JP4721836B2 - Ship - Google Patents

Ship Download PDF

Info

Publication number
JP4721836B2
JP4721836B2 JP2005261528A JP2005261528A JP4721836B2 JP 4721836 B2 JP4721836 B2 JP 4721836B2 JP 2005261528 A JP2005261528 A JP 2005261528A JP 2005261528 A JP2005261528 A JP 2005261528A JP 4721836 B2 JP4721836 B2 JP 4721836B2
Authority
JP
Japan
Prior art keywords
bow
ship
draft
water
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005261528A
Other languages
Japanese (ja)
Other versions
JP2007069834A (en
Inventor
昭彦 藤井
校優 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui E&S Holdings Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2005261528A priority Critical patent/JP4721836B2/en
Publication of JP2007069834A publication Critical patent/JP2007069834A/en
Application granted granted Critical
Publication of JP4721836B2 publication Critical patent/JP4721836B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Description

本発明は、満載状態における推進性能を向上できる船舶に関し、より詳細には、船首部における水面上昇に起因する満載喫水線より上の船体部分から発生する造波抵抗を減少できる船首部の形状に関する。   The present invention relates to a ship that can improve the propulsion performance in a full load state, and more particularly to a shape of a bow portion that can reduce wave-making resistance generated from a hull portion above a full load water line due to a rise in water level in the bow portion.

従来の船舶においては、図1及び図3の点線で示すように、船首フレアは最大喫水(構造喫水:Scantling 喫水) の喫水線Z0の直上付近から水線面積を徐々に大きくして船首上甲板Z3につながるように広げている。これは、船首部にはアンカリングのための装置の格納スペースが必要になり、また、船首の上甲板には、係船作業やアンカリング作業などのために、ある程度の甲板面積が必要となるためである。   In the conventional ship, as shown by the dotted lines in FIGS. 1 and 3, the bow flare gradually increases the area of the water line from just above the draft line Z0 of the maximum draft (structural draft: Scantling draft) Z3 Has been expanded to lead to. This is because the bow requires a storage space for the anchoring device, and the upper deck of the bow requires a certain deck area for mooring work and anchoring work. It is.

この船首フレアの形状は、図5に示すように船首部の淀み点Oの近傍で水面が最大喫水Z0より上昇してもその影響は少なく、最大喫水Z0より上の部分に対する水の作用を特に考えなくてもよいとの設計思想に基づいている。   As shown in FIG. 5, the bow flare has a small effect even when the water surface rises above the maximum draft Z0 in the vicinity of the stagnation point O of the bow, and the action of water on the portion above the maximum draft Z0 is particularly small. It is based on the design philosophy that it is not necessary to think.

しかしながら、本発明者らは、水槽実験や実船の航海の様子を観察した結果、船首部の淀み点O付近を中心した水面上昇分を考慮することが重要であり、この水面上昇分を考慮した船首部形状を採用することにより、平水航走中の造波抵抗を減少できるとの知見を得た。   However, as a result of observing the state of the aquarium experiment and the voyage of the actual ship, the present inventors have taken into consideration the rise in the water level around the stagnation point O of the bow, and this rise in the water level is taken into account. It was found that by adopting the bow shape, it was possible to reduce the wave resistance during flat water navigation.

つまり、図5に示すように、船舶の航走中は、船首部と水とは相対的に航走速度Vsを持っており、船舶側に固定した座標系で見た場合には、船首部に水が流速Vsで流入してくることになる。従って、船首部がブラントな肥大船では、船首部のセンターライン(C.L.)上の淀み点Oで水流速度Voがゼロとなるので、水の密度をρとし、重力加速度をgとすると、淀み点Oに於ける水頭hoと遠方の水頭hsとの関係は、ベルヌーイの定理により、ρ×g×ho+ρ×Vo 2 /2=ρ×g×hs+ρ×Vs 2 /2となり、淀み点Oに於ける水頭hoは、ho=Vs2 /(2×g)−Vo2 /(2×g)+hsとなる。ここで、Vo=0,hs=0とすると、ho=Vs2 /(2×g)となる。 That is, as shown in FIG. 5, during the navigation of the ship, the bow and the water have a relative traveling speed Vs, and when viewed in a coordinate system fixed to the ship, Water flows in at a flow velocity Vs. Therefore, in an enlarged ship with a blunt bow, the water flow velocity Vo becomes zero at the stagnation point O on the center line (CL) of the bow, so that the density of water is ρ and the acceleration of gravity is g. , the relationship between the in hydrocephalus ho and distant water head hs to the stagnation point O, by Bernoulli's principle, become a ρ × g × ho + ρ × Vo 2/2 = ρ × g × hs + ρ × Vs 2/2, The water head ho at the stagnation point O is ho = Vs 2 / (2 × g) −Vo 2 / (2 × g) + hs. Here, when Vo = 0 and hs = 0, ho = Vs 2 / (2 × g).

つまり、船首部の淀み点Oで水面が上昇する量を示す水頭hoは、Vs2 /(2×g)となり、船首部の先端では、航走時には、この水頭ho(Z1のライン)程度まで上昇することになる。従って、実際の水没部分は船首近傍では、満載喫水Z0よりも水頭ho分だけ高い位置Z1の近傍までとなる。例えば、船速が15kt(ノット)の船舶では、Vs=7.72m/sとなり、この水頭hoは3.0mとなる。 In other words, the water head ho indicating the amount of rise of the water surface at the stagnation point O of the bow is Vs 2 / (2 × g), and at the tip of the bow, up to about this water head ho (Z1 line) when sailing. Will rise. Accordingly, the actual submerged portion is in the vicinity of the position Z1 that is higher than the full draft D0 by the water head ho in the vicinity of the bow. For example, in a ship having a ship speed of 15 kt (knots), Vs = 7.72 m / s, and the water head ho is 3.0 m.

そのため、図1及び図3の点線Bで示す従来の船型のように、最大喫水から直ぐにフレアが広がる船首形状を採用した場合は、平水航行中においても、このフレア部分で発生する波が大きくなり、造波抵抗が増加する。特に肥大船ではこの傾向が大きくなる。   Therefore, when a bow shape that spreads flare immediately after the maximum draft is adopted as in the conventional hull form shown by the dotted line B in FIGS. 1 and 3, the waves generated in the flare portion become large even during flat water navigation. The wave resistance increases. This is especially true for enlarged ships.

これに関連して、この最大喫水よりも上の部分に関して、すべての水線面形状において、船首形状を船首水線から0.02×Lov(船舶の全長)後方を50°以内に収めて、船首をできるだけ前方に尖らせて、この船首での前方への波反射、波崩れ現象を緩和し、波浪中抵抗増加を減少するた肥大船が提案されている(例えば、特許文献1参照。)。   In this connection, with respect to the portion above this maximum draft, in all waterline surface shapes, the bow shape is within 0.02 × Lov (the total length of the ship) behind the bow waterline within 50 °, A hypersized ship that sharpens the bow as much forward as possible to alleviate the wave reflection and wave breaking phenomenon at the bow forward and reduce the increase in resistance in waves has been proposed (see, for example, Patent Document 1). .

しかしながら、この船首形状においては、最大喫水線を境にして上下で水線面形状の変化が大きいため、上述した船首部において水面が上昇することによる造波抵抗を減少できないという問題がある。また、船首上甲板の形状が制限されるため、アンカリング装置の格納やアンカリング作業用のスペースの確保が難しいという問題がある。
特許第3279285号公報
However, in this bow shape, there is a problem that the wave-making resistance due to the rise of the water surface at the bow portion described above cannot be reduced because the waterline shape changes greatly at the upper and lower sides with respect to the maximum draft line. Further, since the shape of the upper deck is limited, there is a problem that it is difficult to store the anchoring device and to secure a space for anchoring work.
Japanese Patent No. 3279285

本発明は、上記の問題を解決するためになされたものであり、その目的は、船首部における水面上昇を考慮した船型とすることにより、平水中造波抵抗を減少することができる船舶を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a ship that can reduce the wave-making resistance in plain water by adopting a hull form that takes into account the rise in water level at the bow. There is to do.

上記のような目的を達成するための本発明の船舶は、方形係数(Cb)が0.83〜0.90で、航海速力(Vs)がフルード数(Fn)換算で0.120〜0.170の船舶であって、所定の設定高さ(h1)を、船舶の航海速力をVsとし、重力加速度をgとした時に、(0.5×Vs×Vs)/gで計算される水頭(ho)の0.5倍〜1.5倍の範囲内の値に設定し、船首部付近のフレアの横断面の形状を、船首方向に関しては、船首垂線(F.P.)から後方の少なくとも垂線長(Lpp)の0.5%〜5%の間で、かつ、高さ方向に関しては、少なくとも最大喫水(Z0)から前記所定の設定高さ(h1)までの間において、垂直線に対して0°〜5°の傾斜角(θ)を持たせて形成し、船首方向に関して、船首垂線(F.P.)から後方の垂線長(Lpp)の0.5%位置よりも前方では、フレアの形状を徐々に広げた形状で形成して構成される。 In order to achieve the above object, the ship of the present invention has a square coefficient (Cb) of 0.83 to 0.90 and a navigation speed (Vs) of 0.120 to 0.00 in terms of fluid number (Fn). It is a ship of 170, and a predetermined head height (h1) is calculated as (0.5 × Vs × Vs) / g, where Vs is the navigational speed of the ship and g is the acceleration of gravity. ho) is set to a value within the range of 0.5 to 1.5 times, and the shape of the cross-section of the flare near the bow is set to at least the rear of the bow perpendicular (FP) with respect to the bow direction. Between 0.5% and 5% of the normal length (Lpp), and in the height direction, at least from the maximum draft (Z0) to the predetermined set height (h1) with respect to the vertical line With a tilt angle (θ) of 0 ° to 5 ° , and the bow perpendicular (FP) In front of the 0.5% position of the rear perpendicular length (Lpp), the flare shape is gradually widened .

この最大喫水は、材料寸法などから構造強度の面から決められる構造喫水(スカントリング(Scantling )喫水) 等のその船舶の航行可能な最大の喫水のことであり、船舶は、通常、この基本設計時に決められる構造喫水よりも浅い喫水で航海することになっている。なお、構造喫水は、国際満載吃水条約(ILLC)によって定められた方式によって計算される夏季満載吃水に対応する喫水であり、この喫水によって材料寸法が決められるため、構造喫水と呼ばれる。そして、この構造喫水より大きな喫水で船舶が航行することは無い。   This maximum draft is the maximum draft that can be navigated by the ship, such as a structural draft (Scantling draft), which is determined by the structural strength in terms of material dimensions, etc. Sailing is to be carried out at a draft that is shallower than the draft draft that is determined at the time of design. In addition, the structural draft is a draft corresponding to the summer full-scale drought calculated by a method defined by the International Full Flooding Convention (ILLC), and the material dimensions are determined by this draft, and hence is called the structural draft. And a ship does not navigate by a draft larger than this structural draft.

この所定の設定高さh1を水頭(ho=(0.5×Vs×Vs)/g)の0.5倍よりも小さくすると、水面上昇により、水流がフレアの広がり部分にも届くようになるため、抵抗減少効果が少なくなる。一方、この所定の設定高さh1を水頭hoの1.5倍よりも大きくすると、波浪中でも水流がフレアの広がり部分にも届き難くなり、抵抗減少効果を期待できるが、アンカリング装置の格納が難しくなるという問題や急激にフレアを広げることにより船首衝撃力が大きくなるという問題が生じてくる。   When this predetermined set height h1 is made smaller than 0.5 times the head of water (ho = (0.5 × Vs × Vs) / g), the water flow will reach the flare spreading portion due to the rise of the water surface. Therefore, the resistance reduction effect is reduced. On the other hand, if the predetermined set height h1 is larger than 1.5 times the head of water ho, the water flow is difficult to reach the flare spreading part even in the waves, and the resistance reduction effect can be expected, but the anchoring device can be stored. The problem that it becomes difficult and the problem that the bow impact force becomes large by spreading the flare suddenly arises.

なお、この所定の設定高さh1を、水頭hoの0.9倍〜1.1倍の範囲内とすると、この範囲から上甲板に向けて拡大する船首フレアの広がり角度が比較的小さくなるので、アンカリング装置の格納や甲板配置が容易となり、また、船首衝撃力も少なくなり、より好ましい。特に、満載喫水が最大喫水から大きく離れない船舶に適している。   If the predetermined height h1 is in the range of 0.9 to 1.1 times the head ho, the bow flare spreading angle that expands from this range toward the upper deck is relatively small. The anchoring device can be stored and the deck can be easily arranged, and the bow impact force is reduced, which is more preferable. It is particularly suitable for ships where the full draft is not far from the maximum draft.

また、上記の船舶は、方形係数Cbが0.83〜0.90で、航海速力Vsがフルード数Fn換算で0.120〜0.170の船舶である場合や垂線間長(Lpp)が200m〜350m等の大きな船舶の場合に特に大きな効果を奏することができる。   Further, the above-mentioned ship has a square coefficient Cb of 0.83 to 0.90 and a voyage speed Vs of 0.120 to 0.170 in terms of Froude number Fn, or the length between perpendiculars (Lpp) is 200 m. In the case of a large ship such as ˜350 m, a particularly great effect can be achieved.

この方形係数Cbは、船舶の排水容積をVとし、船の垂線間長をLpp、型幅をB、型喫水をdとした時に、Cb=V/(Lpp×B×d)となる無次元の値である。   This square coefficient Cb is a dimensionless which becomes Cb = V / (Lpp × B × d), where V is the drainage volume of the ship, Lpp is the length between the vertical lines of the ship, B is the mold width, and d is the mold draft. Is the value of

このフルード数Fnは、船速Vs(m/s)に関する無次元表示であり、船の垂線間長をLpp(m),重力加速度をg(m/s2 )とした時に、Fn=Vs/(g×Lpp)1/2 となる無次元の値である。なお、航海速力Vsは、計画速力等と呼ばれることもあるので、ここでも、航海速力の中に計画速力を含むものとする。 This Froude number Fn is a dimensionless display with respect to the ship speed Vs (m / s). When the length between the normals of the ship is Lpp (m) and the gravitational acceleration is g (m / s 2 ), Fn = Vs / It is a dimensionless value that is (g × Lpp) 1/2 . Note that the nautical speed Vs is sometimes referred to as a planned speed or the like, and therefore it is assumed here that the nautical speed includes the planned speed.

本発明の船舶によれば、航行時の船首部における水面上昇を考慮した船型とすることにより、満載喫水での航行状態における平水中造波抵抗を減少することができる。   According to the ship of the present invention, it is possible to reduce the wave-making resistance in plain water in a sailing state with a full draft by adopting a hull form that takes into account the rise in the water level at the bow at the time of sailing.

以下図面を参照して本発明に係る船舶の実施の形態について説明する。
図1及び図2に示すように、本発明に係る実施の形態の船舶1は、船長方向に関しては、船首垂線F.P.から後方の少なくとも垂線長Lppの0.5%〜5%の間の船首部付近で、次のように形成される。
Hereinafter, embodiments of a ship according to the present invention will be described with reference to the drawings.
As shown in FIGS. 1 and 2, the ship 1 according to the embodiment of the present invention has a bow perpendicular F.V. P. It is formed as follows in the vicinity of the bow between 0.5% and 5% of at least the perpendicular length Lpp from the rear.

図1では、実線A1が船首垂線F.P.から垂線長Lppの約0.6%後方X1の横断面におけるフレアの形状を、実線A2が垂線長Lppの1.25%後方X2の横断面におけるフレアの形状を、実線A3が垂線長Lppの2.5%後方X3の横断面におけるフレアの形状を示す。なお、点線B1,B2,B3はそれぞれの位置X1,X2,X3に対応する従来船型の横断面におけるフレアの形状を示す。   In FIG. P. About 0.6% of the normal length Lpp from the cross section of the rear X1, the solid line A2 is the shape of the flare in the cross section of 1.25% of the normal length Lpp X2, and the solid line A3 is the vertical length Lpp. The flare shape in the cross section of 2.5% rear X3 is shown. Dotted lines B1, B2, and B3 indicate the flare shape in the cross section of the conventional hull corresponding to the respective positions X1, X2, and X3.

この船首より少し後方の船首部付近において、図1に示すように、高さ方向に関して、最大喫水の喫水線Z0から、少なくとも所定の設定高さh1(=Z1)までの間において、船首フレアの横断面の形状を垂直線に対して0°〜5°の傾斜角(θ)を持たせて形成する。 In the vicinity of the bow slightly behind the bow, as shown in FIG. 1, the crossing of the bow flare in the height direction from the maximum draft line Z0 to at least a predetermined set height h1 (= Z1). The shape of the surface is formed with an inclination angle (θ) of 0 ° to 5 ° with respect to the vertical line .

この所定の設定高さh1は,航海速力をVsとし、重力加速度をgとした時に、ho=(0.5×Vs×Vs)/gで計算される水頭hoの0.5倍〜1.5倍の範囲内の値に設定される。つまり、h1=0.5×ho〜1.5×hoとされる。なお、満載喫水が最大喫水Z0から大きく離れない船舶では、水頭hoの0.9倍〜1.1倍がより好ましい。   This predetermined height h1 is 0.5 times the water head ho calculated by ho = (0.5 × Vs × Vs) / g, where Vs is the navigational speed and g is the acceleration of gravity. It is set to a value within the range of 5 times. That is, h1 = 0.5 × ho to 1.5 × ho. In a ship where the full draft is not far from the maximum draft Z0, 0.9 to 1.1 times the water head ho is more preferable.

また、船首垂線F.P.(=X0)から後方の垂線長Lppの0.5%位置(X1)より前方では、フレアの形状Af,A0は、アンカリング装置や係船機器などの格納や甲板配置を考慮して、また、船体が水面と衝突して発生する船首衝撃力を緩和するために、従来船型と同じように徐々に広げた形状で形成する。図1では、実線A0が船首垂線F.P.の横断面におけるフレアの形状を、実線Afが垂線長Lppの約0.6%前方Xfの横断面におけるフレアの形状をそれぞれ示す。   In addition, F. P. In front of the position 0.5% of the vertical length Lpp behind (= X0) (X1), the flare shapes Af and A0 are determined in consideration of storage and deck arrangement of anchoring devices, mooring equipment, etc. In order to relieve the bow impact generated when the hull collides with the water surface, it is formed in a shape that gradually widens in the same way as the conventional hull form. In FIG. P. The solid line Af shows the flare shape in the cross section of the front Xf about 0.6% of the perpendicular length Lpp.

そして、図2は、実線Az0が最大喫水Z0における水線面(水平断面)形状を示し、実線Az1が喫水Z0より所定の設定高さh1だけ高い位置Z1における水線面形状を示す。なお、従来の船型を示す図3では、点線Bz0が最大喫水Z0における水線面形状を示し、点線Bz1が喫水Z0より所定の設定高さh1だけ高い位置Z1における水線面形状を示す。   In FIG. 2, the solid line Az0 indicates the waterline surface (horizontal cross-sectional) shape at the maximum draft Z0, and the solid line Az1 indicates the waterline surface shape at the position Z1 that is higher than the draft Z0 by a predetermined set height h1. In addition, in FIG. 3 which shows the conventional ship shape, dotted line Bz0 shows the water line surface shape in the maximum draft Z0, and dotted line Bz1 shows the water line surface shape in the position Z1 higher than the draft Z0 by a predetermined set height h1.

本発明では、この船首部のフレア形状を上記のように構成したので、平水航行中においても、船首部で盛り上がる水面を切り分けることができるので、このフレア部分で発生する波を小さくすることができ、造波抵抗を減少することができる。従って、満載喫水での航行状態において、優れた推進性能を発揮することができる。   In the present invention, since the flare shape of the bow portion is configured as described above, the water surface rising at the bow portion can be separated even during a flat water navigation, so that the wave generated in the flare portion can be reduced. The wave resistance can be reduced. Therefore, the excellent propulsion performance can be exhibited in the navigation state with the full draft.

この効果は、方形係数Cbが0.83〜0.90で、航海速力Vsがフルード数Fn換算で0.120〜0.170の肥大船である場合や垂線間長(Lpp)が200m〜350m等の大きな船舶の場合に特に大きい。   This effect is obtained when the rectangular coefficient Cb is 0.83 to 0.90 and the voyage speed Vs is 0.120 to 0.170 in terms of Froude number Fn, or the length between perpendiculars (Lpp) is 200 m to 350 m. This is particularly large for large vessels such as

実施例として、方形係数(Cb)が0.85のバルクキャリアの船型において、図1及び図2の実線Aで示すように、最大喫水Z0から所定の設定高さh1まで、水線面形状が同じであるように、即ち、垂直線からの傾斜角θが0°であるように形成した船長2.7mの模型船を用意した。   As an example, in a bulk carrier hull shape having a square coefficient (Cb) of 0.85, as shown by a solid line A in FIG. 1 and FIG. 2, the water line surface shape is from a maximum draft Z0 to a predetermined set height h1. A model ship with a length of 2.7 m was prepared so as to be the same, that is, the inclination angle θ from the vertical line was 0 °.

また、従来例として、同じバルクキャリアの船型において、船首部以外は実施例と同じ船型であるが、船首部には従来の船首部形状を採用した船長2.7mの模型船を用意した。この船首部の形状は、図1及び図3の点線Bで示すように、最大喫水Z0以上では、水線面積が徐々に大きくなる形状である。   In addition, as a conventional example, a model ship having a captain length of 2.7 m that employs a conventional bow shape is prepared for the bow portion except for the bow portion in the same bulk carrier hull shape. As shown by the dotted line B in FIGS. 1 and 3, the bow portion has a shape in which the waterline area gradually increases at the maximum draft Z0 or more.

水槽における平水中抵抗試験結果を図4に示すが、実施例の模型船では、船首で引き起こす波は従来例の模型船より小さく、平水中の造波抵抗も従来例よりは小さい。この平水中抵抗試験結果によると、航海速力Vsが船長Lppが325mの実船で30km/s(16.5ノット)に対応する場合に、従来例の全抵抗を100とすると、実施例では98.5となり1.5%の抵抗減少効果が得られた。   FIG. 4 shows the results of the resistance test in the flat water in the aquarium. In the model ship of the example, the wave caused at the bow is smaller than that of the conventional model ship, and the wave-making resistance in the plain water is also smaller than that of the conventional example. According to this flat water resistance test result, when the voyage speed Vs corresponds to 30 km / s (16.5 knots) on an actual ship with a ship length Lpp of 325 m, assuming that the total resistance of the conventional example is 100, in the embodiment 98 The resistance reduction effect of 1.5% was obtained.

本発明に係る実施の形態の船舶の船首部の最大喫水より上部の形状を示す部分正面図である。It is a partial front view which shows the shape above the maximum draft of the bow part of the ship of embodiment which concerns on this invention. 図1の船舶の船首部の最大喫水と所定の設定高さの水線面形状を示す部分平面図である。It is a partial top view which shows the maximum draft of the bow part of the ship of FIG. 1, and the waterline surface shape of predetermined | prescribed setting height. 従来技術における船舶の船首部の最大喫水と所定の設定高さの水線面形状を示す部分平面図である。It is a partial top view which shows the maximum draft of the bow part of the ship in a prior art, and the waterline surface shape of predetermined | prescribed setting height. 実施例と従来例の平水中抵抗試験結果の比較を示す図である。It is a figure which shows the comparison of the test result of a plain water resistance of an Example and a prior art example. 船首部における水面上昇を説明するための図である。It is a figure for demonstrating the water surface rise in a bow part.

符号の説明Explanation of symbols

1 船舶(実施例)
1X 船舶(従来例)
A 実施例
B 従来例
C.L. 船体中央線(センターライン)
F.P. 船首垂線
Fn フルード数
g 重力加速度
h1 所定の設定高さ
ho 淀み点における水頭
hs 船首から遠方に離れた位置での水頭
O 淀み点
X0 横断面位置(船首垂線部分:F.P.)
X1 横断面位置
X2 横断面位置
X3 横断面位置
Z0 最大喫水(構造喫水)
Z1 所定の設定高さの位置
Vs 航海速力
Vo 淀み点の流速
1 Ship (Example)
1X Ship (conventional example)
A Example B Conventional example C.I. L. Hull Chuo Line (Center Line)
F. P. Bow perpendicular line Fn Froude number g Gravity acceleration h1 Predetermined set height ho Water head at the stagnation point hs Water head at a position far away from the bow O Stagnation point
X0 Cross-sectional position (head perpendicular line part: FP)
X1 Cross-sectional position X2 Cross-sectional position X3 Cross-sectional position Z0 Maximum draft (structural draft)
Z1 Predetermined height position Vs Velocity speed Vo Stagnation point flow velocity

Claims (1)

方形係数(Cb)が0.83〜0.90で、航海速力(Vs)がフルード数(Fn)換算で0.120〜0.170の船舶であって、
所定の設定高さ(h1)を、船舶の航海速力をVsとし、重力加速度をgとした時に、(0.5×Vs×Vs)/gで計算される水頭(ho)の0.5倍〜1.5倍の範囲内の値に設定し、
船首部付近のフレアの横断面の形状を、
船首方向に関しては、船首垂線(F.P.)から後方の少なくとも垂線長(Lpp)の0.5%〜5%の間で、かつ、高さ方向に関しては、少なくとも最大喫水(Z0)から前記所定の設定高さ(h1)までの間において、垂直線に対して0°〜5°の傾斜角(θ)を持たせて形成し、
船首方向に関して、船首垂線(F.P.)から後方の垂線長(Lpp)の0.5%位置よりも前方では、フレアの形状を徐々に広げた形状で形成したことを特徴とする船舶。
A ship having a square coefficient (Cb) of 0.83 to 0.90 and a voyage speed (Vs) of 0.120 to 0.170 in terms of fluid number (Fn),
0.5 times the water head (ho) calculated by (0.5 x Vs x Vs) / g, where Vs is the navigation speed of the ship and g is the gravitational acceleration. Set to a value in the range of ~ 1.5 times,
The shape of the cross section of the flare near the bow
With respect to the bow direction, it is between 0.5% and 5% of at least the vertical length (Lpp) behind the bow normal (FP), and with respect to the height direction, at least from the maximum draft (Z0). Up to a predetermined set height (h1), an inclination angle (θ) of 0 ° to 5 ° with respect to the vertical line is formed,
A ship characterized in that the flare shape is gradually widened in front of the 0.5% position of the vertical length (Lpp) behind the bow normal (FP) with respect to the bow direction .
JP2005261528A 2005-09-09 2005-09-09 Ship Active JP4721836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005261528A JP4721836B2 (en) 2005-09-09 2005-09-09 Ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005261528A JP4721836B2 (en) 2005-09-09 2005-09-09 Ship

Publications (2)

Publication Number Publication Date
JP2007069834A JP2007069834A (en) 2007-03-22
JP4721836B2 true JP4721836B2 (en) 2011-07-13

Family

ID=37931651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005261528A Active JP4721836B2 (en) 2005-09-09 2005-09-09 Ship

Country Status (1)

Country Link
JP (1) JP4721836B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5091518B2 (en) * 2007-03-28 2012-12-05 三井造船株式会社 Ship
JP5103687B2 (en) * 2010-02-23 2012-12-19 独立行政法人海上技術安全研究所 Hull structure with step of increasing resistance in waves
JP5103689B2 (en) * 2010-10-22 2012-12-19 独立行政法人海上技術安全研究所 Hull structure with step of increasing resistance in waves

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08239082A (en) * 1995-03-06 1996-09-17 Ishikawajima Harima Heavy Ind Co Ltd Vessel fitted with bow bulb
JP2003160090A (en) * 2001-11-22 2003-06-03 Kawasaki Heavy Ind Ltd Bow shape of vessel
JP2004314943A (en) * 2003-03-28 2004-11-11 Mitsui Eng & Shipbuild Co Ltd Ship

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08239082A (en) * 1995-03-06 1996-09-17 Ishikawajima Harima Heavy Ind Co Ltd Vessel fitted with bow bulb
JP2003160090A (en) * 2001-11-22 2003-06-03 Kawasaki Heavy Ind Ltd Bow shape of vessel
JP2004314943A (en) * 2003-03-28 2004-11-11 Mitsui Eng & Shipbuild Co Ltd Ship

Also Published As

Publication number Publication date
JP2007069834A (en) 2007-03-22

Similar Documents

Publication Publication Date Title
RU2374120C2 (en) Design of front part in vessel of displacement type
JP4744329B2 (en) Ship
JP5986856B2 (en) Commercial cargo ship
JP4889238B2 (en) Ship with bow fin
JP4721836B2 (en) Ship
JP5091518B2 (en) Ship
CN102770339B (en) Possess and reduce the hull structure that resistance in waves increases end difference
EP0866763A1 (en) Propeller configuration for sinusoidal waterline ships
JP5638215B2 (en) Ship with low wind pressure resistance and its design method
JP5357466B2 (en) Liquefied gas carrier
JP4722072B2 (en) Ship
JP4721711B2 (en) How to design a huge ship
JP5028000B2 (en) Ship
JP2008149819A (en) Vessel
JP4216858B2 (en) Ship
JP5103689B2 (en) Hull structure with step of increasing resistance in waves
JP5103687B2 (en) Hull structure with step of increasing resistance in waves
JP2006008091A (en) Vessel shape for small high speed vessel
JP2018122711A (en) Vessel
JP4789484B2 (en) Bow valve and ship equipped with the same
JP3134108U (en) Stern end fin
JP6399323B2 (en) Offshore floating structure
JP4102315B2 (en) Ship
KR20060039270A (en) Bow shape of vessel with icebreaking capability
JP2006264649A (en) Vessel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4721836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250