JP4729096B2 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP4729096B2
JP4729096B2 JP2008311296A JP2008311296A JP4729096B2 JP 4729096 B2 JP4729096 B2 JP 4729096B2 JP 2008311296 A JP2008311296 A JP 2008311296A JP 2008311296 A JP2008311296 A JP 2008311296A JP 4729096 B2 JP4729096 B2 JP 4729096B2
Authority
JP
Japan
Prior art keywords
tire
groove
axial direction
lug groove
shoulder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008311296A
Other languages
Japanese (ja)
Other versions
JP2010132181A (en
Inventor
一夫 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2008311296A priority Critical patent/JP4729096B2/en
Priority to CN 200910208818 priority patent/CN101746213B/en
Publication of JP2010132181A publication Critical patent/JP2010132181A/en
Application granted granted Critical
Publication of JP4729096B2 publication Critical patent/JP4729096B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)

Description

本発明は、排水性能を維持しつつショルダー陸部のヒールアンドトウ摩耗を抑制してノイズ性能をも向上しうる空気入りタイヤに関する。   The present invention relates to a pneumatic tire capable of improving noise performance by suppressing heel and toe wear of a shoulder land while maintaining drainage performance.

空気入りタイヤ、中でも乗用車用タイヤには優れた静粛性が求められる。一般に、タイヤ走行中のノイズの原因の一つに、トレッド陸部のヒールアンドトウ摩耗が挙げられる。ヒールアンドトウ摩耗は、駆動時及び制動時にトレッド陸部に作用するせん断力により、トレッド陸部の踏み込み側(ヒール)又は蹴り出し側(トウ側)が大きく摩耗する偏摩耗の一種である。   Pneumatic tires, especially passenger car tires, are required to have excellent quietness. In general, one of the causes of noise during tire running is heel and toe wear in the tread land portion. The heel and toe wear is a kind of partial wear in which the tread land part (heel) or kicking side (toe side) wears greatly due to the shearing force acting on the tread land part during driving and braking.

タイヤのパターン剛性は、バリアブルピッチ配列や製造上の不可避的な非真円性によって周方向に均一ではない。このため、ヒールアンドトウ摩耗は、タイヤ周方向の局所的な位置で成長が助長される傾向がある。そして、このような局所的な摩耗は、そこを起点とするタイヤ周方向の荷重変動を生じ、局所的な摩耗をさらに大きく成長させ(異常摩耗)、大きな走行ノイズを発生させる。従って、タイヤの静粛性を向上させるためには、異常摩耗の原因となるヒールアンドトウ摩耗を長期に亘って抑制することが重要である。   The pattern stiffness of the tire is not uniform in the circumferential direction due to variable pitch arrangement and inevitable non-circularity in manufacturing. For this reason, heel and toe wear tends to promote growth at local positions in the tire circumferential direction. Such local wear causes a load fluctuation in the tire circumferential direction starting from the local wear, which causes the local wear to grow further (abnormal wear) and generate large running noise. Therefore, in order to improve the quietness of the tire, it is important to suppress heel and toe wear that causes abnormal wear over a long period of time.

従来、ヒールアンドトウ摩耗を抑制するために、タイヤ周方向に連続する周方向溝のみが設けられたリブパターンが提案されている。しかしながら、リブパターンの空気入りタイヤは、十分な排水性能を維持できず、かつ、路面摩擦係数が小さい氷路やウエット路での駆動力及び制動力の低下が著しいという欠点がある。   Conventionally, in order to suppress heel and toe wear, a rib pattern in which only circumferential grooves continuous in the tire circumferential direction are provided has been proposed. However, the rib-patterned pneumatic tire has the disadvantages that it cannot maintain sufficient drainage performance, and the driving force and braking force on ice roads and wet roads with a small road surface friction coefficient are significantly reduced.

上記欠点を改善するために、トレッド部のクラウン陸部をリブとする一方、ショルダー陸部にラグ溝を設けたリブラグパターンが提案されている。このようなリブラグパターンでは、クラウンリブで走行ノイズを抑えるとともに、ラグ溝を有するショルダー陸部で駆動ないし制動力を発揮できる。   In order to improve the above-mentioned drawbacks, a rib lug pattern has been proposed in which the crown land portion of the tread portion is used as a rib while the lug groove is provided in the shoulder land portion. In such a rib lug pattern, while driving noise is suppressed by the crown rib, driving or braking force can be exhibited at the shoulder land portion having the lug groove.

関連する技術としては、次のものがある。   Related technologies include the following.

特開平6−55913号公報JP-A-6-55913

発明者らは、ショルダー陸部にラグ溝を形成するに際して、さらなる研究を重ねたところ、該ショルダー陸部に、内側ラグ溝、外側ラグ溝及び中間スロットを組み合わせて形成することにより、排水性能を維持しつつショルダー陸部のヒールアンドトウ摩耗を長期に亘って抑制し、ノイズ性能を向上しうることを知見した。   The inventors have conducted further research on forming the lug groove in the shoulder land portion, and as a result, the drainage performance is improved by forming the shoulder land portion by combining the inner lug groove, the outer lug groove and the intermediate slot. It was found that the heel and toe wear of the shoulder land portion can be suppressed for a long time while maintaining the noise performance.

以上のように、本発明は、排水性能を維持しつつショルダー陸部のヒールアンドトウ摩耗を長期に亘って抑制し、ひいてはノイズ性能を向上しうる空気入りタイヤ、とりわけ乗用車用空気入りタイヤを提供することを主たる目的としている。   As described above, the present invention provides a pneumatic tire, in particular a pneumatic tire for passenger cars, that can suppress the heel and toe wear of the shoulder land portion over a long period of time while maintaining the drainage performance, and thus improve the noise performance. The main purpose is to do.

本発明のうち請求項1記載の発明は、トレッド部に、最も接地端側をタイヤ周方向に連続してのびる一対のショルダー周方向溝を具えた空気入りタイヤであって、
前記ショルダー周方向溝と接地端との間に形成されるショルダー陸部に、
ショルダー周方向溝からタイヤ軸方向外側にのび接地端の手前で途切れる内側ラグ溝と、
少なくとも接地端からタイヤ軸方向内側にのび内側ラグ溝と交わることなくショルダー周方向溝の手前で途切れる外側ラグ溝と、
内側ラグ溝と外側ラグ溝との間をタイヤ軸方向にのびる中間スロットとが形成され、
前記中間スロットは、タイヤ軸方向の内端が内側ラグ溝のタイヤ軸方向の外端よりも内側かつショルダー周方向溝に達することなく途切れ、かつ、タイヤ軸方向の外端が外側ラグ溝のタイヤ軸方向の内端よりもタイヤ軸方向外側でかつ接地端に達することなく途切れることにより、ショルダー陸部が途切れることなくタイヤ周方向に連続するとともに、
前記中間スロットは、その長さ方向に沿ったトレッド踏面と垂直な断面において、外端から溝底に向かう外の傾斜面と、内端から溝底に向かう内の傾斜面とを含み、
中間スロットの外端からタイヤ幅方向内側にのびるトレッド踏面の法線に対する外の傾斜面の角度θoは、中間スロットの内端からタイヤ幅方向内側にのびるトレッド踏面の法線に対する内の傾斜面の角度θiよりも大きいことを特徴とする。
The invention according to claim 1 of the present invention is a pneumatic tire comprising a pair of shoulder circumferential grooves extending continuously in the tire circumferential direction on the tread portion, in the tire circumferential direction,
In the shoulder land portion formed between the shoulder circumferential groove and the ground contact end,
An inner lug groove extending from the shoulder circumferential groove outward in the axial direction of the tire and being interrupted before the ground contact edge;
An outer lug groove that breaks in front of the shoulder circumferential groove without crossing the inner lug groove extending from the ground contact end inward in the tire axial direction; and
An intermediate slot extending in the tire axial direction is formed between the inner lug groove and the outer lug groove,
The intermediate slot is discontinuous without the inner end in the tire axial direction being inside the outer end in the tire axial direction of the inner lug groove and reaching the shoulder circumferential groove, and the outer end in the tire axial direction is the outer lug groove of the tire As the shoulder land portion continues in the tire circumferential direction without interruption by being interrupted without reaching the ground contact end outside the axial direction of the inner end in the axial direction ,
The intermediate slot includes an outer inclined surface from the outer end toward the groove bottom and an inner inclined surface from the inner end toward the groove bottom in a cross section perpendicular to the tread tread along the length direction thereof.
The angle θo of the outer inclined surface with respect to the normal line of the tread surface extending from the outer end of the intermediate slot to the inner side in the tire width direction is the angle θo of the inner inclined surface with respect to the normal line of the tread surface extending from the inner end of the intermediate slot to the inner side of the tire width direction. It is characterized by being larger than the angle θi .

また請求項2記載の発明は、前記ショルダー陸部のタイヤ軸方向の幅Wsは、トレッド接地幅TWの15〜26%である請求項1記載の空気入りタイヤである。   The invention according to claim 2 is the pneumatic tire according to claim 1, wherein the width Ws of the shoulder land portion in the tire axial direction is 15 to 26% of the tread ground contact width TW.

また請求項3記載の発明は、前記内側ラグ溝と前記中間スロットとのタイヤ軸方向の重なり長さ、及び前記中間スロットと前記外側ラグ溝とのタイヤ軸方向の重なり長さは、いずれもショルダー陸部のタイヤ軸方向の幅Wsの1.0〜20.0%である請求項1又は2記載の空気入りタイヤである。   According to a third aspect of the present invention, the overlap length in the tire axial direction between the inner lug groove and the intermediate slot and the overlap length in the tire axial direction between the intermediate slot and the outer lug groove are both shoulders. The pneumatic tire according to claim 1 or 2, which is 1.0 to 20.0% of a width Ws in a tire axial direction of a land portion.

また請求項4記載の発明は、正規リムにリム組みされかつ正規内圧が充填されるとともに正規荷重を負荷して平面に接地させた接地面において、タイヤ赤道上のタイヤ周方向の接地長さCLと、タイヤ赤道からトレッド接地幅の40%の距離を隔てるショルダー位置でのタイヤ周方向の接地長さSLとの比CL/SLである接地形状ファクターが1.05〜1.35である請求項1ないし3のいずれかに記載の空気入りタイヤである。   In the invention according to claim 4, the ground contact length CL in the tire circumferential direction on the tire equator is formed on the ground surface which is assembled to the regular rim and filled with the regular internal pressure and is loaded with a regular load and grounded to the plane. And a ground contact shape factor which is a ratio CL / SL to a tire contact length SL in the tire circumferential direction at a shoulder position separating a distance of 40% of the tread contact width from the tire equator is 1.05 to 1.35. The pneumatic tire according to any one of 1 to 3.

また請求項5記載の発明は、前記角度θoは、20度以上45度以下である請求項1記載の空気入りタイヤである。
The invention according to claim 5 is the pneumatic tire according to claim 1 , wherein the angle θo is not less than 20 degrees and not more than 45 degrees .

また請求項6記載の発明は、前記トレッド部は、ショルダー周方向溝の内側に一対のクラウン周方向溝を具え、該一対のクラウン周方向溝の間にタイヤ周方向に連続するクラウンリブが形成されるとともに、クラウン周方向溝とショルダー周方向溝との間にタイヤ周方向に連続するミドルリブが形成される請求項1ないし5のいずれかに記載の空気入りタイヤである。   According to a sixth aspect of the present invention, the tread portion includes a pair of crown circumferential grooves on the inner side of the shoulder circumferential groove, and a crown rib continuous in the tire circumferential direction is formed between the pair of crown circumferential grooves. The pneumatic tire according to any one of claims 1 to 5, wherein a middle rib continuous in the tire circumferential direction is formed between the crown circumferential groove and the shoulder circumferential groove.

また請求項7記載の発明は、サイドウォール部に文字又はマークによって回転方向が指定された方向性タイヤであり、かつ、前記内側ラグ溝の外端位置において、内側ラグ溝と、それに最も近い後着側の中間スロットとのタイヤ周方向の距離は、中間スロットのタイヤ周方向の配設ピッチの25〜40%である請求項1ないし6のいずれかに記載の空気入りタイヤである。 The invention according to claim 7 is a directional tire in which a rotation direction is designated by a character or a mark on a side wall portion , and at the outer end position of the inner lug groove, the inner lug groove and the rearmost The pneumatic tire according to any one of claims 1 to 6, wherein the distance in the tire circumferential direction from the wear-side intermediate slot is 25 to 40% of the arrangement pitch of the intermediate slot in the tire circumferential direction.

また請求項8記載の発明は、前記内側ラグ溝、外側ラグ溝及び中間スロットは、いずれもタイヤ軸方向に対して同じ向きに傾斜する請求項1ないし7のいずれかに記載の空気入りタイヤである。   The invention according to claim 8 is the pneumatic tire according to any one of claims 1 to 7, wherein the inner lug groove, the outer lug groove and the intermediate slot are all inclined in the same direction with respect to the tire axial direction. is there.

本発明の空気入りタイヤは、ショルダー陸部に、ショルダー周方向溝からタイヤ軸方向外側にのび接地端の手前で途切れる内側ラグ溝と、少なくとも接地端からタイヤ軸方向内側にのび内側ラグ溝と交わることなくショルダー周方向溝の手前で途切れる外側ラグ溝と、内側ラグ溝と外側ラグ溝との間をタイヤ軸方向にのびる中間スロットとが形成される。このように、ショルダー陸部に、タイヤ軸方向の位置を異ならせて内側ラグ溝、外側ラグ溝及び中間スロットを分散配置することにより、ショルダー陸部での駆動力ないし制動力を高めるとともに、排水性能の低下を防止できる。   The pneumatic tire of the present invention intersects the shoulder land portion with the inner lug groove extending from the shoulder circumferential groove outward in the tire axial direction and before the ground contact end, and at least the inner lug groove extending inward in the tire axial direction from the ground contact end. An outer lug groove that is interrupted in front of the shoulder circumferential groove and an intermediate slot that extends between the inner lug groove and the outer lug groove in the tire axial direction is formed. In this way, the inner land groove, the outer surface lug groove and the intermediate slot are distributed and arranged on the shoulder land portion in different positions in the tire axial direction, thereby increasing the driving force or braking force in the shoulder land portion and draining. Performance degradation can be prevented.

また、中間スロットは、タイヤ軸方向の内端が内側ラグ溝のタイヤ軸方向の外端よりも内側かつショルダー周方向溝に達することなく途切れ、かつ、タイヤ軸方向の外端が外側ラグ溝のタイヤ軸方向の内端よりもタイヤ軸方向外側でかつ接地端に達することなく途切れることにより、ショルダー陸部は、途切れることなくタイヤ周方向に連続する。このようなショルダー陸部は、排水性能を損ねることなくタイヤ周方向剛性が高く維持される。特に、各ラグ溝間又は中間スロット間で挟まれる陸部分は、相互にタイヤ軸方向に連結されているので、タイヤ周方向剛性も高く、ひいてはヒールアンドトウ摩耗が生じにくい。従って、本発明の空気入りタイヤは、長期に亘ってヒールアンドトウ摩耗を抑制し、ノイズ性能や乗り心地を向上しうる。   Further, the intermediate slot is interrupted without the inner end in the tire axial direction reaching the inner circumferential edge of the inner lug groove and the shoulder circumferential groove, and the outer end in the tire axial direction is the outer lug groove. The shoulder land portion is continuous in the tire circumferential direction without interruption by being interrupted without reaching the ground contact end on the outer side in the tire axial direction than the inner end in the tire axial direction. Such a shoulder land portion maintains high rigidity in the tire circumferential direction without impairing drainage performance. In particular, since the land portions sandwiched between the lug grooves or between the intermediate slots are connected to each other in the tire axial direction, the tire circumferential rigidity is high, and heel and toe wear hardly occurs. Therefore, the pneumatic tire of the present invention can suppress heel and toe wear over a long period of time and improve noise performance and ride comfort.

以下、本発明の実施の一形態が図面に基づき説明される。
図1は本実施形態の空気入りタイヤ(全体不図示)のトレッド部2の展開図、図2はその部分断面図をそれぞれ示す。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a developed view of a tread portion 2 of a pneumatic tire (not shown) of the present embodiment, and FIG. 2 is a partial sectional view thereof.

本実施形態では、空気入りタイヤとして、回転方向Rが指定された方向性タイヤが示される。この回転方向Rは、サイドウォール部などに文字又はマーク等によって明示される(図示省略)。また、本実施形態の空気入りタイヤは、乗用車用のラジアルタイヤとして構成されている。   In the present embodiment, a directional tire in which the rotation direction R is designated is shown as a pneumatic tire. The rotation direction R is clearly indicated by characters or marks on the sidewall portion (not shown). Further, the pneumatic tire of the present embodiment is configured as a radial tire for passenger cars.

前記トレッド部2には、最も接地端e側をタイヤ周方向に連続してのびる一対のショルダー周方向溝3と、ショルダー周方向溝3の内側にタイヤ周方向に連続してのびる一対のクラウン周方向溝4とが形成される。これにより、トレッド部2には、ショルダー周方向溝3と接地端eとの間のショルダー陸部5と、一対のクラウン周方向溝4、4の間のクラウン陸部6と、クラウン周方向溝4とショルダー周方向溝3との間のミドル陸部7とが区分される。   The tread portion 2 has a pair of shoulder circumferential grooves 3 extending continuously in the tire circumferential direction on the most ground contact end e side, and a pair of crown circumferences extending continuously in the tire circumferential direction inside the shoulder circumferential grooves 3. Directional grooves 4 are formed. Accordingly, the tread portion 2 includes a shoulder land portion 5 between the shoulder circumferential groove 3 and the ground contact e, a crown land portion 6 between the pair of crown circumferential grooves 4 and 4, and a crown circumferential groove. 4 and the middle land portion 7 between the shoulder circumferential grooves 3 are divided.

ここで、前記「接地端」eは、正規リムにリム組みしかつ正規内圧が充填された正規状態のタイヤに正規荷重を負荷し、キャンバー角0度でトレッド部2を平面に接地させたときの最もタイヤ軸方向外側の接地位置として定められる。   Here, the “grounding end” e is obtained when a normal load is applied to a tire in a normal state in which a rim is assembled on a normal rim and a normal internal pressure is filled, and the tread portion 2 is grounded to a flat surface with a camber angle of 0 degrees. Is defined as the ground contact position on the outermost side in the tire axial direction.

また、前記「正規リム」とは、タイヤが基づいている規格を含む規格体系において、当該規格がタイヤ毎に定めるリムであり、例えばJATMAであれば"標準リム"、TRAであれば "Design Rim" 又はETRTOであれば "Measuring Rim" とする。   The “regular rim” is a rim determined for each tire in the standard system including the standard on which the tire is based. For example, “Standard Rim” for JATMA, “Design Rim” for TRA. “Or“ Measuring Rim ”if ETRTO.

また、前記「正規内圧」とは、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている空気圧であり、JATMAであれば"最高空気圧"、TRAであれば表 "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" に記載の最大値、ETRTOであれば "INFLATION PRESSURE" とする。   In addition, the “regular internal pressure” is an air pressure determined by each standard for each tire in the standard system including the standard on which the tire is based. TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES "Maximum value", ETRTO, "INFLATION PRESSURE".

さらに、前記「正規荷重」とは、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている荷重であり、JATMAであれば"最大負荷能力"、TRAであれば表 "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" に記載の最大値、ETRTOであれば "LOAD CAPACITY" とするが、タイヤが乗用車用である場合には前記各荷重の88%に相当する荷重とされる。   Further, the “regular load” is a load determined by each standard for each tire in a standard system including a standard on which the tire is based. “JATMA” is “maximum load capacity”, and TRA is a table. The maximum value described in "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES". If it is ETRTO, it will be "LOAD CAPACITY". .

本実施形態において、ショルダー周方向溝3及びクラウン周方向溝4は、排水抵抗を小さくするためにタイヤ周方向に沿った直線溝として形成される。ただし、各周方向溝3及び4は、タイヤ周方向に連続してのびるものであれば、ジグザグ状や波状など非直線状であっても構わない。   In the present embodiment, the shoulder circumferential groove 3 and the crown circumferential groove 4 are formed as straight grooves along the tire circumferential direction in order to reduce drainage resistance. However, as long as each circumferential groove 3 and 4 extends continuously in the tire circumferential direction, it may have a non-linear shape such as a zigzag shape or a wave shape.

前記各周方向溝3及び4の溝幅については、タイヤサイズ等に応じて適宜定めることができるが、大き過ぎるとトレッド部2の剛性を低下させる傾向があり、逆に小さ過ぎると排水性が悪化する傾向がある。排水性を十分に確保しつつトレッド剛性の著しい低下を防止するために、各周方向溝3及び4の溝幅GW1、GW2は、好ましくはトレッド接地幅TWの3%以上、より好ましくは4%以上が望ましく、また、好ましくは7%以下、より好ましくは6%以下が望ましい。   The groove widths of the circumferential grooves 3 and 4 can be appropriately determined according to the tire size and the like. However, if the groove width is too large, the rigidity of the tread portion 2 tends to be reduced. There is a tendency to get worse. In order to prevent a significant decrease in the tread rigidity while ensuring sufficient drainage, the groove widths GW1 and GW2 of the circumferential grooves 3 and 4 are preferably 3% or more, more preferably 4%, of the tread ground contact width TW. The above is desirable, and it is preferably 7% or less, more preferably 6% or less.

本実施形態では、ショルダー周方向溝3の溝幅GW1は、クラウン周方向溝4の溝幅GW2よりも大きく形成されている。より好ましくは、溝幅GW1は、溝幅GW2の1.3〜1.6倍程度に形成される。これは、接地端e側での排水性を高めるのに役立つ。   In the present embodiment, the groove width GW1 of the shoulder circumferential groove 3 is formed larger than the groove width GW2 of the crown circumferential groove 4. More preferably, the groove width GW1 is formed to be about 1.3 to 1.6 times the groove width GW2. This is useful for enhancing drainage on the grounding end e side.

なお、タイヤの各部の寸法は、特に断りがない限り、前記無負荷の正規状態において測定された値とする。また、溝幅については、溝の長手方向と直角方向に測定される。   In addition, unless otherwise indicated, the dimension of each part of a tire shall be the value measured in the said no-load normal state. Further, the groove width is measured in a direction perpendicular to the longitudinal direction of the groove.

本実施形態の空気入りタイヤは、前記クラウン陸部6及びミドル陸部7が、それぞれタイヤ周方向に連続してのびるリブとして形成される。各陸部6、7には、リブ剛性を調整するためのラグ状の小溝12や周方向細溝13が形成されるが、タイヤ軸方向に分断されることなく周方向に連続する。このようなクラウン陸部6及びミドル陸部7は、ヒールアンドトウ摩耗のおそれがなく、かつ、走行中のノイズの発生を抑制しうる点で特に好ましい。なお、小溝12とクラウン周方向溝4とがなす鋭角側のエッジには、エッジ端に向かって下降するテーパ面14を設けてゴム欠けなどを防止するのが望ましい。   In the pneumatic tire of the present embodiment, the crown land portion 6 and the middle land portion 7 are formed as ribs extending continuously in the tire circumferential direction. Each of the land portions 6 and 7 is formed with lug-shaped small grooves 12 and circumferential narrow grooves 13 for adjusting the rib rigidity, but continues in the circumferential direction without being divided in the tire axial direction. The crown land portion 6 and the middle land portion 7 are particularly preferable in that there is no fear of heel and toe wear and generation of noise during traveling can be suppressed. In addition, it is desirable to provide a tapered surface 14 that descends toward the edge end on the edge on the acute angle side formed by the small groove 12 and the crown circumferential groove 4 to prevent rubber chipping or the like.

ショルダー陸部5には、内側ラグ溝8、外側ラグ溝9及び中間スロット10が形成される。また、本実施形態のショルダー陸部5には、上記ラグ溝8、9及び中間スロット10以外には、他の周方向溝や横溝などは設けられていない。   In the shoulder land portion 5, an inner lug groove 8, an outer lug groove 9, and an intermediate slot 10 are formed. In addition to the lug grooves 8 and 9 and the intermediate slot 10, the shoulder land portion 5 of the present embodiment is not provided with other circumferential grooves or lateral grooves.

図3に部分的に拡大されるように、前記内側ラグ溝8は、ショルダー周方向溝3からタイヤ軸方向外側にのび、かつ、タイヤ軸方向の外端8oが接地端eに連通することなくその手前で途切れている。該内側ラグ溝8は、ほぼ一定の配設ピッチPiでタイヤ周方向に隔設される。なお、「ほぼ一定」であるから、ピッチバリエーションの範囲内で配設ピッチPiが変化しても良いのは言うまでもない。   3, the inner lug groove 8 extends from the shoulder circumferential groove 3 outward in the tire axial direction, and the outer end 8o in the tire axial direction does not communicate with the ground contact e. It is interrupted before that. The inner lug grooves 8 are spaced apart in the tire circumferential direction with a substantially constant arrangement pitch Pi. Needless to say, the arrangement pitch Pi may be changed within the range of the pitch variation since it is “substantially constant”.

前記外側ラグ溝9は、少なくとも接地端eからタイヤ軸方向内側にのび、かつ、そのタイヤ軸方向の内端9iは、ショルダー周方向溝3に連通することなくその手前で途切れている。また、本実施形態の外側ラグ溝9は、タイヤ周方向に隔設されるが、その配設ピッチPoは、内側ラグ溝8の配設ピッチPiと実質的に同一である。   The outer lug groove 9 extends at least inward in the tire axial direction from the ground contact end e, and the inner end 9i in the tire axial direction is disconnected in front of the shoulder circumferential groove 3 without communicating with the shoulder circumferential groove 3. In addition, the outer lug grooves 9 of the present embodiment are spaced apart in the tire circumferential direction, and the arrangement pitch Po thereof is substantially the same as the arrangement pitch Pi of the inner lug grooves 8.

さらに、外側ラグ溝9は、内側ラグ溝8と交わることなく設けられる。つまり、外側ラグ溝9と内側ラグ溝8とは、タイヤ周方向の異なる位置に(即ち、タイヤ周方向に位相をずらせて)設けられている。   Further, the outer lug groove 9 is provided without intersecting with the inner lug groove 8. That is, the outer lug groove 9 and the inner lug groove 8 are provided at different positions in the tire circumferential direction (that is, shifted in phase in the tire circumferential direction).

また、外側ラグ溝9は、本実施形態のように、接地端eのタイヤ軸方向のさらに外側からタイヤ軸方向内側にのびるものが望ましい。旋回時には、接地端eのタイヤ軸方向外側の領域も接地するので、接地端eのタイヤ軸方向外側にもラグ溝を延在させておくのが、旋回時の排水性を向上させる点で有利である。   Further, the outer lug groove 9 is preferably extended from the outer side in the tire axial direction of the ground contact end e to the inner side in the tire axial direction as in the present embodiment. During turning, the region outside the tire axial direction of the ground contact edge e is also grounded, so it is advantageous to extend the lug groove to the outside of the ground contact edge e in the tire axial direction from the viewpoint of improving the drainage performance at the time of turning. It is.

前記中間スロット10は、内側ラグ溝8と外側ラグ溝9との間をタイヤ軸方向にのびている。中間スロット10のタイヤ軸方向の内端10iは、内側ラグ溝8の外端8oよりも内側でかつショルダー周方向溝3に達することなく途切れる。従って、内側ラグ溝8と中間スロット10とは、タイヤ軸方向の重なり長さL1を有する。   The intermediate slot 10 extends between the inner lug groove 8 and the outer lug groove 9 in the tire axial direction. The inner end 10 i in the tire axial direction of the intermediate slot 10 is interrupted inside the outer end 8 o of the inner lug groove 8 and without reaching the shoulder circumferential groove 3. Accordingly, the inner lug groove 8 and the intermediate slot 10 have an overlap length L1 in the tire axial direction.

また、中間スロット10のタイヤ軸方向の外端10oは、外側ラグ溝9の内端9iよりもタイヤ軸方向外側でかつ接地端eに達することなく途切れる。従って、中間スロット10と外側ラグ溝9とは、タイヤ軸方向の重なり長さL2を有する。   Further, the outer end 10 o in the tire axial direction of the intermediate slot 10 is interrupted without reaching the ground contact end e on the outer side in the tire axial direction than the inner end 9 i of the outer lug groove 9. Accordingly, the intermediate slot 10 and the outer lug groove 9 have an overlap length L2 in the tire axial direction.

さらに、中間スロット10は、タイヤ周方向に隔設されるが、その配設ピッチPcは、外側ラグ溝9及び内側ラグ溝8と実質的に同一とされている。また、中間スロット10は、両ラグ溝8及び9と交わることなく(連通することなく)設けられる。つまり、中間スロット10は、外側ラグ溝9及び内側ラグ溝8とは、タイヤ周方向の異なる位置に位相をずらせて設けられる。このようなラグ溝8、9及び中間スロット10は、ショルダー陸部5を途切れさせることなくタイヤ周方向に連続させる。   Further, the intermediate slots 10 are spaced apart in the tire circumferential direction, and the arrangement pitch Pc thereof is substantially the same as that of the outer lug grooves 9 and the inner lug grooves 8. Further, the intermediate slot 10 is provided without intersecting (communicating with) both the lug grooves 8 and 9. That is, the intermediate slot 10 is provided with a phase shifted from the outer lug groove 9 and the inner lug groove 8 at different positions in the tire circumferential direction. Such lug grooves 8 and 9 and the intermediate slot 10 are continued in the tire circumferential direction without interrupting the shoulder land portion 5.

このように、ショルダー陸部5に、タイヤ軸方向及びタイヤ周方向の位置を異ならせて内側ラグ溝8、外側ラグ溝9及び中間スロット10を分散して設けることにより、駆動力ないし制動力を高めるとともに、ショルダー陸部5での排水性能の低下や、駆動力及び制動力の低下を防止できる。   In this way, the shoulder land portion 5 is provided with the inner lug grooves 8, the outer lug grooves 9, and the intermediate slots 10 dispersedly at different positions in the tire axial direction and the tire circumferential direction, so that driving force or braking force is provided. While increasing, the fall of the drainage performance in the shoulder land part 5, and the fall of a driving force and a braking force can be prevented.

また、ショルダー陸部5は、タイヤ周方向に連続するので、その剛性が高く維持されるとともに、内側ラグ溝8、8間、外側ラグ溝9、9間又は中間スロット10、10間の各陸部分は、互いにタイヤ軸方向に連結されるので、各々のタイヤ周方向剛性も高く、ひいてはヒールアンドトウ摩耗が生じにくい。従って、本発明の空気入りタイヤは、長期に亘ってヒールアンドトウ摩耗を抑制し、ノイズ性能や乗り心地を向上しうる。   Further, since the shoulder land portion 5 is continuous in the tire circumferential direction, its rigidity is maintained high, and each land between the inner lug grooves 8 and 8, between the outer lug grooves 9 and 9, or between the intermediate slots 10 and 10. Since the portions are connected to each other in the tire axial direction, the rigidity in the tire circumferential direction is high, and as a result, heel and toe wear hardly occurs. Therefore, the pneumatic tire of the present invention can suppress heel and toe wear over a long period of time and improve noise performance and ride comfort.

なお、ショルダー陸部5には、その剛性に実質的な影響を与えないような細溝で分断されることは差し支えない。このような細溝としては、例えば溝幅及び溝深さがともに1.5mm以下のトレッドパターン装飾用細溝(図示せす)などが含まれ得る。   The shoulder land portion 5 may be divided by a narrow groove that does not substantially affect its rigidity. Such a narrow groove may include, for example, a tread pattern decorative narrow groove (not shown) having both a groove width and a groove depth of 1.5 mm or less.

前記ショルダー陸部5のタイヤ軸方向の幅Wsは、好ましくはトレッド接地幅TWの15%以上、より好ましくは20%以上が望ましく、また、好ましくは26%以下、より好ましくは25%以下が望ましい。ショルダー陸部5の幅Wsがトレッド接地幅TWの15%未満の場合、クラウン陸部6及びミドル陸部7で低下しがちな駆動力及び制動力を十分に確保することができない傾向がある。また、旋回時の横剛性も低下するおそれがある。逆に、ショルダー陸部5の幅Wsがトレッド接地幅TWの26%を超えると、クラウン陸部6やミドル陸部7の幅が減少し、これらの横剛性が低下してセンター摩耗が生じやすくなるため好ましくない。   The width Ws of the shoulder land portion 5 in the tire axial direction is preferably 15% or more of the tread contact width TW, more preferably 20% or more, and preferably 26% or less, more preferably 25% or less. . When the width Ws of the shoulder land portion 5 is less than 15% of the tread ground contact width TW, the driving force and the braking force that tend to decrease in the crown land portion 6 and the middle land portion 7 tend not to be sufficiently secured. Moreover, there is a possibility that the lateral rigidity at the time of turning may be lowered. On the contrary, if the width Ws of the shoulder land portion 5 exceeds 26% of the tread ground contact width TW, the width of the crown land portion 6 and the middle land portion 7 is reduced, and the lateral rigidity thereof is lowered and the center wear easily occurs. Therefore, it is not preferable.

また、内側ラグ溝8と中間スロット10とのタイヤ軸方向の重なり長さL1、及び中間スロット10と外側ラグ溝9とのタイヤ軸方向の重なり長さL2は、いずれもショルダー陸部5の前記幅Wsの1.0%以上、より好ましくは5.0%以上が望ましく、また、好ましくは20.0%以下、より好ましくは15.0%以下が望ましい。各重なり長さL1、L2が、ショルダー陸部5の幅Wsの1.0%未満になると、排水性が低下し、雨天時の操縦安定性が低下する傾向があり、逆に20.0%を超えると、ショルダー部のパターン剛性が低下し、ドライ路面での操縦安定性が低下する傾向がある。   Further, the overlapping length L1 of the inner lug groove 8 and the intermediate slot 10 in the tire axial direction and the overlapping length L2 of the intermediate slot 10 and the outer lug groove 9 in the tire axial direction are both of the above-mentioned shoulder land portion 5. The width Ws is 1.0% or more, more preferably 5.0% or more, and preferably 20.0% or less, more preferably 15.0% or less. When the overlapping lengths L1 and L2 are less than 1.0% of the width Ws of the shoulder land portion 5, the drainage tends to be lowered, and the steering stability during rainy weather tends to be lowered. Conversely, 20.0% If it exceeds, the pattern rigidity of the shoulder portion is lowered, and the steering stability on the dry road surface tends to be lowered.

また、ショルダー陸部5をのびる内側ラグ溝8、外側ラグ溝9及び中間スロット10のタイヤ軸方向の長さGL1、GL2及びGL3は、特に限定されるものではなく、種々定めることができるが、ショルダー陸部5の剛性バランスを保つために、各溝長さGL1ないしGL3は、好ましくはショルダー陸部5の幅Wsの45%以上、より好ましくは48%以上が望ましく、また、好ましくは60%以下、より好ましくは50%以下が望ましい。   Further, the lengths GL1, GL2 and GL3 in the tire axial direction of the inner lug groove 8, the outer lug groove 9 and the intermediate slot 10 extending over the shoulder land portion 5 are not particularly limited and can be variously determined. In order to maintain the rigidity balance of the shoulder land portion 5, the groove lengths GL1 to GL3 are preferably 45% or more of the width Ws of the shoulder land portion 5, more preferably 48% or more, and preferably 60%. Below, 50% or less is more desirable.

また、内側ラグ溝8、外側ラグ溝9及び中間スロット10の溝深さGD1(図2に示す)は、好ましくはショルダー周方向溝3の溝深さGD2の0.7〜1.2倍程度が望ましい。前記ラグ溝等の溝深さGD1が、ショルダー周方向溝3の溝深さGD2の0.7倍未満になると、ラグ溝等が摩耗によって早期に消失し、駆動ないし制動力の低下が生じるおそれがあり、逆に1.2倍を超えると、ショルダー陸部5の剛性が低くなってヒールアンドトウ摩耗が生じやすくなる他、燃費性能の悪化を招くおそれがある。   Further, the groove depth GD1 (shown in FIG. 2) of the inner lug groove 8, the outer lug groove 9, and the intermediate slot 10 is preferably about 0.7 to 1.2 times the groove depth GD2 of the shoulder circumferential groove 3. Is desirable. If the groove depth GD1 of the lug groove or the like is less than 0.7 times the groove depth GD2 of the shoulder circumferential groove 3, the lug groove or the like may disappear early due to wear, resulting in a decrease in driving or braking force. On the contrary, if it exceeds 1.2 times, the rigidity of the shoulder land portion 5 is lowered, and heel and toe wear is likely to occur, and the fuel efficiency may be deteriorated.

また、ショルダー陸部5をのびる内側ラグ溝8、外側ラグ溝9及び中間スロット10の溝幅GW3(図1に示す)は、特に限定されるものではないが、小さすぎると、排水性能が悪化しやすく、逆に大きすぎると、ショルダー陸部5のパターン剛性が低下し、操縦安定性の低下やヒールアンドトウ摩耗を早めるおそれがある。このような観点より、前記ラグ溝等の溝幅GW3は、好ましくは3mm以上、より好ましくは5mm以上が望ましく、また、好ましくは7mm以下、より好ましくは6mm以下が望ましい。とりわけ、前記溝幅GW3は、前記ラグ溝の配設ピッチPiの9〜11%程度となるように定められるのが良い。   Further, the groove width GW3 (shown in FIG. 1) of the inner lug groove 8, the outer lug groove 9 and the intermediate slot 10 extending over the shoulder land portion 5 is not particularly limited, but if it is too small, the drainage performance deteriorates. On the contrary, if it is too large, the pattern rigidity of the shoulder land portion 5 is lowered, and there is a possibility that the steering stability is lowered and the heel and toe wear is accelerated. From such a viewpoint, the groove width GW3 such as the lug groove is preferably 3 mm or more, more preferably 5 mm or more, and preferably 7 mm or less, more preferably 6 mm or less. In particular, the groove width GW3 is preferably set to be about 9 to 11% of the arrangement pitch Pi of the lug grooves.

さらに、図3に示されるように、ショルダー陸部5をのびる内側ラグ溝8、外側ラグ溝9及び中間スロット10は、タイヤ軸方向に対して20度以下の角度θaとするのが望ましい。前記角度θaが20度を超えると、該ラグ溝8、9及びスロット10での車両外側への排水性が悪化する傾向がある。他方、ラグ溝8、9及びスロット10がタイヤ軸方向と平行にのびていると、ノイズ性能が悪化するおそれがある。このような観点より、前記角度θaは、好ましくは、タイヤ軸方向に対して0度よりも大、より好ましくは5度以上20度以下が望ましい。なお、ラグ溝8及び9、中間スロット10の各角度θaは、図3に示されるように、溝中心線の両端を結ぶ直線と、タイヤ軸方向とのなす角度で特定される。   Further, as shown in FIG. 3, the inner lug groove 8, the outer lug groove 9 and the intermediate slot 10 extending over the shoulder land portion 5 are preferably set to an angle θa of 20 degrees or less with respect to the tire axial direction. When the angle θa exceeds 20 degrees, the drainage performance toward the vehicle outer side at the lug grooves 8 and 9 and the slot 10 tends to deteriorate. On the other hand, if the lug grooves 8, 9 and the slot 10 extend parallel to the tire axial direction, the noise performance may be deteriorated. From such a viewpoint, the angle θa is preferably greater than 0 degree, more preferably 5 degrees or more and 20 degrees or less with respect to the tire axial direction. Each angle θa of the lug grooves 8 and 9 and the intermediate slot 10 is specified by an angle formed by a straight line connecting both ends of the groove center line and the tire axial direction, as shown in FIG.

また、本実施形態では、内側ラグ溝8、外側ラグ溝9及び中間スロット10は、いずれもタイヤ軸方向に対して同じ向き(即ち、図1において右上がり)に傾斜している。そして、例えば図1の左側のショルダー陸部5では、ラグ溝等8〜10は、いずれもタイヤ軸方向内側から外側に順次接地する。このため、タイヤの回転に伴う圧力により、路面上の水膜を接地端側へと効果的に排出し、排水性を高めることができる。一方、図1の右側のショルダー陸部5では、ラグ溝8〜10が、それぞれタイヤ軸方向外側から内側に向かって順次接地する。このため、タイヤの回転に伴う圧力により、路面上の水膜を溝幅が大きいショルダー周方向溝3へと導いて排水させることができる。 In the present embodiment, the inner lug groove 8, the outer lug groove 9, and the intermediate slot 10 are all inclined in the same direction (that is, upward to the right in FIG. 1) with respect to the tire axial direction. For example, in the left shoulder land portion 5 in FIG. 1, the lug grooves 8 to 10 are sequentially grounded from the inner side to the outer side in the tire axial direction. For this reason, the water film on the road surface can be effectively discharged to the grounding end side by the pressure accompanying the rotation of the tire, and the drainage can be improved. On the other hand, the right side of the shoulder land portion 5 in FIG. 1, the lug grooves 8 to 10, sequentially ground from the outside to the inside in the tire axial direction. For this reason, the water film on the road surface can be guided to the shoulder circumferential groove 3 having a large groove width and drained by the pressure accompanying the rotation of the tire.

上述の作用を効果的に発揮させるためには、図3に示されるように、内側ラグ溝8のタイヤ軸方向の外端8oの位置において、内側ラグ溝8と、それに最も近い後着側の中間スロット10とのタイヤ周方向の距離X1(溝中心線間の距離とする)は、中間スロット10のタイヤ周方向の配設ピッチPcの25〜40%、より好ましくは30〜36%であるのが望ましい。   In order to effectively exhibit the above-described action, as shown in FIG. 3, at the position of the outer end 8o of the inner lug groove 8 in the tire axial direction, the inner lug groove 8 and the closest rear landing side The distance X1 in the tire circumferential direction with respect to the intermediate slot 10 (the distance between the groove center lines) is 25 to 40%, more preferably 30 to 36% of the arrangement pitch Pc of the intermediate slot 10 in the tire circumferential direction. Is desirable.

前記距離X1が、中間スロット10のタイヤ周方向の配設ピッチPcの25%未満になると、これらの溝間に剛性の低い部分に偏摩耗が集中するおそれがあり、逆に、40%を超える場合、排水性能が低下するおそれがある。同様の観点より、中間スロット10のタイヤ軸方向の外端10oの位置において、該中間スロット10と、それに最も近い後着側の外側ラグ溝9とのタイヤ周方向の距離(溝中心線間の距離とする)X2は、中間スロット10の配設ピッチPcの25〜40%、より好ましくは30〜36%とするのが望ましい。   When the distance X1 is less than 25% of the arrangement pitch Pc in the tire circumferential direction of the intermediate slot 10, there is a possibility that uneven wear may concentrate on a portion having low rigidity between these grooves, and conversely exceeds 40%. In such a case, drainage performance may be reduced. From the same viewpoint, at the position of the outer end 10o of the intermediate slot 10 in the tire axial direction, the distance in the tire circumferential direction between the intermediate slot 10 and the outer lug groove 9 on the rear landing side closest to the intermediate slot 10 (between the groove center lines). X2 is preferably 25 to 40%, more preferably 30 to 36% of the arrangement pitch Pc of the intermediate slot 10.

このように、内側ラグ溝8、中間スロット10及び外側ラグ溝9をほぼ等ピッチでタイヤ周方向に隔設するとともに、それらのずれ量を上述のように規制した場合には、内側ラグ溝8、中間スロット10及び外側ラグ溝9をこの順番でほぼ均等に繰り返し接地させることができる。従って、ショルダー陸部5の全域でバランスよく排水性能が発揮されるとともに、該ショルダー陸部5が均一に摩耗するのに役立つ。   As described above, when the inner lug groove 8, the intermediate slot 10, and the outer lug groove 9 are spaced apart at substantially equal pitches in the tire circumferential direction, and the deviation amount thereof is restricted as described above, the inner lug groove 8 The intermediate slot 10 and the outer lug groove 9 can be repeatedly grounded almost uniformly in this order. Accordingly, drainage performance is exhibited in a well-balanced manner over the entire area of the shoulder land portion 5, and it is useful for the shoulder land portion 5 to be uniformly worn.

図4に示されるように、両側のショルダー陸部5において、ラグ溝等8〜10がタイヤ軸方向内側から順次接地するようタイヤ赤道Cに関して対称となる向きに傾斜させても良い。   As shown in FIG. 4, in the shoulder land portions 5 on both sides, the lug grooves or the like 8 to 10 may be inclined in a symmetric direction with respect to the tire equator C so that the lug grooves 8 to 10 are sequentially grounded from the inside in the tire axial direction.

また、図5に示されるように、正規状態から正規荷重を負荷してキャンバー角0度で平面に接地させた接地面FPにおいて、接地形状ファクターが1.05〜1.35であるのが望ましい。ここで、接地形状ファクターは、前記接地面FPにおいて、タイヤ赤道C上のタイヤ周方向の接地長さCLと、タイヤ赤道Cからトレッド接地幅の40%の距離0.4TWを隔てるショルダー位置Sでのタイヤ周方向の接地長さSLとの比CL/SLで表される。なお、このショルダー位置Sは、ショルダー陸部5を通り、経験則上、ヒールアンドトウ摩耗が発生しやすいショルダー部の代表的な位置を表している。   Further, as shown in FIG. 5, the ground contact shape factor is preferably 1.05 to 1.35 in the ground contact surface FP that is loaded with a normal load from the normal state and grounded to the plane with a camber angle of 0 degree. . Here, the ground contact shape factor is the contact position CL in the tire circumferential direction on the tire equator C and the shoulder position S separating the distance 0.4 TW of 40% of the tread contact width from the tire equator C on the ground contact surface FP. It is represented by the ratio CL / SL with the contact length SL in the tire circumferential direction. The shoulder position S represents a representative position of the shoulder portion that passes through the shoulder land portion 5 and is prone to heel and toe wear.

発明者らの種々の実験の結果、ノイズの原因となるヒールアンドトウ摩耗の多くは直進走行時の駆動及び制動時のせん断力、とりわけ制動時のせん断力の寄与が大きいことが判明している。従って、ショルダー陸部5のヒールアンドトウ摩耗をより効果的に抑制するためには、直進走行時の接地面FPにおいて、タイヤ赤道C上での接地長さCLと、ショルダー位置での接地長さSLとの関係を最適化し、制動時にショルダー陸部5のすべりを小さくするが有効である。このために、本実施形態の空気入りタイヤでは、接地形状ファクターが上述の範囲に設定される。   As a result of various experiments by the inventors, it has been found that most of the heel and toe wear that causes noise contributes greatly to the shearing force during driving and braking, particularly the shearing force during braking. . Therefore, in order to more effectively suppress the heel and toe wear of the shoulder land portion 5, the contact length CL on the tire equator C and the contact length at the shoulder position on the contact surface FP when traveling straight ahead. It is effective to optimize the relationship with SL and reduce the slip of the shoulder land portion 5 during braking. For this reason, in the pneumatic tire of the present embodiment, the ground contact shape factor is set in the above-described range.

即ち、接地形状ファクターが1.05未満の場合、走行時のショルダー陸部5の接地圧が過度に上昇してヒールアンドトウ摩耗やショルダー摩耗等を招くおそれがあるため好ましくない。逆に、接地形状ファクターが1.35を超えると、タイヤ赤道位置とショルダー位置Sとの外径差が大きくなり、制動時にショルダー陸部5に引きずりが生じ、ヒールアンドトウ摩耗が発生しやすくなる。このような観点より、接地形状ファクターは、より好ましくは1.10以上、さらに好ましくは1.15以上が望ましく、また、好ましくは1.25以下、より好ましくは1.20以下が望ましい。なお、タイヤ赤道Cの両側のショルダー位置が、上記接地形状ファクターの規定を満たすことが望ましい。なお、接地形状ファクターは、トレッド部2のタイヤ赤道Cの位置及びショルダー位置Sでの外径及びトレッドプロファイルの調節により所望の値に調節できる。   That is, it is not preferable that the ground contact shape factor is less than 1.05 because the ground contact pressure of the shoulder land portion 5 during traveling may increase excessively, leading to heel and toe wear, shoulder wear, and the like. On the other hand, when the ground contact shape factor exceeds 1.35, the difference in outer diameter between the tire equator position and the shoulder position S becomes large, dragging occurs in the shoulder land portion 5 during braking, and heel and toe wear is likely to occur. . From such a viewpoint, the ground contact shape factor is more preferably 1.10 or more, further preferably 1.15 or more, and preferably 1.25 or less, more preferably 1.20 or less. It should be noted that the shoulder positions on both sides of the tire equator C preferably satisfy the above-mentioned ground shape factor. The contact shape factor can be adjusted to a desired value by adjusting the position of the tire equator C of the tread portion 2 and the outer diameter and the tread profile at the shoulder position S.

図6には、図3のB−B断面、即ち中間スロット10の長さ方向に沿ったトレッド踏面2aと垂直な断面を示す。図6から明らかなように、本実施形態の中間スロット10は、外端10oから溝底10bに向かう外の傾斜面11oと、内端10iから溝底10bに向かう内の傾斜面11iとを含んで構成される。   FIG. 6 shows a cross section taken along the line B-B of FIG. 3, that is, a cross section perpendicular to the tread surface 2 a along the length direction of the intermediate slot 10. As is apparent from FIG. 6, the intermediate slot 10 of the present embodiment includes an outer inclined surface 11o from the outer end 10o toward the groove bottom 10b, and an inner inclined surface 11i from the inner end 10i toward the groove bottom 10b. Consists of.

本実施形態では、中間スロット10の外端10oからタイヤ幅方向内側にのびるトレッド踏面2aの法線N1に対する外の傾斜面11oの角度θoは、中間スロット10の内端10iからタイヤ幅方向内側にのびるトレッド踏面2aの法線N2に対する内の傾斜面11iの角度θiよりも大きく設定される。このような外の傾斜面11oは、中間スロット10に満たされた水分を接地端側へ容易に排水させるのに役立つ。ただし、前記角度θoが過度に大きくなると、中間スロット10の溝容積の低下や摩耗による早期消失のおそれがあるので、該角度θoは、好ましくは20度以上、より好ましくは30度以上が望ましく、また、好ましくは45度以下、より好ましくは40度以下が望ましい。   In the present embodiment, the angle θo of the outer inclined surface 11o with respect to the normal line N1 of the tread tread surface 2a extending inward in the tire width direction from the outer end 10o of the intermediate slot 10 is inward in the tire width direction from the inner end 10i of the intermediate slot 10. It is set larger than the angle θi of the inner inclined surface 11i with respect to the normal line N2 of the tread surface 2a. Such an outer inclined surface 11o serves to easily drain the water filled in the intermediate slot 10 to the ground end side. However, if the angle θo becomes excessively large, the groove volume of the intermediate slot 10 may be reduced or may disappear early due to wear. Therefore, the angle θo is preferably 20 degrees or more, more preferably 30 degrees or more, Further, it is preferably 45 degrees or less, more preferably 40 degrees or less.

以上本発明の実施形態について説明したが、本発明は上記実施形態に限定されることなく種々変形して実施することができる。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments and can be implemented with various modifications.

本発明の効果を確認するために、表1の仕様に基づきタイヤサイズ225/50R17の乗用車用ラジアルタイヤが試作された。そして、それらについて各種の性能がテストされた。テスト方法は、次の通りである。   In order to confirm the effect of the present invention, a radial tire for a passenger car having a tire size of 225 / 50R17 was prototyped based on the specifications in Table 1. Various performances were tested on them. The test method is as follows.

<ヒールアンドトウ摩耗量>
以下の条件で各テストタイヤを車両の右側前輪に装着してテストコースを走行し、ショルダー陸部の内側ラグ溝間の陸部分及び外側ラグ溝間の陸部分において、トウ側とヒール側の摩耗量の差(ヒールアンドトウ摩耗量)が測定され、その平均値が計算された。数値が小さいほど良好である。
リム:17×7.5J
空気圧:230kPa
車両:排気量3000ccの国産FR乗用車
テストコース路面:乾燥アスファルト
走行距離:7000km
<Heel and toe wear amount>
Run the test track with each test tire mounted on the right front wheel of the vehicle under the following conditions, and wear on the toe side and heel side at the land part between the inner lug groove and the land part between the outer lug groove of the shoulder land The amount difference (heel and toe wear amount) was measured and the average value was calculated. The smaller the value, the better.
Rims: 17 × 7.5J
Air pressure: 230kPa
Vehicle: 3000cc domestic FR passenger car Test course surface: Dry asphalt Traveling distance: 7000km

<ノイズ性能>
上記と同一条件の車両を用い、スムース路面を速度50km/hで走行させ、ドライバーのフィーリングにより、パターンノイズの大きさが評価された。結果は、比較例1を100とする評点とし、数値が大きいほどパターンノイズが小さく良好であることを示す。
<Noise performance>
Using a vehicle with the same conditions as described above, a smooth road surface was run at a speed of 50 km / h, and the magnitude of the pattern noise was evaluated by the driver's feeling. The result is a score of Comparative Example 1 being 100, and the larger the value, the smaller the pattern noise and the better.

<排水性能>
半径100mのアスファルト路面に、水深5mm、長さ20mの水たまりを設けたコース上を、速度を段階的に増加させながら前記車両を進入させ、横加速度(横G)を計測し、50〜80km/hの速度における前輪の平均横Gを算出した。結果は、比較例1の平均横Gを100とする指数で表示した。数値が大きい程良好である。
<操縦安定性>
上記車両を使用し、ドライアスファルト路面のテストコースをドライバー1名乗車で走行し、ハンドル応答性、剛性感、グリップ等に関する特性をドライバーの官能評価により評価した。結果は、比較例1を100とする評点で表示している。数値が大きいほど良好である。
テストの結果等を表1に示す。
<Drainage performance>
On the asphalt road surface with a radius of 100m, on the course with a puddle with a depth of 5mm and a length of 20m, the vehicle is approached while increasing the speed stepwise, and the lateral acceleration (lateral G) is measured, 50-80km / The average lateral G of the front wheels at the speed of h was calculated. The results were displayed as an index with the average lateral G of Comparative Example 1 as 100. The larger the value, the better.
<Steering stability>
Using the above-mentioned vehicle, a driver on a dry asphalt road test course was run, and the characteristics relating to steering response, rigidity, grip, etc. were evaluated by sensory evaluation of the driver. The results are displayed with a score of Comparative Example 1 as 100. The larger the value, the better.
Table 1 shows the test results.

Figure 0004729096
Figure 0004729096
Figure 0004729096
Figure 0004729096

テストの結果より、実施例のタイヤは、比較例に比べて、排水性能を維持しつつショルダー陸部のヒールアンドトウ摩耗を抑制してノイズ性能をも向上していることが確認できた。   As a result of the test, it was confirmed that the tire of the example improved the noise performance by suppressing the heel and toe wear of the shoulder land portion while maintaining the drainage performance as compared with the comparative example.

本実施形態のトレッド部の展開図である。It is an expanded view of the tread part of this embodiment. その部分断面図である。It is the fragmentary sectional view. 図1のショルダー陸部の要部拡大図である。It is a principal part enlarged view of the shoulder land part of FIG. 本発明の他の実施形態を示すトレッド部の展開図である。It is an expanded view of the tread part which shows other embodiment of this invention. 図1のパターンの接地面を示す線図である。It is a diagram which shows the ground-contact plane of the pattern of FIG. 図3のB−B断面図である。It is BB sectional drawing of FIG. 比較例の空気入りタイヤのトレッド部の展開図である。It is an expanded view of the tread part of the pneumatic tire of a comparative example. 比較例の空気入りタイヤのトレッド部の展開図である。It is an expanded view of the tread part of the pneumatic tire of a comparative example.

符号の説明Explanation of symbols

2 トレッド部
3 ショルダー周方向溝
4 クラウン周方向溝
5 ショルダー陸部
6 クラウン陸部
7 ミドル陸部
8 内側ラグ溝
9 外側ラグ溝
10 中間スロット
2 Tread portion 3 Shoulder circumferential groove 4 Crown circumferential groove 5 Shoulder land portion 6 Crown land portion 7 Middle land portion 8 Inner lug groove 9 Outer lug groove 10 Intermediate slot

Claims (8)

トレッド部に、最も接地端側をタイヤ周方向に連続してのびる一対のショルダー周方向溝を具えた空気入りタイヤであって、
前記ショルダー周方向溝と接地端との間に形成されるショルダー陸部に、
ショルダー周方向溝からタイヤ軸方向外側にのび接地端の手前で途切れる内側ラグ溝と、
少なくとも接地端からタイヤ軸方向内側にのび内側ラグ溝と交わることなくショルダー周方向溝の手前で途切れる外側ラグ溝と、
内側ラグ溝と外側ラグ溝との間をタイヤ軸方向にのびる中間スロットとが形成され、
前記中間スロットは、タイヤ軸方向の内端が内側ラグ溝のタイヤ軸方向の外端よりも内側かつショルダー周方向溝に達することなく途切れ、かつ、タイヤ軸方向の外端が外側ラグ溝のタイヤ軸方向の内端よりもタイヤ軸方向外側でかつ接地端に達することなく途切れることにより、ショルダー陸部が途切れることなくタイヤ周方向に連続するとともに、
前記中間スロットは、その長さ方向に沿ったトレッド踏面と垂直な断面において、外端から溝底に向かう外の傾斜面と、内端から溝底に向かう内の傾斜面とを含み、
中間スロットの外端からタイヤ幅方向内側にのびるトレッド踏面の法線に対する外の傾斜面の角度θoは、中間スロットの内端からタイヤ幅方向内側にのびるトレッド踏面の法線に対する内の傾斜面の角度θiよりも大きいことを特徴とする空気入りタイヤ。
A pneumatic tire having a pair of shoulder circumferential grooves extending continuously in the tire circumferential direction on the tread portion, with the most ground contact end side,
In the shoulder land portion formed between the shoulder circumferential groove and the ground contact end,
An inner lug groove extending from the shoulder circumferential groove outward in the axial direction of the tire and being interrupted before the ground contact edge;
An outer lug groove that breaks in front of the shoulder circumferential groove without crossing the inner lug groove extending from the ground contact end inward in the tire axial direction; and
An intermediate slot extending in the tire axial direction is formed between the inner lug groove and the outer lug groove,
The intermediate slot is discontinuous without the inner end in the tire axial direction being inside the outer end in the tire axial direction of the inner lug groove and reaching the shoulder circumferential groove, and the outer end in the tire axial direction is the outer lug groove of the tire As the shoulder land portion continues in the tire circumferential direction without interruption by being interrupted without reaching the ground contact end outside the axial direction of the inner end in the axial direction ,
The intermediate slot includes an outer inclined surface from the outer end toward the groove bottom and an inner inclined surface from the inner end toward the groove bottom in a cross section perpendicular to the tread tread along the length direction thereof.
The angle θo of the outer inclined surface with respect to the normal line of the tread surface extending from the outer end of the intermediate slot to the inner side in the tire width direction is the angle θo of the inner inclined surface with respect to the normal line of the tread surface extending from the inner end of the intermediate slot to the inner side of the tire width direction. A pneumatic tire characterized by being larger than the angle θi .
前記ショルダー陸部のタイヤ軸方向の幅Wsは、トレッド接地幅TWの15〜26%である請求項1記載の空気入りタイヤ。   The pneumatic tire according to claim 1, wherein a width Ws of the shoulder land portion in the tire axial direction is 15 to 26% of a tread contact width TW. 前記内側ラグ溝と前記中間スロットとのタイヤ軸方向の重なり長さ、及び前記中間スロットと前記外側ラグ溝とのタイヤ軸方向の重なり長さは、いずれもショルダー陸部のタイヤ軸方向の幅Wsの1.0〜20.0%である請求項1又は2記載の空気入りタイヤ。   The overlapping length of the inner lug groove and the intermediate slot in the tire axial direction and the overlapping length of the intermediate slot and the outer lug groove in the tire axial direction are both the width Ws of the shoulder land portion in the tire axial direction. The pneumatic tire according to claim 1 or 2, which is 1.0 to 20.0%. 正規リムにリム組みされかつ正規内圧が充填されるとともに正規荷重を負荷して平面に接地させた接地面において、タイヤ赤道上のタイヤ周方向の接地長さCLと、タイヤ赤道からトレッド接地幅の40%の距離を隔てるショルダー位置でのタイヤ周方向の接地長さSLとの比CL/SLである接地形状ファクターが1.05〜1.35である請求項1ないし3のいずれかに記載の空気入りタイヤ。   In the contact surface that is assembled to the normal rim and filled with the normal internal pressure and is contacted to the plane by applying a normal load, the contact length CL in the tire circumferential direction on the tire equator and the contact width of the tread from the tire equator 4. The contact form factor, which is a ratio CL / SL to a contact length SL in the tire circumferential direction at a shoulder position separating a distance of 40%, is 1.05 to 1.35. 5. Pneumatic tire. 前記角度θoは、20度以上45度以下である請求項1記載の空気入りタイヤ。
The pneumatic tire according to claim 1, wherein the angle θo is not less than 20 degrees and not more than 45 degrees .
前記トレッド部は、ショルダー周方向溝の内側に一対のクラウン周方向溝を具え、
該一対のクラウン周方向溝の間にタイヤ周方向に連続するクラウンリブが形成されるとともに、クラウン周方向溝とショルダー周方向溝との間にタイヤ周方向に連続するミドルリブが形成される請求項1ないし5のいずれかに記載の空気入りタイヤ。
The tread portion includes a pair of crown circumferential grooves on the inner side of the shoulder circumferential grooves,
A crown rib continuous in the tire circumferential direction is formed between the pair of crown circumferential grooves, and a middle rib continuous in the tire circumferential direction is formed between the crown circumferential groove and the shoulder circumferential groove. The pneumatic tire according to any one of 1 to 5.
サイドウォール部に文字又はマークによって回転方向が指定された方向性タイヤであり、かつ、前記内側ラグ溝の外端位置において、内側ラグ溝と、それに最も近い後着側の中間スロットとのタイヤ周方向の距離は、中間スロットのタイヤ周方向の配設ピッチの25〜40%である請求項1ないし6のいずれかに記載の空気入りタイヤ。
It is a directional tire whose direction of rotation is designated by letters or marks on the sidewall portion , and at the outer end position of the inner lug groove, the tire circumference between the inner lug groove and the intermediate slot on the rear landing side closest thereto The pneumatic tire according to any one of claims 1 to 6, wherein the distance in the direction is 25 to 40% of the arrangement pitch of the intermediate slots in the tire circumferential direction.
前記内側ラグ溝、外側ラグ溝及び中間スロットは、いずれもタイヤ軸方向に対して同じ向きに傾斜する請求項1ないし7のいずれかに記載の空気入りタイヤ。   The pneumatic tire according to any one of claims 1 to 7, wherein the inner lug groove, the outer lug groove, and the intermediate slot are all inclined in the same direction with respect to the tire axial direction.
JP2008311296A 2008-12-05 2008-12-05 Pneumatic tire Expired - Fee Related JP4729096B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008311296A JP4729096B2 (en) 2008-12-05 2008-12-05 Pneumatic tire
CN 200910208818 CN101746213B (en) 2008-12-05 2009-10-29 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008311296A JP4729096B2 (en) 2008-12-05 2008-12-05 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2010132181A JP2010132181A (en) 2010-06-17
JP4729096B2 true JP4729096B2 (en) 2011-07-20

Family

ID=42343948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008311296A Expired - Fee Related JP4729096B2 (en) 2008-12-05 2008-12-05 Pneumatic tire

Country Status (2)

Country Link
JP (1) JP4729096B2 (en)
CN (1) CN101746213B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200223261A1 (en) * 2019-01-15 2020-07-16 Sumitomo Rubber Industries, Ltd. Tire

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5206754B2 (en) * 2010-09-09 2013-06-12 横浜ゴム株式会社 Pneumatic tire
EP2641753B1 (en) * 2010-11-15 2019-09-11 Bridgestone Corporation Pneumatic radial tire for use on passenger vehicle
JP5287894B2 (en) * 2011-02-08 2013-09-11 横浜ゴム株式会社 Pneumatic tire
JP5250063B2 (en) * 2011-02-28 2013-07-31 住友ゴム工業株式会社 Pneumatic tire
US9045004B2 (en) * 2011-09-22 2015-06-02 The Yokohama Rubber Co., Ltd. Pneumatic tire
JP5416750B2 (en) * 2011-10-26 2014-02-12 住友ゴム工業株式会社 Pneumatic tire
JP5391262B2 (en) * 2011-12-29 2014-01-15 住友ゴム工業株式会社 Pneumatic tire
JP5629283B2 (en) * 2012-03-15 2014-11-19 住友ゴム工業株式会社 Pneumatic tire
JP5695681B2 (en) * 2013-01-23 2015-04-08 住友ゴム工業株式会社 Pneumatic tire
JP2014162300A (en) * 2013-02-22 2014-09-08 Yokohama Rubber Co Ltd:The Pneumatic tire
US9789733B2 (en) 2014-02-14 2017-10-17 Sumitomo Rubber Industries, Ltd. Pneumatic tire
JP6044561B2 (en) * 2014-02-26 2016-12-14 横浜ゴム株式会社 Pneumatic tire
JP5768909B1 (en) * 2014-02-26 2015-08-26 横浜ゴム株式会社 Pneumatic tire
JP6597013B2 (en) * 2014-07-28 2019-10-30 横浜ゴム株式会社 Pneumatic tire
JP6002182B2 (en) * 2014-08-12 2016-10-05 住友ゴム工業株式会社 Pneumatic tire
JP6327100B2 (en) * 2014-10-09 2018-05-23 横浜ゴム株式会社 Pneumatic tire
JP6445870B2 (en) * 2015-01-05 2018-12-26 住友ゴム工業株式会社 Pneumatic tire
JP6897444B2 (en) * 2017-09-15 2021-06-30 住友ゴム工業株式会社 tire
CN109515069B (en) * 2017-09-19 2022-04-26 住友橡胶工业株式会社 Tyre for vehicle wheels
DE102018216560A1 (en) * 2018-09-27 2020-04-02 Continental Reifen Deutschland Gmbh Pneumatic vehicle tires
JP7164425B2 (en) * 2018-12-20 2022-11-01 Toyo Tire株式会社 pneumatic tire
CN112937222B (en) * 2019-12-10 2024-04-26 住友橡胶工业株式会社 Tire with a tire body
EP4164898A1 (en) * 2020-06-11 2023-04-19 Compagnie Generale Des Etablissements Michelin Low-noise tyre
CN114683778A (en) 2020-12-28 2022-07-01 住友橡胶工业株式会社 Tyre for vehicle wheels
EP4019282B1 (en) 2020-12-28 2024-01-03 Sumitomo Rubber Industries, Ltd. Tyre
DE102022210140A1 (en) * 2022-09-26 2024-03-28 Continental Reifen Deutschland Gmbh Vehicle tires

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60236806A (en) * 1984-05-09 1985-11-25 Yokohama Rubber Co Ltd:The Pneumatic tyre
JPH03153401A (en) * 1989-11-07 1991-07-01 Yokohama Rubber Co Ltd:The Pneumatic radial tire
JP2007261296A (en) * 2006-03-27 2007-10-11 Bridgestone Corp Pneumatic tire

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0655913A (en) * 1992-08-07 1994-03-01 Bridgestone Corp Pneumatic tire
JP4369734B2 (en) * 2003-12-09 2009-11-25 住友ゴム工業株式会社 Pneumatic tire
JP4214159B2 (en) * 2006-06-29 2009-01-28 住友ゴム工業株式会社 Pneumatic tire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60236806A (en) * 1984-05-09 1985-11-25 Yokohama Rubber Co Ltd:The Pneumatic tyre
JPH03153401A (en) * 1989-11-07 1991-07-01 Yokohama Rubber Co Ltd:The Pneumatic radial tire
JP2007261296A (en) * 2006-03-27 2007-10-11 Bridgestone Corp Pneumatic tire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200223261A1 (en) * 2019-01-15 2020-07-16 Sumitomo Rubber Industries, Ltd. Tire
US11701923B2 (en) * 2019-01-15 2023-07-18 Sumitomo Rubber Industries, Ltd. Tire

Also Published As

Publication number Publication date
JP2010132181A (en) 2010-06-17
CN101746213B (en) 2013-09-18
CN101746213A (en) 2010-06-23

Similar Documents

Publication Publication Date Title
JP4729096B2 (en) Pneumatic tire
JP5038739B2 (en) studless tire
JP4469399B2 (en) studless tire
JP4934175B2 (en) Pneumatic tire
CN105564160B (en) Pneumatic tire
JP5981952B2 (en) Pneumatic tire
JP4829994B2 (en) Pneumatic tire
KR101962976B1 (en) Pneumatic tire
KR101787770B1 (en) Pneumatic tire
JP5265554B2 (en) Pneumatic tire
JP6724451B2 (en) Pneumatic tire
JP6055521B1 (en) Pneumatic tire
JP5391231B2 (en) Pneumatic tire
JP6699270B2 (en) Pneumatic tire
US10118445B2 (en) Pneumatic tire
JP6393216B2 (en) Pneumatic tire
KR20120120022A (en) Pneumatic tire
JP5932761B2 (en) Pneumatic tire
JP2001206020A (en) Pneumatic tire
JP6575254B2 (en) Pneumatic tire
JP2016064780A (en) Pneumatic tire
CN104118279B (en) Inflation tire
JP2018162051A (en) tire
JP2017013672A (en) Pneumatic tire
JP6575660B2 (en) Pneumatic tire

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110415

R150 Certificate of patent or registration of utility model

Ref document number: 4729096

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees