JP4733438B2 - Closed container for plant growth and plant growth method - Google Patents

Closed container for plant growth and plant growth method Download PDF

Info

Publication number
JP4733438B2
JP4733438B2 JP2005180140A JP2005180140A JP4733438B2 JP 4733438 B2 JP4733438 B2 JP 4733438B2 JP 2005180140 A JP2005180140 A JP 2005180140A JP 2005180140 A JP2005180140 A JP 2005180140A JP 4733438 B2 JP4733438 B2 JP 4733438B2
Authority
JP
Japan
Prior art keywords
photocatalyst
plant
container
medium
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005180140A
Other languages
Japanese (ja)
Other versions
JP2007000011A (en
Inventor
健史 大脇
健志 森川
行正 平田
豊 三堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Tsusho Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Tsusho Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Tsusho Corp, Toyota Central R&D Labs Inc filed Critical Toyota Tsusho Corp
Priority to JP2005180140A priority Critical patent/JP4733438B2/en
Publication of JP2007000011A publication Critical patent/JP2007000011A/en
Application granted granted Critical
Publication of JP4733438B2 publication Critical patent/JP4733438B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cultivation Of Plants (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)
  • Catalysts (AREA)

Description

本発明は、組織培養、植物工場、施設栽培等に用いる植物育成用容器、それを用いた植物育成方法及び植物育成用培地に関する。   The present invention relates to a plant growing container used for tissue culture, plant factory, facility cultivation, and the like, a plant growing method using the same, and a plant growing medium.

近年、組織培養、植物工場、施設栽培等、人工的に環境を制御し、植物の生育を制御しようとする技術が急速に拡大、普及している。例えば、組織培養技術による植物の繁殖法は、遺伝的に均一なクローンを季節や環境条件に関係なく、短期間に大量繁殖させることが出来る点で従来の繁殖法より優れているため、多くの栽培植物において種子繁殖と栄養繁殖に代わって行われるようになった。組織培養は無菌培養であるため、培養に供する植物苗は細菌や糸状菌に感染しておらず、茎頂分裂組織を含む茎頂部分を切除して培養するとウイルスフリーあるいはウイルスの密度が著しく低い種苗を生産することができ、収量や品質が高まるという効果がある。   In recent years, techniques for artificially controlling the environment and controlling plant growth, such as tissue culture, plant factories, and facility cultivation, are rapidly expanding and spreading. For example, the plant breeding method using tissue culture technology is superior to the conventional breeding method in that genetically uniform clones can be propagated in large quantities in a short period of time regardless of the season or environmental conditions. In place of seed and vegetative propagation in cultivated plants. Since tissue culture is aseptic culture, plant seedlings used for culture are not infected with bacteria or filamentous fungi, and excision and cultivation of the shoot apical portion including shoot apical meristem is virus-free or virus density is extremely low Seed and seedlings can be produced, and the yield and quality are increased.

しかし、従来の組織培養技術は、密閉容器に寒天等のゲル化剤を加えた培地上に組織を培養するため、容器内の二酸化炭素が著しく不足することが知られている(例えば、非特許文献1を参照)。これは、炭素源として糖を添加している場合においても植物組織が二酸化炭素を吸収していることを示している。   However, it is known that the conventional tissue culture technique cultivates tissue on a medium in which a gelling agent such as agar is added to a sealed container, so that carbon dioxide in the container is remarkably insufficient (for example, non-patent Reference 1). This indicates that the plant tissue absorbs carbon dioxide even when sugar is added as a carbon source.

このような問題を解決するためにいくつかのアプローチがなされている。例えば、培養室を高濃度の二酸化炭素濃度で維持し、培養器に通気性のフィルタを貼り付けて、もしくは通気性フィルムで構成された培養器を用いて、容器内部と外部との換気率を上げ、培養器内部に二酸化炭素を供給しようとするもの(例えば、特許文献1、非特許文献1および2を参照)、あるいは、培養器そのものに配管を施し、フィルタを介して培養器内部に直接二酸化炭素ガスを送り込もうとするもの(例えば、非特許文献1を参照)等が挙げられる。   Several approaches have been taken to solve such problems. For example, maintaining the culture chamber at a high concentration of carbon dioxide, attaching an air permeable filter to the incubator, or using an incubator configured with an air permeable film, the ventilation rate between the inside and outside of the container can be adjusted. To supply carbon dioxide inside the incubator (see, for example, Patent Document 1, Non-Patent Documents 1 and 2), or to the incubator itself, and directly into the incubator through a filter The thing which tries to send in carbon dioxide gas (for example, refer nonpatent literature 1) etc. are mentioned.

特開平11−275995号公報JP-A-11-275995 古在豊樹著、「自然と科学技術シリーズ 植物組織培養の新段階」、農文協、1998年Toyoki Kozai, “Natural and Science and Technology Series: A New Stage in Plant Tissue Culture”, Agricultural Bunkyo, 1998 田中道男ら、「フィルム培養システムを用いたファレノプシスのクローン苗生産におけるCO2施用効果」、園学雑、68別1、1999年、p.291Michio Tanaka et al., “Effects of CO2 Application on Phalaenopsis Clone Seedling Production Using Film Culture System”, Sonogaku miscellaneous, 68, 1, 1999, p. 291

しかし、これらの培養方法には次に掲げるような問題点があった。まず、通気フィルタは、換気と同時に水分の蒸発を招き、培地にゲル化剤を使用した場合には乾燥の害が植物に生じ、液体支持材培養の場合は培地が減少するため、定期的に水分を補わなければならない。通気性フィルムはそのようなことはないが、高価であり、培地の分注を無菌条件下で行わなければならない等煩雑な作業を必要とする。また、配管を施して二酸化炭素を供給する場合は、配管の組み立ての煩雑さ、流量調節の困難さ、消耗品としてのフィルタのコスト高等、数多くの問題が存在する。したがって、培養器中の二酸化炭素欠乏という問題は認識されているものの、上記した手法は採用されず、旧態然とした培養法を用いて培養苗生産が行われているのが現状である。   However, these culture methods have the following problems. First, the ventilation filter causes evaporation of moisture at the same time as ventilation, and if a gelling agent is used for the medium, drying damage occurs in the plant, and in the case of liquid support material culture, the medium is reduced. You must make up for moisture. A breathable film is not such a thing, but it is expensive and requires complicated operations such as dispensing of the medium under aseptic conditions. Further, when supplying carbon dioxide through piping, there are a number of problems such as complicated assembly of the piping, difficulty in adjusting the flow rate, and high cost of the filter as a consumable. Therefore, although the problem of carbon dioxide deficiency in the incubator has been recognized, the above-described method is not adopted, and the current situation is that cultured seedling production is performed using an old culture method.

本発明は、従来の培養法の利点を生かしつつ、欠点である育成容器内の二酸化炭素不足を簡易な手法で解決する植物育成用容器、それを用いた植物育成方法及び植物育成用培地である。   The present invention is a plant growing container that solves the shortage of carbon dioxide in a growing container, which is a disadvantage, while taking advantage of the conventional culture method, and a plant growing method and a plant growing medium using the same. .

本発明は、植物の育成に用いられる植物育成用密閉容器であって、光触媒を容器内壁面に塗布して形成した膜厚50nm〜2000nmの光触媒層を有し、前記光触媒に有機化合物を接触せしめ、光触媒反応により二酸化炭素を発生させることによって、植物に二酸化炭素を供給する機能を有する。 The present invention is a plant-growing sealed container used for plant growth , having a photocatalyst layer with a film thickness of 50 nm to 2000 nm formed by applying a photocatalyst to the inner wall surface of the container, and contacting the organic compound with the photocatalyst. It has a function of supplying carbon dioxide to a plant by generating carbon dioxide by a photocatalytic reaction .

また、前記植物育成用密閉容器において、前記光触媒が可視光応答型光触媒であることが好ましい。 Moreover, it is preferable that the said photocatalyst is a visible light responsive photocatalyst in the said airtight container for plant cultivation.

また、本発明は、植物を育成するための植物育成方法であって、光触媒を容器内壁面に塗布して形成した膜厚50nm〜2000nmの光触媒層を有し、密閉された容器内で、前記光触媒に有機化合物を接触せしめ、光源からの光照射により、前記光触媒において光触媒反応を生じせしめ、二酸化炭素を発生させて植物に供給する。 Further, the present invention is a plant growing method for growing a plant , having a photocatalyst layer having a film thickness of 50 nm to 2000 nm formed by applying a photocatalyst to the inner wall surface of the container, and in the sealed container, An organic compound is brought into contact with the photocatalyst, and by photoirradiation from a light source, a photocatalytic reaction is caused in the photocatalyst, and carbon dioxide is generated and supplied to the plant.

また、本発明は、植物を育成するための植物育成方法であって、光触媒及び光触媒を坦持させた素材のうち少なくとも1つを実質的に透明な培地に混合し、前記培地中の有機化合物と接触せしめ、光源からの光照射により、前記光触媒において光触媒反応を生じせしめ、二酸化炭素を発生させて植物に供給する。   The present invention is also a plant growing method for growing a plant, wherein at least one of a photocatalyst and a material carrying a photocatalyst is mixed in a substantially transparent medium, and the organic compound in the medium The photocatalyst is caused to occur in the photocatalyst by light irradiation from a light source, and carbon dioxide is generated and supplied to the plant.

また、前記植物育成方法において、前記光触媒が可視光応答型光触媒を含み、かつ前記植物を育成させるための光が可視光線を含むことが好ましい。   In the plant growing method, it is preferable that the photocatalyst includes a visible light responsive photocatalyst, and light for growing the plant includes visible light.

さらに、本発明は、植物の育成に用いられる植物育成用培地であって、光触媒及び光触媒を坦持させた素材のうち少なくとも1つを含み、実質的に透明であり、前記光触媒による前記有機化合物の分解により、植物に二酸化炭素を供給する機能を有する。   Furthermore, the present invention is a plant growth medium used for plant growth, comprising at least one of a photocatalyst and a material carrying a photocatalyst, which is substantially transparent, and the organic compound by the photocatalyst It has the function of supplying carbon dioxide to plants by decomposing.

また、前記植物育成用培地において、前記光触媒が可視光応答型光触媒であることが好ましい。   In the plant growth medium, the photocatalyst is preferably a visible light responsive photocatalyst.

本発明では、植物育成用容器において、内部に光触媒を坦持させ、この光触媒を有機化合物と接触させながら光を照射することにより、植物の生長に必要な二酸化炭素を発生させることができる。   In the present invention, carbon dioxide necessary for plant growth can be generated by supporting a photocatalyst inside and irradiating light while contacting the photocatalyst with an organic compound in a plant growing container.

また本発明では、植物育成用容器内に入れる実質的に透明な培地に光触媒を混入せしめ、この光触媒を培地中に含まれる有機化合物と接触させながら光を照射することにより、植物の生長に必要な二酸化炭素を発生させることができる。   Further, in the present invention, a photocatalyst is mixed in a substantially transparent medium placed in a plant growth container, and this photocatalyst is irradiated with light while being in contact with an organic compound contained in the medium. Carbon dioxide can be generated.

本発明の植物育成用容器、植物育成方法及び植物育成用培地により、従来の栽培、育苗、培養方法をほとんど変更することなく、容器中の植物体あるいは植物組織を二酸化炭素不足に遭遇させることなく培養・栽培を行うことができる。そのため、優良な形質を持った植物を低コスト・高品質で量産することができる。   With the plant growth container, plant growth method, and plant growth medium of the present invention, the conventional cultivation, seedling, and culture method are hardly changed, and the plant body or plant tissue in the container is not encountered with a shortage of carbon dioxide. Culture and cultivation can be performed. Therefore, plants with excellent characteristics can be mass-produced at low cost and high quality.

本発明の実施形態について以下説明する。   Embodiments of the present invention will be described below.

本発明の実施形態に係る植物育成用容器において、内部に光触媒を坦持させ、この光触媒を有機化合物と接触させた上で光を照射することにより、植物の生長に必要な二酸化炭素を発生させる。以下にこの内容について詳説する。   In the plant-growing container according to the embodiment of the present invention, carbon dioxide necessary for plant growth is generated by carrying a photocatalyst inside and irradiating light after contacting the photocatalyst with an organic compound. . This will be described in detail below.

<植物育成用容器>
本実施形態に係る植物育成用容器の一例の概略を図1に示し、その構成について説明する。植物育成用容器1は、本体10と、ふた12と、光触媒層14とを備える。光触媒層14は、例えば図1及び本体10の断面図を示す図2のように、本体10の内壁面及び内底面に形成されている。
<Container for plant cultivation>
An outline of an example of a plant growing container according to this embodiment is shown in FIG. 1 and the configuration thereof will be described. The plant growing container 1 includes a main body 10, a lid 12, and a photocatalyst layer 14. The photocatalyst layer 14 is formed on the inner wall surface and the inner bottom surface of the main body 10 as shown in FIG. 1 and FIG.

(容器)
植物育成用容器1の本体10の材質としては特に制限はないが、外部から植物に光を照射するために、ガラス、プラスチック類等、光を透過する実質的に透明な材質であることが好ましい。これまでに通常の組織培養、育苗、栽培に使用されていた容器、フィルム等をそのまま使用することができる。好ましくは、ガラス、TPX(ポリメチルペンテン)等、光触媒を活性化しやすい紫外光あるいは可視光を透過しやすい素材がより適当である。また、植物に照射する光の中に多少の紫外光が含まれる方が植物の形態形成が正常に行われる場合もあることからも本体10の材質は、紫外光の遮蔽率が高いポリカーボネートやポリプロピレン等よりも、紫外光を透過しやすいガラス、TPX(ポリメチルペンテン)等であることが好ましい。
(container)
Although there is no restriction | limiting in particular as the material of the main body 10 of the container 1 for plant growth, In order to irradiate light to a plant from the outside, it is preferable that it is a substantially transparent material which permeate | transmits light, such as glass and plastics. . Containers, films, and the like that have been used for conventional tissue culture, seedling, and cultivation can be used as they are. Preferably, a material such as glass, TPX (polymethylpentene), or the like, which easily activates the photocatalyst and easily transmits ultraviolet light or visible light, is more suitable. Moreover, since the morphogenesis of the plant may be normally performed when some ultraviolet light is included in the light irradiated to the plant, the material of the main body 10 is polycarbonate or polypropylene having a high ultraviolet light shielding rate. It is preferable to use glass that easily transmits ultraviolet light, TPX (polymethylpentene), or the like.

また、ふた12は必ずしも必要ないが、発生させた二酸化炭素を効率的に利用するためには、植物育成用容器1はふた等の密閉手段により密閉された密閉容器であることが好ましい。また、無菌培養のためにも植物育成用容器1は密閉容器であることが好ましい。ふた12の材質も本体10の材質と同様のものを使用することができる。また、本体10を非透明の材質として、ふた12を実質的に透明な材質としてもよい。さらに、本体10及びふた12共に非透明の材質として、光源を植物育成用容器1内部に設けてもよい。   Further, the lid 12 is not always necessary, but in order to efficiently use the generated carbon dioxide, the plant growing container 1 is preferably a sealed container sealed by a sealing means such as a lid. Moreover, it is preferable that the plant growing container 1 is a closed container for aseptic culture. The material of the lid 12 can be the same as the material of the main body 10. Further, the main body 10 may be made of a non-transparent material, and the lid 12 may be made of a substantially transparent material. Further, the light source may be provided inside the plant growing container 1 as a non-transparent material for the main body 10 and the lid 12.

他に、本体10あるいはふた12として鏡のような屈折・反射素材を使用して散乱光や反射光を利用することや、内部をすりガラス状のような凹凸の多い構造を導入し、光触媒を塗布する表面積を増やすことも可能である。   In addition, the body 10 or lid 12 is made of a reflective / reflective material such as a mirror, and scattered light or reflected light is used, or a structure with many irregularities such as ground glass is introduced to apply the photocatalyst. It is also possible to increase the surface area.

植物育成用容器1の本体10の形状は特に制限はないが、例えば、円筒状、四角筒状等の多角筒状、楕円筒状、円錐形状等のものを使用することができる。   Although there is no restriction | limiting in particular in the shape of the main body 10 of the container 1 for plant cultivation, For example, things, such as polygonal cylinder shapes, such as a cylinder shape and a square cylinder shape, an elliptic cylinder shape, a cone shape, can be used.

(光触媒)
植物育成用容器1の内部に坦持させる光触媒としては、光触媒特性を発現する物質であればよく特に制限はないが、例えば、酸化チタン、酸化亜鉛等が挙げられる。光触媒特性を発現させる光の種類により、紫外領域の光の含有量が多い太陽光等を利用する場合には、紫外線型光触媒である酸化チタン等を例示でき、室内で蛍光灯等の紫外領域の光の含有量が少ない人工光を利用する場合は可視光応答型光触媒である窒素ドープ酸化チタン等がさらに有効である。
(photocatalyst)
The photocatalyst to be carried inside the container 1 for plant growth is not particularly limited as long as it is a substance that exhibits photocatalytic properties, and examples thereof include titanium oxide and zinc oxide. Depending on the type of light that expresses the photocatalytic properties, when using sunlight with a large amount of light in the ultraviolet region, it is possible to exemplify titanium oxide, which is an ultraviolet photocatalyst. When using artificial light with low light content, nitrogen-doped titanium oxide, which is a visible light responsive photocatalyst, is more effective.

(光触媒の担持)
光触媒を植物育成用容器1の内部に坦持させる方法としては、特に制限はないが、容器10の内壁面に光触媒を塗布して、図1,2のように光触媒層14を形成する方法が手軽である。
(Supporting photocatalyst)
The method for carrying the photocatalyst inside the container 1 for plant growth is not particularly limited, but there is a method for forming the photocatalyst layer 14 as shown in FIGS. It is easy.

植物育成用容器1の内部に光触媒を塗布する方法としては、特に制限はないが、光触媒コーティング液を使用してスプレー法、または、浸漬法等の方法により塗布することが有効である。形成した光触媒層14の膜厚や均一性においては、実質的に植物の光合成を阻害させないレベルでコーティングすればよく、特に制限はないが、例えば、膜厚は50nm〜2000nmの範囲であり、100nm〜300nmの範囲であることが好ましい。   Although there is no restriction | limiting in particular as a method of apply | coating a photocatalyst inside the container 1 for plant growth, It is effective to apply | coat by methods, such as a spray method or a dipping method, using a photocatalyst coating liquid. The film thickness and uniformity of the formed photocatalyst layer 14 may be coated at a level that does not substantially inhibit plant photosynthesis, and is not particularly limited. For example, the film thickness is in the range of 50 nm to 2000 nm, and 100 nm. A range of ˜300 nm is preferable.

また、二酸化炭素の発生効率を向上させるためには、光触媒を本体10の内面における塗布面積をできるだけ大きくして、光触媒と有機化合物との接触面積を大きくすることが好ましい。このため、光触媒を本体10の内面全体に塗布することが好ましい。また、ふた12の内壁面に光触媒を担持させてもよい。さらに、上記したような、すりガラス状のような凹凸の多い構造を本体内面に採用することも有効である。   Moreover, in order to improve the generation efficiency of carbon dioxide, it is preferable to increase the application area of the photocatalyst on the inner surface of the main body 10 as much as possible to increase the contact area between the photocatalyst and the organic compound. For this reason, it is preferable to apply the photocatalyst to the entire inner surface of the main body 10. Further, a photocatalyst may be supported on the inner wall surface of the lid 12. Furthermore, it is also effective to employ a structure with many irregularities such as frosted glass on the inner surface of the main body as described above.

(光触媒コーティング液)
光触媒コーティング液は、光触媒粉末を水、アルコール等の溶媒に分散させ、さらにバインダを混合したものである。光触媒粉末は植物育成用容器1の内部に担持されるため、透明性が必要な場合には光触媒粉末の粒子径を光の波長より小さくすることが好ましく、例えばコーティング液中の平均粒子径にして300nm以下、好ましくは200nm以下であることが好ましい。またここで、バインダとは、光触媒コーティング液の塗布及び乾燥後、光触媒粉末を基材に接着させる働きを有しており、成分としては、水ガラス、シリカゾル等の無機系バインダ、および/または、シリコン樹脂、シリコンオリゴマ等の有機無機複合系バインダが好ましい。さらに、容器等を使い捨てとする場合には、アクリルバインダ等の有機系バインダを炭素源としても使用することができる。
(Photocatalyst coating solution)
The photocatalyst coating liquid is obtained by dispersing photocatalyst powder in a solvent such as water or alcohol, and further mixing a binder. Since the photocatalyst powder is carried inside the container 1 for plant growth, it is preferable to make the particle diameter of the photocatalyst powder smaller than the wavelength of light when transparency is required. It is preferably 300 nm or less, preferably 200 nm or less. Here, the binder has a function of adhering the photocatalyst powder to the base material after application and drying of the photocatalyst coating liquid, and the components include inorganic binders such as water glass and silica sol, and / or Organic-inorganic composite binders such as silicon resin and silicon oligomer are preferred. Furthermore, when making a container etc. disposable, organic type binders, such as an acrylic binder, can also be used as a carbon source.

光触媒コーティング液中の光触媒粉末とバインダとの比率は、8:2〜4:6が好ましく、さらには、7:3〜5:5が好ましい。光触媒粉末とバインダを合わせた固形分としては、用途に応じて調整すればよく特に制限はないが、光触媒コーティング液全体の重量に対して0.1〜20重量%の範囲が好ましく、さらには1〜15重量%の範囲が好ましい。   The ratio of the photocatalyst powder to the binder in the photocatalyst coating liquid is preferably 8: 2 to 4: 6, and more preferably 7: 3 to 5: 5. The solid content of the photocatalyst powder and the binder is not particularly limited as long as it is adjusted according to the use, but is preferably in the range of 0.1 to 20% by weight based on the total weight of the photocatalyst coating solution, and more preferably 1 A range of ˜15% by weight is preferred.

<植物育成方法>
このようにして製造された植物育成用容器1の内部の光触媒層14に有機化合物を接触させた後、図3に示すように植物育成用培地(以降、単に「培地」と呼ぶこともある)16を設け、培地16上に育成対象となる植物18を置床する。あるいは、光触媒層14に有機化合物を混合した培地16を設け、培地16上に育成対象となる植物18を置床する。その後、光源20から光22を照射することにより、光触媒層14において光触媒反応を生じせしめ、二酸化炭素を発生させて植物18に供給する。
<Plant growing method>
After bringing the organic compound into contact with the photocatalyst layer 14 inside the plant growth container 1 produced in this manner, a plant growth medium (hereinafter, sometimes simply referred to as “medium”) as shown in FIG. 16 is provided, and a plant 18 to be grown is placed on the culture medium 16. Alternatively, a medium 16 in which an organic compound is mixed is provided in the photocatalyst layer 14, and a plant 18 to be grown is placed on the medium 16. Thereafter, by irradiating light 22 from the light source 20, a photocatalytic reaction is caused in the photocatalytic layer 14 to generate carbon dioxide and supply it to the plant 18.

(光触媒と有機化合物の接触)
光触媒と有機化合物とを接触させる方法については、特に制限はないが、光触媒あるいは光触媒を坦持させた素材を有機化合物中に浸漬させる方法、光触媒あるいは光触媒を坦持させた素材に有機化合物を塗布する方法、光触媒あるいは光触媒を坦持させた素材に有機化合物を噴霧する方法等を例示することができる。また、有機化合物を含有させた培地を上記の方法により光触媒に接触させてもよい。さらに、有機化合物を含有させた培地に光触媒を混入せしめる場合には、容易に直接的に光触媒が有機化合物に接触するため、有効である。
(Contact between photocatalyst and organic compound)
The method for bringing the photocatalyst into contact with the organic compound is not particularly limited, but the photocatalyst or a material carrying the photocatalyst is immersed in the organic compound, or the organic catalyst is applied to the photocatalyst or the material carrying the photocatalyst. And a method of spraying an organic compound on a photocatalyst or a material carrying a photocatalyst can be exemplified. Moreover, you may make the culture medium containing the organic compound contact with a photocatalyst by said method. Furthermore, in the case where a photocatalyst is mixed in a medium containing an organic compound, it is effective because the photocatalyst comes into direct contact with the organic compound.

光触媒と接触させるために用いられる有機化合物としては、炭素源となるものであればよく特に制限はないが、植物の生育に害のないものが好ましいことから、天然由来のデンプンやセルロース、ペクチン等の多糖類やショ糖、ブドウ糖、マニトール等の糖類等の炭水化物、半合成のカルボキシメチルセルロース(CMC)、メチルセルロース(MC)等のセルロース誘導体、ポリビニルアルコール(PVA)、ポリアクリル酸系ポリマ、ポリビニルピロリドン(PVP)、ポリエチレングリコール(PEG)等のポリマ類等を例示することができる。また、有機化合物は、不飽和系に比べて飽和系の方が光触媒により分解されやすい傾向にあるため、飽和系の方が好ましい。   The organic compound used for contacting with the photocatalyst is not particularly limited as long as it is a carbon source. However, since it is preferable that it does not harm the growth of plants, naturally derived starch, cellulose, pectin, etc. Polysaccharides such as saccharides such as sucrose, glucose and mannitol, semi-synthetic carboxymethylcellulose (CMC), cellulose derivatives such as methylcellulose (MC), polyvinyl alcohol (PVA), polyacrylic acid polymers, polyvinylpyrrolidone ( Examples thereof include polymers such as PVP) and polyethylene glycol (PEG). Moreover, since the organic compound tends to be decomposed by the photocatalyst as compared with the unsaturated compound, the saturated compound is preferable.

(植物育成用培地)
植物育成用培地16としては、具体的には、従来から知られている植物の組織培養に用いられている培地、例えば、ムラシゲ・スクーグ(1962)[Murashige & Skoog]の培地、ヴァシン・ウェント(1949)[Vacin & Went]の培地、ホワイト(1963)[White]の培地、ガンボルグ[Gamborg]のB−5培地、ニッチ・ニッチの培地[Nitch & Nitch]等に、必要に応じて糖類等の炭素源、植物ホルモン、ビタミン類、アミノ酸類等を添加して調整された培地を例示でき(例えば、新見芳二編、「図解花のバイオ技術」、誠文堂新光社、1992、p.172-173 を参照)、あるいは水耕栽培に用いる園試処方等の水耕液を例示できる(例えば、板木利隆著、「施設園芸 装置と栽培技術」、誠文堂新光社、1988、p.408 を参照)が特に限定はされない。本実施形態において使用することができる前記植物育成用培地としては、液体培地、あるいは例えばガラス、鉱物、プラスチック、ポリマ、セルロース等から構成される支持材と液体培地とを組み合わせた液体支持材培地、例えば培地全体の重量に対して寒天やゲルライト等のゲル化剤を通常0.1〜2重量%含有させた固形培地等の実質的に透明な培地が挙げられる。また、培地のpHを維持するために、培地中に炭酸塩等のバッファを混合してもよい。
(Plant growth medium)
As the plant growth medium 16, specifically, a medium conventionally used for plant tissue culture, for example, a medium of Murashige & Skoog (1962) [Murashige & Skoog], Vasin Went ( 1949) [Vacin & Went] medium, White (1963) [White] medium, Gamborg B-5 medium, Niche niche medium [Nitch & Nitch], etc. Examples include media prepared by adding carbon sources, plant hormones, vitamins, amino acids, etc. (for example, Yoshimi Niimi, “Biotechnology of Illustrated Flowers”, Sebundo Shinkosha, 1992, p. 172-173) or hydroponic liquids such as garden trials used for hydroponics (for example, Toshitaka Itaki, “Garden Horticulture Equipment and Cultivation Technology”, Seikodo Shinkosha, 1988, p. .408) is not particularly limited. As the plant growth medium that can be used in the present embodiment, a liquid culture medium or a liquid culture medium that combines a liquid culture medium with a liquid culture medium or a support material composed of, for example, glass, mineral, plastic, polymer, cellulose, and the like, For example, a substantially transparent culture medium such as a solid culture medium usually containing 0.1 to 2% by weight of a gelling agent such as agar or gellite with respect to the weight of the whole culture medium can be mentioned. In order to maintain the pH of the medium, a buffer such as carbonate may be mixed in the medium.

培地16は、例えば、植物育成用容器1の本体10の内底面に設けられる。培地16中に有機化合物を含有させた場合には、光触媒と有機化合物との接触面積を増やして植物の育成効率を向上させるために、本体の内底面だけではなく内壁面にも培地16を接触させることが好ましい。このため、本体10に培地16を注入した後、本体10の内面全体に培地16を付着させた後、ゲル化させるとよい。また、植物育成用容器1内部の殺菌のため、本体10に培地を注入した後、培地16をゲル化させる前にオートクレーブ等を使用して、例えば115℃〜125℃で15分〜40分間、高圧蒸気滅菌することが好ましい。植物育成用容器1内部を殺菌した後にふた12等により密閉すれば無菌培養が可能となり、ウイルスフリーあるいはウイルスの密度が著しく低い種苗を生産することができ、植物の収量や品質を高めることができる。   The culture medium 16 is provided, for example, on the inner bottom surface of the main body 10 of the plant growing container 1. When the organic compound is contained in the medium 16, the medium 16 is contacted not only on the inner bottom surface of the main body but also on the inner wall surface in order to increase the contact area between the photocatalyst and the organic compound and improve the growth efficiency of the plant. It is preferable to make it. For this reason, after inject | pouring the culture medium 16 into the main body 10, after making the culture medium 16 adhere to the whole inner surface of the main body 10, it is good to make it gelatinize. In addition, for sterilizing the inside of the plant growing container 1, after injecting the medium into the main body 10, before gelling the medium 16, using an autoclave or the like, for example, at 115 ° C. to 125 ° C. for 15 minutes to 40 minutes, High pressure steam sterilization is preferred. If the inside of the container 1 for plant growth is sterilized and then sealed with a lid 12 or the like, aseptic culture becomes possible, seedlings and seedlings with a virus-free or extremely low virus density can be produced, and the yield and quality of the plant can be increased. .

(光源)
光源20としては、ハウス栽培等では太陽光等の、組織培養、植物工場、施設栽培等の人工栽培では蛍光灯、LED、冷陰極蛍光ランプ、高圧ナトリウムランプ等の通常使用されている光源を、そのまま光触媒の光源として使用することができる。特に、可視光応答型光触媒を使用する場合には、紫外光を含まないLED等でも有効に機能する。
(light source)
As the light source 20, a light source that is normally used such as a fluorescent lamp, an LED, a cold cathode fluorescent lamp, and a high-pressure sodium lamp is used for artificial cultivation such as sunlight in tissue cultivation, plant factory, and facility cultivation as house cultivation. It can be used as it is as a light source for the photocatalyst. In particular, when a visible light responsive photocatalyst is used, an LED or the like that does not contain ultraviolet light functions effectively.

なお、植物の育成を目的とする場合、紫外線ランプ等が出す310nm以下の強い光は植物に害作用を与えることが知られており(例えば、矢吹萬壽他著、「農業環境調節工学」、朝倉書店、1985、p.12-13を参照)、紫外光光源を光源として使用しないことが好ましい。これは植物の生命維持に重要な関係を持つ核蛋白質や核酸(DNA)等の物質が、285nm以下の光エネルギをよく吸収し、破壊されるためである。一方、可視光領域の光は植物の育成にとって最も重要な影響を与え、光合成、形態形成(日長反応)、屈光等、全て可視光領域の光により行われる。したがって、本実施形態においては光源として可視領域の光が主成分である蛍光灯、LED、冷陰極蛍光ランプ等の人工光源を用いることが好ましく、光触媒としては、一般的な紫外線応答型光触媒ではなく、窒素ドープ酸化チタン等の可視光応答型光触媒の使用が好ましい。   In addition, when aiming at the growth of plants, it is known that strong light of 310 nm or less emitted from an ultraviolet lamp or the like has a harmful effect on plants (for example, Yabuki Tsuji et al., “Agricultural Environment Control Engineering”, Asakura Shoten, 1985, p.12-13), it is preferable not to use an ultraviolet light source as a light source. This is because substances such as nuclear proteins and nucleic acids (DNA) that are important for plant life maintenance absorb light energy below 285 nm and are destroyed. On the other hand, light in the visible light region has the most important influence on plant growth, and photosynthesis, morphogenesis (day length reaction), reflection, etc. are all performed by light in the visible light region. Therefore, in the present embodiment, it is preferable to use an artificial light source such as a fluorescent lamp, an LED, or a cold cathode fluorescent lamp mainly composed of light in the visible region as a light source, and the photocatalyst is not a general ultraviolet-responsive photocatalyst. It is preferable to use a visible light responsive photocatalyst such as nitrogen-doped titanium oxide.

また、植物に照射する光の中に多少の紫外光が含まれる方が植物の形態形成が正常に行われる場合もあることから、本実施形態においては光源として可視領域の光が主成分であり、かつ紫外領域の光を若干含有する蛍光灯等の光源を用いることが好ましく、光触媒としては、一般的な紫外線応答型光触媒ではなく、窒素ドープ酸化チタン等の可視光応答型光触媒の使用が好ましい。   In addition, in the present embodiment, light in the visible region is the main component of the light source because the morphogenesis of the plant may be normally performed when some ultraviolet light is included in the light irradiated to the plant. In addition, it is preferable to use a light source such as a fluorescent lamp that contains some light in the ultraviolet region, and the photocatalyst is preferably a visible light responsive photocatalyst such as nitrogen-doped titanium oxide instead of a general ultraviolet responsive photocatalyst. .

(植物の育成)
前記植物育成用容器で育成する植物としては、二酸化炭素を吸収して光合成を行う植物全てが対象となり、特に制限はない。具体的には、コンブ、ワカメ、コケ等の藻類、スギナ、ゼンマイ等のシダ植物、ソテツ、イチョウ、マツ等の裸子植物、サクラ、エンドウ、イネ、ユリ等の被子植物等を例示することができる。育成形態は特に限定されないが、例えば、水草を育成する水槽、培養器中で行われる組織培養、苗の増殖に使われる密閉挿し、ハウス栽培等を例示することができる。
(Plant cultivation)
The plants grown in the plant growing container are all plants that absorb carbon dioxide and perform photosynthesis, and are not particularly limited. Specific examples include algae such as kombu, wakame and moss, fern plants such as horsetail and spring, gymnosperms such as cycad, ginkgo and pine, angiosperms such as cherry, pea, rice and lily. . The growth mode is not particularly limited, and examples thereof include a water tank for growing aquatic plants, tissue culture performed in an incubator, hermetic insertion used for seedling growth, and house cultivation.

育成は、本実施形態に係る植物育成用容器1内に培地及び植物を設置し、ふたで密閉した後、例えば、図4に示すように植物育成用容器1を多段型の棚24等に設置して、各棚24の上方に設けた光源20から光22を照射することにより行うことができる。   For the growth, after the culture medium and the plant are installed in the plant growth container 1 according to this embodiment and sealed with a lid, for example, the plant growth container 1 is installed on a multistage shelf 24 as shown in FIG. And it can carry out by irradiating the light 22 from the light source 20 provided above each shelf 24. FIG.

(付加価値)
このようにして使用される植物育成用容器は、有機化合物を分解する機能を保持しているため、例えば、組織培養においてはバクテリアやカビの殺菌による雑菌汚染の防止、植物ホルモンの一種であるエチレンの分解等の付加価値も有している。
(Added value)
Since the container for plant growth used in this way retains the function of decomposing organic compounds, for example, in tissue culture, prevention of contamination by bacteria and mold sterilization, ethylene which is a kind of plant hormone, It also has added value such as decomposition.

上記のように、本実施形態に係る植物育成用容器は、内部に光触媒を担持させた容器に、有機化合物を接触させ、光を照射するだけで、二酸化炭素を供給する機能を有し、手軽にかつ低コストで植物の生育促進を図ることができる。   As described above, the plant growing container according to the present embodiment has a function of supplying carbon dioxide simply by bringing an organic compound into contact with a container carrying a photocatalyst therein and irradiating light. Furthermore, plant growth can be promoted at low cost.

なお、本実施形態に係る植物育成用容器は、上記の手順に加えて、従来からの生育促進方法を併用することも可能である。例えば、前記特許文献1に記載しているように、室内の二酸化炭素濃度を1000〜2000μmol/mol、光合成有効光量子束密度を150〜300μmol/m/secの条件下で、通気性フィルタを備えた培養器と無糖培地とを用いて光独立栄養培養を行っても良い。 In addition to the above procedure, the plant growth container according to the present embodiment can be used in combination with a conventional growth promotion method. For example, as described in Patent Document 1, a breathable filter is provided under the conditions of indoor carbon dioxide concentration of 1000 to 2000 μmol / mol and photosynthetic effective photon flux density of 150 to 300 μmol / m 2 / sec. Photoautotrophic culture may be carried out using an incubator and a sugar-free medium.

(光触媒を混合した培地)
また、光触媒を実質的に透明な培地に混合し、培地中の有機化合物と接触せしめ、光源からの光照射により、該光触媒において光触媒反応を生じせしめ、二酸化炭素を発生させて植物に供給してもよい。この場合は、光触媒と培地とを混合するだけでよく、安価に植物の育成促進を図ることができる。
(Medium mixed with photocatalyst)
In addition, the photocatalyst is mixed with a substantially transparent medium, brought into contact with an organic compound in the medium, and by photoirradiation from a light source, a photocatalytic reaction is caused in the photocatalyst, and carbon dioxide is generated and supplied to the plant. Also good. In this case, it is only necessary to mix the photocatalyst and the medium, and plant growth can be promoted at a low cost.

さらには、光触媒を実質的透明な、発泡ガラス、セラミック多孔体等の多孔質材料等に担持させた素材を培地に混合し、培地中の有機化合物と接触せしめ、光源からの光照射により、光触媒において光触媒反応を生じせしめ、二酸化炭素を発生させて植物に供給してもよい。また、図5に示すように、培地16及び植物18を設置した、少なくとも1つの空気孔が設けられた中間底28の下に、光触媒を担持させた、例えば四角柱状の多孔質体26を配置し、培地16中の有機化合物と接触せしめ、光源からの光照射により、光触媒において光触媒反応を生じせしめ、二酸化炭素を発生させて植物に供給してもよい。このように、多孔質材料に光触媒を担持することによって、有機化合物との接触面積を増加させ、二酸化炭素の発生をさらに促進することができる。   Furthermore, a material in which a photocatalyst is supported on a substantially transparent porous material such as foamed glass or a ceramic porous body is mixed with a medium, brought into contact with an organic compound in the medium, and irradiated with light from a light source to produce a photocatalyst. A photocatalytic reaction may be caused to generate carbon dioxide and supply it to the plant. Further, as shown in FIG. 5, for example, a rectangular column-shaped porous body 26 carrying a photocatalyst is disposed under the intermediate bottom 28 provided with the culture medium 16 and the plant 18 and provided with at least one air hole. Then, it may be brought into contact with the organic compound in the culture medium 16 to cause photocatalytic reaction in the photocatalyst by light irradiation from the light source, to generate carbon dioxide and supply it to the plant. As described above, by supporting the photocatalyst on the porous material, the contact area with the organic compound can be increased, and the generation of carbon dioxide can be further promoted.

図5の例の場合、例えば、あらかじめ内壁面に触媒層14が塗布された植物育成用容器1の底に多孔質体26を設置した後、光触媒のアルコール等の分散液を多孔質体26に注入し、少なくとも1つの空気孔が設けられた中間底28を設置した上にシャーレ等に入れた培地16及び植物18を配置すればよい。中間底28としては、容器の本体と同様の材質のものを使用することができる。   In the case of the example in FIG. 5, for example, after the porous body 26 is placed on the bottom of the plant growing container 1 having the catalyst layer 14 applied to the inner wall surface in advance, a dispersion liquid of photocatalyst alcohol or the like is applied to the porous body 26. The medium 16 and the plant 18 placed in a petri dish or the like may be disposed on the intermediate bottom 28 which is injected and provided with at least one air hole. As the intermediate bottom 28, the same material as that of the container body can be used.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は以下の実施例に限定されるものではない。   Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely in detail, the present invention is not limited to the following examples.

(実施例1)
直径63mm、高さ110mm(容積200mL)の小型ガラス瓶(以下、マヨネーズ瓶)の内壁全体に窒素ドープ酸化チタン可視光応答型光触媒を300nmの厚さに、浸漬法によってコーティングし、150℃で10分間乾燥を行った。この際、コーティング液として、コーティング液中における平均粒径が200〜300nmの窒素ドープ酸化チタン粉末、バインダとして有機シリコンを用い、重量比で5:5の比率でこれらを混合、分散させ、溶媒にはIPA(イソプロピルアルコール)を使用し、固形分濃度を10重量%としたものを用いた。なお、光触媒層の膜厚は、表面形状測定装置(ULVAC製DEKTAK3型)を用いて測定した。
Example 1
The entire inner wall of a small glass bottle (hereinafter mayonnaise bottle) having a diameter of 63 mm and a height of 110 mm (volume 200 mL) is coated with a nitrogen-doped titanium oxide visible light responsive photocatalyst to a thickness of 300 nm by a dip method, and at 150 ° C. for 10 minutes. Drying was performed. At this time, nitrogen-doped titanium oxide powder having an average particle diameter of 200 to 300 nm in the coating liquid is used as the coating liquid, and organic silicon is used as the binder, and these are mixed and dispersed at a weight ratio of 5: 5. Used IPA (isopropyl alcohol) with a solid content of 10% by weight. In addition, the film thickness of the photocatalyst layer was measured using a surface shape measuring device (DEKTAK3 type manufactured by ULVAC).

この光触媒をコーティングしたマヨネーズ瓶に、培地の炭素源及び二酸化炭素発生用有機化合物としてショ糖20g/L、ゲル化剤として寒天7g/Lを添加した1/4濃度のMS培地を30mL分注した。MS培地を分注したマヨネーズ瓶をオートクレーブで120℃、15分間滅菌した後、容器を十分に撹拌し、マヨネーズ瓶の内壁全体に培地を接触させてから、室温で培地をゲル化させた。この培地で、無菌的に維持しているロベリアの培養苗を一芽ごと(生重約80mg)に分割し、各2芽ずつ培地上に置床した。マヨネーズ瓶のふたとしてTPX製のものを用い、容器を密閉した。培養は23℃、光源はW型蛍光灯を用い、その照度は2000Lux、16時間日長で行い、4週間後に再び苗を切り分け、その生重と芽数を計測した。その結果を表1に示す。   To this mayonnaise bottle coated with photocatalyst, 30 mL of 1/4 concentration MS medium added with sucrose 20 g / L as a carbon source and organic compound for carbon dioxide generation and agar 7 g / L as a gelling agent was dispensed. . The mayonnaise bottle into which the MS medium was dispensed was sterilized by autoclaving at 120 ° C. for 15 minutes, and then the container was sufficiently agitated to bring the medium into contact with the entire inner wall of the mayonnaise bottle, and the medium was gelled at room temperature. In this medium, the cultured seedlings of Lobelia maintained aseptically were divided into one shoot (live weight of about 80 mg), and two shoots were placed on the medium. The lid of the mayonnaise bottle was made of TPX, and the container was sealed. Cultivation was performed at 23 ° C., a W-type fluorescent lamp was used as the light source, the illuminance was 2000 Lux, and the day length was 16 hours. After 4 weeks, the seedlings were cut again, and their fresh weight and number of buds were measured. The results are shown in Table 1.

(実施例2)
培養器として紫外線型光触媒(酸化チタン、コーティング液中における平均粒径が200〜300nm)をコーティングしたマヨネーズ瓶を用い、その他の条件は、全て実施例1と同様に試験を行った。その結果を表1に示す。
(Example 2)
A mayonnaise bottle coated with an ultraviolet photocatalyst (titanium oxide, average particle size in the coating solution of 200 to 300 nm) was used as the incubator, and the other conditions were all tested in the same manner as in Example 1. The results are shown in Table 1.

(比較例1)
培養器に光触媒をコーティングしていないマヨネーズ瓶を用いた以外は全て実施例1と同様に試験を行った。その結果を表1に示す。
(Comparative Example 1)
All tests were performed in the same manner as in Example 1 except that a mayonnaise bottle not coated with a photocatalyst was used in the incubator. The results are shown in Table 1.

Figure 0004733438
Figure 0004733438

この表1からも明らかであるが、実施例1及び2のように培養器の内壁に光触媒をコーティングし、培地を接触させて通常の培養を行うことによって、光触媒をコーティングしていない培養器を用いた比較例1に比べて優れた生育促進効果が得られた。さらに、蛍光灯の可視光成分によって、実施例1の可視光応答型光触媒を担持した育成用容器の方が、実施例2の紫外線型光触媒を担持した育成用容器に比べて、さらに生育促進効果が得られた。   As is apparent from Table 1, the incubator without the photocatalyst is coated by coating the inner wall of the incubator with the photocatalyst as in Examples 1 and 2 and bringing the medium into contact with each other to perform normal culture. A growth promoting effect superior to that of Comparative Example 1 used was obtained. Furthermore, the growth container carrying the visible light responsive photocatalyst of Example 1 by the visible light component of the fluorescent lamp is more effective in promoting the growth than the growth container carrying the ultraviolet photocatalyst of Example 2. was gotten.

本発明の実施形態に係る植物育成用容器の一例の概略を示す図である。It is a figure which shows the outline of an example of the container for plant cultivation which concerns on embodiment of this invention. 本発明の実施形態に係る植物育成用容器の本体の一例の断面を示す図である。It is a figure which shows the cross section of an example of the main body of the container for plant cultivation which concerns on embodiment of this invention. 本発明の実施形態に係る植物育成方法の一例の概略を示す図である。It is a figure which shows the outline of an example of the plant growing method which concerns on embodiment of this invention. 本発明の実施形態に係る植物育成方法の一例の概略を示す図である。It is a figure which shows the outline of an example of the plant growing method which concerns on embodiment of this invention. 本発明の実施形態に係る植物育成方法の他の例の概略を示す図である。It is a figure which shows the outline of the other example of the plant cultivation method which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1 植物育成用容器、10 本体、12 ふた、14 光触媒層、16 植物育成用培地(培地)、18 植物、20 光源、22 光、24 棚、26 多孔質体、28 中間底。   DESCRIPTION OF SYMBOLS 1 Plant growing container, 10 main body, 12 lid, 14 photocatalyst layer, 16 plant growing culture medium (medium), 18 plants, 20 light source, 22 light, 24 shelves, 26 porous body, 28 intermediate bottom.

Claims (4)

植物の育成に用いられる植物育成用密閉容器であって、
光触媒を容器内壁面に塗布して形成した膜厚50nm〜2000nmの光触媒層を有し、前記光触媒に有機化合物を接触せしめ、光触媒反応により二酸化炭素を発生させることによって、植物に二酸化炭素を供給する機能を有することを特徴とする植物育成用密閉容器。
A plant-growing sealed container used for plant growth,
It has a photocatalyst layer with a film thickness of 50 nm to 2000 nm formed by applying a photocatalyst to the inner wall surface of the container, and an organic compound is brought into contact with the photocatalyst to generate carbon dioxide by a photocatalytic reaction, thereby supplying carbon dioxide to plants. A closed container for plant cultivation characterized by having a function.
請求項1に記載の植物育成用密閉容器であって、
前記光触媒が可視光応答型光触媒であることを特徴とする植物育成用密閉容器。
A hermetic container for growing plants according to claim 1 ,
An airtight container for plant growth, wherein the photocatalyst is a visible light responsive photocatalyst.
植物を育成するための植物育成方法であって、
光触媒を容器内壁面に塗布して形成した膜厚50nm〜2000nmの光触媒層を有し、密閉された容器内で、前記光触媒に有機化合物を接触せしめ、光源からの光照射により、前記光触媒において光触媒反応を生じせしめ、二酸化炭素を発生させて植物に供給することを特徴とする植物育成方法。
A plant growing method for growing a plant,
A photocatalyst layer having a film thickness of 50 nm to 2000 nm formed by applying a photocatalyst to the inner wall surface of the container is brought into contact with an organic compound in a sealed container, and the photocatalyst is irradiated with light from a light source in the photocatalyst. A plant growing method characterized by causing a reaction to generate carbon dioxide and supplying it to a plant.
請求項に記載の植物育成方法であって、
前記光触媒が可視光応答型光触媒を含み、かつ前記植物を育成させるための光が可視光線を含むことを特徴とする植物育成方法。
The plant growing method according to claim 3 ,
A plant growing method, wherein the photocatalyst includes a visible light responsive photocatalyst, and light for growing the plant includes visible light.
JP2005180140A 2005-06-21 2005-06-21 Closed container for plant growth and plant growth method Expired - Fee Related JP4733438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005180140A JP4733438B2 (en) 2005-06-21 2005-06-21 Closed container for plant growth and plant growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005180140A JP4733438B2 (en) 2005-06-21 2005-06-21 Closed container for plant growth and plant growth method

Publications (2)

Publication Number Publication Date
JP2007000011A JP2007000011A (en) 2007-01-11
JP4733438B2 true JP4733438B2 (en) 2011-07-27

Family

ID=37686177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005180140A Expired - Fee Related JP4733438B2 (en) 2005-06-21 2005-06-21 Closed container for plant growth and plant growth method

Country Status (1)

Country Link
JP (1) JP4733438B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2616778C1 (en) * 2015-12-28 2017-04-18 Викторий Данилович Девяткин V.d. devyatkin's method and device for growing seedlings under pressure

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011024462A (en) * 2009-07-23 2011-02-10 Akazawa Sogo Kenkyusho:Kk Culture apparatus
JP5378262B2 (en) * 2010-02-16 2013-12-25 株式会社赤澤総合研究所 Hydroponics equipment
CN104025929B (en) * 2014-06-24 2015-12-09 韶关车八岭农业科技有限公司 Dendrobium candidum culture systems
JP5779288B1 (en) * 2014-07-30 2015-09-16 国立大学法人東京工業大学 Self-destructing carbon dioxide generator and carbon dioxide generating system
KR101720955B1 (en) * 2015-02-26 2017-03-29 김영진 Mosquito trap
JP6202539B2 (en) * 2015-06-23 2017-09-27 国立大学法人東京工業大学 Carbon dioxide generation system and liquid cartridge mounted on it
JP6818340B2 (en) * 2016-08-30 2021-01-20 弘子 高橋 Solid medium for plants
RU2698657C1 (en) * 2018-11-02 2019-08-28 Артём Павлович Коновалов Sweet cherry growing method on hydroponics

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001095379A (en) * 1999-10-01 2001-04-10 Shimadzu Corp Photo catalytic plant-activating agent
JP2004357501A (en) * 2001-03-21 2004-12-24 Kankyo Device Kenkyusho:Kk Method for promoting germination

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252244A (en) * 1988-03-31 1989-10-06 Hamamatsu Photonics Kk Freshness-keeping method, apparatus therefor and method for controlling growth of plant
JPH11196672A (en) * 1998-01-20 1999-07-27 Gunma Toobi:Kk Photo-functional soil improving material and use thereof
JP3234943B2 (en) * 1998-03-27 2001-12-04 三明電機株式会社 Plant cultivation container

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001095379A (en) * 1999-10-01 2001-04-10 Shimadzu Corp Photo catalytic plant-activating agent
JP2004357501A (en) * 2001-03-21 2004-12-24 Kankyo Device Kenkyusho:Kk Method for promoting germination

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2616778C1 (en) * 2015-12-28 2017-04-18 Викторий Данилович Девяткин V.d. devyatkin's method and device for growing seedlings under pressure

Also Published As

Publication number Publication date
JP2007000011A (en) 2007-01-11

Similar Documents

Publication Publication Date Title
JP4733438B2 (en) Closed container for plant growth and plant growth method
Kozai Micropropagation under photoautotrophic conditions
Kozai et al. Environmental control for the large-scale production of plants through in vitro techniques
US4857464A (en) Mist cultivation of cells
US5119588A (en) Method and apparatus for culturing autotrophic plants from heterotrophic plant material
CN100503808C (en) Use of porous membrane to support developing conifer somatic embryos
JP2003339236A (en) Lighting device and apparatus for plant growth, and method for plant growth
CN1411471A (en) Macroporous chitosan beads and preparation method thereof
KR101670129B1 (en) Photoreactive Apparatus and method for culturing microalgae
JP5419029B1 (en) Liquid purification device
JP6067875B2 (en) Plant cultivation system
US20220174895A1 (en) Reusable agricultural growth medium capable of containing gas and nutrients
CN104938333A (en) Simple aseptic plant culture box and use thereof
JPS5856614A (en) Artificial cultivation of edible mushroom using non-sterilized saw dust culture medium
JPH06165624A (en) Cultivation of plant body and bioreactor
JP7064960B2 (en) Cultivation method and cultivation equipment
Yadav et al. Assessing long-distance transport from photosynthetic source leaves to heterotrophic sink organs with [14C] CO2
Neumann et al. Callus cultures
CN109566128A (en) Utilize the method for atomization sticking device cutting propagation mulberry tree nursery stock
MX2013008201A (en) Process for the micropropagation at a commercial scale of vanilla (vanilla spp.) using semi-automated bioreactors.
HUT61867A (en) Method for aseptic striking root of gardening and agricultural materials propagated in vitro
CN210382171U (en) Tissue culture seedling incubator
JP2732184B2 (en) Culture method of plant tissue culture seedling
CN202179158U (en) Artificial flower with function of air purification
JP5821427B2 (en) Biological treatment apparatus, gene processing apparatus, and biological breeding system including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110422

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees