JP2002255562A - Method for manufacturing positive electrode active material for alkali secondary battery - Google Patents

Method for manufacturing positive electrode active material for alkali secondary battery

Info

Publication number
JP2002255562A
JP2002255562A JP2001050077A JP2001050077A JP2002255562A JP 2002255562 A JP2002255562 A JP 2002255562A JP 2001050077 A JP2001050077 A JP 2001050077A JP 2001050077 A JP2001050077 A JP 2001050077A JP 2002255562 A JP2002255562 A JP 2002255562A
Authority
JP
Japan
Prior art keywords
particles
hydroxide
jacket
cobalt
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001050077A
Other languages
Japanese (ja)
Other versions
JP4737849B2 (en
Inventor
Takaaki Tanaka
孝明 田中
Junichi Imaizumi
純一 今泉
Tokuyoshi Iida
得代志 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Chemical Corp
Original Assignee
Tanaka Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Chemical Corp filed Critical Tanaka Chemical Corp
Priority to JP2001050077A priority Critical patent/JP4737849B2/en
Publication of JP2002255562A publication Critical patent/JP2002255562A/en
Application granted granted Critical
Publication of JP4737849B2 publication Critical patent/JP4737849B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a positive electrode active material for an alkali secondary battery by solving problems of conventional methods requiring relatively large air heating device or microwave irradiation device which consumes much energy pushing up production cost. SOLUTION: This method for manufacturing the positive electrode active material for the alkali secondary battery comprises the steps of (a) introducing steam into a jacket of a vertical high speed mixing and pelletizing device with a jacket provided with an air inlet and a vent on the upper lid, and heating inside of the body at 50 to 130 deg.C, (b) starting agitation on charging nickel hydroxide particles coated with α-cobalt hydroxide while continuing introduction of steam into the jacket, and heating the nickel hydroxide particles coated with the α-cobalt hydroxide at 40 to 120 deg.C, (c) spraying an alkali metal hydroxide aqueous solution onto the α-cobalt hydroxide coated nickel hydroxide particles while continuing agitation to conglobating the particle, and (d) starting exhaustion and introducing air into inside of the device wile continuing agitation and introduction of steam into the jacket to high order oxidize the α-cobalt hydroxide into γ-cobalt oxyhydroxide and drying the particles, and is characterized in that an auxiliary heating by microwave is not used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ二次電池
用正極活性物質の製造方法に係り、さらに詳しくは、高
次酸化水酸化コバルト(γ−オキシ水酸化コバルト)被
覆を有する水酸化ニッケル粒子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a positive electrode active material for an alkaline secondary battery, and more particularly to nickel hydroxide particles having a high-order cobalt oxyhydroxide (.gamma.-cobalt oxyhydroxide) coating. And a method for producing the same.

【0002】[0002]

【従来の技術】従来から水酸化ニッケルを主成分とする
活物質を正極に使用したアルカリ二次電池、たとえばニ
ッケル−カドミウム電池やニッケル−水素電池が多用さ
れている。特に近年では、携帯用エレクトロニクス機
器、たとえば携帯電話、携帯オーディオなどの電源とし
て、粉末状の活物質を発泡ニッケル等の基体に充填し
た、あるいはペースト状にしてパンチングメタル等に担
持させた非焼結型のニッケル電極が、従来の焼結型ニッ
ケル電極に比較して活物質の充填密度が大きく、高容量
化が期待できることから多用されるようになってきてい
る。しかしながら、非焼結型のニッケル電極のさらなる
高容量化を達成する目的で、高充填された活物質の利用
率をさらに向上させる種々の提案がなされている。
2. Description of the Related Art Conventionally, an alkaline secondary battery using an active material mainly composed of nickel hydroxide for a positive electrode, for example, a nickel-cadmium battery or a nickel-hydrogen battery has been frequently used. Particularly in recent years, as a power source for portable electronic devices such as mobile phones and portable audio devices, a non-sintered material in which a powdery active material is filled in a base such as foamed nickel or is made into a paste and supported on a punching metal or the like. A nickel electrode of a mold type has been widely used because a packing density of an active material is higher than that of a conventional sintered nickel electrode and high capacity can be expected. However, various proposals have been made to further improve the utilization rate of a highly-filled active material for the purpose of further increasing the capacity of a non-sintered nickel electrode.

【0003】特開平8−148145号公報には、コバ
ルトおよび/またはコバルト化合物を表面に偏在させた
粒状水酸化ニッケルからなる活物質、ならびにコバルト
化合物溶液に粒状水酸化ニッケルを含有させた懸濁液に
アルカリを添加して粒状水酸化ニッケルを核として水酸
化コバルトを析出させ、さらにアルカリ金属水酸化物と
酸素の存在下に加熱して水酸化コバルトを高次酸化する
活物質の製造方法が開示されている。
[0003] JP-A-8-148145 discloses an active material composed of granular nickel hydroxide having cobalt and / or a cobalt compound unevenly distributed on the surface thereof, and a suspension in which a cobalt compound solution contains granular nickel hydroxide. Discloses a method for producing an active material in which cobalt hydroxide is precipitated with granular nickel hydroxide as a nucleus by adding alkali to the mixture and further heated in the presence of an alkali metal hydroxide and oxygen to highly oxidize cobalt hydroxide. Have been.

【0004】特開平10−261414号公報は、回分
式流動乾燥装置、ニーダーおよびナウターミキサー(商
品名、ホソカワミクロン(株)製)を使用し、水酸化ニッ
ケルと水酸化コバルトとの混合粒子にアルカリ金属水溶
液および加熱空気を導入して粒子を直接加熱して水酸化
コバルトを高次酸化するアルカリ熱処理方法を、特開平
11−329425号公報および特開平11−9700
8号公報は、アルカリ熱処理にマイクロウェーブ照射に
よる直接加熱を使用する方法を開示している。
Japanese Patent Application Laid-Open No. Hei 10-261414 discloses that a mixed particle of nickel hydroxide and cobalt hydroxide is treated with an alkali using a batch-type fluidized drying apparatus, a kneader and a Nauta mixer (trade name, manufactured by Hosokawa Micron Corporation). Japanese Patent Application Laid-Open No. 11-329425 and Japanese Patent Application Laid-Open No. 11-9700 disclose an alkaline heat treatment method for directly heating particles by introducing an aqueous metal solution and heated air to highly oxidize cobalt hydroxide.
No. 8 discloses a method of using direct heating by microwave irradiation for alkali heat treatment.

【0005】[0005]

【発明が解決しようとする課題】前述の各方法では粉粒
体を装置内で流動化しそれらの融着を防止するために大
量の空気を装置内に導入して、その全量を反応温度にま
で加熱している。その結果、比較的に大型の空気加熱装
置またはマイクロウェーブ照射装置を必要とし、消費エ
ネルギー量も大きく、正極活物質の製造コストを上昇さ
せている。
In each of the above-mentioned methods, a large amount of air is introduced into the apparatus in order to fluidize the granules in the apparatus and prevent their fusion, and the entire amount is reduced to the reaction temperature. Heating. As a result, a relatively large air heating device or microwave irradiation device is required, the energy consumption is large, and the production cost of the positive electrode active material is increased.

【0006】本発明は、アルカリ二次電池用正極活性物
質の改良された製造方法を提供することを目的とする。
An object of the present invention is to provide an improved method for producing a positive electrode active material for an alkaline secondary battery.

【0007】[0007]

【課題を解決するための手段】本発明者等は、前記目的
を達成すべく鋭意研究した結果、ジャケット付き縦型高
速混合造粒装置の排気口の周辺部に空気導入口を設けた
装置を用い、水酸化コバルトの高次酸化をジャケットか
らの間接加熱のみで実施した結果、回分式流動乾燥装置
による直接加熱法を採用した場合と同等の物性を有する
正極物質が得られることを見出し、本発明を完成した。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above-mentioned object, and as a result, have found an apparatus provided with an air inlet at the periphery of an exhaust port of a vertical high-speed mixing and granulating apparatus with a jacket. As a result of conducting high-order oxidation of cobalt hydroxide using only indirect heating from the jacket, it was found that a cathode material having the same physical properties as in the case of employing a direct heating method using a batch-type fluidized drying apparatus was obtained. Completed the invention.

【0008】本発明は、(a) 上蓋に空気導入口およ
び排気口を設けたジャケット付き縦型高速混合造粒装置
のジャケットに水蒸気を導入し、本体内部を50〜13
0℃に加熱する工程、(b) ジャケットへの水蒸気の
導入を継続しながら、本体内にα−水酸化コバルト被着
水酸化ニッケル粒子を投入して撹拌を開始し、α−水酸
化コバルト被着水酸化ニッケル粒子を40〜120℃に
加熱する工程、(c) スプレーノズルからアルカリ金
属水酸化物水溶液をα−水酸化コバルト被着水酸化ニッ
ケル粒子上に噴霧しながら、撹拌を継続して粒子を球形
化する工程、および(d) 排気を開始し装置内に空気
を導入しながら撹拌およびジャケットへの水蒸気の導入
を継続し、α−水酸化コバルトをγ−オキシ水酸化コバ
ルトに高次酸化しそして粒子を乾燥させる工程、を含
み、マイクロ波による補助加熱を使用しないことを特徴
とするアルカリ二次電池用正極物質の製造方法である。
According to the present invention, (a) steam is introduced into a jacket of a vertical type high-speed mixing and granulating apparatus equipped with a jacket provided with an air inlet and an air outlet in an upper lid, and the inside of the main body is heated to 50 to 13 mm.
Heating to 0 ° C., (b) while continuing to introduce water vapor into the jacket, add α-cobalt hydroxide-coated nickel hydroxide particles into the main body and start stirring, and α-cobalt hydroxide-coated. Heating the deposited nickel hydroxide particles to 40 to 120 ° C., (c) continuing to stir while spraying the aqueous alkali metal hydroxide solution onto the α-cobalt hydroxide coated nickel hydroxide particles from a spray nozzle. And (d) continuing to stir and introduce water vapor into the jacket while initiating evacuation and introducing air into the apparatus to convert α-cobalt hydroxide into γ-cobalt oxyhydroxide. A process for oxidizing and drying the particles, wherein no auxiliary heating by microwave is used.

【0009】[0009]

【発明の実施形態】本発明のアルカリ二次電池用正極活
性物質製造で使用する縦型高速混合造粒装置の一態様を
添付の図1に基いて説明する。縦型高速混合造粒装置1
は、上蓋、平底および円筒胴部からなる容器本体2、粉
粒体用撹拌機3および容器本体2の平底部2bおよび円
筒胴部2cの外周部に設けられた本体加熱用ジャケット
4で構成される。
BEST MODE FOR CARRYING OUT THE INVENTION One embodiment of a vertical high-speed mixing granulator used in the production of a cathode active material for an alkaline secondary battery according to the present invention will be described with reference to FIG. Vertical high-speed mixing granulator 1
Is composed of a container body 2 having an upper lid, a flat bottom, and a cylindrical body, a stirrer 3 for granular material, and a body heating jacket 4 provided on the outer periphery of the flat bottom 2b and the cylindrical body 2c of the container body 2. You.

【0010】本体上蓋には、原料投入口5、液体スプレ
ーノズル6および排気口7が配置され、さらに少なくと
も1つの空気導入口8が設けられる。排気口7は、図示
のないフィルターを介して排気ブロワ−に連結される。
上蓋には、さらに図示のない温度検出ノズル、圧力計ノ
ズルを配置する。
In the upper cover of the main body, a raw material inlet 5, a liquid spray nozzle 6, and an exhaust port 7 are arranged, and at least one air inlet 8 is provided. The exhaust port 7 is connected to an exhaust blower via a filter (not shown).
A temperature detection nozzle and a pressure gauge nozzle (not shown) are further arranged on the upper lid.

【0011】容器本体2の底部は、撹拌羽根の形状にも
よるが、通常平底である。円筒胴部は、底部から一定の
高さまで垂直円筒であればよく、上部は円錐形または逆
円錐形の胴部で構成されていてもよい。
The bottom of the container body 2 is usually a flat bottom, depending on the shape of the stirring blade. The cylindrical body may be a vertical cylinder from the bottom to a certain height, and the upper part may be constituted by a conical or inverted conical body.

【0012】粉粒体用撹拌機3は、一般的に、粉粒体の
混合造粒に使用されるS字型、ロッド型、アンカー型な
どの撹拌羽根を備え、撹拌軸および減速機を介して電動
機に連結される。撹拌機座は上蓋または平底部のいずれ
に設けられていてもよい。また容器本体2内にはチョッ
パー9が配置される。本体加熱用ジャケット3は、加熱
用蒸気入口、ドレン口、および図示のない圧力検出ノズ
ルおよび圧力計ノズルを備える。
The agitator 3 for powders and granules is generally provided with S-shaped, rod-type, anchor-type, etc. stirring blades used for mixing and granulating the powders and granules, and is provided with a stirring shaft and a speed reducer. Connected to the motor. The stirrer seat may be provided on either the top lid or the flat bottom. A chopper 9 is arranged in the container body 2. The main body heating jacket 3 includes a heating steam inlet, a drain port, and a pressure detection nozzle and a pressure gauge nozzle (not shown).

【0013】本発明において、縦型高速混合造粒装置1
として、一般に市販されているジャケット付き縦型高速
混合造粒装置に、排気口7および少なくとも1つの空気
導入口8の本体上蓋への設置して使用することができ
る。空気導入口8は、図1に示したように本体上蓋の排
気口7の周りに複数の細孔を配置してもよい。
In the present invention, a vertical high-speed mixing granulator 1
In a commercially available vertical high-speed mixing and granulating apparatus with a jacket, the exhaust port 7 and at least one air inlet 8 can be installed on the upper lid of the main body and used. The air inlet 8 may be provided with a plurality of pores around the outlet 7 of the upper cover of the main body as shown in FIG.

【0014】空気導入口8の本体上蓋への設置により、
排気時に空気導入口8から導入される空気の大部分は加
熱されないまま反応ガスと共に排気され、反応に必要な
空気のみが本体内に循環する結果、ジャケット3からの
加熱のみで反応に要求される熱を十分に供給することが
できる。
By installing the air inlet 8 on the upper lid of the main body,
Most of the air introduced from the air inlet 8 at the time of exhaust is exhausted together with the reaction gas without being heated, and only the air necessary for the reaction circulates in the main body. As a result, the reaction is required only by heating from the jacket 3. Heat can be sufficiently supplied.

【0015】本発明のアルカリ二次電池用正極活性物質
の製造方法は、上記ジャケット付き縦型高速混合造粒装
置を使用する。工程(a)において、ジャケット3に水
蒸気を導入し容器本体2の内部を50〜130℃、好ま
しくは70〜120℃、さらに好ましくは80〜100
℃に加熱する。本体内部の加熱温度が低過ぎると続く工
程(b)における加熱時間が長くなりすぎ、必要以上の
高温への加熱は続く工程(b)における原料投入作業に
危険を伴うので好ましくない。
The method for producing a positive electrode active material for an alkaline secondary battery according to the present invention uses the above-described vertical high-speed mixing granulator with a jacket. In the step (a), steam is introduced into the jacket 3 and the inside of the container body 2 is heated to 50 to 130 ° C, preferably 70 to 120 ° C, more preferably 80 to 100 ° C.
Heat to ° C. If the heating temperature inside the main body is too low, the heating time in the subsequent step (b) becomes too long, and heating to an unnecessarily high temperature is not preferred because the raw material charging operation in the subsequent step (b) involves danger.

【0016】続く工程(b)において、ジャケット3へ
の水蒸気の導入を継続しながら、原料投入口3からα−
水酸化コバルト被着水酸化ニッケル粒子を投入して撹拌
を開始し、α−水酸化コバルト被着水酸化ニッケル粒子
を40〜120℃、好ましくは60〜110℃、さらに
好ましくは80〜100℃に加熱する。
In the subsequent step (b), while the introduction of steam into the jacket 3 is continued, α-
The cobalt hydroxide-coated nickel hydroxide particles are charged and stirring is started, and the α-cobalt hydroxide-coated nickel hydroxide particles are heated to 40 to 120 ° C, preferably 60 to 110 ° C, more preferably 80 to 100 ° C. Heat.

【0017】原料として、α−水酸化コバルト粒子と水
酸化ニッケル粒子との混合物を使用するのではなく、水
酸化ニッケル粒子を含む水性スラリーにコバルト塩、た
とえば硫酸コバルトを加えて溶解させ、次いでアルカリ
を添加してpHを10.5〜11.5に調整することによ
り水酸化ニッケル粒子を核としてα−水酸化コバルト結
晶を生成させ、水酸化ニッケル粒子の表面に被着させ
る、いわゆる湿式中和法で製造したα−水酸化コバルト
被着水酸化ニッケル粒子を使用する。
Instead of using a mixture of α-cobalt hydroxide particles and nickel hydroxide particles as a raw material, an aqueous slurry containing nickel hydroxide particles is dissolved by adding a cobalt salt, for example, cobalt sulfate, Is added to adjust the pH to 10.5 to 11.5 to generate α-cobalt hydroxide crystals with nickel hydroxide particles as nuclei, and to adhere to the surface of the nickel hydroxide particles, so-called wet neutralization. Α-Cobalt hydroxide-coated nickel hydroxide particles produced by the method are used.

【0018】加熱温度は、続く工程(c)以降における
反応および乾燥速度を考慮すると、高いほうが好ましい
が一定の温度以上であればよく、必要以上の高温への加
熱は加熱用水蒸気の蒸気圧を高くすることが要求される
ので好ましくない。
The heating temperature is preferably higher in consideration of the reaction and the drying rate in the subsequent step (c) and subsequent steps, but may be at least a certain temperature. Heating to an unnecessarily high temperature may reduce the vapor pressure of steam for heating. It is not preferable because it is required to be high.

【0019】工程(c)において、撹拌を継続しながら
スプレーノズル6からアルカリ金属水酸化物水溶液をα
−水酸化コバルト被着水酸化ニッケル粒子上に噴霧す
る。この操作により、水酸化ニッケル粒子に被着したα
−水酸化コバルトはアルカリ金属水溶液を吸着してゲル
化し、水酸化ニッケル粒子表面に被膜を形成する。さら
にチョッパー9により粒子は個々の粒子に粉砕・分散さ
れ、そしてほぼ真球に近い形状に球形化される。
In the step (c), the aqueous alkali metal hydroxide solution is sprayed from the spray nozzle 6 while maintaining stirring.
Spraying onto cobalt hydroxide coated nickel hydroxide particles. By this operation, the α adhered to the nickel hydroxide particles
-Cobalt hydroxide adsorbs the alkali metal aqueous solution and gels, forming a coating on the surface of the nickel hydroxide particles. Further, the particles are pulverized and dispersed by the chopper 9 into individual particles, and are spheroidized into a shape close to a true sphere.

【0020】アルカリ金属水酸化物水溶液として、水酸
化ナトリウム水溶液、水酸化カリウム水溶液などを使用
でき、好ましくは32%以上の高濃度水酸化ナトリウム
水溶液、さらに好ましくは48%以上水酸化ナトリウム
水溶液を使用する。アルカリ金属水酸化物水溶液の濃度
が過少な場合、粒子が部分的に溶解して塊状物を生成
し、また乾燥粒子を得るために大量の水分を蒸発させな
ければならないので好ましくない。
As the aqueous solution of the alkali metal hydroxide, an aqueous solution of sodium hydroxide, an aqueous solution of potassium hydroxide and the like can be used, preferably an aqueous solution of sodium hydroxide having a high concentration of 32% or more, more preferably an aqueous solution of sodium hydroxide of 48% or more. I do. If the concentration of the aqueous alkali metal hydroxide solution is too low, the particles are partially dissolved to form lumps, and a large amount of water must be evaporated to obtain dry particles, which is not preferable.

【0021】工程(d)において、排気を開始して装置
内に空気を導入しながら撹拌およびジャケットへの水蒸
気の導入を継続する。それにより、粒子と空気との接触
によりα−水酸化コバルト層を高次酸化し、そして粒子
を乾燥する。
In step (d), stirring is started and the introduction of water vapor into the jacket is continued while air is introduced into the apparatus by starting evacuation. Thereby, the α-cobalt hydroxide layer is highly oxidized by contact of the particles with air, and the particles are dried.

【0022】工程(d)に続いて、得られた粒子を水
洗、脱水および乾燥する後工程を実施することにより、
乾燥した目的のアルカリ二次電池用正極物質粒子、すな
わち水酸化ニッケルを核としその表面に均一なγ−オキ
シ水酸化コバルト層を有するほぼ球形の粒子が得られ
る。
Following the step (d), a post-step of washing, dehydrating and drying the obtained particles is carried out, whereby
Dried positive electrode material particles for an alkaline secondary battery, that is, substantially spherical particles having nickel hydroxide as a nucleus and having a uniform γ-cobalt oxyhydroxide layer on the surface are obtained.

【0023】上記の方法により得られたアルカリ二次電
池用正極物質粒子は、表1に示すように従来の回分式流
動法で得られた正極物質粒子と同等の物性を有する。
As shown in Table 1, the cathode material particles for an alkaline secondary battery obtained by the above method have the same physical properties as the cathode material particles obtained by a conventional batch flow method.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【実施例】本発明を実施例によりさらに詳細に説明す
る。なお、実施例で使用した各測定方法は以下にまとめ
た。
EXAMPLES The present invention will be described in more detail with reference to Examples. The measurement methods used in the examples are summarized below.

【0026】(TAP密度、BULK密度):以下の手順
で測定した。測定機器は、SEISHIN TAPDE
NSER KYT3000を用いた。48meshのふるい
で測定粉を20mlセルに自然落下充填する。KYT30
00で200回タッピングし、充填体積を測定する。 TAP密度 = 充填量(g)/充填体積(ml) BULK密度 = 充填量(g)/20(セル体積)(ml)
(TAP density, BULK density): Measured according to the following procedure. The measuring instrument is SEISHIN TAPDE
NSER KYT3000 was used. The measurement powder is naturally dropped and filled into a 20 ml cell with a 48 mesh sieve. KYT30
Tap 200 times at 00 and measure the fill volume. TAP density = filling amount (g) / filling volume (ml) BULK density = filling amount (g) / 20 (cell volume) (ml)

【0027】(平均粒径):以下の手順で測定した。レ
ーザー粒度分析計(セイシン製 PRO−7000S)
をセットしてブランク測定する。超音波分散槽に界面活
性剤(エキストラン)2〜3滴添加する。数mlサンプル
を投入し、超音波分散を行いながら粒度分布を測定す
る。重量50%相当径を平均粒径として読み取る。
(Average particle size): Measured according to the following procedure. Laser particle size analyzer (PRO-7000S manufactured by Seisin)
And set a blank measurement. Add 2 to 3 drops of surfactant (extran) to the ultrasonic dispersion tank. A few ml sample is charged and the particle size distribution is measured while performing ultrasonic dispersion. The diameter equivalent to 50% by weight is read as the average particle diameter.

【0028】(半値幅(101)):以下の手順で測定し
た。測定用セルに測定紛を塗布する。X線回折装置(島
津製XD−D1)にて38.4°での半値幅を測定す
る。 測定条件 ターゲット:Cu、管電圧:40kV、管電流:30m
A、発散スリット:1deg.、散乱スリット:1deg.、受
光スリット:0.3mm、走査軸:θ−2θ、走査範
囲:30〜45deg.、走査モード:連続、走査速度:2
deg./min、サンプリング幅:0.043deg.、プリセッ
ト時間:0.4sec.、フルスケール:2.0kcps. 処理条件 平滑化点数:17点、バックグラウンド除去:自動、K
α1−Kα2分離:実行
(Half width (101)): Measured according to the following procedure. A measuring powder is applied to the measuring cell. The half width at 38.4 ° is measured with an X-ray diffractometer (XD-D1 manufactured by Shimadzu). Measurement conditions Target: Cu, tube voltage: 40 kV, tube current: 30 m
A, divergence slit: 1 deg., Scattering slit: 1 deg., Light receiving slit: 0.3 mm, scanning axis: θ-2θ, scanning range: 30-45 deg., Scanning mode: continuous, scanning speed: 2
deg./min, sampling width: 0.043 deg., preset time: 0.4 sec., full scale: 2.0 kcps. Processing conditions Smoothing points: 17 points, background removal: automatic, K
α1-Kα2 separation: execution

【0029】(抵抗値):抵抗値は以下の手順で測定す
る。サンプル5gを0.1gの単位まで秤量し、内径3
0mm、高さ3mmの塩化ビニル製円筒に入れる。プレ
ス機で上記円筒の両端から100kNの圧力をかけ、得
られるペレット状のサンプルを更にSUS製円筒で挟み
100kNの圧力をかける。これをデジタルマルチメー
タを使用して活物質間抵抗値を測定する。
(Resistance value): The resistance value is measured according to the following procedure. 5 g of sample is weighed to the nearest 0.1 g,
Place in a 0 mm, 3 mm height vinyl chloride cylinder. A pressure of 100 kN is applied from both ends of the cylinder by a press machine, and the obtained pellet-shaped sample is further sandwiched between SUS cylinders and a pressure of 100 kN is applied. The resistance value between the active materials is measured using a digital multimeter.

【0030】実施例 1 装置:図1に示す構造の本体加熱用ジャケット4を備え
た製造装置1を準備した。この装置の基本仕様は下記の
通りである。
Example 1 Apparatus: A manufacturing apparatus 1 having a main body heating jacket 4 having the structure shown in FIG. 1 was prepared. The basic specifications of this device are as follows.

【0031】上記製造装置1のジャケット4に、0.4k
g/cm2G(110℃)の飽和蒸気を供給して本体容器2
の内部を加熱し、内部温度が80℃に達した時点に球状
水酸化コバルト被着水酸化ニッケル粒子80kgを投入
した。撹拌機を起動して回転数250rpmで撹拌を開
始し、ジャケット3への飽和水蒸気の供給を継続して約
10分間で内部温度を80℃まで加温した。内部温度が
80℃に達した時点に、上記撹拌を継続しながらスプレ
ーノズル6から48%水酸化ナトリウム水溶液7.5k
gを約2分間で供給して、温度の上昇した水酸化コバル
ト被着水酸化ニッケル粒子上に満遍なくコーティングし
た。水酸化ナトリウム水溶液の全量を供給した後、排気
を開始し、それに伴って空気導入口8から空気を容器本
体内に導入しながら、撹拌機の回転数を220rpmに
低下させて撹拌を継続し、本体内温度を80℃の一定温
度に維持し、本体内の水分を蒸発させ、約30分で乾燥
粒子を得た。得られた乾燥粒子を、水中に投入、撹拌し
て付着しているアルカリ分などの不純物を水中に溶解さ
せた後、粒子を沈降させ上澄み液をデカントした。次い
で沈降した粒子をプレスを用いて脱水し約10%の水分
を含有するケーキを回収し、このケーキを熱風乾燥機を
使用して水分含有率が1%以下になるまで乾燥し、目的
の高次酸化水酸化コバルト被覆水酸化ニッケル粒子を得
た。得られた粒子の諸特性を、原料粒子の特性および従
来の回分式流動乾燥装置を使用して製造した粒子の特性
と共に表2中に示す。
The jacket 4 of the above-mentioned manufacturing apparatus 1
g / cm 2 G (110 ° C.) to supply saturated steam
Was heated, and when the internal temperature reached 80 ° C., 80 kg of spherical cobalt hydroxide-coated nickel hydroxide particles were charged. The stirrer was started to start stirring at a rotation speed of 250 rpm, and the supply of saturated steam to the jacket 3 was continued, and the internal temperature was raised to 80 ° C. in about 10 minutes. At the time when the internal temperature reaches 80 ° C., the above stirring is continued and the 48% aqueous sodium hydroxide solution 7.5 k is sprayed from the spray nozzle 6.
g was fed in about 2 minutes to evenly coat the elevated temperature cobalt hydroxide coated nickel hydroxide particles. After the entire amount of the sodium hydroxide aqueous solution is supplied, the exhaust is started, and while the air is introduced from the air inlet 8 into the container body, the rotation speed of the stirrer is reduced to 220 rpm, and the stirring is continued. The temperature inside the main body was maintained at a constant temperature of 80 ° C., and water in the main body was evaporated to obtain dry particles in about 30 minutes. The obtained dried particles were poured into water and stirred to dissolve impurities such as adhered alkalis in water, then the particles were settled and the supernatant liquid was decanted. Next, the sedimented particles are dehydrated using a press to collect a cake containing about 10% of water, and the cake is dried using a hot air drier until the water content becomes 1% or less. Thus, nickel hydroxide particles coated with cobalt hydroxide oxide were obtained. Various properties of the obtained particles are shown in Table 2 together with the properties of the raw material particles and the properties of the particles produced using a conventional batch-type fluidized-bed dryer.

【0032】[0032]

【表2】 [Table 2]

【0033】表2に示したように、本発明の装置および
方法を用いて得られた正極物質粒子は、従来法で得られ
た粒子に匹敵する粒子特性、特にTAP密度を有してい
る。また、反応に要した製品当たりの蒸気消費量は加熱
空気により粒子を流動化させる従来法の約1/2であっ
た。
As shown in Table 2, the cathode material particles obtained using the apparatus and method of the present invention have particle properties, particularly TAP density, comparable to those obtained by the conventional method. In addition, the amount of steam consumed per product required for the reaction was about half that of the conventional method in which particles were fluidized by heated air.

【0034】[0034]

【発明の効果】本発明は、装置本体内における粒子の流
動を撹拌力に依存し大量の空気の加熱を必要としないの
で消費エネルギーが小さく、マイクロ波による補助加熱
を使用する必要がなく正極物質の製造コスト低下させ
る。本発明は、アルカリ電池用正極物質の安価な製造方
法を提供するものであり、その産業的意義はきわめて大
きい。
According to the present invention, since the flow of particles in the apparatus main body depends on the stirring force and does not require heating of a large amount of air, the energy consumption is small, and there is no need to use auxiliary heating by microwaves. Lower manufacturing costs. The present invention provides an inexpensive method for producing a cathode material for an alkaline battery, and its industrial significance is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で使用する縦型高速混合造粒装置の一態
様を示す断面図である。
FIG. 1 is a cross-sectional view showing one embodiment of a vertical high-speed mixing granulator used in the present invention.

【符号の説明】[Explanation of symbols]

1:縦型高速混合造粒装置 2:容器本体 3:撹拌機 4:本体加熱用ジャケット 5:原料投入口 6:スプレーノズル 7:排気口 8:空気導入口 9:チョッパー 1: Vertical high-speed mixing granulator 2: Container body 3: Stirrer 4: Body heating jacket 5: Raw material input port 6: Spray nozzle 7: Exhaust port 8: Air inlet 9: Chopper

───────────────────────────────────────────────────── フロントページの続き (72)発明者 飯田 得代志 福井県福井市白方町45字砂浜割5番10 株 式会社田中化学研究所内 Fターム(参考) 4G048 AA03 AB01 AB05 AC06 AD04 AE05 5H050 AA19 BA11 CA03 CA04 FA17 FA18 GA02 GA10 GA21 GA27 GA29 HA01 HA14  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Tokuyoshi Iida 45-10, Shirahama-cho, Fukui-shi, Fukui Prefecture 5-10, Sunahamawari F-term in Tanaka Chemical Laboratory Co., Ltd. 4G048 AA03 AB01 AB05 AC06 AD04 AE05 5H050 AA19 BA11 CA03 CA04 FA17 FA18 GA02 GA10 GA21 GA27 GA29 HA01 HA14

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 (a) 上蓋に空気導入口および排気口
を設けたジャケット付き縦型高速混合造粒装置のジャケ
ットに水蒸気を導入し、本体内部を50〜130℃に加
熱する工程、 (b) ジャケットへの水蒸気の導入を継続しながら、
本体内にα−水酸化コバルト被着水酸化ニッケル粒子を
投入して撹拌を開始し、α−水酸化コバルト被着水酸化
ニッケル粒子を40〜120℃に加熱する工程、 (c) スプレーノズルからアルカリ金属水酸化物水溶
液をα−水酸化コバルト被着水酸化ニッケル粒子上に噴
霧しながら、撹拌を継続して粒子を球形化する工程、お
よび(d) 排気を開始し装置内に空気を導入しながら
撹拌およびジャケットへの水蒸気の導入を継続し、α−
水酸化コバルトをγ−オキシ水酸化コバルトに高次酸化
しそして粒子を乾燥させる工程、を含み、マイクロ波に
よる補助加熱を使用しないことを特徴とするアルカリ二
次電池用正極物質の製造方法。
1. A step of introducing steam into a jacket of a vertical high-speed mixing and granulating apparatus equipped with a jacket provided with an air inlet and an air outlet in an upper lid, and heating the inside of the main body to 50 to 130 ° C., (b) ) While continuing to introduce steam into the jacket,
A step of introducing α-cobalt hydroxide-coated nickel hydroxide particles into the body, starting stirring, and heating the α-cobalt hydroxide-coated nickel hydroxide particles to 40 to 120 ° C., (c) from a spray nozzle A step of spraying an aqueous solution of an alkali metal hydroxide onto the α-cobalt hydroxide-coated nickel hydroxide particles while continuing to stir the particles, and (d) starting exhaust and introducing air into the apparatus While continuing stirring and introducing steam into the jacket, α-
A method for highly oxidizing cobalt hydroxide to γ-cobalt oxyhydroxide and drying the particles, wherein no auxiliary heating by microwave is used, and a method for producing a cathode material for an alkaline secondary battery.
【請求項2】 原料のα−水酸化コバルト被着水酸化ニ
ッケル粒子が、湿式中和法により得られた水酸化ニッケ
ル粒子を核としその表面にα−水酸化コバルトを被着さ
せた粒子である請求項1記載の方法。
2. The raw material α-cobalt hydroxide-coated nickel hydroxide particles are particles having nickel hydroxide particles obtained by a wet neutralization method as nuclei and having α-cobalt hydroxide adhered to the surface thereof. The method of claim 1 wherein:
【請求項3】 工程(c)で噴霧する水酸化アルカリ金
属水溶液が、32〜48%水酸化ナトリウム水溶液であ
る請求項1記載の方法。
3. The method according to claim 1, wherein the alkali metal hydroxide aqueous solution sprayed in the step (c) is a 32-48% sodium hydroxide aqueous solution.
JP2001050077A 2001-02-26 2001-02-26 Method for producing positive electrode active material for alkaline secondary battery Expired - Fee Related JP4737849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001050077A JP4737849B2 (en) 2001-02-26 2001-02-26 Method for producing positive electrode active material for alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001050077A JP4737849B2 (en) 2001-02-26 2001-02-26 Method for producing positive electrode active material for alkaline secondary battery

Publications (2)

Publication Number Publication Date
JP2002255562A true JP2002255562A (en) 2002-09-11
JP4737849B2 JP4737849B2 (en) 2011-08-03

Family

ID=18911095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001050077A Expired - Fee Related JP4737849B2 (en) 2001-02-26 2001-02-26 Method for producing positive electrode active material for alkaline secondary battery

Country Status (1)

Country Link
JP (1) JP4737849B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335154A (en) * 2006-06-13 2007-12-27 Tanaka Chemical Corp Alkaline battery cathode active material
CN113003616A (en) * 2021-05-25 2021-06-22 河南科隆新能源股份有限公司 Method for improving specific surface area of lithium ion battery anode material precursor
EP4239267A1 (en) * 2022-03-04 2023-09-06 Dae Sung Machinery Co., Ltd. Cathode material integrated processing device
EP4239265A1 (en) * 2022-03-04 2023-09-06 Dae Sung Machinery Co., Ltd. Cathode material integrated processing device
EP4239266A1 (en) * 2022-03-04 2023-09-06 Dae Sung Machinery Co., Ltd. Cathode material integrated processing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI670108B (en) * 2018-06-12 2019-09-01 豐能科技股份有限公司 Dry sprayer structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148145A (en) * 1994-09-20 1996-06-07 Sanyo Electric Co Ltd Nickel electrode active material, nickel electrode and nickel-alkaline battery using the material, and manufacture thereof
JPH1197008A (en) * 1996-12-24 1999-04-09 Matsushita Electric Ind Co Ltd Alkaline storage battery, positive electrode active material of it, and manufacture of them
JP2001052695A (en) * 1999-08-10 2001-02-23 Tanaka Chemical Corp Manufacture of positive electrode active material for alkaline storage battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148145A (en) * 1994-09-20 1996-06-07 Sanyo Electric Co Ltd Nickel electrode active material, nickel electrode and nickel-alkaline battery using the material, and manufacture thereof
JPH1197008A (en) * 1996-12-24 1999-04-09 Matsushita Electric Ind Co Ltd Alkaline storage battery, positive electrode active material of it, and manufacture of them
JP2001052695A (en) * 1999-08-10 2001-02-23 Tanaka Chemical Corp Manufacture of positive electrode active material for alkaline storage battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335154A (en) * 2006-06-13 2007-12-27 Tanaka Chemical Corp Alkaline battery cathode active material
CN113003616A (en) * 2021-05-25 2021-06-22 河南科隆新能源股份有限公司 Method for improving specific surface area of lithium ion battery anode material precursor
CN113003616B (en) * 2021-05-25 2021-07-20 河南科隆新能源股份有限公司 Method for improving specific surface area of lithium ion battery anode material precursor
EP4239267A1 (en) * 2022-03-04 2023-09-06 Dae Sung Machinery Co., Ltd. Cathode material integrated processing device
EP4239265A1 (en) * 2022-03-04 2023-09-06 Dae Sung Machinery Co., Ltd. Cathode material integrated processing device
EP4239266A1 (en) * 2022-03-04 2023-09-06 Dae Sung Machinery Co., Ltd. Cathode material integrated processing device

Also Published As

Publication number Publication date
JP4737849B2 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
KR100271187B1 (en) Method of producing cathode for batteries
JP6257636B2 (en) Reactor for mixing and production method using the reactor
CN102137717A (en) Catalyst and method for pyrolysis of organic substances and method for manufacturing such catalyst
CN1080244C (en) Spheroidally agglomerated basic cobalt (II) carbonate and spheroidally agglomerated cobalt (II) hydroxide, process for their production and their use
JPH04505827A (en) Storage battery paste manufacturing method
TW200815287A (en) Porous calcium oxide particulate and porous calcium hydroxide particulate
US20160167979A1 (en) Method for making spherical cobalt oxyhydroxide
TW301070B (en)
JP2002255562A (en) Method for manufacturing positive electrode active material for alkali secondary battery
CN103754865B (en) The preparation method of village hollowing graphite material and prepared village hollowing graphite material thereof
CN106896148A (en) A kind of preparation method of Prussian blue/graphene nanocomposite material
CN105347375B (en) Production device of pseudo-boehmite and method thereof
CN115448278A (en) Method for continuously preparing iron phosphate and application
TWI239934B (en) Process for producing lithium manganate
US9085466B2 (en) Method for producing precipitated calcium carbonate using fowl egg shells
CN109921019A (en) The preparation method of negative electrode tab
TW416166B (en) Manufacturing method of anode active material of alkaline battery, the anode using the active material, and manufacturing method of alkaline battery using the anode
US3963517A (en) Process for the manufacture of lead storage battery electrodes and apparatus for carrying out the process
CN108539213A (en) A kind of corncob catalyst, the preparation method and microbiological fuel cell of Catalytic Layer
CN114082976A (en) Preparation method of high-crystallinity nano silver powder
RU2291837C2 (en) Method of treatment of graphite and the reactor for its realization
KR0184742B1 (en) Process for preparing antibiotic and porous silica gel powder
JP4239255B2 (en) Titanium oxide porous sintered body, production method and use thereof
CN106495224A (en) A kind of SBA 15 loads the preparation method of manganese dioxide
JP2010120842A (en) Method for producing tri-metal tetraoxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101203

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110119

TRDD Decision of grant or rejection written
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110418

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110426

R150 Certificate of patent or registration of utility model

Ref document number: 4737849

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees