JP4732849B2 - 自動計数装置、プログラムおよび方法 - Google Patents

自動計数装置、プログラムおよび方法 Download PDF

Info

Publication number
JP4732849B2
JP4732849B2 JP2005291419A JP2005291419A JP4732849B2 JP 4732849 B2 JP4732849 B2 JP 4732849B2 JP 2005291419 A JP2005291419 A JP 2005291419A JP 2005291419 A JP2005291419 A JP 2005291419A JP 4732849 B2 JP4732849 B2 JP 4732849B2
Authority
JP
Japan
Prior art keywords
counting
identification
image
objects
automatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005291419A
Other languages
English (en)
Other versions
JP2007102482A (ja
Inventor
健志 片山
章 依田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2005291419A priority Critical patent/JP4732849B2/ja
Priority to US11/542,258 priority patent/US7701608B2/en
Publication of JP2007102482A publication Critical patent/JP2007102482A/ja
Application granted granted Critical
Publication of JP4732849B2 publication Critical patent/JP4732849B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Description

本発明は、画像に含まれる計数対象の数を自動的に計測する自動計数装置、プログラムおよび方法に関する。
画像に含まれる被写体の顔情報から個人もしくは性別、年齢などの属性を識別し、人物ごと、あるいは属性ごとの傾向を分析する技術が知られている。例えば、特許文献1、2には、店内にいる顧客を店内各所に設置されたカメラにより撮影し、各撮影画像から抽出される顔の特徴量に基づいて顧客個人を識別してその足取りを追跡したり、顔の特徴量から顧客の性別や年齢を識別して各売り場に立ち寄る顧客の傾向を調べる方法およびシステムが示されている。
特開2000−200357号公報 特開2004−348618号公報
顔情報に基づいて性別や個人を識別する技術は、年々進歩しているものの、あらゆる対象を100%識別できるまでには至っていない。100%の識別率を達成できない理由は大きく分けて2つある。1つは、識別を行なうために必要な顔情報が十分得られないケースがあることである。例えば、髪の長い人物は、特に横向きのときなどは顔から抽出できる情報が少ない。このため、髪の短い人物に比べると識別率は低くなる。一般には、髪の長い人物は男性よりも女性に多いため、女性の識別率は男性の識別率よりも低いと言われている。また、もう1つの理由は、個人の特徴が変化するケースがあることである。例えば、女性は化粧によって顔の特徴が変わるため男性よりも識別率が低い。また眼鏡をかけた人も眼鏡を交換すると顔の特徴が変わるため、眼鏡をかけない対象に比べると識別率が低い。子供も、成長とともに顔つきが変わるため、大人に比べて識別率が低い。
上記のようなケースでは、同じ識別処理を実行しても、識別しようとする対象の種類によって識別率(識別成功率)は2割から3割も異なる。統計調査では、上記特許文献1、2にも示されているように、性別や年齢による分類調査を行なうことが少なくないが、対象の種類による識別率の違いは、調査精度に大きく影響する。本発明は、この問題に鑑みて、識別率の違いから生じる統計誤差を抑制するためのしくみを提案するものである。
本発明は、画像に含まれる計数対象の数を計測する自動計数装置であって、次に説明する識別手段、計数手段および補正手段を備えた装置を提供する。識別手段は、画像から抽出された顔情報に基づいて該画像に含まれる計数対象を識別する。計数手段は、識別手段により識別された計数対象の数を計測する。補正手段は、計数手段により計測された各計数対象の数を、対象ごとの識別精度に係る情報に基づいて、対象による識別精度の違いから生じる計数誤差が低減されるように補正する。
より具体的には、例えば、前記識別精度に係る情報が計数対象ごとの識別率の情報であり、前記補正手段が、前記計数手段により計測された各計数対象の数を、その数を当該計数対象の識別率で除算して得られる数に置き換える補正を行う形態が考えられる。
