JP2006264649A - Vessel - Google Patents

Vessel Download PDF

Info

Publication number
JP2006264649A
JP2006264649A JP2005089838A JP2005089838A JP2006264649A JP 2006264649 A JP2006264649 A JP 2006264649A JP 2005089838 A JP2005089838 A JP 2005089838A JP 2005089838 A JP2005089838 A JP 2005089838A JP 2006264649 A JP2006264649 A JP 2006264649A
Authority
JP
Japan
Prior art keywords
case
hull
center
wind
ship
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005089838A
Other languages
Japanese (ja)
Inventor
Koichiro Matsumoto
光一郎 松本
Kenji Takagishi
憲璽 高岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui OSK Lines Ltd
Universal Shipbuilding Corp
Original Assignee
Mitsui OSK Lines Ltd
Universal Shipbuilding Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui OSK Lines Ltd, Universal Shipbuilding Corp filed Critical Mitsui OSK Lines Ltd
Priority to JP2005089838A priority Critical patent/JP2006264649A/en
Publication of JP2006264649A publication Critical patent/JP2006264649A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vessel capable of reducing resistance generated on the vessel by air pressure at navigation. <P>SOLUTION: The vessel has a hull 1B and a side surface shape of the hull is a shape that a position of an area center A2 of a side surface can be set such that the air pressure received by the side surface of the hull becomes larger at the stern R side from a center of length of hull than the bow F side. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、自動車専用船、コンテナ船等の貨物船、客船等の船舶に関する。   TECHNICAL FIELD The present invention relates to a ship such as a dedicated car, a cargo ship such as a container ship, and a passenger ship.

図15に示すように、推進力Pで航走する船舶1が受ける抵抗は、水中抵抗R1と風圧抵抗R2に分けることができる。水中抵抗R1は全抵抗のうちの多くを占めている。このため、水中抵抗に関しては従来から研究され、その解析結果が現在の船舶の形状に反映されている。ところが、風圧抵抗R2に関しては軽視される傾向にあり、風圧抵抗R2を軽減するような形状の改良がなされていないのが実情であった。   As shown in FIG. 15, the resistance received by the ship 1 that travels with the propulsive force P can be divided into an underwater resistance R1 and a wind pressure resistance R2. The underwater resistance R1 accounts for most of the total resistance. For this reason, underwater resistance has been studied from the past, and the analysis results are reflected in the current ship shape. However, the wind pressure resistance R2 tends to be neglected, and the actual situation is that the shape has not been improved to reduce the wind pressure resistance R2.

しかしながら、船舶1、とくに風圧を受け易い水面上形状を有する自動車専用船、コンテナ船、客船は、斜め前方から風を受けると、その風の直接的な影響によって船速が低下するばかりでなく、風に起因する船体の姿勢変化(斜航)により水中抵抗が増加して、運行性能に影響を及ぼすことがあった。   However, when the ship 1, especially a car-only ship, a container ship, and a passenger ship having a surface shape that easily receives wind pressure, receive wind from diagonally forward, not only the ship speed decreases due to the direct influence of the wind, Underwater resistance may increase due to changes in the attitude of the hull caused by wind (sloped), which may affect operational performance.

例えば、図16に示すように、船舶1は、針路Fに対して左斜め前から風Wを受けた場合、船体1には時計方向の回転力を与えるヨーモーメントMが発生する。風Wの力は、進路Fと逆方向のX成分と、船体1の船側に対して直交する方向のY方向の成分とに分解される。この場合、船体1はヨーモーメントMに対抗して船首方位を針路Fの方向に維持するには当て舵4を取る必要がある。また、船体1は船体1自身のX方向の推力と、風WによるX方向の力とY方向の力を受け、V方向に斜めに進むことになる。   For example, as shown in FIG. 16, when the ship 1 receives the wind W from the diagonally left front with respect to the course F, a yaw moment M that gives a clockwise rotational force is generated in the hull 1. The force of the wind W is decomposed into an X component in a direction opposite to the course F and a Y component in a direction orthogonal to the ship side of the hull 1. In this case, it is necessary for the hull 1 to take the hitting rudder 4 in order to keep the heading in the direction of the course F against the yaw moment M. Further, the hull 1 receives the thrust in the X direction of the hull 1 itself, the X direction force and the Y direction force caused by the wind W, and proceeds obliquely in the V direction.

このように斜航することによって船体1に働く水中抵抗は増大する。このときの斜航角度βが大きいほど当て舵4の角度も大きくなり、船体1が水から受ける抵抗も大きくなる。その結果、使用燃料の増大を招き、運航コストの上昇を招くということになる。   The underwater resistance acting on the hull 1 is increased by such a skew. At this time, as the tilt angle β increases, the angle of the hitting rudder 4 also increases, and the resistance that the hull 1 receives from water also increases. As a result, the fuel used increases and the operating cost increases.

この発明は、斜航角度を小さくして船体に働く抵抗を小さくすることで、燃料使用量を低減できるようにした船舶を提供しようとするものである。   The present invention seeks to provide a ship capable of reducing the amount of fuel used by reducing the tilt angle and reducing the resistance acting on the hull.

この発明は、船体を有し、この船体の側面形状は、
上記船体の側面が受ける風圧が船長の中央から船尾側が船首側よりも大きくなるよう上記側面の面積中心の位置を設定することが可能な形状であることを特徴とする船舶である。
This invention has a hull, and the side shape of the hull is
The ship is characterized in that the position of the center of the area of the side surface can be set so that the wind pressure received by the side surface of the hull is greater at the stern side than at the bow side from the center of the captain.

上記面積中心は、船長の中心から船尾方向へ船長の1%以上後方にあることを特徴とする請求項1記載の船舶。   2. The ship according to claim 1, wherein the center of the area is at least 1% behind the captain in the stern direction from the center of the captain.

上記船体の船長の中央部に段差部を設け、船尾側の側面の高さを船首側の高さよりも高くすることが好ましい。   It is preferable to provide a step in the center of the captain of the hull so that the height of the side surface on the stern side is higher than the height on the bow side.

上記段差部の上面と下面とは直線若しくは曲線によってつながっていることが好ましい。   The upper surface and the lower surface of the stepped portion are preferably connected by a straight line or a curve.

上記船体の側面形状は、喫水線から上の形状であることが好ましい。   The side shape of the hull is preferably the shape above the water line.

この発明によれば、船体の側面形状の面積中心を船体の中央よりも船尾側にするために、船体が風圧を受けたときのヨーモーメントが小さくなる船体形状となる。そのため、船体を所定方向に航行させるための当て舵角を小さくできるから、水中抵抗を小さくすることができる。   According to this invention, since the center of the area of the side surface shape of the hull is set to the stern side with respect to the center of the hull, the hull shape has a small yaw moment when the hull receives wind pressure. For this reason, since the steering angle for navigating the hull in a predetermined direction can be reduced, the underwater resistance can be reduced.

以下、この発明の実施の形態を図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1乃至図4はそれぞれ側面形状の異なる自動車専用船を示している。図1は一般的な自動車専用船であって、この自動車専用船の船体1A側面形状を第1のケース(オリジナルケース)とする。図2と図3はこの発明に適合する自動車専用船の側面形状であって、図2の自動車専用船の船体1Bの側面形状を第2のケース、図3の自動車専用船の船体1Cの側面形状を第3のケースとする。   FIG. 1 to FIG. 4 each show a dedicated car ship having different side shapes. FIG. 1 shows a general car carrier, and the side surface shape of the hull 1A of this car carrier is a first case (original case). FIGS. 2 and 3 are side views of a car carrier suitable for the present invention. The side shape of the hull 1B of the car carrier shown in FIG. 2 is the second case, and the side of the hull 1C of the car carrier shown in FIG. The shape is the third case.

図4は、図2と図3に示すこの発明の自動車専用船とは側面形状の異なる自動車専用船の船体1Dであって、この船体1Dの側面形状を第4のケースとする。   FIG. 4 shows a hull 1D of a car-only vessel having a side shape different from that of the car-only vessel of the present invention shown in FIGS. 2 and 3, and the side shape of the hull 1D is a fourth case.

第1乃至第4のケースの船体1A〜1Dの垂直間長Lは190m(メートル)であって、空船時の船底から喫水線Wまでの高さH1は8.55mである。ここで、垂直間長Lとは最大喫水線と交わる船首先端位置(垂直線)から、舵軸中心位置までの水平距離で測った船舶の長さを表す。   The vertical length L of the hulls 1A to 1D of the first to fourth cases is 190 m (meters), and the height H1 from the bottom of the empty ship to the waterline W is 8.55 m. Here, the inter-vertical length L represents the length of the ship measured by the horizontal distance from the bow tip position (vertical line) intersecting the maximum draft line to the rudder axle center position.

図1に示す第1のケースの船体1Aの船首F側と船尾R側とを除く部分の高さH2は30.86mで,船首F部分と船尾R部分との高さH3はそれぞれ27.86mである。以上の条件で決定される船体1Aの側面形状の面積中心A1は船長Lの中心となっている。   The height H2 of the portion of the first case hull 1A shown in FIG. 1 excluding the bow F side and the stern R side is 30.86 m, and the height H3 of the bow F portion and the stern R portion is 27.86 m, respectively. It is. The area center A1 of the side shape of the hull 1A determined under the above conditions is the center of the captain L.

図2と図3とに示すこの発明の第2のケースと第3のケースとの船体1B、1Cの側面形状は、船長の中央部にそれぞれ段差部11,12が形成されている。第2のケースの船体1Bの段差部11の高さは約16m、第3のケースの船体1Cの段差部12の高さは約8mに設定されている。したがって、第2、第3のケースの船体1B,1Cは船長の中央部から船尾R側が船首F側に比べて高くなる側面形状になっている。つまり、船長Lの中心Cよりも船尾R側の側面形状が船首F側の側面形状よりも大きくなる。   The side surface shapes of the hulls 1B and 1C of the second case and the third case of the present invention shown in FIGS. 2 and 3 are formed with step portions 11 and 12, respectively, in the center of the captain. The height of the step portion 11 of the hull 1B of the second case is set to about 16 m, and the height of the step portion 12 of the hull 1C of the third case is set to about 8 m. Accordingly, the hulls 1B and 1C of the second and third cases have side shapes in which the stern R side is higher than the bow F side from the center of the captain. That is, the side shape on the stern R side from the center C of the captain L is larger than the side shape on the bow F side.

第2のケースの船体1Bの側面形状は、船首F側の高さH4が22.69m、船尾R側の高さH5が38.86mに設定されている。以上の条件で決定される第2のケースの船体1Bの側面形状の面積中心A2は、船長Lの中心Cから船尾R側に13m寄った位置になる。   As for the side shape of the hull 1B of the second case, the height H4 on the bow F side is set to 22.69 m, and the height H5 on the stern R side is set to 38.86 m. The area center A2 of the side surface shape of the hull 1B of the second case determined under the above conditions is a position 13 m closer to the stern R side from the center C of the captain L.

第3のケースの船体1Cの側面形状は、船首F側の高さH6が26.46m、船尾R側の高さH7が34.36mに設定されている。以上の条件で決定される第3のケースの船体1Cの側面形状の面積中心A3は船長Lの中心Cから船尾R側に6.174m寄った位置になる。   The side shape of the hull 1C of the third case is set such that the height H6 on the bow F side is 26.46 m and the height H7 on the stern R side is 34.36 m. The area center A3 of the side shape of the hull 1C of the third case determined under the above conditions is a position that is 6.174 m closer to the stern R side from the center C of the captain L.

図4に示す第4のケースの船体1Dの側面形状は、第2、第3のケースと同様、船長Lの中央に約8mの高さの段差部13が形成されているが、この段差部13によって船首F側の高さH8が船尾R側の高さH9よりも高く形成されている。船首F側の高さH8は34.36mに設定され、船尾R側の高さH9は26.46mに設定されている。以上の条件で決定される第4のケースの船体1Dの側面形状の面積中心A4は船長Lの中心Cから7.428m船首F側に寄った位置になる。   The side surface shape of the hull 1D of the fourth case shown in FIG. 4 is similar to the second and third cases. A step portion 13 having a height of about 8 m is formed in the center of the ship length L. 13, the height H8 on the bow F side is formed higher than the height H9 on the stern R side. The height H8 on the bow F side is set to 34.36 m, and the height H9 on the stern R side is set to 26.46 m. The area center A4 of the side surface shape of the hull 1D of the fourth case determined under the above conditions is a position closer to the bow F side of 7.428 m from the center C of the captain L.

つまり、第4のケースの船体1Dの側面形状は、第2、第3のケースに示す船体1B、1Cの側面形状に比べて船首F側と船尾R側の高さが逆になっていて、面積中心A4の位置は船長Lの中心Cからに船首F側に7.428m寄った位置にある。   That is, the side shape of the hull 1D of the fourth case is opposite to the height of the bow F side and the stern R side compared to the side shapes of the hulls 1B and 1C shown in the second and third cases. The position of the area center A4 is 7.428 m closer to the bow F side from the center C of the captain L.

なお、第2のケースと第3のケースの船体1B、1Cに形成される段差部11,12は、段差の上面と下面を直線(平面)でつないであるが、直線でなく曲線(曲面)でつないでもよい。その場合の曲面は、下面から凹曲面で立ち上げ、上面に凸曲面でつなげば、段差部11,12が受ける風圧抵抗を少なくすることができる。また、段差11,12の上面と下面を斜面でつないでもよい。   The step portions 11 and 12 formed on the hulls 1B and 1C of the second case and the third case connect the upper surface and the lower surface of the step with a straight line (plane), but are not a straight line but a curved line (curved surface). It may be connected. In this case, if the curved surface is raised from the lower surface to a concave curved surface and connected to the upper surface by a convex curved surface, the wind pressure resistance received by the step portions 11 and 12 can be reduced. Moreover, you may connect the upper surface and lower surface of level | step differences 11 and 12 with a slope.

つぎに、第1乃至第4のケースの側面形状を有する各船体1A〜1Dの風圧力特性及び航走時の各種特性の理論計算について説明する。
図5は第1、第2のケースの船体1A,1Bが受ける風向とX方向風圧力係数との関係、図6は風向とY方向風圧力係数との関係、図7は風向とZ軸周り風圧モーメント係数(ヨーモーメント)との関係を示す。なお、横軸に示す風向0度は向かい風、90度は横風、180度は追い風である。
Next, theoretical calculation of wind pressure characteristics and various characteristics at the time of sailing of the respective hulls 1A to 1D having the side shapes of the first to fourth cases will be described.
FIG. 5 shows the relationship between the wind direction received by the hulls 1A and 1B of the first and second cases and the X direction wind pressure coefficient, FIG. 6 shows the relationship between the wind direction and the Y direction wind pressure coefficient, and FIG. The relationship with the wind pressure moment coefficient (yaw moment) is shown. In addition, the wind direction 0 degree | times shown on a horizontal axis is a head wind, 90 degree | times is a cross wind, and 180 degree | times is a tail wind.

第1のケースと第2のケースの船体1A,1Bの場合、図5と図6から分かるように、X方向風圧力係数とY方向風圧力係数とはほとんど差が生じないが、Z軸周り風圧モーメント係数は図7から分かるように第1のケースの船体1Aに比べて第2のケースの船体1Bの方が小さくなった。つまり、Z軸周り風圧モーメント係数は、面積中心A2が船長Lの中心Cよりも船尾R側に位置する第2のケースの船体1Bの方が、面積中心A1が船長Lの中心Cに位置する第1のケースの船体1Aの場合よりも小さいことが分かる。   In the case of the hulls 1A and 1B of the first case and the second case, as can be seen from FIG. 5 and FIG. 6, there is almost no difference between the wind pressure coefficient in the X direction and the wind pressure coefficient in the Y direction. As can be seen from FIG. 7, the wind pressure moment coefficient is smaller in the hull 1B of the second case than in the hull 1A of the first case. That is, the wind pressure moment coefficient around the Z-axis is such that the area center A1 is located at the center C of the ship length L in the second case hull 1B in which the area center A2 is located on the stern R side with respect to the center C of the ship length L. It turns out that it is smaller than the case of the hull 1A of the first case.

図8は第1のケースと第2のケースの船体1A,1Bに対する風向を0〜180度の範囲で変えた場合の、無風状態からの船速低下率、横流れ角及び舵角(当て舵角)との関係を求めた。同図において、第1のケースの船速低下率をV1、横流れ角をβ1、舵角をδ1の曲線で示し、第2のケースの船速低下率をV2、横流れ角をβ2、舵角をδ2の曲線で示す。なお、計算条件は、初期船速20ノット、プロペラ回転数94.7回/分、絶対風速15m/secである。   FIG. 8 shows the rate of decrease in ship speed, the lateral flow angle and the steering angle (the steering angle) when the wind direction with respect to the hulls 1A and 1B of the first case and the second case is changed in the range of 0 to 180 degrees. ). In the same figure, the boat speed reduction rate of the first case is indicated by a curve of V1, the lateral flow angle is β1, and the steering angle is δ1, the boat speed reduction rate of the second case is V2, the lateral flow angle is β2, and the steering angle is It is shown by the curve of δ2. The calculation conditions are an initial ship speed of 20 knots, a propeller rotational speed of 94.7 times / minute, and an absolute wind speed of 15 m / sec.

たとえば、風向が45度の場合の船速低下率V1とV2を比較すると、第1のケースの船体1Aの場合の船速低下率V1は15%であるのに対して第2のケースの船速低下率V2は11%である。   For example, when the ship speed reduction rate V1 and V2 when the wind direction is 45 degrees are compared, the ship speed reduction rate V1 in the case 1A of the first case hull is 15%, whereas the ship in the second case. The rapid decrease rate V2 is 11%.

横流れ角の場合には第2のケースの船体1B(β2)の方が第1のケースの場合(β1)よりも小さく、舵角の場合も第2のケースの船体1B(δ2)の方が第1のケースの場合(δ)よりも小さい。   In the case of a lateral flow angle, the hull 1B (β2) of the second case is smaller than the case (β1) of the first case, and the hull 1B (δ2) of the second case is also a steering angle. In the first case, it is smaller than (δ).

つまり、面積中心A1が船体1の中央Cにある第1のケースの側面形状の船体1Aと、この第1のケースの船体1Aに比べて側面形状の面積中心A2が船尾R側に位置する第2のケースの船体1Bとを比較すると、船速低下率は風向15〜135度の範囲で第2のケースの方が低く、横流れ角及び舵角も風向0〜180度のほとんどの範囲で第2のケースの方の小さくなる。つまり、第2のケースの船体1Bの方が第1のケースの船体1Aよりも、風を受けたときに生じるヨーモーメントMが小さいためにこのような結果が得られることになる。   In other words, the first case side surface hull 1A whose area center A1 is in the center C of the hull 1 and the side surface area center A2 which is located closer to the stern R side than the first case hull 1A. When compared with the hull 1B of the second case, the rate of decrease in ship speed is lower in the second case in the wind direction range of 15 to 135 degrees, and the lateral flow angle and rudder angle are the most in the range of wind direction 0 to 180 degrees. Case 2 is smaller. That is, such a result is obtained because the yaw moment M generated when receiving the wind is smaller in the hull 1B of the second case than in the hull 1A of the first case.

図9は第1のケースと第2のケースの船体1A,1Bに対する風向を0〜180度の範囲で変えた場合の馬力増加率を求めた。つまり、図9は風向の変化に対して船速を一定に保つために必要な馬力の、無風時の同一船速における必要馬力からの増加率を示しており、図中曲線P1は第1のケースであり、曲線P2は第2のケースである。同図から明らかなように第2のケースの側面形状の船体1Bの方が第1のケースの側面形状の船体1Aに比べて20〜135度の風向の範囲で馬力の増加率を低くすることができることが分かる。   FIG. 9 shows the horsepower increase rate when the wind direction with respect to the hulls 1A and 1B in the first case and the second case is changed in the range of 0 to 180 degrees. That is, FIG. 9 shows the rate of increase of the horsepower required to keep the boat speed constant with respect to changes in the wind direction from the required horsepower at the same boat speed when there is no wind, and the curve P1 in the figure is the first This is the case, and the curve P2 is the second case. As is apparent from the figure, the rate of increase in horsepower is lower in the range of the wind direction of 20 to 135 degrees in the side hull 1B of the second case than in the side hull 1A of the first case. You can see that

図10は第1のケースと第3のケースの船体1A,1Cに対して風向を0〜180度の範囲で変えた場合の、船速低下率、横流れ角及び舵角との関係を求めた。図中第1のケースの船速低下率をV1、横流れ角をβ1、舵角をδ1の曲線で示し、第3のケースの船速低下率をV3、横流れ角をβ3、舵角をδ3の曲線で示す。計算条件は、初期船速20ノット、プロペラ回転数94.7回/分、絶対風速15m/secである。   FIG. 10 shows the relationship between the ship speed reduction rate, the lateral flow angle, and the rudder angle when the wind direction is changed in the range of 0 to 180 degrees with respect to the hulls 1A and 1C of the first case and the third case. . In the figure, the boat speed reduction rate of the first case is indicated by a curve of V1, the lateral flow angle is β1, and the steering angle is δ1, the boat speed reduction rate of the third case is V3, the lateral flow angle is β3, and the steering angle is δ3. Shown as a curve. The calculation conditions are an initial ship speed of 20 knots, a propeller rotational speed of 94.7 times / minute, and an absolute wind speed of 15 m / sec.

第1のケースと第3のケースの船体1A,1Cを比較すると、第1のケースと第2のケースの船体1A,1Bの場合と同様、第3のケースの船体1Cの方が第1のケースの船体1Aよりも風を受けたときに生じる船速低下率がほとんどの風向の範囲で低いとともに、横流れ角や舵角もほとんどの風向の範囲で小さくなる。つまり、第3のケースの船体1Cの方が第1のケースの船体1Aよりも、風を受けたときに生じるヨーモーメントMが小さいためにこのような結果が得られることになる。   When the hulls 1A and 1C of the first case and the third case are compared, the hull 1C of the third case is the same as the hulls 1A and 1B of the first case and the second case. The rate of decrease in ship speed generated when receiving wind from the hull 1A of the case is low in most wind direction ranges, and the lateral flow angle and rudder angle are also small in most wind direction ranges. That is, since the yaw moment M generated when the wind is received is smaller in the third case hull 1C than in the first case hull 1A, such a result is obtained.

図11は第1のケースと第3のケースの船体1A,1Cに対する風向を0〜180度の範囲で変えた場合の馬力増加率を求めた。つまり、図11は風向の変化に対して船速を一定に保つために必要な馬力の増加率を示しており、図中曲線P1は第1のケースであり、曲線P3は第3のケースである。同図から明らかなように第3のケースの側面形状の船体1Cの方が第1のケースの側面形状の船体1Aに比べて20〜135度の風向の範囲で馬力の増加率を低くすることができることが分かる。   FIG. 11 shows the horsepower increase rate when the wind direction with respect to the hulls 1A and 1C in the first case and the third case is changed in the range of 0 to 180 degrees. That is, FIG. 11 shows the rate of increase in horsepower required to keep the boat speed constant with respect to changes in the wind direction. In the figure, the curve P1 is the first case, and the curve P3 is the third case. is there. As is apparent from the figure, the rate of increase in horsepower is lower in the range of the wind direction of 20 to 135 degrees in the side case 1C of the third case than in the case 1A of the side shape of the first case. You can see that

一方、第1のケースの船体1Aと第2のケースの船体1Bとの比較及び第1のケースの船体1Aと第3のケースの船体1Cとの比較から、第3のケースの船体1Cの面積中心A3よりも面積中心A2が船尾R側に位置する第2のケースの船体1Bの方の船速低下率が少ないばかりか、横流れ角と舵角も小さくなり、船速を一定に保つために必要な馬力の増加率も小さくてすむことが分かる。   On the other hand, from the comparison between the hull 1A of the first case and the hull 1B of the second case and the comparison of the hull 1A of the first case and the hull 1C of the third case, the area of the hull 1C of the third case. In order to keep the ship speed constant by reducing the lateral flow angle and the rudder angle as well as reducing the ship speed reduction rate of the hull 1B of the second case where the area center A2 is located on the stern R side than the center A3. It can be seen that the required increase in horsepower is small.

図12は第1のケースと第4のケースの船体1A,1Dに対して風向を0〜180度の範囲で変えた場合の、船速低下率、横流れ角及び舵角との関係を求めた。図中第1のケースの船速低下率をV1、横流れ角をβ1、舵角をδ1の曲線で示し、第4のケースの船速低下率をV4、横流れ角をβ4、舵角をδ4の曲線で示す。計算条件は、初期船速20ノット、プロペラ回転数94.7回/分、絶対風速15m/secである。   FIG. 12 shows the relationship between the ship speed reduction rate, the lateral flow angle, and the rudder angle when the wind direction is changed in the range of 0 to 180 degrees with respect to the hulls 1A and 1D of the first case and the fourth case. . In the figure, the boat speed reduction rate of the first case is indicated by a curve of V1, the lateral flow angle is β1, and the steering angle is δ1, the boat speed reduction rate of the fourth case is V4, the lateral flow angle is β4, and the steering angle is δ4. Shown as a curve. The calculation conditions are an initial ship speed of 20 knots, a propeller rotational speed of 94.7 times / minute, and an absolute wind speed of 15 m / sec.

第1のケースと第4のケースの船体1A,1Dを比較すると、第4のケースの船体1Dの方が第1のケースの船体1Aよりも風を受けたときに生じる船速低下率がほとんどの風向の範囲で大きいいとともに、横流れ角や舵角もほとんどの風向の範囲で大きくなる。つまり、第4のケースの船体1Dの方が第1のケースの船体1Aよりも、風を受けたときに生じるヨーモーメントMが大きくなるためにこのような結果が得られることになる。   When the hulls 1A and 1D of the first case and the fourth case are compared, the hull speed reduction rate that occurs when the hull 1D of the fourth case receives wind rather than the hull 1A of the first case is almost the same. The side flow angle and rudder angle are also large in most wind direction ranges. That is, since the yaw moment M generated when receiving the wind is larger in the fourth case hull 1D than in the first case hull 1A, such a result is obtained.

図13は第1のケースと第4のケースの船体1A,1Dに対する風向を0〜180度の範囲で変えた場合の馬力増加率を求めている。つまり、図13は風向の変化に対して船速を一定に保つために必要な馬力の増加率を示しており、図中曲線P1は第1のケースであり、曲線P4は第4のケースである。同図から明らかなように第4のケースの側面形状の船体1Dの方が第1のケースの側面形状の船体1Aに比べて20〜135度の風向の範囲で馬力の増加率が大きくなることが分かる。   FIG. 13 shows the horsepower increase rate when the wind direction with respect to the hulls 1A and 1D of the first case and the fourth case is changed in the range of 0 to 180 degrees. That is, FIG. 13 shows the rate of increase in horsepower required to keep the boat speed constant with respect to changes in the wind direction. In the figure, the curve P1 is the first case, and the curve P4 is the fourth case. is there. As is apparent from the figure, the rate of increase in horsepower is larger in the range of the wind direction of 20 to 135 degrees in the side hull 1D of the fourth case than in the side hull 1A of the first case. I understand.

図12と図13に示す結果から、第4のケースのように面積中心A4が船体1Dの中心Cよりも船首F側にあると、第1のケースのように面積中心A1が船体1Aの中心Cにある場合に比べ、船速低下率、横流れ角、舵角及び馬力変化率の点で運航に不利な条件になることが分かる。   From the results shown in FIGS. 12 and 13, when the area center A4 is on the bow F side of the center C of the hull 1D as in the fourth case, the area center A1 is the center of the hull 1A as in the first case. Compared to the case of C, it can be seen that it is a disadvantageous condition for operation in terms of the ship speed reduction rate, the lateral flow angle, the rudder angle and the horsepower change rate.

図14は第1乃至第4のケースの船体1A〜1Dが各風向で15m/secの風を受けた場合の馬力増加を求め、それらを全ての風向で平均した結果から船速(ノット)と馬力(kw)の関係を求めたものである。同図中曲線Z1は第1のケース、曲線Z2は第2のケース、曲線Z3は第3のケース、曲線Z4は第4のケースである。なお、同図中曲線Z0は風圧を受けない場合を示していて、この場合は第1乃至第4のケースのいずれの船体であっても水面下の形状は同一であるので差は生じない。   FIG. 14 shows the increase in horsepower when the hulls 1A to 1D of the first to fourth cases receive a wind of 15 m / sec in each wind direction, and the ship speed (knots) is obtained from the result of averaging them in all wind directions. The relationship between horsepower (kw) is obtained. In the figure, the curve Z1 is the first case, the curve Z2 is the second case, the curve Z3 is the third case, and the curve Z4 is the fourth case. Note that the curve Z0 in the figure shows a case where the wind pressure is not received. In this case, no difference occurs because the shape below the surface of the water is the same in any of the first to fourth cases.

たとえば、同図から18.8ノットの船速を維持するために必要な馬力の増加率を第1のケース、第2のケース及び第3、第4のケースで比較してみると、第1のケースはP1、第2のケースはP2、第3のケースはP3、第4のケースはP4となり、これらの大きさの関係はP4>P1>P3>P2となる。   For example, comparing the rate of increase in horsepower required to maintain a ship speed of 18.8 knots from the same figure in the first case, the second case, and the third and fourth cases, The case is P1, the second case is P2, the third case is P3, the fourth case is P4, and the relationship between these sizes is P4> P1> P3> P2.

つまり、第2のケースの船体1Bのように面積中心A2を船長Lの中心Cよりも船尾R側に位置させることで馬力を最も少なくすることができ、第3のケース、ついで船体1Aの中心Cに面積中心A1を位置させた第1のケース、中心Cより船尾R側に面積中心A4を位置させた第4のケースの順になる。   That is, the horsepower can be minimized by positioning the area center A2 closer to the stern R side than the center C of the captain L like the hull 1B of the second case, and the third case, then the center of the hull 1A. A first case in which the area center A1 is positioned at C and a fourth case in which the area center A4 is positioned on the stern R side from the center C are arranged in this order.

このことからしても、面積中心が船長Lの中心Cよりも船尾R側に位置する船体1B、1Cの方が運航時に受ける風圧に対し、発生する抵抗が少なくなることが分かる。   Even from this, it can be seen that the hulls 1B and 1C whose area center is located on the stern R side than the center C of the captain L are less resistant to the wind pressure received during operation.

なお、船体の側面の面積中心の位置を、船長の中心から船尾方向に、船長の1%後方の位置とすることで、約1%の馬力低減効果が得られることが計算で求められた。したがって、従来の船舶に比べて1%以上の馬力低減効果が得られれば実用上有効であるから、上記面積中心は船長の中心から1%以上後方であればよく、たとえば2%、3%或いはそれ以上であってもよく、要は上記面積中心が船長の中心よりも後方であればある程、馬力低減効果を増大させることができる。   It was calculated by calculation that a horsepower reduction effect of about 1% can be obtained by setting the position of the center of the side surface of the hull to a position 1% behind the captain in the stern direction from the center of the captain. Therefore, since it is practically effective if a horsepower reduction effect of 1% or more is obtained as compared with the conventional ship, the center of the area may be 1% or more behind the center of the captain, for example, 2%, 3% or More than that, the point is that the more the center of the area is behind the center of the captain, the more the horsepower reduction effect can be increased.

第1のケースの船体を示す側面図。The side view which shows the hull of a 1st case. 第2のケース船体を示す側面図。The side view which shows a 2nd case hull. 第3のケースの船体を示す側面図。The side view which shows the hull of a 3rd case. 第4のケースの船体を示す側面図。The side view which shows the hull of a 4th case. 風向とX方向の影響係数との関係を示す図。The figure which shows the relationship between a wind direction and the influence coefficient of a X direction. 風向とY方向の影響係数との関係を示す図。The figure which shows the relationship between a wind direction and the influence coefficient of a Y direction. 風向とZ軸周り風圧モーメント係数との関係を示す図Diagram showing the relationship between wind direction and wind pressure moment coefficient around the Z axis 第1のケースの船体と第2のケースの船体との風向と船速低下率、横流れ角及び舵角の関係を示す図。The figure which shows the relationship between the wind direction of the hull of a 1st case, and the hull of a 2nd case, a ship speed fall rate, a lateral flow angle, and a steering angle. 第1のケースの船体と第2のケースの船体との風向と馬力増加率との関係を示す図。The figure which shows the relationship between the wind direction of the hull of a 1st case, and the hull of a 2nd case, and a horsepower increase rate. 第1のケースの船体と第3のケースの船体との風向と船速低下率、横流れ角及び舵角の関係を示す図。The figure which shows the relationship between the wind direction of the hull of a 1st case, and the hull of a 3rd case, a ship speed fall rate, a lateral flow angle, and a steering angle. 第1のケースの船体と第3のケースの船体との風向と馬力増加率との関係を示す図。The figure which shows the relationship between the wind direction of the hull of a 1st case, and the hull of a 3rd case, and a horsepower increase rate. 第1のケースの船体と第4のケースの船体との風向と船速低下率、横流れ角及び舵角の関係を示す図。The figure which shows the relationship between the wind direction of the hull of a 1st case, and the hull of a 4th case, a ship speed fall rate, a lateral flow angle, and a steering angle. 第1のケースの船体と第4のケースの船体との風向と馬力増加率との関係を示す図。The figure which shows the relationship between the wind direction of the hull of a 1st case, and the hull of a 4th case, and a horsepower increase rate. 第1乃至第4のケースの船体の速度とその速度を維持するための馬力との関係を示す図。The figure which shows the relationship between the speed of the hull of the 1st thru | or 4th case, and the horsepower for maintaining the speed. 船体に作用する抵抗を説明するための図。The figure for demonstrating the resistance which acts on a hull. 船体に発生する抵抗力を説明するための図。The figure for demonstrating the resistance force which generate | occur | produces in a hull.

符号の説明Explanation of symbols

1A〜1D…船体、F…船首、R…船尾、面積中心…A1〜A4。   1A to 1D ... hull, F ... bow, R ... stern, center of area ... A1-A4.

Claims (5)

船体を有し、この船体の側面形状は、
上記船体の側面が受ける風圧が船長の中央から船尾側が船首側よりも大きくなるよう上記側面の面積中心の位置を設定することが可能な形状であることを特徴とする船舶。
It has a hull, and the side shape of this hull is
A ship capable of setting the position of the center of the area of the side face so that the wind pressure received by the side face of the hull is larger from the center of the captain to the stern side than the bow side.
上記面積中心は、船長の中心から船尾方向へ船長の1%以上後方にあることを特徴とする請求項1記載の船舶。   2. The ship according to claim 1, wherein the center of the area is at least 1% behind the captain in the stern direction from the center of the captain. 上記船体の船長の中央部に段差部を設け、船尾側の側面の高さを船首側の高さよりも高くしたことを特徴とする請求項1記載の船舶。   2. A ship according to claim 1, wherein a step portion is provided in a center portion of the captain of the hull, and a height of a side surface on the stern side is made higher than a height on a bow side. 上記段差部の上面と下面とは直線若しくは曲線によってつながっていることを特徴とする請求項3記載の船舶。   The ship according to claim 3, wherein the upper surface and the lower surface of the stepped portion are connected by a straight line or a curve. 上記船体の側面形状は、喫水線から上の形状であることを特徴とする請求項1乃至請求項4のいずれかに記載の船舶。   The ship according to any one of claims 1 to 4, wherein a side shape of the hull is a shape above the water line.
JP2005089838A 2005-03-25 2005-03-25 Vessel Pending JP2006264649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005089838A JP2006264649A (en) 2005-03-25 2005-03-25 Vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005089838A JP2006264649A (en) 2005-03-25 2005-03-25 Vessel

Publications (1)

Publication Number Publication Date
JP2006264649A true JP2006264649A (en) 2006-10-05

Family

ID=37201046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005089838A Pending JP2006264649A (en) 2005-03-25 2005-03-25 Vessel

Country Status (1)

Country Link
JP (1) JP2006264649A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015074297A (en) * 2013-10-08 2015-04-20 株式会社大内海洋コンサルタント Stowage method on container ship

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015074297A (en) * 2013-10-08 2015-04-20 株式会社大内海洋コンサルタント Stowage method on container ship

Similar Documents

Publication Publication Date Title
JP5250550B2 (en) Ship with a control surface at the bow
US20080053356A1 (en) Steering and propulsion arrangement for ship
WO2014042127A1 (en) Commercial cargo ship
JP2008260445A (en) Vessel
JP6590813B2 (en) Ship with improved hull shape
JP2007223557A (en) Twin skeg vessel
JP5638215B2 (en) Ship with low wind pressure resistance and its design method
CN103569310A (en) Full ship
JP2006264649A (en) Vessel
WO2018150912A1 (en) Hull structure
JP5896598B2 (en) Ship
JP4938056B2 (en) Stern wave interference fin
WO2012073614A1 (en) Ship
US20130192505A1 (en) Full form ship&#39;s hull with reduced wave making resistance
JP5969170B2 (en) Ship
JP7049144B2 (en) Stern fins and ships
JP5028000B2 (en) Ship
JP2006008091A (en) Vessel shape for small high speed vessel
JP2007069834A (en) Vessel
JP4236655B2 (en) Stern frame tag
JP2016107715A (en) Rudder, rudder unit and marine vessel
JP2020164037A (en) Vessel
JP5863235B2 (en) Ship
US20180162489A1 (en) Minimum wave bow
JP7329896B1 (en) Low fuel consumption navigation method for navigation

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080708