JP4734825B2 - Alpha quartz powder and production method thereof - Google Patents

Alpha quartz powder and production method thereof Download PDF

Info

Publication number
JP4734825B2
JP4734825B2 JP2003343242A JP2003343242A JP4734825B2 JP 4734825 B2 JP4734825 B2 JP 4734825B2 JP 2003343242 A JP2003343242 A JP 2003343242A JP 2003343242 A JP2003343242 A JP 2003343242A JP 4734825 B2 JP4734825 B2 JP 4734825B2
Authority
JP
Japan
Prior art keywords
quartz powder
powder
particles
quartz
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003343242A
Other languages
Japanese (ja)
Other versions
JP2005104797A (en
Inventor
和道 柳澤
永平 朱
歩武 恩田
浩二 梶芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2003343242A priority Critical patent/JP4734825B2/en
Publication of JP2005104797A publication Critical patent/JP2005104797A/en
Application granted granted Critical
Publication of JP4734825B2 publication Critical patent/JP4734825B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

本発明は、α石英粉末およびその製造方法に関する。より詳しくは、樹脂のフィラーとして好適なα石英粉末およびその製造方法に関する。   The present invention relates to α-quartz powder and a method for producing the same. More specifically, the present invention relates to an α-quartz powder suitable as a resin filler and a method for producing the same.

α石英粉末は、樹脂フィラーとして用いられており、例えば、半導体素子の封止材用のエポキシ樹脂等の樹脂に加えるフィラーとして用いられている。α石英粉末をフィラーとして封止材用樹脂に加える目的の一つは、半導体を封止している樹脂成形体の熱伝導度の向上にある。近年、半導体素子の高集積化に伴って、半導体素子から発生する熱の放散が問題となっているので、従来よりさらに高い熱伝導度を示す樹脂成形体を与えるα石英粉末が求められていた。そのα石英粉末としては、従来は天然の珪砂を粉砕して得られ、形状が不定形の多結晶粒子からなり、平均一次粒径が20μm程度以上70μm程度以下の範囲のものが用いられていた(例えば、特許文献1参照。)   The α-quartz powder is used as a resin filler. For example, it is used as a filler to be added to a resin such as an epoxy resin for a semiconductor element sealing material. One of the purposes of adding α-quartz powder as a filler to the encapsulant resin is to improve the thermal conductivity of the resin molded body encapsulating the semiconductor. In recent years, with the high integration of semiconductor elements, the dissipation of heat generated from the semiconductor elements has become a problem. Therefore, there has been a demand for α-quartz powder that gives a resin molded body having higher thermal conductivity than before. . As the α-quartz powder, conventionally obtained by pulverizing natural silica sand, it is composed of polycrystalline particles having an irregular shape, and those having an average primary particle size in the range of about 20 μm to 70 μm have been used. (For example, refer to Patent Document 1.)

特開平10−95607号公報JP-A-10-95607

本発明の目的は、樹脂フィラーとして用いた場合に、従来より高い熱伝導度を示す樹脂成形体を与えるα石英粉末およびその製造方法を提供することにある。   An object of the present invention is to provide an α-quartz powder and a method for producing the same that give a resin molded body exhibiting a higher thermal conductivity than that in the past when used as a resin filler.

本発明者らは、前記課題を解決するため、α石英粉末について鋭意検討した結果、一定の範囲の平均一次粒径を有し、かつ多面体形状を有する単結晶粒子からなるα石英粉末を樹脂に加えるフィラーとして用いると、樹脂成形体が従来より高い熱伝導度を示すことを見出した。また、本発明者らは、SiO2を水酸化ナトリウムの水溶液中で、一定の温度範囲において水熱処理することにより、前記一定の範囲の平均一次粒径を有し、かつ多面体形状を有し、単結晶粒子からなるα石英粉末が得られることを見出し、本発明を完成させるに至った。 In order to solve the above-mentioned problems, the present inventors have intensively studied α-quartz powder, and as a result, α-quartz powder composed of single crystal particles having an average primary particle diameter in a certain range and having a polyhedral shape is used as a resin. It has been found that when used as a filler to be added, the resin molded body exhibits higher thermal conductivity than before. In addition, the present inventors hydrothermally treated SiO 2 in an aqueous solution of sodium hydroxide in a certain temperature range, thereby having an average primary particle size in the certain range and having a polyhedral shape, The inventors have found that α-quartz powder composed of single crystal particles can be obtained, and have completed the present invention.

すなわち本発明は、平均一次粒径が0.2μm以上2μm以下の範囲であり、多面体形状を有する単結晶粒子からなることを特徴とするα石英粉末を提供する。また本発明は、SiO2を、濃度が0.2M以上0.5M以下の範囲である水酸化ナトリウムの水溶液を用いて、240℃以上350℃以下の温度範囲で水熱処理することを特徴とするα石英粉末の製造方法を提供する。 That is, the present invention provides an α-quartz powder characterized in that the average primary particle diameter is in the range of 0.2 μm or more and 2 μm or less and is composed of single crystal particles having a polyhedral shape. Further, the present invention is characterized in that SiO 2 is hydrothermally treated at a temperature range of 240 ° C. or higher and 350 ° C. or lower using an aqueous solution of sodium hydroxide having a concentration of 0.2 M or higher and 0.5 M or lower. A method for producing α-quartz powder is provided.

本発明のα石英粉末は、樹脂のフィラーとして用いた場合、樹脂成形体の熱伝導度を従来より高めることができるので、本発明のα石英粉末は半導体素子の封止材用の樹脂のフィラーとして好適であり、さらに本発明の製造方法により、平均一次粒径が0.2μm〜2μmであり、均一な多面体形状を有する単結晶粒子からなるα石英粉末を製造することができるので、本発明は工業的に極めて重要である。   When the α-quartz powder of the present invention is used as a resin filler, the thermal conductivity of the resin molded body can be increased as compared with the conventional one. Therefore, the α-quartz powder of the present invention is a resin filler for a semiconductor element sealing material. Further, according to the present invention, the production method of the present invention makes it possible to produce α-quartz powder composed of single crystal particles having an average primary particle size of 0.2 μm to 2 μm and having a uniform polyhedral shape. Is extremely important industrially.

本発明のα石英粉末は、平均一次粒径が0.2μm以上2μm以下の範囲である。平均一次粒径が前記の範囲の場合に、本発明のα石英粉末を樹脂のフィラーとして用いた場合に、樹脂成形体が高い熱伝導度を示す。   The α-quartz powder of the present invention has an average primary particle size in the range of 0.2 μm to 2 μm. When the average primary particle size is in the above range, the resin molded product exhibits high thermal conductivity when the α-quartz powder of the present invention is used as a resin filler.

本発明のα石英粉末は単結晶粒子からなり、粒子には結晶面が現れているので多面体形状を有しており、形状が均一である。本発明のα石英粉末の粒子は単結晶であるので、α石英の結晶が本来有する高い熱伝導度を有する。一つの粒子が単結晶ではなく、α石英以外のクリストバライトやガラスが含有されている場合は、α石英粉末を樹脂のフィラーとして用いた場合に、樹脂成形体が高い熱伝導度を示さない。   The α-quartz powder of the present invention consists of single crystal particles, and since the crystal planes appear in the particles, it has a polyhedral shape and a uniform shape. Since the particles of the α-quartz powder of the present invention are single crystals, the α-quartz crystals have a high thermal conductivity inherently. When one particle is not a single crystal and contains cristobalite or glass other than α-quartz, the resin molded body does not exhibit high thermal conductivity when α-quartz powder is used as a filler for the resin.

本発明のα石英粉末をフィラーとして用いることができる樹脂としては、エポキシ樹脂、イミド樹脂、ポリエステル樹脂、シリコーン樹脂、シリコーンゴム等が挙げられる。また、フィラーとして用いるに際して、樹脂との濡れ性の改善や、他の機能を改善するために、分散剤、脱泡剤、離型剤、難燃剤、着色剤等の各種添加物を添加することができる。   Examples of the resin that can use the α-quartz powder of the present invention as a filler include epoxy resin, imide resin, polyester resin, silicone resin, and silicone rubber. In addition, when used as a filler, various additives such as a dispersant, a defoaming agent, a release agent, a flame retardant, and a colorant should be added in order to improve wettability with the resin and improve other functions. Can do.

本発明のα石英粉末の粒子は、表面が安定で吸着水分が低いため、樹脂に加えてフィラーとして用いた場合、フィラーに吸着されている水分の蒸発により樹脂成形体にクラックが発生することを抑制することができる。また、α石英粒子の形状が均一なため、より高密度に充填することができ、さらに高い熱伝導度を有する樹脂成形体を得ることができる。また、従来と同じ程度の熱伝導度で十分な用途では、樹脂に対するα石英粉末の添加量を低減することができることから、α石英粉末を加えた樹脂の成形性を改善することができる。   Since the α-quartz powder particles of the present invention have a stable surface and low moisture adsorption, when used as a filler in addition to resin, cracks occur in the resin molded body due to evaporation of moisture adsorbed on the filler. Can be suppressed. Moreover, since the shape of the α-quartz particles is uniform, it can be filled with a higher density, and a resin molded body having a higher thermal conductivity can be obtained. In addition, in applications where a thermal conductivity of the same level as before is sufficient, the amount of α-quartz powder added to the resin can be reduced, so that the moldability of the resin to which α-quartz powder is added can be improved.

また本発明のα石英粉末は、単結晶粒子からなり粒子の形状が均一であり、分散性に優れ硬度も高いため、研磨材用にも適している。本発明のα石英粉末を分散液に分散させて研磨材用組成物を作製することができる。分散液は用途によって水、有機溶媒を用いることができる。また研磨用パッドやα石英粉末の分散液に対する濡れ性を改良するため、研磨材用組成物には界面活性剤を添加することもできる。さらに、腐食防止剤、殺菌剤などを添加することもできる。本発明のα石英粉末を用いた研磨材用組成物を用いると、被研磨面の表面粗さが小さくなるので、シリコンウエハ、ガリウム砒素等の化合物半導体のウエハ、磁気デスク基板、水晶基板の研磨に好適である。   Further, the α-quartz powder of the present invention is made of single crystal particles, has a uniform particle shape, has excellent dispersibility and high hardness, and is therefore suitable for use as an abrasive. The composition for abrasives can be prepared by dispersing the α-quartz powder of the present invention in a dispersion. As the dispersion, water or an organic solvent can be used depending on the application. In order to improve the wettability with respect to the polishing pad or the dispersion liquid of the α-quartz powder, a surfactant may be added to the polishing composition. Furthermore, a corrosion inhibitor, a disinfectant, etc. can also be added. When the composition for polishing material using the α-quartz powder of the present invention is used, the surface roughness of the surface to be polished is reduced, so that polishing of silicon wafers, compound semiconductor wafers such as gallium arsenide, magnetic desk substrates, and quartz substrates is performed. It is suitable for.

次に、本発明の製造方法について説明する。
本発明の製造方法は、SiO2を、濃度が0.2M以上0.5M以下の範囲である水酸化ナトリウムの水溶液を用いて、240℃以上350℃以下の温度範囲で水熱処理を行うα石英粉末の製造方法である。
Next, the manufacturing method of this invention is demonstrated.
In the production method of the present invention, α quartz that performs hydrothermal treatment in a temperature range of 240 ° C. or more and 350 ° C. or less using an aqueous solution of sodium hydroxide having a concentration of 0.2 M or more and 0.5 M or less is used for SiO 2. It is a manufacturing method of powder.

本発明の製造方法で用いることができる出発原料のSiO2は、本発明の水熱処理の条件で水酸化ナトリウム水溶液に溶解するシリカであればよく、例えば、非晶質シリカ、コロイダルシリカ、フュームドシリカ、石英ガラス粒子等を用いることができる。その粒径は、水酸化ナトリウム水溶液への分散、溶解が可能であればよいが、好ましくは平均一次粒径が10nm〜10μm、さらに好ましくは10nm〜1μmである。 The starting material SiO 2 that can be used in the production method of the present invention may be any silica that can be dissolved in an aqueous sodium hydroxide solution under the conditions of the hydrothermal treatment of the present invention. For example, amorphous silica, colloidal silica, fumed Silica, quartz glass particles and the like can be used. The particle diameter is not limited as long as it can be dispersed and dissolved in an aqueous sodium hydroxide solution, but the average primary particle diameter is preferably 10 nm to 10 μm, more preferably 10 nm to 1 μm.

このようなSiO2を水酸化ナトリウムの水溶液に分散させ、オートクレーブに入れて水熱処理を行う。水酸化ナトリウムの水溶液の濃度は、0.1M以上2M以下の範囲であり、0.2M以上0.5M以下の範囲が好ましい。濃度が低すぎると、所定の平均一次粒径のα石英粉末とはならないおそれがあり、濃度が高すぎると、多結晶からなるα石英粒子が多く混入するおそれがある。SiO2の量は、水酸化ナトリウムの水溶液に対して1g/L以上100g/L以下が好ましい。1g/L未満では所定の平均一次粒径のα石英粉末とならない傾向があり、100g/Lを超えると非晶質(ガラス)のSiO2粒子が混入する傾向がある。水熱処理前には、SiO2は水酸化ナトリウムの水溶液中に、例えば、攪拌、超音波照射等の方法により分散させておくことが好ましい。 Such SiO 2 is dispersed in an aqueous solution of sodium hydroxide and placed in an autoclave for hydrothermal treatment. The concentration of the aqueous solution of sodium hydroxide is in the range of 0.1M to 2M, preferably in the range of 0.2M to 0.5M. If the concentration is too low, the α-quartz powder having a predetermined average primary particle size may not be obtained. If the concentration is too high, a large amount of polycrystalline α-quartz particles may be mixed. The amount of SiO 2 is preferably 1 g / L or more and 100 g / L or less with respect to the aqueous solution of sodium hydroxide. If it is less than 1 g / L, there is a tendency that α quartz powder having a predetermined average primary particle size is not obtained, and if it exceeds 100 g / L, amorphous (glass) SiO 2 particles tend to be mixed. Prior to the hydrothermal treatment, SiO 2 is preferably dispersed in an aqueous solution of sodium hydroxide by a method such as stirring or ultrasonic irradiation.

水熱処理は、オートクレーブを密閉した後、240℃以上350℃以下の温度範囲で、通常は5時間〜30時間保持して行う。この温度範囲未満では平均一次粒径が所定の範囲未満となる傾向があり、この温度範囲を超えると粒子が強く凝集して単結晶粒子が生成しない傾向がある。平均一次粒径は、水熱処理の温度、時間および水酸化ナトリウム水溶液濃度により変化する。水熱処理の温度は高い方が、処理時間は長い方が、また、水酸化ナトリウム水溶液の濃度は高い方が、得られるα石英粉末の平均一次粒径が大きくなる傾向がある。   The hydrothermal treatment is performed by sealing the autoclave and then maintaining it in a temperature range of 240 ° C. or higher and 350 ° C. or lower, usually for 5 to 30 hours. Below this temperature range, the average primary particle size tends to be below a predetermined range, and above this temperature range, the particles tend to agglomerate and single crystal particles tend not to be produced. The average primary particle size varies depending on the temperature and time of hydrothermal treatment and the concentration of aqueous sodium hydroxide. The higher the temperature of the hydrothermal treatment, the longer the treatment time, and the higher the concentration of the aqueous sodium hydroxide solution, the larger the average primary particle size of the α-quartz powder obtained.

ここで、水熱処理の昇温速度および降温速度の影響は特にないが、通常の装置で制御できる速度であればよい。例えば、処理温度に制御されている乾燥機に、水酸化ナトリウム水溶液とSiO2を入れたオートクレーブを投入設置する方法で生じる昇温速度を用いることができる。 Here, there are no particular effects of the temperature increase rate and the temperature decrease rate of the hydrothermal treatment, but any rate that can be controlled by a normal apparatus may be used. For example, it is possible to use a rate of temperature rise generated by a method in which an autoclave containing an aqueous sodium hydroxide solution and SiO 2 is placed in a dryer controlled to the treatment temperature.

使用するオートクレーブは、腐食性がある溶液を使用するため、耐食処理したものが好ましい。例えばハステロイ製、フッ素コーテングした鉄製のオートクレーブを使用することができる。オートクレーブはバッチ式、連続式のいずれも用いることができる。   Since the autoclave to be used uses a corrosive solution, an anticorrosive treatment is preferable. For example, an autoclave made of hastelloy or fluorine coated iron can be used. The autoclave can be either a batch type or a continuous type.

本発明の製造方法で得られるα石英粉末は、平均一次粒径が0.2μm以上2μm以下であり、単結晶であり多面体形状を有している粒子からなる。従って、各々の粒子は形状が均一でありまた硬度が高く、さらに、高い熱伝導度を有するのである。   The α-quartz powder obtained by the production method of the present invention has an average primary particle size of 0.2 μm or more and 2 μm or less, and is composed of particles having a single crystal and a polyhedral shape. Therefore, each particle has a uniform shape, a high hardness, and a high thermal conductivity.

また、用途により高い純度が必要な場合、水熱処理後に水で洗浄することにより容易に水酸化ナトリウムを除去することができる。   Moreover, when high purity is required depending on the use, sodium hydroxide can be easily removed by washing with water after hydrothermal treatment.

水熱処理後の粒子には弱い凝集が生じているが、粒子が単結晶であるため、その凝集力は弱く軽い粉砕で分散することができる。軽く粉砕する方法としては、例えば、ジェットミル、ボールミル、振動ミル、ダイノーミル等を用いる方法が挙げられる。軽く粉砕する処理により得られたα石英粉末は、樹脂のフィラーとして用いた場合、さらに充填性に優れ、高い熱伝導度を達成することができる。   Although the particles after hydrothermal treatment are weakly aggregated, since the particles are single crystals, the aggregation force is weak and can be dispersed by light pulverization. Examples of the light pulverization method include a method using a jet mill, a ball mill, a vibration mill, a dyno mill, and the like. The α-quartz powder obtained by the light pulverization treatment is further excellent in filling properties when used as a resin filler, and can achieve high thermal conductivity.

以下、本発明を実施例により説明するが、本発明はこれらによって限定されるものではない。
1. 粒子形状の観察
1次粒子の形状は粉末のSEM(走査型電子顕微鏡、日本電子株式会社製T−300)およびTEM(透過型電子顕微鏡、日立製作所製 TEMH9000NAR)により観察した。
2. 粉末の結晶相の測定
X線回折装置(リガク製 RINT2500TTR)により測定した。
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited by these.
1. Observation of Particle Shape The shape of primary particles was observed with powdered SEM (scanning electron microscope, T-300 manufactured by JEOL Ltd.) and TEM (transmission electron microscope, TEMH9000NAR manufactured by Hitachi, Ltd.).
2. Measurement of crystal phase of powder It was measured with an X-ray diffractometer (RINT 2500 TTR manufactured by Rigaku).

実施例1
日本シリカ工業製の非晶質シリカ粉末(Nipsil VN3(商品名))1.0gを0.33MのNaOH水溶液15mlに分散、15分間超音波を照射しながら攪拌した。該混合物をハステロイ製オートクレーブを用いて300℃で12時間保持して水熱処理した。生成した粒子を超音波を照射しながら15分間攪拌後、蒸留水で洗浄し、最後にアセトン洗浄して真空乾燥し粉末を得た。得られた粉末の結晶構造はα石英であった。得られた粉末の粒子は粒子形状が多面体形状であり、形状が均一な単結晶粒子であった。また、平均一次粒径は約0.5μmであった。
Example 1
1.0 g of amorphous silica powder (Nipsil VN3 (trade name)) manufactured by Nippon Silica Industry was dispersed in 15 ml of 0.33 M NaOH aqueous solution and stirred for 15 minutes while irradiating with ultrasonic waves. The mixture was hydrothermally treated using a Hastelloy autoclave at 300 ° C. for 12 hours. The produced particles were stirred for 15 minutes while irradiating with ultrasonic waves, washed with distilled water, finally washed with acetone and vacuum dried to obtain a powder. The crystal structure of the obtained powder was α quartz. The particles of the obtained powder were single crystal particles having a polyhedral shape and a uniform shape. The average primary particle size was about 0.5 μm.

実施例2
水熱処理の時間を24時間にした以外は実施例1と同様の方法で実施した。得られた粉末の結晶構造はα石英であった。得られた粉末の粒子は粒子形状が多面体形状であり、形状が均一な単結晶粒子であった。また、平均一次粒径は1μmであった。
Example 2
It was carried out in the same manner as in Example 1 except that the hydrothermal treatment time was 24 hours. The crystal structure of the obtained powder was α quartz. The particles of the obtained powder were single crystal particles having a polyhedral shape and a uniform shape. The average primary particle size was 1 μm.

実施例3
処理温度を350℃にした以外は実施例1と同様の方法で水熱処理した。得られた粉末の結晶構造はα石英であった。得られた粉末の粒子は粒子形状が多面体形状であり、形状が均一な単結晶粒子であった。また、平均一次粒径は2μmであった。得られたα石英粉末をエタノール溶媒中で湿式ボールミルを行ない、乾燥して粉末を得た。この粉末をエポキシ樹脂にα石英粒子が50重量%となるように添加した。α石英粒子にシランカップリング剤(東レシリコーン製、SH6040(商品名))をα石英粉末に対して0.1重量%加えた。エポキシ樹脂のモノマー(住友化学工業製、ELA128(商品名))100重量部に、フェノールノボラック(群栄化学製、PSM4261(商品名))を58.9重量部加え、前記シランカップリング剤含有α石英粉末を加え、ロールを用いて混練し、トランスファー成形により樹脂成形体を作製した。樹脂成形体の熱伝導度を測定した結果、2.1W/mKであった。
Example 3
Hydrothermal treatment was performed in the same manner as in Example 1 except that the treatment temperature was 350 ° C. The crystal structure of the obtained powder was α quartz. The particles of the obtained powder were single crystal particles having a polyhedral shape and a uniform shape. The average primary particle size was 2 μm. The obtained α-quartz powder was wet ball milled in an ethanol solvent and dried to obtain a powder. This powder was added to the epoxy resin so that the α-quartz particles were 50% by weight. A silane coupling agent (manufactured by Toray Silicone, SH6040 (trade name)) was added to α-quartz particles in an amount of 0.1% by weight based on α-quartz powder. 58.9 parts by weight of phenol novolac (manufactured by Gunei Chemical Co., Ltd., PSM4261 (trade name)) is added to 100 parts by weight of an epoxy resin monomer (manufactured by Sumitomo Chemical Co., Ltd., ELA128 (trade name)), and the silane coupling agent-containing α Quartz powder was added, kneaded using a roll, and a resin molded body was produced by transfer molding. It was 2.1 W / mK as a result of measuring the thermal conductivity of the resin molding.

比較例1
市販のシリカ粉末(平均一次粒径2μm、龍森製)を用いて実施例3と同様にして樹脂成形体を作製し、樹脂成形体の熱伝導度を測定した結果、1.6W/mKであった。
Comparative Example 1
A resin molded body was prepared in the same manner as in Example 3 using commercially available silica powder (average primary particle size 2 μm, manufactured by Tatsumori), and the thermal conductivity of the resin molded body was measured, and as a result, it was 1.6 W / mK. there were.

比較例2
水酸化ナトリウムの濃度を0.1Mにした以外は実施例1と同様の方法で実施した。得られた粉末はクリストバライトを含み、粒子の形状は不均一であった。
Comparative Example 2
The same operation as in Example 1 was carried out except that the concentration of sodium hydroxide was changed to 0.1M. The obtained powder contained cristobalite and the shape of the particles was uneven.

Claims (1)

平均一次粒径が0.2μm以上2μm以下の範囲であり、多面体形状を有する単結晶粒子からなることを特徴とするα石英粉末の製造方法であって、濃度が0.2M以上0.5M以下の範囲である水酸化ナトリウムの水溶液を用いて、水酸化ナトリウムの水溶液に対して1g/L以上100g/L以下の量のSiOを、240℃以上350℃以下の温度範囲で水熱処理することを特徴とするα石英粉末の製造方法。 A method for producing an α-quartz powder, characterized in that the average primary particle size is in the range of 0.2 μm to 2 μm and comprises a single crystal particle having a polyhedral shape, and the concentration is 0.2 M or more and 0.5 M or less. Hydrothermally treating SiO 2 in an amount of 1 g / L to 100 g / L with respect to the aqueous solution of sodium hydroxide in a temperature range of 240 ° C. to 350 ° C. A method for producing α-quartz powder characterized by the following.
JP2003343242A 2003-10-01 2003-10-01 Alpha quartz powder and production method thereof Expired - Fee Related JP4734825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003343242A JP4734825B2 (en) 2003-10-01 2003-10-01 Alpha quartz powder and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003343242A JP4734825B2 (en) 2003-10-01 2003-10-01 Alpha quartz powder and production method thereof

Publications (2)

Publication Number Publication Date
JP2005104797A JP2005104797A (en) 2005-04-21
JP4734825B2 true JP4734825B2 (en) 2011-07-27

Family

ID=34537281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003343242A Expired - Fee Related JP4734825B2 (en) 2003-10-01 2003-10-01 Alpha quartz powder and production method thereof

Country Status (1)

Country Link
JP (1) JP4734825B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102618926B (en) * 2011-01-31 2015-04-15 姜兴茂 Method for preparing spherical nanomonocrystalline particle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129095A (en) * 1988-11-10 1990-05-17 Nitto Chem Ind Co Ltd Production of micro quartz
JPH03112883A (en) * 1989-09-25 1991-05-14 Nippon Steel Chem Co Ltd Production of artificial rock crystal
JPH0581279U (en) * 1992-04-13 1993-11-05 株式会社明電舎 Autoclave
JPH06247709A (en) * 1993-02-24 1994-09-06 Fuji Kagaku Kk Production of fine crystalline silica
JPH07165415A (en) * 1993-12-13 1995-06-27 Shinetsu Quartz Prod Co Ltd Production of synthetic rock crystal powder
JPH11309638A (en) * 1998-04-28 1999-11-09 Kyocera Corp Vacuum suction pad
JP2002128600A (en) * 2000-10-18 2002-05-09 Takashi Honda Ordered-structure optical material and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129095A (en) * 1988-11-10 1990-05-17 Nitto Chem Ind Co Ltd Production of micro quartz
JPH03112883A (en) * 1989-09-25 1991-05-14 Nippon Steel Chem Co Ltd Production of artificial rock crystal
JPH0581279U (en) * 1992-04-13 1993-11-05 株式会社明電舎 Autoclave
JPH06247709A (en) * 1993-02-24 1994-09-06 Fuji Kagaku Kk Production of fine crystalline silica
JPH07165415A (en) * 1993-12-13 1995-06-27 Shinetsu Quartz Prod Co Ltd Production of synthetic rock crystal powder
JPH11309638A (en) * 1998-04-28 1999-11-09 Kyocera Corp Vacuum suction pad
JP2002128600A (en) * 2000-10-18 2002-05-09 Takashi Honda Ordered-structure optical material and method for producing the same

Also Published As

Publication number Publication date
JP2005104797A (en) 2005-04-21

Similar Documents

Publication Publication Date Title
JP5084670B2 (en) Silica sol and method for producing the same
JP5188175B2 (en) Silica sol and method for producing the same
US8187351B2 (en) Sol of spinous inorganic oxide particles, method of producing the sol, and polishing agent containing the sol
KR101173313B1 (en) Alkali-resistant cocoon-shaped colloidal silica particle and process for producing the same
WO2010052945A1 (en) Aspherical silica sol, process for producing the same, and composition for polishing
JP5495508B2 (en) Abrasive particle dispersion and method for producing the same
JP2009149493A (en) Nonspherical silica sol, method for producing the same and polishing composition
JP2009137791A (en) Non-spherical combined silica sol and method for producing the same
JP2009078935A (en) "konpeito" (pointed sugar candy ball)-like composite silica sol
JP6500339B2 (en) Heat dissipation sheet, coating liquid for heat dissipation sheet, and power device
JP6207345B2 (en) Method for producing silica particles
JPWO2019189610A1 (en) Method for producing silica particle dispersion, polishing composition and silica particle dispersion
JP6394115B2 (en) Resin composition, heat dissipation sheet made of resin composition, and power device device including heat dissipation sheet
JP4734825B2 (en) Alpha quartz powder and production method thereof
TWI757349B (en) Silica-based particles for polishing and abrasives
JP2009126741A (en) Non-spherical alumina-silica composite sol, method for producing the same and composition for polishing
JP5574702B2 (en) Polishing particle dispersion comprising aggregates of organic particles and silica particles, and method for producing the same
TW575656B (en) A method for preparing shape-changed nanosize colloidal silica
JP3754986B2 (en) Abrasive composition and method for preparing the same
JP7351697B2 (en) Silica particle dispersion and its manufacturing method
JP7331437B2 (en) Silica particles, silica sol, polishing composition, polishing method, semiconductor wafer manufacturing method, and semiconductor device manufacturing method
JP5421006B2 (en) Particle-linked silica sol and method for producing the same
JP5346167B2 (en) Particle-linked alumina-silica composite sol and method for producing the same
JP2010024119A (en) Method for producing confetti-like silica sol
CN111925731A (en) Calcium carbonate/silicon dioxide core-shell type nano composite abrasive as well as preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060913

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080130

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110411

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees