JP4723270B2 - Method for forming container using flame retardant hybrid composite material - Google Patents
Method for forming container using flame retardant hybrid composite material Download PDFInfo
- Publication number
- JP4723270B2 JP4723270B2 JP2005088534A JP2005088534A JP4723270B2 JP 4723270 B2 JP4723270 B2 JP 4723270B2 JP 2005088534 A JP2005088534 A JP 2005088534A JP 2005088534 A JP2005088534 A JP 2005088534A JP 4723270 B2 JP4723270 B2 JP 4723270B2
- Authority
- JP
- Japan
- Prior art keywords
- prepreg
- container
- glass fiber
- mold
- composite material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 17
- 239000002131 composite material Substances 0.000 title description 24
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 title description 15
- 239000003063 flame retardant Substances 0.000 title description 15
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 43
- 239000004917 carbon fiber Substances 0.000 claims description 43
- 239000003365 glass fiber Substances 0.000 claims description 36
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 33
- 239000004744 fabric Substances 0.000 claims description 31
- 229910000838 Al alloy Inorganic materials 0.000 claims description 3
- 229910000975 Carbon steel Inorganic materials 0.000 claims description 3
- 239000010962 carbon steel Substances 0.000 claims description 3
- 229920005989 resin Polymers 0.000 description 25
- 239000011347 resin Substances 0.000 description 25
- 238000000465 moulding Methods 0.000 description 21
- 238000002485 combustion reaction Methods 0.000 description 20
- 239000000835 fiber Substances 0.000 description 14
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 11
- 239000011151 fibre-reinforced plastic Substances 0.000 description 11
- 229920001187 thermosetting polymer Polymers 0.000 description 6
- 229920001971 elastomer Polymers 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 239000005060 rubber Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 239000003822 epoxy resin Substances 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 230000002787 reinforcement Effects 0.000 description 4
- 229920006231 aramid fiber Polymers 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000012779 reinforcing material Substances 0.000 description 3
- 238000007493 shaping process Methods 0.000 description 3
- 229920005992 thermoplastic resin Polymers 0.000 description 3
- 239000002759 woven fabric Substances 0.000 description 3
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920006337 unsaturated polyester resin Polymers 0.000 description 2
- 229920001567 vinyl ester resin Polymers 0.000 description 2
- REEBJQTUIJTGAL-UHFFFAOYSA-N 3-pyridin-1-ium-1-ylpropane-1-sulfonate Chemical compound [O-]S(=O)(=O)CCC[N+]1=CC=CC=C1 REEBJQTUIJTGAL-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 241000692885 Nymphalis antiopa Species 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000011157 advanced composite material Substances 0.000 description 1
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000004643 cyanate ester Substances 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 102200082816 rs34868397 Human genes 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Images
Landscapes
- Containers Having Bodies Formed In One Piece (AREA)
- Laminated Bodies (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Moulding By Coating Moulds (AREA)
Description
本発明は、難燃性ハイブリッド複合材料を用いた難燃性に優れたFRP製の容器の成形方法に関する。 The present invention relates to a method for molding of superior made of FRP container flame retardancy using the flame retardant hybrid composite.
繊維強化プラスチック(FRP)は、不飽和ポリエステル樹脂、エポキシ樹脂、ポリイミド樹脂等の熱硬化性樹脂や、ポリエチレン、ポリプロピレン、ポリアミド、PPS、PEEK等の熱可塑性樹脂のマトリックス樹脂と、炭素繊維、ガラス繊維、アラミド繊維等の繊維強化材からなるものであり、軽量で且つ強度特性に優れるため、近年、航空宇宙分野、輸送・運輸分野から一般産業分野に至るまで、幅広い分野において利用されている。 Fiber Reinforced Plastic (FRP) is a thermosetting resin such as unsaturated polyester resin, epoxy resin, polyimide resin, matrix resin of thermoplastic resin such as polyethylene, polypropylene, polyamide, PPS, PEEK, carbon fiber, glass fiber Since it is made of fiber reinforcement such as aramid fiber and is lightweight and excellent in strength properties, it has been used in a wide range of fields from the aerospace field, transportation / transport field to general industrial field in recent years.
FRP製品を成形する場合、繊維強化材に樹脂を含浸させ、流動性や粘着性を除いて取り扱い性を良くしたシート状の成形中間体である、プリプレグが用いられる場合が多い。そして、プリプレグを用いて、中空の部材を成形するための方法としては、オートクレーブ成形法、ホットプレス成形法、真空バッグ成形法等が知られている。 When molding an FRP product, a prepreg, which is a sheet-shaped molding intermediate in which a fiber reinforcing material is impregnated with a resin and is easy to handle except for fluidity and adhesiveness, is often used. And as a method for shape | molding a hollow member using a prepreg, the autoclave molding method, the hot press molding method, the vacuum bag molding method, etc. are known.
繊維強化材の中でも炭素繊維は、軽量であり航空宇宙分野、輸送・運輸分野での利用が増加しつつあるが、炭素繊維を用いたFRPは、耐熱性には優れているものの、炭素繊維自体は空気中では高温で燃焼する。従って、用途によっては難燃性の改善・向上が必要である。 Among fiber reinforcements, carbon fiber is lightweight and is increasingly used in the aerospace field, transportation / transportation field, but FRP using carbon fiber is excellent in heat resistance, but the carbon fiber itself Burns at high temperatures in air. Therefore, it is necessary to improve and improve flame retardancy depending on the application.
一方、2種以上の繊維強化材を組合わせてハイブリッド複合材料とすることにより、色々の性能を改善・向上させることも行われている。例えば、ガラス繊維と炭素繊維とアラミド繊維を適宜組合わせると、組合せのタイプによって、積層体の強度や弾性率が高くなることが知られている(非特許文献1参照)。また、ガラス繊維と炭素繊維のハイブリッド複合材料を使用した軽量の高圧ガス容器(特許文献1参照)、あるいは加熱によりガラス質セラミックを生ずる難燃性付与用粒子を、樹脂等の高分子材料に分散又はコーティングして得られる難燃性高分子複合材料も知られている(特許文献2参照)。
しかしながら、特定用途のFRP製の容器に難燃性を付与するために、特定のハイブリッド複合材料を用い、且つ、それらの特定の積層体の組合せを用いることは、これまで提案されてはいない。 However, it has not been proposed so far to use specific hybrid composites and combinations of these specific laminates to impart flame retardancy to FRP containers for specific uses.
本発明の課題は、高い難燃性を示すハイブリッド複合材料を用いた難燃性に優れた容器の安価な成形方法を提供することにある。 An object of the present invention is to provide an inexpensive method of forming containers having excellent flame retardancy with hybrid composite material showing a high flame retardancy.
本発明の請求項1の発明は、容器の外表面を形成する炭素鋼製の主型に沿ってガラス繊維クロスのプリプレグを敷設し、該プリプレグ上に一方向配列炭素繊維のプリプレグを重ねて配置し、その後、又は、更にガラス繊維クロスのプリプレグを重ねて配置した後、前記主型内部に容器の内表面を形成するアルミ合金製の入子を挿入・配置して、加熱成形することを特徴とする難燃性に優れた一面が開口したFRP製の中空の容器の成形方法である。 According to the first aspect of the present invention, a prepreg of glass fiber cloth is laid along a carbon steel main mold that forms the outer surface of a container, and a prepreg of unidirectionally arranged carbon fibers is placed on the prepreg. Then, or after further placing a prepreg of glass fiber cloth on top of each other, an aluminum alloy insert forming the inner surface of the container is inserted and arranged inside the main mold, and is heat-molded. This is a method for forming a hollow container made of FRP having an open surface with excellent flame retardancy.
本発明によれば、優れた難燃性、特に垂直燃焼試験にも合格する優れた難燃性を有する難燃性ハイブリッド複合材料を用いた軽量な容器が、比較的安価な方法で製造できる。そして、得られた容器は、種々の用途のFRP成形品又はその部材として利用される。 According to the present invention, excellent flame retardancy, light weight containers with flame retardant hybrid composite having excellent flame retardancy to pass in particular vertical burning test it can be manufactured in a relatively inexpensive manner. And the obtained container is utilized as a FRP molded product of various uses, or its member.
本発明の難燃性ハイブリッド複合材料は、一方向配列炭素繊維のプリプレグと、これの片面又は両面に積層配置されたガラス繊維クロスのプリプレグとからなるものである。炭素繊維自体は、高温の空気中では燃焼するものの、本来的には相当に難燃性でもあるので、例えば、炭素繊維プリプレグのみは、水平燃焼試験には十分に合格する。しかしながら、より燃焼条件として厳しいと思われる垂直燃焼試験では不合格になるという問題がある。本発明者は、炭素繊維のプリプレグとガラス繊維のプリプレグを組合わせることによって、ハイブリッド複合材料としての軽量性を出来るだけ保持したまま、垂直燃焼試験にも合格するような複合材料が得られることを見出したのである。 The flame-retardant hybrid composite material of the present invention comprises a prepreg of unidirectionally arranged carbon fibers and a prepreg of glass fiber cloth that is laminated on one or both sides thereof. Although carbon fiber itself burns in high-temperature air, it is inherently quite flame retardant, so, for example, only carbon fiber prepreg passes the horizontal combustion test sufficiently. However, there is a problem that the vertical combustion test, which seems to be more severe as a combustion condition, fails. The present inventor has found that a composite material that passes the vertical combustion test can be obtained by combining a carbon fiber prepreg and a glass fiber prepreg while maintaining the lightness of the hybrid composite material as much as possible. I found it.
本発明の容器は、容器壁の外表面の少なくとも一部がガラス繊維クロスのプリプレグから形成され、容器壁の内層の少なくとも一部が一方向配列炭素繊維のプリプレグから形成され、容器壁の内表面の少なくとも一部が一方向配列炭素繊維のプリプレグ又はガラス繊維クロスのプリプレグから形成されている難燃性に優れた容器である。容器が、例えば、枡形の直方体の場合、全ての壁面が、外表面がガラス繊維クロスのプリプレグから形成され、内表面が一方向配列炭素繊維のプリプレグ又はガラス繊維クロスのプリプレグから形成されているものであっても良いが、容器の使用条件や使用態様によって難燃性の要求度が異なる場合等には、特に難燃性の要求される壁面だけを、本発明の難燃性ハイブリッド複合材料で形成しても良い。また、例えば、円筒形の容器の場合には、円筒壁面を本発明の難燃性ハイブリッド複合材料で形成し(外表面がガラス繊維クロスのプリプレグ)、底面は炭素繊維のプリプレグのみで形成しても良い。 In the container of the present invention, at least a part of the outer surface of the container wall is formed from a prepreg of glass fiber cloth, and at least a part of the inner layer of the container wall is formed from a prepreg of unidirectionally arranged carbon fibers, Is a container excellent in flame retardancy in which at least a part of is formed from a prepreg of unidirectionally arranged carbon fibers or a prepreg of glass fiber cloth. When the container is, for example, a bowl-shaped rectangular parallelepiped, all the wall surfaces are formed of a prepreg of a glass fiber cloth on the outer surface, and a prepreg of a unidirectionally arranged carbon fiber or a prepreg of a glass fiber cloth on the inner surface. However, when the flame retardancy requirement varies depending on the use conditions and use mode of the container, only the wall surface that requires flame retardance is used with the flame retardant hybrid composite material of the present invention. It may be formed. For example, in the case of a cylindrical container, the cylindrical wall surface is formed of the flame-retardant hybrid composite material of the present invention (the outer surface is a glass fiber cloth prepreg), and the bottom surface is formed only of a carbon fiber prepreg. Also good.
そして、更に、本発明者は、単なる炭素繊維のプリプレグとガラス繊維のプリプレグを組合わせではなく、容器の壁の外表面にガラス繊維クロスのプリプレグを配置し、壁の内層、即ち内部に一方向配列炭素繊維のプリプレグを配置し、壁の内表面に一方向配列炭素繊維のプリプレグ又はガラス繊維クロスのプリプレグを配置するという構成を取ることによって、初めて、軽量の優れた難燃性の容器が成形できることを見出し、容器に関する本発明も完成させたのである。 Further, the present inventor does not simply combine the prepreg of carbon fiber and the prepreg of glass fiber, but arranges the prepreg of glass fiber cloth on the outer surface of the wall of the container, so that the inner layer of the wall, that is, the inside is unidirectional. By arranging a carbon fiber prepreg and arranging a unidirectional carbon fiber prepreg or a glass fiber cloth prepreg on the inner surface of the wall, a lightweight and excellent flame-retardant container is formed for the first time. We have found that this is possible and have also completed the present invention relating to containers.
容器壁の少なくとも外表面にガラス繊維クロスのプリプレグを配置することによって、成形品を更に加工する時のバリ立ち、即ち、例えば、成形品の端部に穴開け加工をする際に、端部のFRPが剥がれる現象、を抑えることができる。また、少なくとも内層に一方向配列炭素繊維のプリプレグを配置することによって、特に容器に求められる機械的物性が満足される。 By placing a glass fiber cloth prepreg on at least the outer surface of the container wall, burrs are formed when the molded product is further processed, i.e., for example, when the end of the molded product is perforated. The phenomenon of FRP peeling off can be suppressed. In addition, by disposing a prepreg of unidirectionally arranged carbon fibers in at least the inner layer, the mechanical properties required particularly for the container are satisfied.
本発明の容器は、容器の外表面を形成する主型に沿ってガラス繊維クロスのプリプレグを敷設し、このプリプレグ上に一方向配列炭素繊維のプリプレグを重ねて配置し、その後、又は、更にガラス繊維クロスのプリプレグを重ねて配置した後、前記主型内部に容器の内表面を形成する入子を挿入・配置して、次いで、主型と入子とからなる金型を型締めし、加熱成形し、そして冷却後、型抜きすることによって得られる。それぞれのプリプレグは一枚あるいは複数積層して用いても良い。加熱成形は、例えば、硬化炉やオートクレーブ中で、100〜130℃で1〜2時間行うのが適当である。 In the container of the present invention, a prepreg of glass fiber cloth is laid along the main mold forming the outer surface of the container, and the prepreg of the unidirectionally arranged carbon fiber is arranged on the prepreg, and thereafter or further glass After placing the fiber cloth prepregs on top of each other, insert and place the insert that forms the inner surface of the container inside the main mold, and then clamp the mold consisting of the main mold and the insert and heat It is obtained by molding and die-cutting after cooling. Each prepreg may be used as a single layer or a plurality of layers. The heat forming is suitably performed, for example, at 100 to 130 ° C. for 1 to 2 hours in a curing furnace or an autoclave.
本発明のプリプレグは、ガラス繊維のクロス又は一方向配列の炭素繊維からなる繊維強化材に、熱硬化性樹脂や熱可塑性樹脂等のマトリックス樹脂を含浸させて得られたプリプレグである。ガラス繊維のクロスとは、ガラス繊維からなる織物あるいは不織布等の布帛を意味するが、平織や綾織等の織物が好ましい。一方向配列の炭素繊維とは、炭素繊維のストランド(繊維束)を一方向に引き揃えた状態のものを意味するが、ストランドを一方向に引き揃えシート状とし、これを直角方向にステッチ糸で縫合した一軸織物、一方向に引き揃えたシート状物を角度を変えて複数積層し、これを直角方向にステッチ糸で縫合した多軸織物も含むものである。目付けは、ガラス繊維のクロスを用いたプリプレグの場合は、100〜300g/m2が好ましく、一方向配列の炭素繊維を用いたプリプレグの場合も、100〜300g/m2が好ましい The prepreg of the present invention is a prepreg obtained by impregnating a fiber reinforcement made of glass fiber cloth or unidirectional carbon fibers with a matrix resin such as a thermosetting resin or a thermoplastic resin. The glass fiber cloth means a fabric such as a woven fabric or a non-woven fabric made of glass fiber, and a woven fabric such as plain weave or twill weave is preferable. A unidirectional carbon fiber means a state in which carbon fiber strands (fiber bundles) are aligned in one direction, and the strands are aligned in one direction to form a sheet, which is stitched in a perpendicular direction. And a multiaxial fabric in which a plurality of sheet-like materials aligned in one direction are stacked at different angles and stitched with stitch threads in a perpendicular direction. The basis weight is preferably 100 to 300 g / m 2 in the case of a prepreg using a glass fiber cloth, and is preferably 100 to 300 g / m 2 also in the case of a prepreg using unidirectionally arranged carbon fibers.
マトリックス樹脂として好ましいのは、熱硬化性樹脂であり、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、メラミン樹脂、ポリウレタン樹脂、シリコン樹脂、マレイミド樹脂、ビニルエステル樹脂、シアン酸エステル樹脂、マレイミド樹脂とシアン酸エステル樹脂を予備重合した樹脂等が挙げられる。これらの熱硬化性樹脂は、適宜量配合したものでも良い。これらの樹脂のうち、耐熱性、弾性率、耐薬品性に優れたエポキシ樹脂組成物、ビニルエステル樹脂組成物が特に好ましい。これらの熱硬化性樹脂には、硬化剤、硬化促進剤等が含まれていても良い。繊維強化材とマトリックス樹脂の割合は、繊維強化材が全体の30〜70重量%であるものが好ましい。 Preferred as the matrix resin are thermosetting resins, such as epoxy resins, unsaturated polyester resins, phenol resins, melamine resins, polyurethane resins, silicone resins, maleimide resins, vinyl ester resins, cyanate ester resins, maleimide resins and cyanide resins. Examples thereof include a resin obtained by prepolymerizing an acid ester resin. These thermosetting resins may be blended in appropriate amounts. Of these resins, epoxy resin compositions and vinyl ester resin compositions excellent in heat resistance, elastic modulus, and chemical resistance are particularly preferable. These thermosetting resins may contain a curing agent, a curing accelerator and the like. The ratio of the fiber reinforcing material to the matrix resin is preferably 30 to 70% by weight of the total fiber reinforcing material.
本発明で得られる容器の一例を、図面で説明する。図1は、一面が開口したFRP製の中空の直方体、即ち、エンジンカバ−等に用いられる枡形の容器を示している。
容器の表裏面の外表面1は、ガラス繊維クロスのプリプレグから形成され、内表面2は一方向配列炭素繊維のプリプレグから形成されている。図1において、上面が開口している部分であり、ここには、用途に応じて種々の加工をしたり、種々の部品、例えば、フランジやその他のインサート部品を設置することができる。また、直方体の壁面には、必要に応じて、例えば、ボルト孔を設けることもできる。そして、フランジやその他のインサート部品の設置やバルト孔の穴あけ等は、直方体を成形した後行っても良く、あるいは、成形と同時に行っても良い。あるいは、図1の中空の直方体の開口部にフランジが付設されている様なものを、一体成形により成形しても良い。
An example of a container obtained with this onset bright, described drawings. FIG. 1 shows a hollow rectangular parallelepiped made of FRP having an open surface, that is, a bowl-shaped container used for an engine cover or the like.
The outer surface 1 of the front and back surfaces of the container is formed from a prepreg of glass fiber cloth, and the
本発明の請求項1に係る発明について図を用いて説明する。図2は、開口部にフランジが付設された中空の直方体を成形する場合の、金型の断面図を示している。図2において、5は金型の主型の下型であり、6は同じく上型であり、7は入子である。図2は、開口部にフランジが付設された中空の直方体9(難燃性ハイブリッド複合材料からなるプリプレグ)を成形する場合であるから、入子7は断面がT字形のものである。8は、ゴム基板からなる補助型である。先ず、主型の下型5の内壁に沿ってガラス繊維クロスのプリプレグを敷設し、それに積層して一方向配列炭素繊維のプリプレグを配置し、次いで、入子7を挿入・配置する。場合によっては、一方向配列炭素繊維のプリプレグの上に、更にガラス繊維クロスのプリプレグを配置しても良い。そして、入子7のT字形上面にゴム基板8を介して主型の上型を設置し、金型を型締めする。型締めした金型は、例えば、硬化炉に入れ、90〜180℃で1〜2時間加熱される。加熱による主型5、6と入子7の熱膨張圧の差により、更に補助型のゴム基板8の膨張圧も加わって、難燃性ハイブリッド複合材料からなるプリプレグ9は下型の内壁に強く押し付けられた状態で硬化する。そして、金型の冷却後、成型品である直方体9は、金型から容易に離型し取り出すことができる。
It will be described with reference to FIG. About inventions according to claim 1 of the present invention. FIG. 2 shows a cross-sectional view of a mold when a hollow rectangular parallelepiped having a flange attached to the opening is formed. In FIG. 2, 5 is the lower mold of the main mold, 6 is the upper mold, and 7 is the insert. FIG. 2 shows a case where a hollow rectangular parallelepiped 9 (a prepreg made of a flame-retardant hybrid composite material) having a flange attached to the opening is formed. Therefore, the
参考として枡形(一面が開口したFRP製の中空の直方体)の容器の別の成形法について説明する。図1に示される様な、直方体の相対する表面と裏面に、難燃性ハイブリッド複合材料を用い、この直方体の左右面と底面には、この直方体の厚さ方向に、短冊状に切断された炭素繊維プリプレグの小片を所望の厚さに積層して配置した容器を成形することを目的とする。先ず、図3に示した様な、図1の直方体を二つに分割した形状の、互いに面対照な水平断面が凹型の二つの部材を成形する。図3において、表面又は裏面の外表面1はガラス繊維クロスのプリプレグであり、内表面2は一方向配列炭素繊維のプリプレグからなっている。表面又は裏面の三方の端には、炭素繊維プリプレグの小片3、4が所望の厚さに積層して配置されている。この様な互いに面対照な水平断面が凹型の二つの部材を成形し、次いで得られた部材を、互いに面対照に組合せ、この積層されたプリプレグの小片の積層部を接着剤又はボルト締め等で接合して中空の直方体を形成する。
Square shape will be explained further formed form process containers (one surface rectangular hollow steel FRP which is open) by reference. As shown in FIG. 1 , flame retardant hybrid composite materials are used for the front and back surfaces of the rectangular parallelepiped, and the rectangular parallelepiped is cut into strips in the thickness direction of the rectangular parallelepiped. The object is to form a container in which small pieces of carbon fiber prepreg are laminated to a desired thickness. First, as shown in FIG. 3, two members having a shape in which the rectangular parallelepiped of FIG. In FIG. 3, the outer surface 1 of the front surface or the back surface is a prepreg of glass fiber cloth, and the
この際、炭素繊維プリプレグの小片の積層面の少なくとも片面に、繊維強化樹脂シートをこの積層端面を覆う様に配置しておくと、容器の緻密性が増し、液漏れ等が防止できるという効果もある。部材の成形のためには、オートクレーブ成形法や真空バッグ成形法が採用できるが、オートクレーブ成形法が好ましい。オートクレーブ成形の加熱温度は80〜200℃、加圧圧力は0.05〜4MPaが適当である。容器の緻密性を増すために用いられる繊維強化樹脂シートとは、ガラス繊維、炭素繊維、アラミド繊維等の繊維の織物、不織布等のシート状物に熱硬化性樹脂や熱可塑性樹脂を含浸させて得られたプリプレグを意味する。好ましいのは、ガラス繊維のプリプレグである。繊維強化樹脂シートは、直方体の形状に応じて、それぞれ左右面及び底面を覆う大きさに切断して用いられる。繊維強化樹脂シートの目付は特に制限はないが、例えば、ガラス繊維のクロスを用いたプリプレグの場合は、100〜300g/m2が好ましい。 At this time, if a fiber reinforced resin sheet is disposed on at least one side of the lamination surface of the small pieces of carbon fiber prepreg so as to cover the lamination end surface, the denseness of the container is increased and liquid leakage and the like can be prevented. is there. For molding the member, an autoclave molding method or a vacuum bag molding method can be adopted, but the autoclave molding method is preferred. The heating temperature for autoclave molding is suitably from 80 to 200 ° C., and the pressing pressure is suitably from 0.05 to 4 MPa. The fiber reinforced resin sheet used to increase the density of the container is impregnated with a thermosetting resin or a thermoplastic resin into a woven or nonwoven fabric such as glass fiber, carbon fiber or aramid fiber. It means the obtained prepreg. Preferred is a glass fiber prepreg. The fiber reinforced resin sheet is used by cutting into a size covering the left and right surfaces and the bottom surface according to the shape of the rectangular parallelepiped. The basis weight of the fiber reinforced resin sheet is not particularly limited. For example, in the case of a prepreg using a glass fiber cloth, 100 to 300 g / m 2 is preferable.
以下、実施例により本発明を詳述する。なお、難燃性の評価は下記の燃焼試験の方法に従った。
[燃焼試験]
難燃性の認証基準としてのUL94に従った。試験用の試料としては、本発明のハイブリッド複合材料又は同じ厚さの炭素繊維プリプレグから切り取った、幅13±50.5×長さ125±5mmの試験片を用いた。水平燃焼試験(UL94 HB)では、試料を片端で固定して水平に保持し、その自由端に30秒間ガスバーナーの炎を接炎させる。炎を離した後に試料が燃焼を続けたならば、その燃焼の速度を測定する。そして、厚さが3.05mm以上の試料については、燃焼速度が毎分38.1mmを超えず、炎が試料の端から102mmの点に達する前に燃焼が止まれば合格とする。垂直燃焼試験(UL94 V−0)では、垂直に保持した試料の下端に10秒間ガスバーナーの炎を接炎させる。燃焼が30秒以内に止まったならば、さらに10秒間接炎させる。そして、いずれの接炎の後も10秒以上燃焼を続けない、固定用クランプの位置まで燃焼しない、脱脂綿を発火させる燃焼粒子を落下させない等の基準を満足すれば合格とする。
Hereinafter, the present invention will be described in detail by way of examples. The flame retardancy was evaluated according to the following combustion test method.
[Combustion test]
According to UL94 as flame retardant certification standard. As a test sample, a specimen having a width of 13 ± 50.5 × a length of 125 ± 5 mm cut from the hybrid composite material of the present invention or a carbon fiber prepreg having the same thickness was used. In the horizontal combustion test (UL94 HB), a sample is fixed at one end and held horizontally, and a gas burner flame is brought into contact with the free end for 30 seconds. If the sample continues to burn after releasing the flame, the rate of combustion is measured. A sample having a thickness of 3.05 mm or more is considered acceptable if the burning rate does not exceed 38.1 mm per minute and combustion stops before the flame reaches the point of 102 mm from the end of the sample. In the vertical combustion test (UL94 V-0), a gas burner flame is brought into contact with the lower end of the sample held vertically for 10 seconds. If the combustion stops within 30 seconds, indirect flame for another 10 seconds. Then, after any flame contact, if it satisfies the criteria such as not continuing the combustion for 10 seconds or more, not burning to the position of the fixing clamp, or not dropping the combustion particles that ignite the absorbent cotton, it is determined to pass.
[参考例1]
図1に示した様な直方体を製造した例を示す。容器の表壁面と裏壁面は縦横170×1065cmの大きさで、共に、表面はガラス繊維織物(目付200g/m2、WE18K、日東紡社製)にエポキシ樹脂を含浸(樹脂含有率38%)させたプリプレグが1枚配置され、内層には、一方向配列炭素繊維プリプレグ(高弾性プリプレグ、繊維含有率=60%、東邦テナックス社製)が11枚積層されたものが配置され、内表面は前記と同じガラス繊維織物のプリプレグが1枚配置されて一つの壁を構成している(ハイブリッド複合材料)。左右の面には、前記と同じ一方向配列炭素繊維のプリプレグを縦横160×10.5cmの短冊状に切断してものを、33枚積層している。底面は、同じプリプレグを縦横10.5×1065cmの短冊状に切断してものを、33枚積層している。
[ Reference Example 1 ]
The example which manufactured the rectangular parallelepiped as shown in FIG. 1 is shown. The front and back walls of the container are 170 x 1065 cm in length and breadth, and both surfaces are impregnated with glass fiber fabric (weight per unit: 200 g / m 2 , WE18K, manufactured by Nittobo) with epoxy resin (resin content 38%) One prepreg is arranged, and the inner layer is a laminate of 11 unidirectionally arranged carbon fiber prepregs (high elastic prepreg, fiber content = 60%, manufactured by Toho Tenax Co., Ltd.), and the inner surface is One prepreg of the same glass fiber fabric as described above is arranged to constitute one wall (hybrid composite material). On the left and right surfaces, 33 pieces of the same unidirectionally arranged carbon fiber prepreg as above were cut into strips of 160 × 10.5 cm in length and width. On the bottom surface, 33 sheets of the same prepreg cut into strips of 10.5 × 1065 cm are stacked.
具体的な成形方法は以下のとおりである。縦横170×1065cmのハイブリッド複合材料(プリプレグ)の短辺の両端に、短冊状の縦横160×10.5cmのプリプレグを33枚積層し、長辺の一端に短冊状の縦横10.5×1065cmのプリプレグを33枚積層し、水平断面が凹型の成形用部材とした。同じものをもう一つ用意し、これら2つの水平断面が凹型の部材を、圧力0.5MPaで加圧下、120℃で2時間の条件でオートクレーブ成形した。かくしてして得られ2つの部材を面対照に組合せ、積層されたプリプレグの小片の積層部を、ボルト締めして接合して中空の直方体を形成した。 A specific molding method is as follows. 33 strips of 160 × 10.5 cm long and horizontal prepregs are stacked on both ends of the short side of a hybrid composite material (prepreg) of 170 × 1065 cm in length and width, and 10.5 × 1065 cm in length and width in the form of strips at one end of the long side. 33 prepregs were laminated to form a molding member having a concave horizontal cross section. Another member of the same type was prepared, and these two members having a concave horizontal section were autoclaved under pressure of 0.5 MPa and 120 ° C. for 2 hours. The two members thus obtained were combined for surface control, and the laminated portions of the laminated prepreg pieces were joined by bolting to form a hollow rectangular parallelepiped.
表面を構成するハイブリッド複合材料の燃焼試験を行ったところ、水平燃焼試験と垂直試験の両方に合格していた。 When the combustion test of the hybrid composite material constituting the surface was conducted, it passed both the horizontal combustion test and the vertical test.
[参考例2]
枡形の容器の外表面を形成する金型の主型(分割型)に沿って、先ずガラス繊維クロスのプリプレグを敷設し、次いでこのプリプレグ上に一方向配列炭素繊維のプリプレグを重ねて配置し、参考例1と同様に、左右面と底面には、炭素繊維プリプレグの小片を積層し、その後前記主型内部に容器の内表面を形成する入子を挿入・配置して、金型を型締めし、参考例1と同様な条件で加熱成形した。その後、金型を冷却し、成形品を離型して枡形の容器を得た。
[ Reference Example 2 ]
Along with the main mold (split mold) of the mold that forms the outer surface of the bowl-shaped container, first, a prepreg of a glass fiber cloth is laid, and then a prepreg of a unidirectionally arranged carbon fiber is placed on the prepreg, As in Reference Example 1 , carbon fiber prepreg pieces are stacked on the left and right surfaces and the bottom surface, and then inserts that form the inner surface of the container are inserted and arranged inside the main mold, and the mold is clamped. Then, heat molding was performed under the same conditions as in Reference Example 1 . Thereafter, the mold was cooled, and the molded product was released to obtain a bowl-shaped container.
表面を構成するハイブリッド複合材料の燃焼試験を行ったところ、水平燃焼試験と垂直試験の両方に合格していた。 When the combustion test of the hybrid composite material constituting the surface was conducted, it passed both the horizontal combustion test and the vertical test.
[比較例1]
ガラス繊維クロスのプリプレグを用いないで、炭素繊維プリプレグのみを用いて、参考例1の場合と同様にして枡形の容器を成形して得た。この場合には、壁面に穴開加工を行ったところ、参考例1又は2の場合と異なり、穴開加工の抜け側で壁面の一部が剥がれる(バリ立ち)現象が見られた。また、これに用いた炭素繊維のプリプレグの燃焼試験の結果では、水平燃焼試験には合格したが、垂直燃焼試験には不合格であった。
[Comparative Example 1]
A glass container prepreg was not used, and only a carbon fiber prepreg was used to form a bowl-shaped container in the same manner as in Reference Example 1 . In this case, when a hole was drilled in the wall surface, unlike the case of Reference Example 1 or 2, a phenomenon that a part of the wall surface was peeled off (burring) was observed on the side where the hole was drilled. Moreover, in the result of the combustion test of the prepreg of the carbon fiber used for this, it passed the horizontal combustion test, but failed the vertical combustion test.
[実施例1]
図2にその断面を示した金型を用いて、開口部にフランジが付設された中空の直法体を成形した。炭素鋼(S45C)製の主型の下型5のキャビティ内面に、ガラス繊維クロスのプリプレグを1枚敷設し、その上に一方向配列炭素繊維のプリプレグを11枚積層配置し、更にその上にガラス繊維クロスのプリプレグを1枚積層配置した(ハイブリッド複合材料)。プリプレグとしては実施例1のものと同じ物を用いた。次いで、主型の下型5のキャビティ内に、ハイブリッド複合材料のプリプレグ9を介してアルミ合金(2017)製の入子7を挿入・配置し、更に、入子7のT字形上面にゴム基板8を介して主型の上型6を設置し、金型を型締めした。型締めした金型を、硬化炉内に置き、120〜130℃で1.5時間加熱した。金型を取り出し冷却後、開口部にフランジが付設された中空の直法体9は、金型から簡単に離型して取り出すことができた。得られた成形品は、厳密な直角度を有するフランジ付の中空の直方体であった。
[ Example 1 ]
Using a mold whose cross section is shown in FIG. 2, a hollow straight body having a flange attached to the opening was formed. One glass fiber cloth prepreg is laid on the inner surface of the cavity of the lower mold 5 of the main mold made of carbon steel (S45C), and 11 unidirectionally-arranged carbon fiber prepregs are stacked on the prepreg. One glass fiber cloth prepreg was laminated and arranged (hybrid composite material). The same prepreg as in Example 1 was used. Next, an
本発明の容器は、難燃性に優れているので、例えば、開口面にフランジを形成するなどして、リニアモーター等のモーターカバーなどに利用できる。 Since the container of the present invention is excellent in flame retardancy, it can be used for a motor cover such as a linear motor, for example, by forming a flange on the opening surface.
1 ガラス繊維クロスのプリプレグ
2 一方向配列炭素繊維のプリプレグ
3、4 炭素繊維プリプレグの小片
5 金型の主型の下型
6 金型の主型の上型
7 入子
8 ゴム基板
9 直法体又は難燃性ハイブリッド複合材料からなるプリプレグ
DESCRIPTION OF SYMBOLS 1 Glass
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005088534A JP4723270B2 (en) | 2005-03-25 | 2005-03-25 | Method for forming container using flame retardant hybrid composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005088534A JP4723270B2 (en) | 2005-03-25 | 2005-03-25 | Method for forming container using flame retardant hybrid composite material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006264236A JP2006264236A (en) | 2006-10-05 |
JP4723270B2 true JP4723270B2 (en) | 2011-07-13 |
Family
ID=37200688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005088534A Expired - Fee Related JP4723270B2 (en) | 2005-03-25 | 2005-03-25 | Method for forming container using flame retardant hybrid composite material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4723270B2 (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60157812A (en) * | 1984-01-30 | 1985-08-19 | Toray Ind Inc | Manufacture of prepreg bonded with scrim cloth |
JPH03205115A (en) * | 1989-10-03 | 1991-09-06 | Mitsui Toatsu Chem Inc | Fiber reinforced plastic molded body and production thereof |
JPH0460008B2 (en) * | 1984-02-09 | 1992-09-24 | Toray Industries | |
JPH071625A (en) * | 1993-06-16 | 1995-01-06 | Asics Corp | Hybrid frp laminate |
JPH0911400A (en) * | 1995-07-04 | 1997-01-14 | Chisso Corp | Laminated sheet |
JPH09255801A (en) * | 1996-03-25 | 1997-09-30 | Toray Ind Inc | Prepreg and fiber-reinforced resin molding and production of the same |
JPH10235767A (en) * | 1997-02-25 | 1998-09-08 | Toray Ind Inc | Carbon fiber reinforced plastic member |
JPH11960A (en) * | 1997-06-11 | 1999-01-06 | Toho Rayon Co Ltd | Unidirectional prepreg and its manufacture |
JP2003334836A (en) * | 2002-05-20 | 2003-11-25 | Toho Tenax Co Ltd | Method for manufacturing hollow molding |
JP2004323655A (en) * | 2003-04-24 | 2004-11-18 | Toray Ind Inc | Scrim cloth-laminated unidirectional prepreg and method for producing the same |
-
2005
- 2005-03-25 JP JP2005088534A patent/JP4723270B2/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60157812A (en) * | 1984-01-30 | 1985-08-19 | Toray Ind Inc | Manufacture of prepreg bonded with scrim cloth |
JPH0460008B2 (en) * | 1984-02-09 | 1992-09-24 | Toray Industries | |
JPH03205115A (en) * | 1989-10-03 | 1991-09-06 | Mitsui Toatsu Chem Inc | Fiber reinforced plastic molded body and production thereof |
JPH071625A (en) * | 1993-06-16 | 1995-01-06 | Asics Corp | Hybrid frp laminate |
JPH0911400A (en) * | 1995-07-04 | 1997-01-14 | Chisso Corp | Laminated sheet |
JPH09255801A (en) * | 1996-03-25 | 1997-09-30 | Toray Ind Inc | Prepreg and fiber-reinforced resin molding and production of the same |
JPH10235767A (en) * | 1997-02-25 | 1998-09-08 | Toray Ind Inc | Carbon fiber reinforced plastic member |
JPH11960A (en) * | 1997-06-11 | 1999-01-06 | Toho Rayon Co Ltd | Unidirectional prepreg and its manufacture |
JP2003334836A (en) * | 2002-05-20 | 2003-11-25 | Toho Tenax Co Ltd | Method for manufacturing hollow molding |
JP2004323655A (en) * | 2003-04-24 | 2004-11-18 | Toray Ind Inc | Scrim cloth-laminated unidirectional prepreg and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
JP2006264236A (en) | 2006-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Quan et al. | Mode-II fracture behaviour of aerospace-grade carbon fibre/epoxy composites interleaved with thermoplastic veils | |
US11283128B2 (en) | Laminate, in-vehicle battery containing body, and method for producing in-vehicle battery containing body | |
JP4862913B2 (en) | Prepregs and preforms | |
EP2623296B1 (en) | Nanotube-enhanced interlayers for composite structures | |
US5316834A (en) | Fiber-reinforced thermoplastic sheet | |
CA2854489C (en) | Load-bearing structures for aircraft engines and processes therefor | |
JP4807477B2 (en) | Manufacturing method of press-molded products | |
JP5294609B2 (en) | Gas-barrier carbon fiber reinforced prepreg, carbon fiber reinforced plastic, and production method thereof | |
WO2014010106A1 (en) | Carbon fiber-reinforced composite material and method for producing same | |
AU6482099A (en) | Moulding materials | |
WO2016080238A1 (en) | Laminate, integrated molding, and method for producing same | |
CN112770897B (en) | Sandwich composite component for aircraft interior | |
JP6273804B2 (en) | Manufacturing method of fiber reinforced plastic molding | |
CN104114357B (en) | The fibre reinforced composites with the fire resistance of improvement and the construction package being made from | |
JP2013000933A (en) | Fiber-reinforced thermoplastic resin molded article and method for producing the same, and composite body and method for producing the same | |
WO2014109021A1 (en) | Fiber-reinforced composite material, method for producing same, and elevator constituent member and elevator car each manufactured using same | |
US9925728B2 (en) | Method of making fire resistant sustainable aircraft interior panels | |
JP2013176876A (en) | Manufacturing method of molding | |
JP2020515442A (en) | Method for manufacturing a flat composite member and composite member manufactured thereby | |
CN110997268A (en) | Method for producing composite material and composite material | |
JP4723270B2 (en) | Method for forming container using flame retardant hybrid composite material | |
JP2006002869A (en) | Sandwich panel | |
JP2006347134A (en) | Fiber reinforced resin laminate and method for producing fiber reinforced resin laminate | |
JP2005246771A (en) | Method of manufacturing frp structure | |
JP6731875B2 (en) | Fiber reinforced composite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080121 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100603 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100622 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100818 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20100917 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101124 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110120 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110315 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110407 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140415 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |