法は、本発明の粒子Iを出発物質として、水酸化コバルトを酸化して高酸化水酸化コバルトに酸化することができる公知の酸化方法を実施することである。ここで当該公知の酸化方法については特に制限はないが、例えば特開2002−255562に基づく酸化が好ましい。
(Method for producing particle II)
The manufacturing method of the particle | grains II of this invention is implementing the well-known oxidation method which can oxidize cobalt hydroxide and oxidize to highly oxidized cobalt hydroxide by using the particle | grains I of this invention as a starting material. Although there is no restriction | limiting in particular about the said well-known oxidation method here, For example, the oxidation based on Unexamined-Japanese-Patent No. 2002-255562 is preferable.

より具体的には粒子Iを、アルカリ水溶液を乾燥粉末中に噴霧し、空気酸化させることで粒子IIを製造することが可能である。アルカリ水溶液としては特に制限はないがリチウム、ナトリウム、カリウムの水酸化物の水溶液を用いて空気酸化させることが好ましい。酸化反応は粒子の色の変化、若しくは酸化数の測定結果に基づいて追跡し、完了を知ることができる。色の変化は緑色〜灰色へと変化する。また反応途中の粒子の一部を取り出し、そのコバルトの酸化数をヨードメトリー法によりモニターし、酸化数が2.00価〜2.50価へと変化したところで酸化反応の終了を確認できる。得られた粒子IIは、酸化反応後は特に処理することなく、水洗、乾燥することができる。   More specifically, it is possible to produce the particles II by spraying the particles I with an alkaline aqueous solution into a dry powder and oxidizing them with air. Although there is no restriction | limiting in particular as alkaline aqueous solution, It is preferable to air-oxidize using the aqueous solution of the hydroxide of lithium, sodium, and potassium. The oxidation reaction can be traced based on the change in the color of the particles or the measurement result of the oxidation number to know completion. The change in color changes from green to gray. Further, a part of the particles in the middle of the reaction is taken out, and the oxidation number of the cobalt is monitored by an iodometry method. When the oxidation number changes from 2.00 to 2.50, the completion of the oxidation reaction can be confirmed. The obtained particles II can be washed with water and dried without any particular treatment after the oxidation reaction.

(粒子IIIの製造方法)
本発明の粒子IIIは、本発明の粒子Iの表面に従来公知の方法でコバルト化合物を被覆することで製造できる。ここで表面をコバルト化合物で被覆するための従来方法としては特に制限はないが、特開平10−012236、特開平10−012237、等に記載された方法に準じて実施することが好ましい。
(Method for producing particle III)
The particle III of the present invention can be produced by coating the surface of the particle I of the present invention with a cobalt compound by a conventionally known method. Here, the conventional method for coating the surface with a cobalt compound is not particularly limited, but it is preferably carried out according to the methods described in JP-A-10-012236, JP-A-10-012237, and the like.

具体的には、粒子Iもしくは粒子IIの分散液中に、コバルト(2+)酸性水溶液と、アルカリ水様液とを同時に滴下して、前記結晶凝集粒子表面にコバルト化合物を被覆する方法が好ましい。ここで粒子Iもしくは粒子IIの分散液は粒子1.0kgに対して水10.0L程度が好ましい。またコバルト(2+)酸性水溶液としては、硫酸コバルト(2+)、硝酸コバルト(2+)、塩化コバルト(2+)(特に硫酸コバルトが好ましい)90g/Lの濃度とすることが好ましい。   Specifically, a method in which a cobalt (2+) acidic aqueous solution and an alkaline water-like liquid are simultaneously dropped into a dispersion of particles I or particles II to coat the surface of the crystal aggregated particles with a cobalt compound is preferable. Here, the dispersion liquid of the particles I or II is preferably about 10.0 L of water with respect to 1.0 kg of the particles. The cobalt (2+) acidic aqueous solution preferably has a concentration of 90 g / L of cobalt sulfate (2+), cobalt nitrate (2+), and cobalt chloride (2+) (particularly cobalt sulfate is preferred).

コバルト化合物の表面被覆の完了は、反応前後のSEM像等をモニターすることで確認することができる。   Completion of the surface coating of the cobalt compound can be confirmed by monitoring SEM images before and after the reaction.

(粒子IVの製造方法)
本発明の粒子IVは、本発明の粒子IIIを出発物質として、水酸化コバルトを空気酸化して高酸化水酸化コバルトに酸化することができる公知の酸化方法を実施することである。ここで当該公知の酸化方法については特に制限はないが、例えば特開2002−255562に基づく酸化が好ましい。
(Method for producing particle IV)
The particle IV of the present invention is to carry out a known oxidation method in which the cobalt hydroxide is oxidized in the air and oxidized into highly oxidized cobalt hydroxide using the particle III of the present invention as a starting material. Although there is no restriction | limiting in particular about the said well-known oxidation method here, For example, the oxidation based on Unexamined-Japanese-Patent No. 2002-255562 is preferable.

より具体的には粒子IIIを、アルカリ水溶液を乾燥粉末中に噴霧し、空気酸化させることで粒子IVを製造することが可能である。アルカリ水溶液としては特に制限はないがリチウム、ナトリウム、カリウム等の水酸化物の水溶液を用いることが好ましい。酸化反応は粒子の色の変化、若しくは酸化数の測定結果に基づいて追跡し、完了を知ることができる。色の変化は緑色〜灰色へと変化する。また反応途中の粒子の一部を取り出し、そのコバルトの酸化数をヨードメトリー法によりモニターし、酸化数が2.01価〜3.50価へと変化したところで酸化反応の終了を確認できる。得られた粒子IVは、酸化反応後は特に処理することなく、水洗、乾燥することができる。   More specifically, the particles IV can be produced by spraying an aqueous alkaline solution into a dry powder and oxidizing the particles III with air. Although there is no restriction | limiting in particular as alkaline aqueous solution, It is preferable to use the aqueous solution of hydroxides, such as lithium, sodium, and potassium. The oxidation reaction can be traced based on the change in the color of the particles or the measurement result of the oxidation number to know completion. The change in color changes from green to gray. A part of the particles in the middle of the reaction is taken out, and the oxidation number of the cobalt is monitored by an iodometry method. When the oxidation number changes from 2.01 to 3.50, the end of the oxidation reaction can be confirmed. The obtained particles IV can be washed with water and dried without any particular treatment after the oxidation reaction.

(ニッケル正極)
本発明の粒子I〜IVを正極材料とし、通常公知の方法を組み合わせてアルカリ蓄電池用ニッケル正極、さらにはアルカリ蓄電池を製造することができる。具体的には特開2001−052695(請)、特許−3808193、[最新二次電池材料の技術(小久見 善八 監修)シーエムシー (1999−09−08出版)]等が好ましく適用可能である。
(Nickel positive electrode)
The particles I to IV of the present invention can be used as a positive electrode material, and a nickel positive electrode for an alkaline storage battery and further an alkaline storage battery can be produced by combining generally known methods. Specifically, JP-A No. 2001-052695 (contract), Japanese Patent No. 3808193, [Technology of the latest secondary battery material (supervised by Zenpachi Okumi) CMC (published in 1999-09-08)] and the like are preferably applicable.

以下に、本発明の具体例を説明する。なお得られた各試料の分析は次のとおりに行った。   Specific examples of the present invention will be described below. The obtained samples were analyzed as follows.

(X線回折)
試料をそのまま使用した。測定装置・条件は株式会社理学製、RINT2200(Cu−Kα)を用い、操作手順書に従った。
(X-ray diffraction)
The sample was used as is. The measuring apparatus and conditions were RINT2200 (Cu-Kα) manufactured by Rigaku Corporation and followed the operation procedure manual.

(タッピング密度)
20mLセルの質量を測定し[A]、48meshのフルイで試料をセルに自然落下させ充填した。4cmスペーサ装着のセイシン企業株式会社製、「TAPDENSER KYT3000」を用いて200回タッピング後セルの重量[B]と充填容積[D]を測定した。次式により計算した。
(Tapping density)
The mass of the 20 mL cell was measured [A], and the sample was naturally dropped into the cell with a 48 mesh sieve and filled. The weight [B] and filling volume [D] of the cell after tapping 200 times were measured using “TAPDENSER KYT3000” manufactured by Seishin Enterprise Co., Ltd. with a 4 cm spacer. The following formula was used for calculation.

タップ密度=(B−A)/D g/cc
(平均粒径、粒径分布)
測定装置は堀場製作所製LA−910を使用し、測定条件は操作手順書に従った。測定結果は、平均粒径として表わした。
Tap density = (B−A) / D g / cc
(Average particle size, particle size distribution)
The measuring device used was LA-910 manufactured by HORIBA, Ltd., and the measurement conditions followed the operation procedure manual. The measurement result was expressed as an average particle diameter.

(電子顕微鏡)
測定装置は日立製作所製S−2400を使用し、測定条件は操作手順書に従った。測定結果は、SEM像として表わした。
(electronic microscope)
The measuring apparatus used was S-2400 manufactured by Hitachi, Ltd., and the measurement conditions were in accordance with the operation procedure manual. The measurement results were expressed as SEM images.

(組成分析)
測定装置は株式会社理学製CIROS−120 EOPを使用し、測定条件は操作手順に従った。測定結果は、主要成分含量として表わした。
(Composition analysis)
The measuring device used was CIROS-120 EOP manufactured by Rigaku Corporation, and the measuring conditions followed the operating procedure. The measurement results were expressed as the main component content.

(実施例1)粒子Iの製造
(a) 70φプロペラタイプの攪拌羽根1枚を備えた攪拌装置と、オーバーフローパイプとを備えた有効容積15Lの円筒形反応槽(材質SUS304)に蒸留水を13L入れた。反応槽の水中に硫酸アンモニウム粉末(特級試薬)を900g加えて攪拌し溶解させた。次いで30%水酸化ナトリウム溶液(特級試薬)を加えてpHを12.8に調節した。この溶液の温度を反応槽の外部に設けた電熱ヒーターにて45℃に保持した。反応槽内の溶液は攪拌装置にて一定速度(1200rpm)で攪拌した。さらに反応槽には窒素ガスを1.0L/分の流量にて連続的に供給して反応槽内の雰囲気を窒素雰囲気下に維持した。
Example 1 Production of Particle I (a) 13 L of distilled water was added to a 15 L cylindrical reaction tank (material SUS304) having an effective volume of 15 L equipped with a stirring device equipped with one 70φ propeller type stirring blade and an overflow pipe. I put it in. 900 g of ammonium sulfate powder (special grade reagent) was added to the water in the reaction vessel and stirred to dissolve. Subsequently, 30% sodium hydroxide solution (special grade reagent) was added to adjust the pH to 12.8. The temperature of this solution was maintained at 45 ° C. with an electric heater provided outside the reaction vessel. The solution in the reaction vessel was stirred at a constant speed (1200 rpm) with a stirring device. Further, nitrogen gas was continuously supplied to the reaction tank at a flow rate of 1.0 L / min to maintain the atmosphere in the reaction tank under a nitrogen atmosphere.

(b) 硫酸ニッケル液、硫酸亜鉛液及びニッケル亜鉛混合液、さらに硫酸コバルト液、硫酸アンモニウム溶液を次のように調製した。硫酸ニッケル(特級試薬)を蒸留水中に溶解して濃度1.8mol/Lとなるように硫酸ニッケル液を調製した。また硫酸亜鉛(特級試薬)を蒸留水中に溶解して濃度1.3mol/Lとなるように硫酸亜鉛液を調製した。これらの液をNi:Zn=93:7(モル比)となるように混合してニッケル亜鉛混合液を調製した。   (B) A nickel sulfate solution, a zinc sulfate solution and a nickel zinc mixed solution, and a cobalt sulfate solution and an ammonium sulfate solution were prepared as follows. Nickel sulfate (special grade reagent) was dissolved in distilled water to prepare a nickel sulfate solution to a concentration of 1.8 mol / L. A zinc sulfate solution was prepared by dissolving zinc sulfate (special grade reagent) in distilled water to a concentration of 1.3 mol / L. These liquids were mixed so that Ni: Zn = 93: 7 (molar ratio) to prepare a nickel zinc mixed liquid.

同等に硫酸コバルト(特級試薬)を蒸留水中に溶解して濃度1.5mol/Lとなるように硫酸コバルト液を調製した。   Cobalt sulfate solution was prepared by dissolving cobalt sulfate (special grade reagent) in distilled water to a concentration of 1.5 mol / L.

さらに硫酸アンモニウム(特級試薬)を蒸留水中に溶解して濃度6.0mol/Lとなるように硫酸アンモニウム溶液を調製した。   Further, ammonium sulfate (special grade reagent) was dissolved in distilled water to prepare an ammonium sulfate solution so as to have a concentration of 6.0 mol / L.

(c) 反応は次のように行った。   (C) The reaction was carried out as follows.

(a)の反応槽の上部から、(b)のニッケル亜鉛混合液を10cc/分の一定速度にて反応槽内液面へ連続的に供給した。また(b)の硫酸コバルト液を2.8cc/分の一定速度にて(b)のニッケル亜鉛混合液の供給箇所とは別の反応槽上部より槽内液面へ連続的に供給した。さらに(b)の硫酸アンモニウム溶液を4cc/分の一定速度にて(b)の各液の供給箇所とは別の反応槽上部より槽内液面へ連続供給した。反応中は30%水酸化ナトリウムを断続的に加えることで反応槽内の溶液のpHを12.8に保持した。   From the upper part of the reaction tank of (a), the nickel zinc mixed liquid of (b) was continuously supplied to the liquid level in the reaction tank at a constant rate of 10 cc / min. Moreover, the cobalt sulfate liquid of (b) was continuously supplied to the liquid level in the tank from the upper part of the reaction tank different from the supply part of the nickel zinc mixed liquid of (b) at a constant rate of 2.8 cc / min. Furthermore, the ammonium sulfate solution of (b) was continuously supplied to the liquid level in the tank from the upper part of the reaction tank different from the supply part of each liquid of (b) at a constant rate of 4 cc / min. During the reaction, 30% sodium hydroxide was intermittently added to maintain the pH of the solution in the reaction vessel at 12.8.

上の各液の供給と共に粒子状の沈殿が生成され、約72時間後に反応槽内が定常状態になったことが平均粒径の移動平均から認められた。その後オーバーフローパイプより排出された沈殿を連続的に24時間採取した。得られた沈殿を蒸留水で2回洗浄した後、ヌッチェにより濾過して分離した。得られた沈殿は65℃にて15時間乾燥して乾燥粉末とした。沈殿の色は緑色であった。得られた沈殿を試料1とする。   It was confirmed from the moving average of the average particle size that a particulate precipitate was formed with the supply of each of the liquids above, and the reaction vessel was in a steady state after about 72 hours. Thereafter, the precipitate discharged from the overflow pipe was continuously collected for 24 hours. The obtained precipitate was washed twice with distilled water, and then separated by filtration with Nutsche. The obtained precipitate was dried at 65 ° C. for 15 hours to obtain a dry powder. The color of the precipitate was green. The obtained precipitate is designated as Sample 1.

試料1の分析結果を次にまとめた。   The analysis results of Sample 1 are summarized below.

(X線回折)図1
(タッピング密度)2.04g/cc
(平均粒径、粒径分布)9.1μm
(電子顕微鏡)図2
この分析結果から、得られた沈殿は、水酸化ニッケル結晶と水酸化コバルト結晶との結晶凝集粒子であることが分かった。
(X-ray diffraction) FIG.
(Tapping density) 2.04 g / cc
(Average particle size, particle size distribution) 9.1 μm
(Electron microscope) Fig. 2
From this analysis result, it was found that the obtained precipitate was crystal aggregated particles of nickel hydroxide crystal and cobalt hydroxide crystal.

(実施例2)粒子IIの製造
実施例1で得られた沈殿7.0kgを攪拌混合機(株式会社カワタ。型式SMV−20)に入れ主攪拌軸を200rpmで回転させた。その後攪拌混合機のジャケットを加熱して粉体(沈殿)温度を100℃とし、粉体に48%水酸化ナトリウム水溶液を500ml/分で700ml噴霧した。噴霧終了後、100℃で30分保持した後室温へ冷却した。粉体を取り出し、純水で2回洗浄した後脱水、乾燥処理(100℃、3時間)して灰色の結晶凝集粒子(試料2とする)を得た。
Example 2 Production of Particles II 7.0 kg of the precipitate obtained in Example 1 was placed in a stirring mixer (Kawata Co., Ltd. Model SMV-20), and the main stirring shaft was rotated at 200 rpm. Thereafter, the jacket of the stirring mixer was heated to set the powder (precipitation) temperature to 100 ° C., and 700 ml of a 48% sodium hydroxide aqueous solution was sprayed onto the powder at 500 ml / min. After spraying, the mixture was kept at 100 ° C. for 30 minutes and then cooled to room temperature. The powder was taken out, washed twice with pure water, dehydrated and dried (100 ° C., 3 hours) to obtain gray crystal aggregated particles (referred to as sample 2).

試料2の分析結果を次にまとめた。   The analysis results of Sample 2 are summarized below.

(タッピング密度)2.02g/cc
(平均粒径、粒径分布)9.5μm
(コバルト平均価数)2.33価
この分析結果から、得られた沈殿は、水酸化ニッケル結晶と、コバルトの平均価数が2.01〜2.40価の水酸化コバルト結晶との結晶凝集粒子であることが分かった。
(Tapping density) 2.02 g / cc
(Average particle size, particle size distribution) 9.5 μm
(Cobalt average valence) 2.33 valence From this analysis result, the resulting precipitate is a crystal agglomeration of nickel hydroxide crystals and cobalt hydroxide crystals having an average valence of cobalt of 2.01 to 2.40. It turned out to be a particle.

(実施例3)粒子IIIの製造
実施例2で得られた沈殿粒子100gを攪拌機付きの3L反応槽に入れた。攪拌(100rpm)しつつ、反応槽内へ、水を700ml、200mlの6mol/L硫酸アンモニウム溶液、及び30%水酸化ナトリウム水溶液を静かに添加した。反応槽のpHは9.0であった。その中へ、2mol/L硫酸コバルト水溶液40mlと、10mol/Lの水酸化ナトリウム水溶液をpH9.0に維持しつつ添加した。その後30分攪拌を続けた。後30%水酸化ナトリウム水溶液を添加してpHを12.5に調整しそのpHを1時間保持した。得られた沈殿を濾過、脱水して分離し、棚式乾燥機で乾燥し、濃緑色の結晶凝集粒子(試料3とする)を得た。
(Example 3) Production of Particle III 100 g of the precipitated particles obtained in Example 2 were placed in a 3 L reactor equipped with a stirrer. While stirring (100 rpm), 700 ml of water, 200 ml of 6 mol / L ammonium sulfate solution, and 30% aqueous sodium hydroxide solution were gently added to the reaction vessel. The pH of the reaction vessel was 9.0. Into this, 40 ml of 2 mol / L cobalt sulfate aqueous solution and 10 mol / L sodium hydroxide aqueous solution were added while maintaining the pH at 9.0. Thereafter, stirring was continued for 30 minutes. Thereafter, a 30% aqueous sodium hydroxide solution was added to adjust the pH to 12.5, and the pH was maintained for 1 hour. The resulting precipitate was filtered, dehydrated and separated, and dried with a shelf dryer to obtain dark green crystal aggregated particles (referred to as sample 3).

試料3の分析結果を次にまとめた。   The analysis results of Sample 3 are summarized below.

(タッピング密度)2.06g/cc
(平均粒径、粒径分布)10.5μm
(コバルト平均価数)2.07価
この分析結果から、得られた沈殿は、コバルト化合物で表面が被覆された、水酸化ニッケル結晶と水酸化コバルト結晶との結晶凝集粒子であることが分かった。
(Tapping density) 2.06 g / cc
(Average particle size, particle size distribution) 10.5 μm
(Cobalt average valence) 2.07 value From this analysis result, it was found that the obtained precipitate was crystal aggregated particles of nickel hydroxide crystal and cobalt hydroxide crystal, the surface of which was coated with a cobalt compound. .

(実施例4)粒子VIの製造
実施例3で得られた結晶凝集粒子7.0kgを攪拌混合機(株式会社カワタ。型式SMV−20)に入れ主攪拌軸を200rpmで回転させた。その後攪拌混合機のジャケットを加熱して粉体(沈殿)温度を100℃とし、粉体に48%水酸化ナトリウム水溶液を500ml/分で700ml噴霧した。噴霧終了後、100℃で30分保持した後室温へ冷却した。粉体を取り出し、純水で2回洗浄した。後脱水、乾燥処理(100℃、3時間)して灰色の結晶凝集粒子(試料4とする)を得た。
(Example 4) Production of Particle VI 7.0 kg of the crystal aggregated particles obtained in Example 3 were put into a stirring mixer (Kawata Co., Ltd. Model SMV-20), and the main stirring shaft was rotated at 200 rpm. Thereafter, the jacket of the stirring mixer was heated to set the powder (precipitation) temperature to 100 ° C., and 700 ml of a 48% sodium hydroxide aqueous solution was sprayed onto the powder at 500 ml / min. After spraying, the mixture was kept at 100 ° C. for 30 minutes and then cooled to room temperature. The powder was taken out and washed twice with pure water. Post-dehydration and drying (100 ° C., 3 hours) were performed to obtain gray crystal aggregated particles (referred to as sample 4).

試料4の分析結果を次にまとめた。   The analysis results of Sample 4 are summarized below.

(タッピング密度)2.09g/cc
(平均粒径、粒径分布)10.1μm
(コバルト平均価数)3.01価
この分析結果から、得られた沈殿は、コバルトの平均価数が2.01価〜3.50価のコバルト化合物で表面が被覆された、水酸化ニッケル結晶と水酸化コバルト結晶との結晶凝集粒子であることが分かった。
(Tapping density) 2.09 g / cc
(Average particle size, particle size distribution) 10.1 μm
(Cobalt average valence) 3.01 valence From this analysis result, the resulting precipitate was a nickel hydroxide crystal whose surface was coated with a cobalt compound having an average valence of cobalt of 2.01 to 3.50. It was found to be crystal agglomerated particles of cobalt hydroxide and cobalt hydroxide crystals.

本発明の製造方法により得られるニッケル正極用活物質を用いることで、従来よりもさらに高伝導性かつ高密度なニッケル正極を容易にかつ安価に得ることができる。   By using the nickel positive electrode active material obtained by the production method of the present invention, it is possible to easily and inexpensively obtain a nickel positive electrode with higher conductivity and higher density than before.

図1は試料1のXRDパターンを示す。FIG. 1 shows the XRD pattern of Sample 1. 図2は試料1のSEM像を示す。FIG. 2 shows an SEM image of Sample 1.

Claims (8)

タッピング密度が1.50〜2.50g/cmかつ平均粒径が3.0〜30.0μmである、水酸化ニッケル結晶と水酸化コバルト結晶との結晶凝集粒子。 Crystal aggregated particles of nickel hydroxide crystals and cobalt hydroxide crystals having a tapping density of 1.50 to 2.50 g / cm 3 and an average particle diameter of 3.0 to 30.0 μm. タッピング密度が1.50〜2.50g/cmかつ平均粒径が3.0〜30.0μmである、水酸化ニッケル結晶と、コバルトの平均価数が2.00〜3.00価の水酸化コバルト結晶との結晶凝集粒子。 Nickel hydroxide crystal having a tapping density of 1.50 to 2.50 g / cm 3 and an average particle diameter of 3.0 to 30.0 μm, and water having an average valence of cobalt of 2.00 to 3.00 Crystal aggregated particles with cobalt oxide crystals. タッピング密度が1.50〜2.50g/cmかつ平均粒径が3.0〜30.0μmであり、コバルト化合物で表面が被覆された、水酸化ニッケル結晶と水酸化コバルト結晶との結晶凝集粒子。 Crystal aggregation of nickel hydroxide crystals and cobalt hydroxide crystals having a tapping density of 1.50 to 2.50 g / cm 3 and an average particle size of 3.0 to 30.0 μm and having a surface coated with a cobalt compound particle. タッピング密度が1.50〜2.50g/cmかつ平均粒径が3.0〜30.0μmであり、コバルトの平均価数が2.00〜3.00価のコバルト化合物で表面が被覆された、水酸化ニッケル結晶と水酸化コバルト結晶との結晶凝集粒子。 The surface is coated with a cobalt compound having a tapping density of 1.50 to 2.50 g / cm 3 and an average particle diameter of 3.0 to 30.0 μm, and an average valence of cobalt of 2.00 to 3.00. Crystal aggregated particles of nickel hydroxide crystals and cobalt hydroxide crystals. タッピング密度が1.50〜2.50g/cmかつ平均粒径が3.0〜30.0μmである、水酸化ニッケル結晶と水酸化コバルト結晶との結晶凝集粒子の製造方法であって、
不活性ガス雰囲気下の反応容器の水へ、攪拌しながら、ニッケル(2+)酸性水溶液と、コバルト(2+)酸性水溶液と、アルカリ水溶液とを同時に滴下して中和し、生成した不溶性の粒子を分離することを特徴とする方法。
A method for producing crystal agglomerated particles of nickel hydroxide crystals and cobalt hydroxide crystals having a tapping density of 1.50 to 2.50 g / cm 3 and an average particle size of 3.0 to 30.0 μm,
While stirring, the aqueous solution of nickel (2+), cobalt (2+), and aqueous alkaline solution are simultaneously added to the reaction vessel in an inert gas atmosphere while stirring to neutralize the resulting insoluble particles. A method characterized by separating.
タッピング密度が1.50〜2.50g/cmかつ平均粒径が3.0〜30.0μmである、水酸化ニッケル結晶と、コバルトの平均価数が2.00価の水酸化コバルト結晶との結晶凝集粒子の製造方法であって、
タッピング密度が1.50〜2.50g/cmかつ平均粒径が3.0〜30.0μmである、水酸化ニッケル結晶と水酸化コバルト結晶との結晶凝集粒子を、酸化剤の存在下アルカリ水溶液に分散させて酸化することを特徴とする方法。
A nickel hydroxide crystal having a tapping density of 1.50 to 2.50 g / cm 3 and an average particle diameter of 3.0 to 30.0 μm, and a cobalt hydroxide crystal having an average valence of cobalt of 2.00 A method for producing crystal agglomerated particles of
Crystal aggregated particles of nickel hydroxide crystals and cobalt hydroxide crystals having a tapping density of 1.50 to 2.50 g / cm 3 and an average particle diameter of 3.0 to 30.0 μm are made alkaline in the presence of an oxidizing agent. Dispersing in an aqueous solution and oxidizing.
タッピング密度が1.50〜2.50g/cmかつ平均粒径が3.0〜30.0μmであり、コバルト化合物で表面が被覆された、水酸化ニッケル結晶と水酸化コバルト結晶との結晶凝集粒子の製造方法であって、
水に分散させた、タッピング密度が1.50〜2.50g/cmかつ平均粒径が3.0〜30.0μmである、水酸化ニッケル結晶と水酸化コバルト結晶との結晶凝集粒子に、コバルト(2+)酸性水溶液と、アルカリ水様液とを同時に滴下して、前記結晶凝集粒子表面にコバルト化合物を被覆することを特徴とする方法。
Crystal aggregation of nickel hydroxide crystals and cobalt hydroxide crystals having a tapping density of 1.50 to 2.50 g / cm 3 and an average particle size of 3.0 to 30.0 μm and having a surface coated with a cobalt compound A method for producing particles comprising:
In the aggregated particles of nickel hydroxide crystal and cobalt hydroxide crystal dispersed in water and having a tapping density of 1.50 to 2.50 g / cm 3 and an average particle size of 3.0 to 30.0 μm, A method in which a cobalt (2+) acidic aqueous solution and an alkaline water-like liquid are simultaneously dropped to coat the surface of the crystal aggregated particles with a cobalt compound.
タッピング密度が1.50〜2.50g/cmかつ平均粒径が3.0〜30.0μmであり、コバルトの平均価数が2.00〜3.50価のコバルト化合物で表面が被覆された、水酸化ニッケル結晶と水酸化コバルト結晶との結晶凝集粒子の製造方法であって、
タッピング密度が1.50〜2.50g/cmかつ平均粒径が3.0〜30.0μmであり、コバルト化合物で表面が被覆された、水酸化ニッケル結晶と水酸化コバルト結晶との結晶凝集粒子を、アルカリ水溶液存在下で空気酸化することを特徴とする方法。
The surface is coated with a cobalt compound having a tapping density of 1.50 to 2.50 g / cm 3 and an average particle diameter of 3.0 to 30.0 μm, and an average valence of cobalt of 2.00 to 3.50. A method for producing crystal aggregated particles of nickel hydroxide crystal and cobalt hydroxide crystal,
Crystal aggregation of nickel hydroxide crystals and cobalt hydroxide crystals having a tapping density of 1.50 to 2.50 g / cm 3 and an average particle size of 3.0 to 30.0 μm and having a surface coated with a cobalt compound A method characterized in that particles are oxidized by air in the presence of an aqueous alkaline solution.
JP2007092630A 2007-03-30 2007-03-30 Nickel positive electrode active material and method for producing the same Active JP5188089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007092630A JP5188089B2 (en) 2007-03-30 2007-03-30 Nickel positive electrode active material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007092630A JP5188089B2 (en) 2007-03-30 2007-03-30 Nickel positive electrode active material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008251392A true JP2008251392A (en) 2008-10-16
JP5188089B2 JP5188089B2 (en) 2013-04-24

Family

ID=39976091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007092630A Active JP5188089B2 (en) 2007-03-30 2007-03-30 Nickel positive electrode active material and method for producing the same

Country Status (1)

Country Link
JP (1) JP5188089B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159180A (en) * 2009-01-08 2010-07-22 Tanaka Chemical Corp Method for producing agglomerated crystal particle useful as nickel positive electrode active material
CN110676063A (en) * 2019-08-19 2020-01-10 深圳职业技术学院 High-conductivity cobalt hydroxide electrode material, preparation method thereof, electrode and capacitor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1017328A (en) * 1996-07-01 1998-01-20 Seidou Kagaku Kogyo Kk Production of nickel hydroxide
JPH10152318A (en) * 1996-11-20 1998-06-09 Mitsubishi Chem Corp Production of synthetic quartz powder and formed quartz glass
JP2000030704A (en) * 1998-07-13 2000-01-28 Sumitomo Metal Mining Co Ltd Nickel hydroxide powder for positive electrode material and its manufacture
JP2001291515A (en) * 2000-04-10 2001-10-19 Sumitomo Metal Mining Co Ltd Nickel hydroxide powder for alkaline secondary battery and its manufacturing method and evaluation method
JP2002298840A (en) * 2001-03-29 2002-10-11 Matsushita Electric Ind Co Ltd Positive electrode active material for alkaline storage battery, and the alkaline storage battery using the same
JP2003303590A (en) * 2002-04-10 2003-10-24 Tanaka Chemical Corp Method of manufacturing positive electrode active material for alkaline storage battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1017328A (en) * 1996-07-01 1998-01-20 Seidou Kagaku Kogyo Kk Production of nickel hydroxide
JPH10152318A (en) * 1996-11-20 1998-06-09 Mitsubishi Chem Corp Production of synthetic quartz powder and formed quartz glass
JP2000030704A (en) * 1998-07-13 2000-01-28 Sumitomo Metal Mining Co Ltd Nickel hydroxide powder for positive electrode material and its manufacture
JP2001291515A (en) * 2000-04-10 2001-10-19 Sumitomo Metal Mining Co Ltd Nickel hydroxide powder for alkaline secondary battery and its manufacturing method and evaluation method
JP2002298840A (en) * 2001-03-29 2002-10-11 Matsushita Electric Ind Co Ltd Positive electrode active material for alkaline storage battery, and the alkaline storage battery using the same
JP2003303590A (en) * 2002-04-10 2003-10-24 Tanaka Chemical Corp Method of manufacturing positive electrode active material for alkaline storage battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159180A (en) * 2009-01-08 2010-07-22 Tanaka Chemical Corp Method for producing agglomerated crystal particle useful as nickel positive electrode active material
CN110676063A (en) * 2019-08-19 2020-01-10 深圳职业技术学院 High-conductivity cobalt hydroxide electrode material, preparation method thereof, electrode and capacitor

Also Published As

Publication number Publication date
JP5188089B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
JP4890264B2 (en) Electrode active material powder having particle size-dependent composition and method for producing the same
JP6323117B2 (en) Method for producing precursor of positive electrode active material for non-aqueous electrolyte secondary battery, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP5877817B2 (en) Non-aqueous secondary battery positive electrode active material and non-aqueous electrolyte secondary battery using the positive electrode active material
CN103563137B (en) Transition metal complex hydroxide and preparation method, the preparation method of positive active material
JP6716788B2 (en) High rate lithium cobalt oxide positive electrode material and method for preparing the same
WO2012020769A1 (en) Method for producing nickel-containing complex compound
JPWO2017119451A1 (en) Cathode active material precursor for non-aqueous electrolyte secondary battery, cathode active material for non-aqueous electrolyte secondary battery, method for producing cathode active material precursor for non-aqueous electrolyte secondary battery, cathode active material for non-aqueous electrolyte secondary battery Manufacturing method
CN108432003B (en) Positive electrode active material for nonaqueous electrolyte secondary battery, precursor thereof, and method for producing same
JP2006219323A (en) Lithium-manganese-nickel-aluminum complex oxide and its production method
CN116621234B (en) Sodium ion positive electrode material precursor, preparation method and positive electrode material
JP2011187174A (en) Method for manufacturing positive electrode active material for lithium ion secondary battery
CN116375111B (en) Sodium ion battery, positive electrode material and precursor thereof and preparation method
JP5188089B2 (en) Nickel positive electrode active material and method for producing the same
JP5312958B2 (en) Method for producing crystal agglomerated particles useful as active material for nickel positive electrode
JP3356628B2 (en) Nickel hydroxide covered with β-cobalt hydroxide layer for alkaline storage battery and method for producing the same
JP7431914B2 (en) Positive electrode active material for alkaline storage batteries and method for producing positive electrode active materials for alkaline storage batteries
JP7338133B2 (en) Positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2005272213A (en) Method for producing lithium-cobalt oxide
JPH1125967A (en) Nickel electrode active material for alkaline storage battery and its manufacture
JP7119302B2 (en) Positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery
CN109983601A (en) Positive electrode for nonaqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2019003818A (en) Positive electrode active material precursor for nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing positive electrode active material precursor for nonaqueous electrolyte secondary battery, and method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery
WO2006109637A1 (en) Alkaline dry cell
JP6634831B2 (en) Lithium ion secondary battery
JP6074635B2 (en) Particle assembly and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100114

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100830

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101228

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110418

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110815

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120127

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5188089

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250