あるいは、前記識別精度に係る情報が、所定期間において前記識別手段が識別に失敗した対象に含まれる各計数対象の割合を示す情報であり、前記補正手段が、前記計数手段により計測された各計数対象の数を、その数に前記識別手段が識別に失敗した対象の数を前記割合に応じて各計数対象に分配した数を加算して得られる数に置き換える補正を行う形態も考えられる。
さらには、前記識別精度に係る情報が、前記識別手段が識別に成功した対象に含まれる各計数対象の割合を示す情報であり、前記補正手段が、前記計数手段により計測された各計数対象の数を、その数に前記識別手段が識別に失敗した対象の数を前記割合に応じて各計数対象に分配した数を加算して得られる数に置き換える補正を行う形態も考えられる。
また、本発明は、画像に含まれる計数対象の数を計測するための自動計数プログラムであって、コンピュータに、画像から抽出された顔情報に基づいて該画像に含まれる計数対象を識別する識別処理と、前記識別処理により識別された計数対象の数を計測する計数処理と、前記計数処理により計測された各計数対象の数を、対象ごとの識別精度に係る情報に基づいて、対象による識別精度の違いから生じる計数誤差が低減されるように補正する補正処理とを実行させる自動計数プログラムを提供する。
また、本発明は、画像に含まれる計数対象の数を自動的に計測する自動計数方法として、画像から抽出された顔情報に基づいて該画像に含まれる計数対象を識別する識別処理と、前記識別処理により識別された計数対象の数を計測する計数処理と、前記計数処理により計測された各計数対象の数を、対象ごとの識別精度に係る情報に基づいて、対象による識別精度の違いから生じる計数誤差が低減されるように補正する補正処理とを実行する方法を提案する。
本発明によれば、顔識別処理による計数結果に、識別精度を考慮した補正が施されるため、対象ごとに識別精度が異なる場合でも対象の違いから生じる計数誤差は抑制され、より正確な計数結果を得ることができる。
[第1実施形態]
図1は、第1実施形態における自動計数装置1の概略構成を示す図である。図に示すように、本実施形態の自動計数装置1は、画像入力制御部11、抽出部12、識別部13、計数部14、設定部15および補正部16を備える。詳細には本実施形態の自動計数装置1は、汎用のコンピュータに、上記各処理部の機能を実現するための要素プログラムを組み込んだものである。本実施形態ではコンピュータは複数のプロセッサを備えており、各要素プログラムの処理は複数のプロセッサにより並列に実行される。
画像入力制御部11は、画像撮影を行なうカメラと自動計数装置1とを直接接続するためのインタフェース、自動計数装置1をDVDドライブなどのメディア読み取り装置と接続するためのインタフェース、および、自動計数装置1をローカルエリアネットワークやインターネットに接続するためのインタフェースを提供する。自動計数装置1はカメラから直接、あるいはネットワークを介して画像を取り込みながら、リアルタイムに対象をカウントすることもできるし、メディアなどに保存されている画像を読み込んで、その画像に含まれる対象をカウントすることもできる。
抽出部12は、画像入力制御部11を介して入力された画像から人物の顔を検出する。画像から顔を検出する技術としては公知のいずれの技術を用いてもよいが、例えば所定の大きさの肌色領域を顔として検出する。続いて抽出部12は、検出した顔ごとに、顔の特徴を表す特徴を抽出する。抽出する特徴の種類および数は、計数対象の種類に応じて予め設定しておく。以下の説明では、男性の数、女性の数をそれぞれ計数する場合を例示して説明する。この場合、抽出部12は、検出した各顔から、男性の特徴、女性の特徴を抽出し、抽出した特徴を示す1または複数のデータ(以下特徴量)を所定の管理データとともに、顔情報として、自動計数装置1内のメモリに記憶する。
識別部13は、メモリ内の顔情報に含まれる特徴量に基づいて、画像に含まれている人物の属性あるいは状態を識別する。上記のとおり、ここでは、識別部13が、男性および女性を、それぞれ識別する場合について例示する。本実施形態では、識別部13は、顔情報に含まれる複数の特徴量を、男性の特徴を示す複数の特徴量と照合して、各照合の結果をスコアに換算して集計し、集計スコアを所定の閾値と比較することにより、顔が検出された人物の中から男性を識別する。同様に、女性の特徴を示す特徴量との照合も行なって、女性を識別する。なお、性別を識別する際には、男性のみを識別し、男性として識別されなかった対象を無条件に女性と判断する方法も考えられるが、本実施形態では、識別部13は、男性、女性それぞれについて識別処理を実行する。そして、男性を識別した場合には男性を示すコード、女性を識別した場合には女性を示すコードを出力する。また、顔は検出されたものの、その人物が男性か女性か識別できなかった場合には、識別部13は識別失敗を示すコードを出力する(図示せず)。
計数部14は、男性を計数するためのカウンタ141、女性を計数するためのカウンタ142を備え、識別部13が男性を示すコードを出力したときはカウンタ141を、女性を示すコードを出力したときはカウンタ142を、それぞれカウントアップする。本実施形態では、計数部14は、識別部13が識別失敗を示すコードを出力したときには、何もしない。なお、本実施形態では計数する対象は男性、女性の2種類であるため計数部14により制御されるカウンタは2つであるが、計数部14のカウンタの数は計数する対象の種類に応じて増減する。本実施形態では、カウンタはメモリ上に確保された8ビットの領域であり、確保するメモリ領域の大きさを変えることによって、カウンタの数を増減することができる。
設定部15は、識別部13の識別精度を示す情報を、識別する対象ごとに記憶している。本実施形態では、識別精度を示す情報として、識別率を記憶している。識別率は、0以上1以下の数値で表され、値が大きいほど識別が正確であることを意味する。
識別率は、装置の性能あるいは装置が採用した識別アルゴリズムに少なからず依存する。このため、装置出荷時の初期状態では、設定部15は、装置メーカが登録した識別率を記憶している。一方、識別率は、計測を行なう環境にも依存する。例えば長髪の人物ばかりが集まる場所での計測では、他の場所での計測よりも識別率は悪くなる。このため、設定部15は、オペレータからの要求に応じて自動計数装置1に付属するモニタ(図示せず)に所定の登録画面を表示し、その登録画面において計数対象ごとに識別率の入力を受け付ける。オペレータは、この機能を利用して、自らの経験に基づき登録されている識別率を変更することができる。
補正部16は、計数部14のカウンタ141およびカウンタ142の値を読み取り、読み取った値を、設定部15が記憶している男性識別率および女性識別率に基づいて補正し、補正後の数値を、自動計数装置1による計数結果として出力する。本実施形態では、補正部16は、次式に基づいて補正を行う。
男性の数 = カウンタ141の値 / 男性識別率
女性の数 = カウンタ142の値 / 女性識別率
これにより、例えば、識別率として男性0.98、女性0.82という値が記憶されており、カウンタ141の値が49、カウンタ142の値が41だった場合には、自動計数装置は、男性50人、女性50人という計数結果を出力する。
なお、補正部16は、計数部14による計数処理がすべて終了した後に上記計算を行なって最終的な計数結果のみを出力することもできるし、計数処理が行なわれている最中に計数結果を出力することもできる。例えば男性、女性の数の単位時間(例えば5分)ごとの数を調べる場合には、補正部16は計数部14のカウンタの値を5分おきに読み込み、各カウンタの値を0にリセットしてから上記補正演算を行って求めた値を出力する。また、男性、女性の数の経時的な変化を調べる場合には、補正部16は計数部14のカウンタの値を5分おきに読み込み、各カウンタの値はリセットせずに、上記補正演算を行って求めた値を出力する。
以上に説明したように、この自動計数装置1は、装置の性能や識別アルゴリズム、あるいは計測を行なう環境によって、計数対象ごとに識別率が異なる場合でも、実際に得られた計数結果を識別率に基づいて補正するので、概ね正しい計数結果を得ることができる。
[第2実施形態]
図2は、第2実施形態における自動計数装置2の概略構成を示す図である。図に示すように、本実施形態の自動計数装置2は、画像入力制御部21、抽出部22、識別部23、計数部24、設定部25および補正部26を備える。
画像入力制御部21の機能は、第1実施形態の装置の画像入力制御部11の機能とほぼ同じであるが、処理中の画像を設定部25に供給する点が異なる。また、抽出部22の機能も、第1実施形態の装置の抽出部12の機能とほぼ同じであるが、抽出した顔の輪郭を示す情報を設定部25に供給する点が異なる。識別部23の機能も、第1実施形態の装置の識別部13の機能とほぼ同じであるが、識別結果を示す各コードを、計数部24のみならず設定部25にも供給する点が異なる。
計数部24は、男性を計数するためのカウンタ241、女性を計数するためのカウンタ242および識別に失敗した回数を計数するためのカウンタ243を備え、識別部23が男性を示すコードを出力したときはカウンタ241を、女性を示すコードを出力したときはカウンタ242を、識別失敗を示すコードを出力したときにはカウンタ243を、それぞれカウントアップする。カウンタの数を計数する対象の種類に応じて増減できる点は、実施形態1の自動計数装置1と同じである。
設定部25は、オペレータから所定の要求があった場合に、自動計数装置2による計測が開始されてからの所定期間、画像入力制御部21、抽出部22および識別部23からの情報を収集し、蓄積記憶する。そして、オペレータにより設定画面が呼び出された場合に、図示されないモニタ画面に、画像入力制御部21から供給された画像を時系列に出力する。この際、抽出部22から供給された情報を利用して、その画像上に抽出された顔の輪郭を示す線を重ねて表示する。さらに、識別部23から供給されたコードの情報に基づいて、各顔の付近に識別結果を示すマークを表示する。識別に失敗した顔の付近には、特に目立つマークを表示して、オペレータに識別失敗顔を確認させる。
オペレータは、画像を視認することにより自動計数装置2が識別に失敗した人物が男性か女性かを判断し、識別に失敗した人物の人数の男女比を求め、自動計数装置2に接続されている図示されない入力機器を使って、その男女比の値を自動計数装置2に入力する。男女比は、例えば視認により確認した男性、女性の数をそのまま入力する。設定部25は、このオペレータによる入力を受け付けて、入力された情報を男性、女性それぞれの割合を示す値に置き換える。この処理により、自動計測装置2の設定部26には、期間が限られているとはいえ実際に観測された処理状況に基づいて求められた、識別失敗顔に含まれる男性、女性それぞれの割合(識別失敗顔の男女比)が記憶されることとなる。
補正部26は、設定部25による情報収集とオペレータによる設定操作が完了するまでは動作を開始することはできないが、オペレータによる設定操作が完了した後は、任意のタイミングで計数部24のカウンタ241、カウンタ242およびカウンタ243の値を読み出すことができる。補正部26は、計数部24による計数処理がすべて終了した後に計算を行なって最終的な計数結果のみを出力することもできるし、計数処理が行なわれている最中に計数結果を出力することもできる。本実施形態では、補正部26が行なう演算は、次式により示される。
男性の数 = カウンタ241の値 + カウンタ243の値 × 男性比率
女性の数 = カウンタ242の値 + カウンタ243の値 × 女性比率
これにより、例えば、設定部25から男性比率0.25、女性比率0.75という値が供給され、カウンタ241の値が41、カウンタ242の値が39、カウンタ243の値が20であった場合、自動計数装置は、男性46人、女性54人という計数結果を出力する。
この自動計数装置2によれば、オペレータは所定の期間、自動計数装置2の識別精度を自らの目で確認し、確認により得た知識に基づいて、補正に必要な情報を設定入力することができる。自動計数装置2は、その入力された情報に基づいて計数値を補正するため、計測環境にあった補正を行なうことができ、概ね正確な計数結果を得ることができる。また、オペレータにより設定された値は、同じ環境で同じ対象を計数する場合にはその設定をそのまま利用できるため、オペレータに大きな負担がかかることもない。
[実施形態3]
図3は、第3実施形態における自動計数装置3の概略構成を示す図である。図に示すように、本実施形態の自動計数装置3は、画像入力制御部31、抽出部32、識別部33、計数部34および設定部35を備える。
画像入力制御部31、抽出部32、識別部33の機能は、第1実施形態の装置の画像入力制御部11、抽出部12、識別部13の機能と同じであるため説明を省略する。また計数部34の機能は、第2実施形態の装置の計数部24と同じであるため説明を省略する。
本実施形態の自動計数装置3は、他の実施形態の装置が備えるような設定部を備えていない。自動計数装置3は、補正処理に用いる数値を予め記憶しておくのではなく、識別に成功した対象の計数結果を利用して、識別に失敗した対象をいずれかの計数対象に振り分ける処理を行なう。
補正部35は、計数部34のカウンタ341、カウンタ342およびカウンタ343の値を読み取り、カウンタ341の値とカウンタ342の値の比率に基づいて、カウンタ343の値を男性または女性に振り分ける。本実施形態では、補正部35は、次式に基づいて計数値を補正する。
男性の数 = カウンタ341の値 + カウンタ343の値 × カウンタ341の値/(カウンタ341の値+カウンタ342の値)
女性の数 = カウンタ342の値 + カウンタ343の値 × カウンタ342の値 /(カウンタ341の値+カウンタ342の値)
これにより、例えば、カウンタ341の値が60、カウンタ342の値が20、カウンタ243の値が20であった場合、自動計数装置は、男性75人、女性25人という計数結果を出力する。
自動計数装置3は、計数対象の識別に失敗することがあっても、識別に成功した対象の計数結果を利用して補正を行うため、実際の状況に即した計数結果を得ることができ、また、設定のための操作も不要であり、オペレータの負担も少ない。
第1実施形態における自動計数装置の構成を示す図 第2実施形態における自動計数装置の構成を示す図 第3実施形態における自動計数装置の構成を示す図
符号の説明
1,2,3 自動計数装置
14,24,34 計数部
141,142,241,242,243,341,342,343 カウンタ

Claims (6)

  1. 画像に含まれる計数対象の数を計測する自動計数装置であって、
    画像から抽出された顔情報に基づいて該画像に含まれる計数対象を識別する識別手段と、
    前記識別手段により識別された計数対象の数を計測する計数手段と、
    前記計数手段により計測された各計数対象の数を、対象ごとの識別精度に係る情報に基づいて、対象による識別精度の違いから生じる計数誤差が低減されるように補正する補正手段とを備え、
    前記識別精度に係る情報は、所定期間において前記識別手段が識別に失敗した対象に含まれる各計数対象の割合を示す情報であり、
    前記補正手段は、前記計数手段により計測された各計数対象の数を、該数に前記識別手段が識別に失敗した対象の数を前記割合に応じて各計数対象に分配した数を加算して得られる数に置き換える補正を行うことを特徴とする自動計数装置。
  2. 画像に含まれる計数対象の数を計測する自動計数装置であって、
    画像から抽出された顔情報に基づいて該画像に含まれる計数対象を識別する識別手段と、
    前記識別手段により識別された計数対象の数を計測する計数手段と、
    前記計数手段により計測された各計数対象の数を、対象ごとの識別精度に係る情報に基づいて、対象による識別精度の違いから生じる計数誤差が低減されるように補正する補正手段とを備え、
    前記識別精度に係る情報は、前記識別手段が識別に成功した対象に含まれる各計数対象の割合を示す情報であり、
    前記補正手段は、前記計数手段により計測された各計数対象の数を、該数に前記識別手段が識別に失敗した対象の数を前記割合に応じて各計数対象に分配した数を加算して得られる数に置き換える補正を行うことを特徴とする自動計数装置。
  3. 画像に含まれる計数対象の数を計測するための自動計数プログラムであって、コンピュータに、
    画像から抽出された顔情報に基づいて該画像に含まれる計数対象を識別する識別処理と、
    前記識別処理により識別された計数対象の数を計測する計数処理と、
    前記計数処理により計測された各計数対象の数を、対象ごとの識別精度に係る情報に基づいて、対象による識別精度の違いから生じる計数誤差が低減されるように補正する補正処理とを実行させ、
    前記識別精度に係る情報は、所定期間において前記識別処理において識別に失敗した対象に含まれる各計数対象の割合を示す情報であり、
    前記補正処理は、前記計数処理により計測された各計数対象の数を、該数に前記識別処理において識別に失敗した対象の数を前記割合に応じて各計数対象に分配した数を加算して得られる数に置き換える処理であることを特徴とする自動計数プログラム。
  4. 画像に含まれる計数対象の数を計測するための自動計数プログラムであって、コンピュータに、
    画像から抽出された顔情報に基づいて該画像に含まれる計数対象を識別する識別処理と、
    前記識別処理により識別された計数対象の数を計測する計数処理と、
    前記計数処理により計測された各計数対象の数を、対象ごとの識別精度に係る情報に基づいて、対象による識別精度の違いから生じる計数誤差が低減されるように補正する補正処理とを実行させ、
    前記識別精度に係る情報は、前記識別処理において識別に成功した対象に含まれる各計数対象の割合を示す情報であり、
    前記補正処理は、前記計数処理により計測された各計数対象の数を、該数に前記識別処理において識別に失敗した対象の数を前記割合に応じて各計数対象に分配した数を加算して得られる数に置き換える処理であることを特徴とする自動計数プログラム。
  5. 画像から抽出された顔情報に基づいて該画像に含まれる計数対象を識別する識別処理と、
    前記識別処理により識別された計数対象の数を計測する計数処理と、
    前記計数処理により計測された各計数対象の数を、対象ごとの識別精度に係る情報に基づいて、対象による識別精度の違いから生じる計数誤差が低減されるように補正する補正処理とを自動計数装置に実行させることにより、画像に含まれる計数対象の数を自動的に計測する自動計数方法であって、
    前記識別精度に係る情報は、所定期間において前記識別処理において識別に失敗した対象に含まれる各計数対象の割合を示す情報であり、
    前記補正処理は、前記計数処理により計測された各計数対象の数を、該数に前記識別処理において識別に失敗した対象の数を前記割合に応じて各計数対象に分配した数を加算して得られる数に置き換える処理であることを特徴とする自動計数方法。
  6. 画像から抽出された顔情報に基づいて該画像に含まれる計数対象を識別する識別処理と、
    前記識別処理により識別された計数対象の数を計測する計数処理と、
    前記計数処理により計測された各計数対象の数を、対象ごとの識別精度に係る情報に基づいて、対象による識別精度の違いから生じる計数誤差が低減されるように補正する補正処理とを自動計数装置に実行させることにより、画像に含まれる計数対象の数を自動的に計測する自動計数方法であって、
    前記識別精度に係る情報は、前記識別処理において識別に成功した対象に含まれる各計数対象の割合を示す情報であり、
    前記補正処理は、前記計数処理により計測された各計数対象の数を、該数に前記識別処理において識別に失敗した対象の数を前記割合に応じて各計数対象に分配した数を加算して得られる数に置き換える処理であることを特徴とする自動計数方法。
JP2005291419A 2005-10-04 2005-10-04 自動計数装置、プログラムおよび方法 Expired - Fee Related JP4732849B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005291419A JP4732849B2 (ja) 2005-10-04 2005-10-04 自動計数装置、プログラムおよび方法
US11/542,258 US7701608B2 (en) 2005-10-04 2006-10-04 Automatic counting apparatus, method, and recording medium on which the program is recorded

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005291419A JP4732849B2 (ja) 2005-10-04 2005-10-04 自動計数装置、プログラムおよび方法

Publications (2)

Publication Number Publication Date
JP2007102482A JP2007102482A (ja) 2007-04-19
JP4732849B2 true JP4732849B2 (ja) 2011-07-27

Family

ID=37902003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005291419A Expired - Fee Related JP4732849B2 (ja) 2005-10-04 2005-10-04 自動計数装置、プログラムおよび方法

Country Status (2)

Country Link
US (1) US7701608B2 (ja)
JP (1) JP4732849B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8356035B1 (en) 2007-04-10 2013-01-15 Google Inc. Association of terms with images using image similarity
US8055664B2 (en) 2007-05-01 2011-11-08 Google Inc. Inferring user interests
US7904461B2 (en) * 2007-05-01 2011-03-08 Google Inc. Advertiser and user association
US7853622B1 (en) 2007-11-01 2010-12-14 Google Inc. Video-related recommendations using link structure
US8041082B1 (en) * 2007-11-02 2011-10-18 Google Inc. Inferring the gender of a face in an image
US7961986B1 (en) 2008-06-30 2011-06-14 Google Inc. Ranking of images and image labels
JP5125982B2 (ja) * 2008-10-20 2013-01-23 オムロン株式会社 計数装置、計数方法、および計数プログラム
US8311950B1 (en) 2009-10-01 2012-11-13 Google Inc. Detecting content on a social network using browsing patterns
US8306922B1 (en) 2009-10-01 2012-11-06 Google Inc. Detecting content on a social network using links
CN112307827B (zh) * 2019-07-31 2024-04-26 梅特勒-托利多(常州)测量技术有限公司 对象识别装置,系统和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783817A (ja) * 1993-09-17 1995-03-31 Hitachi Ltd フロー式粒子画像解析方法およびフロー式粒子画像解析装置
JPH08304296A (ja) * 1995-03-08 1996-11-22 Hitachi Ltd 異物等の欠陥検出方法およびそれを実行する装置
JP2000200357A (ja) * 1998-10-27 2000-07-18 Toshiba Tec Corp 人物動線情報の収集方法及び収集装置
JP2005202674A (ja) * 2004-01-15 2005-07-28 Chugoku Electric Power Co Inc:The 魚道を通る魚の計数方法、魚道を通る魚の数を計数するシステム、情報処理装置、及びプログラム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7099510B2 (en) * 2000-11-29 2006-08-29 Hewlett-Packard Development Company, L.P. Method and system for object detection in digital images
JP4125634B2 (ja) 2003-05-26 2008-07-30 Necソフト株式会社 顧客情報収集管理方法及びそのシステム
US7319779B1 (en) * 2003-12-08 2008-01-15 Videomining Corporation Classification of humans into multiple age categories from digital images

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783817A (ja) * 1993-09-17 1995-03-31 Hitachi Ltd フロー式粒子画像解析方法およびフロー式粒子画像解析装置
JPH08304296A (ja) * 1995-03-08 1996-11-22 Hitachi Ltd 異物等の欠陥検出方法およびそれを実行する装置
JP2000200357A (ja) * 1998-10-27 2000-07-18 Toshiba Tec Corp 人物動線情報の収集方法及び収集装置
JP2005202674A (ja) * 2004-01-15 2005-07-28 Chugoku Electric Power Co Inc:The 魚道を通る魚の計数方法、魚道を通る魚の数を計数するシステム、情報処理装置、及びプログラム

Also Published As

Publication number Publication date
US7701608B2 (en) 2010-04-20
US20070076956A1 (en) 2007-04-05
JP2007102482A (ja) 2007-04-19

Similar Documents

Publication Publication Date Title
JP4732849B2 (ja) 自動計数装置、プログラムおよび方法
KR102264014B1 (ko) 신체 사이즈 측정용 사진 획득 방법 및 이를 이용한 신체 사이즈 측정 방법, 서버 및 프로그램
US10445563B2 (en) Time-in-store estimation using facial recognition
US11106900B2 (en) Person trend recording device, person trend recording method, and program
US9842255B2 (en) Calculation device and calculation method
JP6550094B2 (ja) 認証装置および認証方法
US8948474B2 (en) Quantification method of the feature of a tumor and an imaging method of the same
JP4717934B2 (ja) 関係分析方法、関係分析プログラム、および、関係分析装置
KR101301821B1 (ko) 안색 정보 생성 장치 및 그 방법, 안색 정보를 이용한 건강 상태 판단 장치 및 그 방법, 건강 분류 함수 생성 장치 및 그 방법
CN112464793B (zh) 一种在线考试作弊行为检测方法、系统和存储介质
EP3185146A1 (en) Information processing apparatus
CN113569793A (zh) 一种跌倒识别方法及装置
US20220078339A1 (en) Method for obtaining picture for measuring body size and body size measurement method, server, and program using same
WO2017070210A1 (en) System and method for automated sensing of emotion based on facial expression analysis
JP6686576B2 (ja) 関心度推定装置、関心度推定方法、プログラムおよび記録媒体
JP2020086994A (ja) 情報処理装置、情報処理方法及びプログラム
JP6340777B2 (ja) 来店者属性分布情報推定装置およびプログラム
US20210383667A1 (en) Method for computer vision-based assessment of activities of daily living via clothing and effects
US12100206B2 (en) Real-time risk tracking
US20220309704A1 (en) Image processing apparatus, image processing method and recording medium
US11769349B2 (en) Information processing system, data accumulation apparatus, data generation apparatus, information processing method, data accumulation method, data generation method, recording medium and database
CN109190495A (zh) 性别识别方法、装置及电子设备
US20230092638A1 (en) Delivery management device, delivery management method, and storage medium
WO2021181597A1 (ja) 認知度推定装置、認知度推定方法、及び、記録媒体
CN112086193A (zh) 一种基于物联网的人脸识别健康预测系统及方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110421

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4732849

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees