JP4719961B2 - Secondary battery and manufacturing method thereof - Google Patents

Secondary battery and manufacturing method thereof Download PDF

Info

Publication number
JP4719961B2
JP4719961B2 JP2000264747A JP2000264747A JP4719961B2 JP 4719961 B2 JP4719961 B2 JP 4719961B2 JP 2000264747 A JP2000264747 A JP 2000264747A JP 2000264747 A JP2000264747 A JP 2000264747A JP 4719961 B2 JP4719961 B2 JP 4719961B2
Authority
JP
Japan
Prior art keywords
sealing member
current collector
electrode plate
positive
plate group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000264747A
Other languages
Japanese (ja)
Other versions
JP2002075323A (en
Inventor
誠一 上本
登志一 浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000264747A priority Critical patent/JP4719961B2/en
Publication of JP2002075323A publication Critical patent/JP2002075323A/en
Application granted granted Critical
Publication of JP4719961B2 publication Critical patent/JP4719961B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、正負極板をセパレータを介して巻回してなる極板群を電解液とともに外装缶に収容した二次電池とその製造方法に関するものである。
【0002】
【従来の技術】
近年、電子機器の小型化、軽量化が急速に進んでおり、その電源としての電池に対しても小型・軽量化と高容量化の要望が高まっている。また、地球環境問題からは電気自動車にも期待が高まり、この電池に対しては小型・軽量化、高容量化と共に高出力化が望まれている。これらの要望に対して、リチウムイオン二次電池の開発が盛んに行われている。
【0003】
以下、従来例の二次電池の構造について説明する。
【0004】
従来例のリチウムイオン二次電池の構成を示す図5において、1は正極集電体2bに正極材料2aを塗着させた正極板2と負極集電体3bに負極材料3aを塗着させた負極板3とをセパレータ4を介して渦巻き状に巻回された極板群である。5、6は極板群1の両端面に接合された正極集電板及び負極集電板である。正極集電板5には正極タブ5aが溶接されている。
【0005】
この極板群1は電解液とともに外装缶7に収容され、負極集電板6が外装缶7の内底面に抵抗溶接され、外装缶7が電池の負極端子となる。8は中央部に穴8aを有するフィルタで、その内部にOリング9、防爆弁体10、スペーサ11、キャップ12を挿入後外周のかしめ部8bをかしめて一体化している。ここで、防爆弁体10はアルミ箔からなる薄膜状のものであり、電池内圧が所定圧以上に上昇したときにはスペーサ11の穴11a部より破断して電池内部のガスを外部に排出するように構成されている。このフィルタ8に正極タブ5aが溶接され、極板群1からの電流はフィルタ8のかしめ部8bからキャップ12に通電され、キャップ12が電池の正極端子となる。
【0006】
13は外装缶7とフィルタ8の間に介装されたガスケットであり、両者を絶縁するとともに、フィルタ8を挟持するように外装缶7の開口部をかしめることによりシール機能も有している。
【0007】
次に、以上の構成の二次電池の製造方法について説明する。まず、極板群1を製造するにあたり、正極板2とセパレータ4と負極板3をそれぞれ少しずつ上下にずらして巻回することにより、たとえば上端側には巻回された正極板2の正極集電体2bを突出させ、下端側には巻回された負極板3の負極集電体3bを突出させるようにしてある。このように構成された極板群1の上端面にはあらかじめ正極タブ5aを溶接にて接合してある正極集電板5が、下端面には負極集電板6がそれぞれ溶接される。この時の、正極集電板5に溶接されている正極タブ5aは図6に示すようにストレートな状態である。
【0008】
次に、図6に示すように、極板群1を外装缶7に収容し、負極集電板6と外装缶7の内底面を抵抗溶接する。その際、溶接の電極14aは極板群1の巻芯部の空間1aから挿入され、外装缶7の外底面に当接している電極14bとの間で電流を通電し、抵抗溶接される。その後、極板群1を収容した外装缶7は、その開口部7bから適当距離下方位置に溝7aを配するように治具等を用いて塑性加工が施される。
【0009】
次に、Oリング9、防爆弁体10、スペーサ11、キャップ12を含んで一体化され、外周にガスケット13が嵌合された状態のフィルタ8の所定の位置に、正極タブ5aが溶接される。また、この状態で電解液が外装缶7の開口部より所定量注入される。その後、正極タブ5aを図5の如く変形させながら、フィルタ8とガスケット13が外装缶7の溝7aの上部に嵌合配置され、外装缶7の開口部7bを図5の如くかしめて二次電池が完成される。
【0010】
【発明が解決しようとする課題】
しかしながら、上記の従来の構成では、フィルタ8と正極タブ5aの溶接の際に、極板群1と外装缶7とフィルタ8の位置関係から、図6の如く、正極タブ5aは所定の長さが必要となる。そして、フィルタ8とガスケット13とを外装缶7の溝7aの上部に嵌合配置する際には正極タブ5aの変形はめくら作業にならざるを得ないので、変形後の正極タブ5aの形状を適正に規定することが困難であった。
【0011】
また、高出力の電池を求めた場合、電池の内部抵抗を低減するのは有効な手段である。しかし、所定長さの正極タブ5aは電池の内部抵抗の増加をもたらすことになる。また、内部抵抗を低減しようと正極タブ5aの幅や厚みを増加すると正極タブ5aの強度が上がり変形が困難になる。さらには、変形作業によって正極タブ5aとフィルタ8の溶接点に大きな力が作用した場合には、溶接がはずれる可能性もあり、電池の品質低下にもつながる。
【0012】
また、上述のように極板群1からの電流はフィルタ8のかしめ部8bからキャップ12に通電されるので、接触による接続となり接触抵抗として電池の内部抵抗の増加を来すという問題点を有していた。
【0013】
本発明は、上記従来の問題点を解決するもので、正極タブ等の部品を変形することなく電池を組み立てることができて製造が容易で、かつ内部抵抗を低減して高出力が得られる二次電池とその製造方法を提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明の第1発明の二次電池は、一方の電極端子となる外装缶と、正負極板をセパレータを介して巻回してなる極板群と、極板群内部に含浸された電解液と、極板群の両端面に接合された正極及び負極の集電板と、正極及び負極の集電板のどちらか一方に一体的に固着され且つ外装缶の開口部に絶縁部材を介して配された第1の封口部材と、内部圧力の上昇に応じて内部ガスの排出を行う防爆手段とともに第1の封口部材にシール手段を介して固着された第2の封口部材とからなり、第1の封口部材に接合されていない方の集電板は弾性接合片を有しその弾性接合片を介して外装缶の内底面に所定の間隙をあけて接合したものであり、正極タブ等の部品を変形することなく電池の組み立てが可能であるので製造が容易となり、また内部抵抗を減少して電池の出力を増大させることができ、内部抵抗を低減した高出力の二次電池が得られる。
【0015】
第2発明の二次電池は、負極端子となる外装缶と、正負極板をセパレータを介して巻回してなる極板群と、極板群内部に含浸された電解液と、極板群の両端面に接合された正極及び負極の集電板と、正極集電板に接続されかつ外装缶の開口部に絶縁部材を介して配された第1の封口部材と、内部圧力の上昇に応じて内部ガスの排出を行う防爆手段とともに第1の封口部材にシール手段を介して固着された第2の封口部材とからなり、第1の封口部材に接合されていない方の集電板は弾性接合片を有し、その弾性接合片を介して外装缶の内底面に所定の間隙をあけて接合し、第2の封口部材は第1の封口部材に対向している金属が同種類の金属である少なくとも2種類以上の異種金属からなるクラッド材で構成したものであり、第1と第2の封口部材で同種類の金属同士の溶接となり、内部抵抗を減少し電池の出力を増大させることができる。
【0016】
また、上記二次電池において、外装缶は組み付け前は開口部の径が他の部分より大きく、組み付け後にほぼ他の部分と同径となるように塑性変形させると、絶縁部材による絶縁及びシールを安価な手段で確保することができる。
【0017】
第3発明の二次電池の製造方法は、一方の電極端子となる外装缶と、正負極板をセパレータを介して巻回してなる極板群と、極板群内部に含浸された電解液と、極板群の両端面に接合された正極及び負極の集電板と、正極及び負極の集電板のどちらか一方に接続され且つ外装缶の開口部に絶縁部材を介して配された第1の封口部材と、内部圧力の上昇に応じて内部ガスの排出を行う防爆手段とともに第1の封口部材にシール手段を介して固着された第2の封口部材とからなり、第1の封口部材に接合されていない方の集電板は弾性接合片を有し、その弾性接合片を介して外装缶の内底面に所定の間隙をあけて接合した二次電池の製造方法であって、極板群の両端面に正極及び負極の集電板を接合後どちらか一方の集電板に第1の封口部材を接続した後に、極板群を外装缶に挿入し、他方の集電板を外装缶の底面部に接合し、第1の封口部材に設けられた穴より電解液を所定量注入後に、第2の封口部材をシール手段を介して第1の封口部材に固着するものであり、集電板と封口部材を接続する部品をめくら作業で変形することなく電池を組み立てることができ、製造が容易となる。
【0018】
また、絶縁部材が挿入される部分が他の部分よりも大なる径を有している外装缶を用い、第2の封口部材を第1の封口部材に固着後、外装缶の開口部をかしめた後に大径部分をほぼ他の部分の径まで塑性変形させると、安価な手段で確実に絶縁及びシールができる。
【0019】
【発明の実施の形態】
以下、本発明の二次電池をリチウムイオン電池に適用した一実施形態について、図1〜図4を参照して説明する。
【0020】
本実施形態の二次電池の構成を示す図1において、1は極板群であり、従来例で説明したものと同様の構成である。正極板2、負極板3について詳細に説明すると、正極集電体2bはアルミ箔からなり、その両面に正極活物質と結着剤を含む正極材料2aを塗着して正極板2が構成されており、その正極活物質としては、LiCoO2 、LiMn2 4 、LiNiO2 などが用いられる。負極集電体3bは銅箔からなり、その両面に負極活物質と結着剤を含む負極材料3aを塗着して負極板3が構成されており、その負極活物質としては、グラファイト、石油コークス類、炭素繊維などの炭素質材料などが用いられる。
【0021】
25、26は、極板群1の両端に接合された正極集電板及び負極集電板である。正極集電板25には中心部の周囲上面に凸部25aが形成されるとともに、中心位置に穴25bが形成されている。負極集電板26には中心位置に穴26aが形成されるとともに、一側端にほぼ180度折り返されて先端部が穴26aに対向する位置まで延出された弾性接合片26bが設けられている。
【0022】
27は外装缶であり、その開口部27aの所定区間は他の部分よりも大なる径を有している。28は第1の封口部材としてのアルミまたはアルミ合金製のフィルタであり、中央位置に穴28aが形成されるとともに、その周囲に正極集電板25の凸部25aに嵌合する穴28bが形成されている。29はシール手段としてのOリング、30は防爆手段としてのアルミ箔からなる防爆弁体、31は第2の封口部材となるスペーサである。このスペーサ31は、フィルタ28と対向している面側の部材31bはフィルタ28と同じアルミまたはアルミ合金、他面側の部材31cは後述のキャップ32と同じニッケルまたは鉄またはそれらの合金であり、それらを冷間圧接にて貼り合わせたクラッド材からなっている。また、電池内圧が所定以上に上昇した場合には防爆弁体30がスペーサ31の中心部に形成された穴31aより破断して電池内部のガスを外部に排出する。32は電池の正極端子となるキャップである。このキャップ32の材質としては、この電池を組電池として使用する場合には接続板(図示せず)等を溶接する場合が多いことより溶接が容易なようにニッケルまたは鉄またはそれらの合金よりなっている。33は絶縁部材となるガスケット、35は絶縁板である。
【0023】
次に、以上の構成の二次電池の製造方法について説明する。極板群1は従来例の説明と同様に製造されたものであり、正極板2とセパレータ4と負極板3をそれぞれ少しずつ上下にずらして巻回することにより、たとえば上端側には巻回された正極板2の正極集電体2bを突出させ、下端側には巻回された負極板3の負極集電体3bを突出させるようにしてある。そして、極板群1の上端面には正極集電体2bがアルミ箔であるので、アルミまたはアルミ合金製の正極集電板25が、下端面には負極集電板26がそれぞれ溶接される。次に、フィルタ28をガスケット33に挿入した状態で、そのフィルタ28を正極集電板25上に重ねるとともにその穴28bに正極集電板25の凸部25aを嵌入させ、上部よりレーザ溶接し、正極集電板25と一体的に固着する。
【0024】
次に、図2に示すように、フィルタ28を一体的に固着した極板群1をガスケット33と共に外装缶27内に挿入し、負極集電板26の弾性接合片26bと外装缶27の内底面を抵抗溶接によって接合する。その際、図3に示すように、溶接の電極34aがフィルタ28の中央部の穴28a、正極集電板25の穴25b、極板群1の巻芯部の空間1a及び負極集電板26の穴26aを貫通して弾性接合片26bに当接される。そして、外装缶27の外底面に当接している電極34bとの間で通電して抵抗溶接にて接合する。
【0025】
次に、フィルタ28の穴28aより電解液を所定量注入し、極板群1内部に含浸させる。なお、この電解液としては、溶質として6フッ化リン酸リチウム(LiPF6 )、過塩素酸リチウム(LiClO4 )、ホウフッ化リチウム(LiBF4 )などのリチウム塩、溶媒としてエチレンカーボネイト(EC)、プロピレンカーボネイト(PC)、ジエチレンカーボネイト(DEC)、エチレンメチルカーボネイト(EMC)などの非水溶媒などを用い、この溶媒に溶質を溶解したものを使用する。
【0026】
その後、Oリング29とアルミ箔製の防爆弁体30とをフィルタ28の所定位置に配置する。スペーサ31のニッケルまたは鉄またはそれらの合金から成る部材31cには、ニッケルまたは鉄またはそれらの合金から成るキャップ32が予め抵抗溶接されており、それをフィルタ28の防爆弁体30の上に重ね、治具等により加圧しながらスペーサ31とフィルタ28を図1のAの位置でレーザ溶接し、第1の封口部材であるフィルタ28と第2の封口部材であるスペーサ31を固着する。また、両者間に介装したOリング29にてシールを行う。この時、レーザはスペーサ31の部材31c側より照射されるが、その熱によりアルミまたはアルミ合金からなる部材31b、アルミ箔から成る防爆弁体30、アルミまたはアルミ合金から成るフィルタ28が溶融して溶接が完了する。
【0027】
次に、絶縁板35を装着した後、外装缶27の開口部を矢印Bのようにかしめる。この時、ガスケット33は、外装缶27の大径部分と嵌合しているので径の変化部Cで受けられることにより固定されることとなる。
【0028】
この状態で負極集電板26は、弾性接合片26bがほぼ180度折り曲げられて連設されているので、極板群1と溶接している面と外装缶27の内底面の間には間隙Hが存在する状態で位置する。この間隙Hと弾性接合片26bの弾性により、ガスケット33及びフィルタ28の位置や、極板群1の幅などがばらついた場合でもばらつきを吸収することが可能となり不要な負荷を極板群1に与えることはない。
【0029】
次に、以上のように製造された二次電池を、図4に示すように、矢印D方向に加圧して縮径治具36に通すことにより、外装缶27の大径部をほぼ他の部分の径まで塑性変形させる。この時、ガスケット33は外装缶27の塑性変形分だけ外装缶27とフィルタ28との間で圧縮させられ、外装缶27とフィルタ28の絶縁を行うと共にシール機能を有することとなる。
【0030】
以上のように本実施形態によれば、負極端子となる外装缶27と、正負極板2、3をセパレータ4を介して巻回してなる極板群1と、極板群1内部に含浸された電解液と、極板群1の両端面に接合された正極集電板25及び負極集電板26と、正極集電板25に一体的に固着され且つ外装缶27の開口部に絶縁部材であるガスケット33を介して配された第1の封口部材であるフィルタ28と、内部圧力の上昇に応じて内部ガスの排出を行う防爆手段である防爆弁体30とともにフィルタ28にシール手段であるOリング29を介して固着された第2の封口部材であるスペーサ31とからなり、負極集電板26の弾性接合片26bを外装缶27の内底面に所定の間隙Hをあけて接合したので、正極集電板とフィルタを接続するための正極タブ等の部品を廃止でき、内部抵抗の減少により電池の出力を増大させることができる。
【0031】
また、スペーサ31をフィルタ28に対向している金属が同種類の金属である少なくとも2種類以上の異種金属からなるクラッド材で構成しているので、同種類の金属同士の溶接が可能となり、内部抵抗を減少し電池の出力を増大させることができる。
【0032】
また、極板群1の両端面に正極及び負極集電板25、26を接合し、正極集電板25にフィルタ28を溶接した後に、極板群1を外装缶27に挿入し、負極集電板26の弾性接合片26bを外装缶27の底面部に溶接し、フィルタ28に設けられた穴28aより電解液を所定量注入後に、スペーサ31をフィルタ28に固着するという製造方法をとることにより、正極集電板とフィルタを接続するための正極タブ等の構成部品をめくら作業で変形することなく電池を組み立てることができ、製造が容易で、強いては品質の向上も図ることができる。
【0033】
また、外装缶27は絶縁部材であるガスケット33が挿入される部分は他の部分よりも大なる径を有しており、スペーサ31をフィルタ28に固着後、外装缶27の開口部をかしめた後に大径部分をほぼ他の部分の径まで塑性変形させることにより、安価な手段で確実に絶縁及びシールができる。
【0034】
なお、以上の説明では内部圧力の上昇に応じて内部ガスの排出を行う防爆手段である防爆弁体30はアルミ箔製の一つの構成部品としたが、第2の封口部材であるスペーサ31を、このアルミ箔も含めて冷間圧接して作成されたクラッド材としてもよい。
【0035】
また、以上の説明ではフィルタ28を正極側に外装缶27を負極側としたが、正負極を逆にして、フィルタ28を負極側に外装缶27を正極側としてもよく、その場合は外装缶27がアルミまたはアルミ合金製となる。
【0036】
【発明の効果】
本発明の二次電池によれば、以上のように極板群の両端面に正極及び負極の集電板を接合し、その正極及び負極の集電板のどちらか一方に一体的に第1の封口部材を固着し、この第1の封口部材を外装缶の開口部に絶縁部材を介して配するとともにこの第1の封口部材に内部圧力の上昇に応じて内部ガスの排出を行う防爆手段とともにシール手段を介して第2の封口部材を固着し、第1の封口部材に接合されていない方の集電板は弾性接合片を有しその弾性接合片を介して外装缶の内底面に所定の間隙をあけて接合しているので、正極集電板と封口部材を接続する正極タブ等の部品を変形することなく電池を組み立てることができ、製造が容易となるとともに正極タブ等を用いないので内部抵抗を減少して電池の出力を増大させることができ、内部抵抗を低減した高出力の二次電池が得られる。
【0037】
また、第2の封口部材を第1の封口部材に対向している金属が同種類の金属である少なくとも2種類以上の異種金属からなるクラッド材で構成すると、第1と第2の封口部材で同種類の金属同士の溶接となり、内部抵抗を減少し電池の出力を増大させることができる。
【0038】
また、上記二次電池において、外装缶は組み付け前は開口部の径が他の部分より大きく、組み付け後にほぼ他の部分と同径となるように塑性変形させると、絶縁部材による絶縁及びシールを安価な手段で確保することができる。
【0039】
また、本発明の二次電池の製造方法によれば、極板群の両端面に正極及び負極の集電板を接合後どちらか一方の集電板に第1の封口部材を接続した後に、極板群を外装缶に挿入し、他方の集電板を外装缶の底面部に接合し、第1の封口部材に設けられた穴より電解液を所定量注入後に、第2の封口部材をシール手段を介して第1の封口部材に固着するので、集電板と封口部材を接続する部品をめくら作業で変形することなく電池を組み立てることができ、製造が容易となる。
【0040】
また、絶縁部材が挿入される部分が他の部分よりも大なる径を有している外装缶を用い、第2の封口部材を第1の封口部材に固着後、外装缶の開口部をかしめた後に大径部分をほぼ他の部分の径まで塑性変形させると、安価な手段で確実に絶縁及びシールができる。
【図面の簡単な説明】
【図1】本発明の一実施形態の二次電池の縦断面図である。
【図2】同実施形態の二次電池の製造工程の斜視図である。
【図3】同実施形態の二次電池の後続する製造工程の縦断面図である。
【図4】同実施形態の二次電池のさらに後続する製造工程の縦断面図である。
【図5】従来例の二次電池の縦断面図である。
【図6】従来例の二次電池の製造工程の縦断面図である。
【符号の説明】
1 極板群
2 正極板
3 負極板
4 セパレータ
25 正極集電板
26 負極集電板
26b 弾性接合片
27 外装缶
28 フィルタ(第1の封口部材)
29 Oリング(シール手段)
30 防爆弁体(防爆手段)
31 スペーサ(第2の封口部材)
33 ガスケット(絶縁部材)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a secondary battery in which an electrode plate group formed by winding positive and negative electrode plates through a separator is housed in an outer can together with an electrolytic solution, and a method for manufacturing the same.
[0002]
[Prior art]
In recent years, electronic devices are rapidly becoming smaller and lighter, and there is an increasing demand for smaller, lighter and higher capacity batteries as power sources. In addition, there are increasing expectations for electric vehicles due to global environmental problems, and it is desired that this battery be smaller, lighter and have a higher capacity as well as a higher output. In response to these demands, lithium ion secondary batteries have been actively developed.
[0003]
Hereinafter, the structure of the conventional secondary battery will be described.
[0004]
In FIG. 5 showing the configuration of a conventional lithium ion secondary battery, reference numeral 1 denotes a positive electrode plate 2 obtained by applying a positive electrode material 2a to a positive electrode current collector 2b and a negative electrode material 3a applied to a negative electrode current collector 3b. An electrode plate group in which the negative electrode plate 3 is wound in a spiral shape with a separator 4 interposed therebetween. Reference numerals 5 and 6 denote a positive electrode current collector plate and a negative electrode current collector plate joined to both end faces of the electrode plate group 1. A positive electrode tab 5 a is welded to the positive electrode current collector plate 5.
[0005]
The electrode plate group 1 is accommodated in the outer can 7 together with the electrolyte, the negative electrode current collector plate 6 is resistance-welded to the inner bottom surface of the outer can 7, and the outer can 7 serves as the negative electrode terminal of the battery. 8 is a filter having a hole 8a in the center, and after inserting an O-ring 9, an explosion-proof valve body 10, a spacer 11, and a cap 12, the caulking portion 8b on the outer periphery is caulked and integrated. Here, the explosion-proof valve body 10 is a thin film made of aluminum foil, and when the battery internal pressure rises above a predetermined pressure, it breaks from the hole 11a portion of the spacer 11 and discharges the gas inside the battery to the outside. It is configured. The positive electrode tab 5a is welded to the filter 8, and the current from the electrode plate group 1 is energized to the cap 12 from the caulking portion 8b of the filter 8, and the cap 12 becomes the positive electrode terminal of the battery.
[0006]
A gasket 13 is interposed between the outer can 7 and the filter 8 and insulates the two, and also has a sealing function by caulking the opening of the outer can 7 so as to sandwich the filter 8. .
[0007]
Next, a method for manufacturing the secondary battery having the above configuration will be described. First, in manufacturing the electrode plate group 1, the positive electrode plate 2, the separator 4, and the negative electrode plate 3 are wound slightly shifted up and down, for example, so that the positive electrode assembly of the positive electrode plate 2 wound on the upper end side, for example. The electric body 2b is protruded, and the negative electrode current collector 3b of the wound negative electrode plate 3 is protruded on the lower end side. The positive electrode current collector plate 5 in which the positive electrode tab 5a is previously joined by welding is welded to the upper end surface of the electrode plate group 1 thus configured, and the negative electrode current collector plate 6 is welded to the lower end surface. At this time, the positive electrode tab 5a welded to the positive electrode current collector plate 5 is in a straight state as shown in FIG.
[0008]
Next, as shown in FIG. 6, the electrode plate group 1 is accommodated in the outer can 7, and the negative electrode current collector plate 6 and the inner bottom surface of the outer can 7 are resistance-welded. At that time, the welding electrode 14 a is inserted from the space 1 a of the core portion of the electrode plate group 1, and a current is passed between the electrode 14 b in contact with the outer bottom surface of the outer can 7 and resistance welding is performed. Thereafter, the outer can 7 containing the electrode plate group 1 is subjected to plastic working using a jig or the like so as to dispose the groove 7a at a position below the opening 7b by an appropriate distance.
[0009]
Next, the positive electrode tab 5a is welded to a predetermined position of the filter 8 in which the O-ring 9, the explosion-proof valve body 10, the spacer 11, and the cap 12 are integrated and the gasket 13 is fitted to the outer periphery. . In this state, a predetermined amount of electrolyte is injected from the opening of the outer can 7. After that, while the positive electrode tab 5a is deformed as shown in FIG. 5, the filter 8 and the gasket 13 are fitted and arranged on the upper portion of the groove 7a of the outer can 7, and the opening 7b of the outer can 7 is caulked as shown in FIG. The battery is completed.
[0010]
[Problems to be solved by the invention]
However, in the above-described conventional configuration, when the filter 8 and the positive electrode tab 5a are welded, the positive electrode tab 5a has a predetermined length as shown in FIG. Is required. And, when the filter 8 and the gasket 13 are fitted and arranged on the upper part of the groove 7a of the outer can 7, the deformation of the positive electrode tab 5a is unavoidable, so that the shape of the positive electrode tab 5a after deformation is changed. It was difficult to define properly.
[0011]
In addition, when a high output battery is required, it is an effective means to reduce the internal resistance of the battery. However, the positive electrode tab 5a having a predetermined length increases the internal resistance of the battery. Further, when the width and thickness of the positive electrode tab 5a are increased in order to reduce the internal resistance, the strength of the positive electrode tab 5a is increased and deformation becomes difficult. Furthermore, when a large force is applied to the welding point between the positive electrode tab 5a and the filter 8 due to the deformation operation, the welding may be disengaged, leading to a deterioration in battery quality.
[0012]
Further, as described above, since the current from the electrode plate group 1 is energized to the cap 12 from the caulking portion 8b of the filter 8, there is a problem that connection due to contact occurs and the internal resistance of the battery increases as contact resistance. Was.
[0013]
The present invention solves the above-mentioned conventional problems, and can assemble a battery without deforming parts such as a positive electrode tab, is easy to manufacture, and can reduce internal resistance and obtain a high output. An object is to provide a secondary battery and a manufacturing method thereof.
[0014]
[Means for Solving the Problems]
The secondary battery according to the first aspect of the present invention includes an outer can serving as one electrode terminal, an electrode plate group in which positive and negative electrode plates are wound through a separator, an electrolyte solution impregnated inside the electrode plate group, The positive electrode and negative electrode current collector plates joined to both end faces of the electrode plate group, and the positive electrode and negative electrode current collector plates are integrally fixed to each other and disposed in the opening of the outer can via an insulating member. And a second sealing member fixed to the first sealing member via the sealing means together with an explosion-proof means for discharging the internal gas in response to an increase in internal pressure. The current collector plate that is not joined to the sealing member has an elastic joint piece, and is joined to the inner bottom surface of the outer can through the elastic joint piece with a predetermined gap therebetween. The battery can be assembled without deforming the battery, making it easier to manufacture and reducing internal resistance. It is possible to increase the output of the little battery, a secondary battery of a high output with a reduced internal resistance.
[0015]
A secondary battery according to a second aspect of the invention includes an outer can serving as a negative electrode terminal, an electrode plate group formed by winding positive and negative electrode plates through a separator, an electrolyte impregnated inside the electrode plate group, and an electrode plate group A positive and negative current collector plates joined to both end faces, a first sealing member connected to the positive current collector plate and disposed in the opening of the outer can via an insulating member, and in response to an increase in internal pressure And the second sealing member fixed to the first sealing member through the sealing means together with the explosion-proof means for discharging the internal gas, and the current collector plate not joined to the first sealing member is elastic. The second sealing member has a joining piece and is joined to the inner bottom surface of the outer can via the elastic joining piece, and the second sealing member is the same type of metal as the first sealing member. The clad material is made of at least two kinds of different metals, and the first and second seals are Becomes welding of the same kind of metal each other by a member, it is possible to increase the output of the reduced cell internal resistance.
[0016]
Further, in the above secondary battery, when the outer can is assembled and plastically deformed so that the diameter of the opening is larger than that of the other part before assembling and substantially the same as that of the other part after assembling, insulation and sealing by the insulating member is performed. It can be secured by inexpensive means.
[0017]
A method for manufacturing a secondary battery according to a third aspect of the invention includes an outer can serving as one electrode terminal, an electrode plate group formed by winding a positive and negative electrode plate through a separator, and an electrolyte impregnated inside the electrode plate group, The positive electrode and negative electrode current collector plates joined to both end faces of the electrode plate group, and the positive electrode and negative electrode current collector plates are connected to either one of the positive electrode and negative electrode current collector plates, and are arranged in the opening of the outer can via insulating members. a first sealing member, Ri Do and a second sealing member that is fixed through the sealing means to the first sealing member with explosion-proof means to discharge the internal gas in response to an increase in internal pressure, a first sealing The current collector plate that is not joined to the member has an elastic joint piece, and is a method of manufacturing a secondary battery that is joined to the inner bottom surface of the outer can through the elastic joint piece with a predetermined gap , After the positive and negative current collector plates are joined to both end faces of the electrode plate group, the first sealing member is attached to one of the current collector plates. After that, the electrode plate group is inserted into the outer can, the other current collector plate is joined to the bottom surface portion of the outer can, and a predetermined amount of electrolyte is injected from the hole provided in the first sealing member. The sealing member is fixed to the first sealing member through the sealing means, and the battery can be assembled without deforming the parts connecting the current collector plate and the sealing member by the blinding operation, which facilitates manufacture. .
[0018]
In addition, an exterior can in which the insulating member is inserted has a larger diameter than the other portions, and after the second sealing member is fixed to the first sealing member, the opening of the exterior can is caulked. After that, if the large diameter portion is plastically deformed to the diameter of the other portion, insulation and sealing can be reliably performed by inexpensive means.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment in which a secondary battery of the present invention is applied to a lithium ion battery will be described with reference to FIGS.
[0020]
In FIG. 1 which shows the structure of the secondary battery of this embodiment, 1 is an electrode group and is the same structure as what was demonstrated in the prior art example. The positive electrode plate 2 and the negative electrode plate 3 will be described in detail. The positive electrode current collector 2b is made of an aluminum foil, and a positive electrode material 2a containing a positive electrode active material and a binder is applied to both surfaces thereof to form the positive electrode plate 2. As the positive electrode active material, LiCoO 2 , LiMn 2 O 4 , LiNiO 2 or the like is used. The negative electrode current collector 3b is made of a copper foil, and a negative electrode plate 3 is formed by coating a negative electrode material 3a containing a negative electrode active material and a binder on both sides. The negative electrode active material includes graphite, petroleum Carbonaceous materials such as cokes and carbon fibers are used.
[0021]
Reference numerals 25 and 26 denote a positive current collector and a negative current collector joined to both ends of the electrode plate group 1. The positive electrode current collector plate 25 has a convex portion 25a formed on the upper surface around the center portion and a hole 25b formed at the center position. The negative electrode current collector plate 26 is provided with a hole 26a at the center position, and an elastic joining piece 26b that is folded back approximately 180 degrees at one end and extends to a position facing the hole 26a. Yes.
[0022]
Reference numeral 27 denotes an outer can, and a predetermined section of the opening 27a has a larger diameter than other portions. Reference numeral 28 denotes an aluminum or aluminum alloy filter as a first sealing member. A hole 28a is formed at the center, and a hole 28b is formed around the hole 28b to be fitted to the convex portion 25a of the positive electrode current collector plate 25. Has been. 29 is an O-ring as sealing means, 30 is an explosion-proof valve body made of aluminum foil as explosion-proof means, and 31 is a spacer serving as a second sealing member. The spacer 31 has a member 31b on the side facing the filter 28 made of the same aluminum or aluminum alloy as the filter 28, and a member 31c on the other side made of nickel, iron or an alloy thereof same as the cap 32 described later. It consists of a clad material in which they are bonded together by cold welding. When the internal pressure of the battery rises above a predetermined level, the explosion-proof valve body 30 breaks from the hole 31a formed at the center of the spacer 31 and discharges the gas inside the battery to the outside. A cap 32 serves as a positive electrode terminal of the battery. The material of the cap 32 is made of nickel, iron, or an alloy thereof so that the connection plate (not shown) or the like is often welded when the battery is used as an assembled battery so that welding is easy. ing. 33 is a gasket serving as an insulating member, and 35 is an insulating plate.
[0023]
Next, a method for manufacturing the secondary battery having the above configuration will be described. The electrode plate group 1 is manufactured in the same manner as in the description of the conventional example, and the positive electrode plate 2, the separator 4, and the negative electrode plate 3 are wound slightly shifted up and down, for example, on the upper end side. The positive electrode current collector 2b of the positive electrode plate 2 is projected, and the negative electrode current collector 3b of the wound negative electrode plate 3 is projected to the lower end side. Since the positive electrode current collector 2b is made of aluminum foil on the upper end surface of the electrode plate group 1, the positive electrode current collector plate 25 made of aluminum or aluminum alloy is welded to the lower end surface, and the negative electrode current collector plate 26 is welded to the lower end surface. . Next, in a state where the filter 28 is inserted into the gasket 33, the filter 28 is overlaid on the positive current collector 25, and the convex portion 25a of the positive current collector 25 is fitted into the hole 28b, and laser welding is performed from above. It is fixed integrally with the positive electrode current collector plate 25.
[0024]
Next, as shown in FIG. 2, the electrode plate group 1 to which the filter 28 is integrally fixed is inserted into the outer can 27 together with the gasket 33, and the elastic joining piece 26 b of the negative electrode current collector plate 26 and the inner portion of the outer can 27 are inserted. The bottom surfaces are joined by resistance welding. At this time, as shown in FIG. 3, the welding electrode 34 a has a hole 28 a in the center of the filter 28, a hole 25 b in the positive current collector 25, a space 1 a in the core of the electrode plate group 1, and a negative current collector 26. And abuts against the elastic joining piece 26b. And it energizes between the electrodes 34b which are in contact with the outer bottom surface of the outer can 27, and is joined by resistance welding.
[0025]
Next, a predetermined amount of electrolytic solution is injected from the hole 28 a of the filter 28 and impregnated inside the electrode plate group 1. As the electrolyte, lithium salt such as lithium hexafluorophosphate (LiPF 6 ), lithium perchlorate (LiClO 4 ), lithium borofluoride (LiBF 4 ) as a solute, ethylene carbonate (EC) as a solvent, A nonaqueous solvent such as propylene carbonate (PC), diethylene carbonate (DEC), or ethylene methyl carbonate (EMC) is used, and a solute dissolved in this solvent is used.
[0026]
Thereafter, the O-ring 29 and the aluminum foil explosion-proof valve body 30 are arranged at predetermined positions of the filter 28. A cap 31 made of nickel, iron, or an alloy thereof is preliminarily resistance-welded to the member 31 c made of nickel, iron, or an alloy thereof of the spacer 31, and is superposed on the explosion-proof valve body 30 of the filter 28. The spacer 31 and the filter 28 are laser-welded at a position A in FIG. 1 while being pressed with a jig or the like, and the filter 28 as the first sealing member and the spacer 31 as the second sealing member are fixed. Further, sealing is performed with an O-ring 29 interposed between the two. At this time, the laser is irradiated from the member 31c side of the spacer 31, but the heat causes the member 31b made of aluminum or aluminum alloy, the explosion-proof valve body 30 made of aluminum foil, and the filter 28 made of aluminum or aluminum alloy to melt. Welding is complete.
[0027]
Next, after mounting the insulating plate 35, the opening of the outer can 27 is caulked as shown by an arrow B. At this time, since the gasket 33 is fitted to the large diameter portion of the outer can 27, the gasket 33 is fixed by being received by the diameter changing portion C.
[0028]
In this state, the negative electrode current collector plate 26 is provided with the elastic joining piece 26b bent approximately 180 degrees and continuously provided, so that there is a gap between the surface welded to the electrode plate group 1 and the inner bottom surface of the outer can 27. Located in the presence of H. The gap H and the elasticity of the elastic joining piece 26b make it possible to absorb variations even when the positions of the gasket 33 and the filter 28, the width of the electrode plate group 1 and the like vary, and an unnecessary load is applied to the electrode plate group 1. Never give.
[0029]
Next, as shown in FIG. 4, the secondary battery manufactured as described above is pressurized in the direction of arrow D and passed through the diameter-reducing jig 36, so that the large-diameter portion of the outer can 27 is almost the other. Plastic deformation to the diameter of the part. At this time, the gasket 33 is compressed between the outer can 27 and the filter 28 by the amount of plastic deformation of the outer can 27 to insulate the outer can 27 and the filter 28 and have a sealing function.
[0030]
As described above, according to the present embodiment, the outer can 27 serving as the negative electrode terminal, the electrode plate group 1 formed by winding the positive and negative electrode plates 2 and 3 through the separator 4, and the electrode plate group 1 are impregnated. The positive electrode current collector plate 25 and the negative electrode current collector plate 26 joined to both end faces of the electrode plate group 1 and the positive electrode current collector plate 25, and an insulating member at the opening of the outer can 27. The filter 28 is a sealing means for the filter 28 together with the filter 28 which is a first sealing member disposed through the gasket 33 and the explosion-proof valve body 30 which is an explosion-proof means for discharging the internal gas in response to an increase in internal pressure. Since it is composed of a spacer 31 which is a second sealing member fixed through an O-ring 29, the elastic joining piece 26b of the negative electrode current collector plate 26 is joined to the inner bottom surface of the outer can 27 with a predetermined gap H. , Positive electrode tab for connecting the positive current collector and filter Parts can be eliminated, it is possible to increase the output of the battery due to a decrease in the internal resistance.
[0031]
Further, since the spacer 31 is made of a clad material made of at least two kinds of different metals, the metal facing the filter 28 is the same kind of metal, the same kind of metals can be welded to each other. The resistance can be decreased and the battery output can be increased.
[0032]
Further, the positive electrode and negative electrode current collector plates 25, 26 are joined to both end faces of the electrode plate group 1, and the filter 28 is welded to the positive electrode current collector plate 25, and then the electrode plate group 1 is inserted into the outer can 27. A manufacturing method is adopted in which the elastic joining piece 26b of the electric plate 26 is welded to the bottom surface portion of the outer can 27, and a predetermined amount of electrolyte is injected from the hole 28a provided in the filter 28, and then the spacer 31 is fixed to the filter 28. As a result, the battery can be assembled without deforming components such as the positive electrode tab for connecting the positive electrode current collector plate and the filter by the blunting work, and the manufacture is easy, and the quality can be improved.
[0033]
In addition, the outer can 27 has a larger diameter than the other portion where the gasket 33 as an insulating member is inserted, and after the spacer 31 is fixed to the filter 28, the opening of the outer can 27 is caulked. Later, by plastically deforming the large-diameter portion to the diameter of the other portion, insulation and sealing can be reliably performed by inexpensive means.
[0034]
In the above description, the explosion-proof valve body 30 which is an explosion-proof means for discharging the internal gas in response to an increase in internal pressure is a single component made of aluminum foil. However, the spacer 31 which is the second sealing member is used as the second sealing member. A clad material made by cold pressure welding including this aluminum foil may also be used.
[0035]
In the above description, the filter 28 is on the positive electrode side and the outer can 27 is on the negative electrode side. However, the positive and negative electrodes may be reversed, and the filter 28 may be on the negative electrode side and the outer can 27 on the positive electrode side. 27 is made of aluminum or aluminum alloy.
[0036]
【The invention's effect】
According to the secondary battery of the present invention, the positive electrode and negative electrode current collector plates are joined to the both end faces of the electrode plate group as described above, and the first and second positive electrode and negative electrode current collector plates are integrally formed with the first. Explosion-proof means for fixing the first sealing member and disposing the first sealing member to the opening of the outer can via an insulating member and discharging the internal gas to the first sealing member in response to an increase in internal pressure At the same time, the second sealing member is fixed through a sealing means, and the current collector plate not joined to the first sealing member has an elastic joining piece on the inner bottom surface of the outer can through the elastic joining piece. Since the bonding is performed with a predetermined gap, the battery can be assembled without deforming the parts such as the positive electrode tab connecting the positive electrode current collector plate and the sealing member, which facilitates production and uses the positive electrode tab. Can reduce internal resistance and increase battery output. Secondary battery having a high output with a reduced internal resistance.
[0037]
Further, when the second sealing member is made of a clad material made of at least two kinds of different metals, the metal facing the first sealing member being the same kind of metal, the first and second sealing members It becomes the welding of the same kind of metals, the internal resistance can be reduced, and the output of the battery can be increased.
[0038]
Further, in the above secondary battery, when the outer can is assembled and plastically deformed so that the diameter of the opening is larger than that of the other part before assembling and substantially the same as that of the other part after assembling, insulation and sealing by the insulating member is performed. It can be secured by inexpensive means.
[0039]
In addition, according to the method for manufacturing a secondary battery of the present invention, after connecting the first sealing member to one of the current collector plates after joining the positive and negative current collector plates to both end faces of the electrode plate group, After the electrode plate group is inserted into the outer can, the other current collector plate is joined to the bottom surface of the outer can, and a predetermined amount of electrolyte is injected from the hole provided in the first sealing member. Since it adheres to a 1st sealing member via a sealing means, a battery can be assembled without deform | transforming the components which connect a current collector plate and a sealing member by a blind operation, and manufacture becomes easy.
[0040]
In addition, an exterior can in which the insulating member is inserted has a larger diameter than the other portions, and after the second sealing member is fixed to the first sealing member, the opening of the exterior can is caulked. After that, if the large diameter portion is plastically deformed to the diameter of the other portion, insulation and sealing can be reliably performed by inexpensive means.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a secondary battery according to an embodiment of the present invention.
FIG. 2 is a perspective view of a manufacturing process of the secondary battery according to the embodiment.
FIG. 3 is a longitudinal sectional view of a subsequent manufacturing process for the secondary battery according to the embodiment;
FIG. 4 is a longitudinal sectional view of a further subsequent manufacturing process for the secondary battery according to the embodiment.
FIG. 5 is a longitudinal sectional view of a conventional secondary battery.
FIG. 6 is a longitudinal sectional view of a manufacturing process of a secondary battery of a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electrode plate group 2 Positive electrode plate 3 Negative electrode plate 4 Separator 25 Positive electrode current collecting plate 26 Negative electrode current collecting plate 26b Elastic joining piece 27 Outer can 28 Filter (first sealing member)
29 O-ring (sealing means)
30 Explosion-proof valve body (explosion-proof means)
31 Spacer (second sealing member)
33 Gasket (insulating material)

Claims (5)

一方の電極端子となる外装缶と、正負極板をセパレータを介して巻回してなる極板群と、極板群内部に含浸された電解液と、極板群の両端面に接合された正極及び負極の集電板と、正極及び負極の集電板のどちらか一方に一体的に固着され且つ外装缶の開口部に絶縁部材を介して配された第1の封口部材と、内部圧力の上昇に応じて内部ガスの排出を行う防爆手段とともに第1の封口部材にシール手段を介して固着された第2の封口部材とからなり、第1の封口部材に接合されていない方の集電板は弾性接合片を有しその弾性接合片を介して外装缶の内底面に所定の間隙をあけて接合したことを特徴とする二次電池。An outer can as one electrode terminal, an electrode plate group obtained by winding a positive and negative electrode plate through a separator, an electrolyte impregnated inside the electrode plate group, and a positive electrode bonded to both end faces of the electrode plate group A first sealing member that is integrally fixed to one of the positive current collector and the negative current collector and that is disposed in the opening of the outer can via an insulating member; A current collector which is composed of an explosion-proof means for discharging the internal gas in response to the rise and a second sealing member fixed to the first sealing member via the sealing means, and is not joined to the first sealing member. secondary battery plate has elasticity joining pieces, characterized by being bonded with a predetermined gap therebetween on the inner bottom surface of the outer can via the elastic joining pieces. 負極端子となる外装缶と、正負極板をセパレータを介して巻回してなる極板群と、極板群内部に含浸された電解液と、極板群の両端面に接合された正極及び負極の集電板と、正極集電板に接続されかつ外装缶の開口部に絶縁部材を介して配された第1の封口部材と、内部圧力の上昇に応じて内部ガスの排出を行う防爆手段とともに第1の封口部材にシール手段を介して固着された第2の封口部材とからなり、第1の封口部材に接合されていない方の集電板は弾性接合片を有し、その弾性接合片を介して外装缶の内底面に所定の間隙をあけて接合し、第2の封口部材は第1の封口部材に対向している金属が同種類の金属である少なくとも2種類以上の異種金属からなるクラッド材で構成したことを特徴とする二次電池。An outer can serving as a negative electrode terminal, an electrode plate group obtained by winding a positive and negative electrode plate through a separator, an electrolyte impregnated inside the electrode plate group, and a positive electrode and a negative electrode joined to both end faces of the electrode plate group Current collector plate, a first sealing member connected to the positive electrode current collector plate and disposed in the opening of the outer can via an insulating member, and explosion-proof means for discharging internal gas in response to an increase in internal pressure And a second sealing member fixed to the first sealing member via a sealing means, and the current collector plate not joined to the first sealing member has an elastic joining piece, and the elastic joining At least two or more kinds of dissimilar metals in which the second sealing member is joined to the inner bottom surface of the outer can through a piece and the metal facing the first sealing member is the same kind of metal. A secondary battery comprising a clad material comprising: 外装缶は組み付け前は開口部の径が他の部分より大きく、組み付け後にほぼ他の部分と同径となるように塑性変形させたことを特徴とする請求項1又は2記載の二次電池。  3. The secondary battery according to claim 1, wherein the outer can is plastically deformed so that the diameter of the opening is larger than that of the other part before assembling and substantially the same as that of the other part after assembling. 一方の電極端子となる外装缶と、正負極板をセパレータを介して巻回してなる極板群と、極板群内部に含浸された電解液と、極板群の両端面に接合された正極及び負極の集電板と、正極及び負極の集電板のどちらか一方に接続され且つ外装缶の開口部に絶縁部材を介して配された第1の封口部材と、内部圧力の上昇に応じて内部ガスの排出を行う防爆手段とともに第1の封口部材にシール手段を介して固着された第2の封口部材とからなり、第1の封口部材に接合されていない方の集電板は弾性接合片を有し、その弾性接合片を介して外装缶の内底面に所定の間隙をあけて接合した二次電池の製造方法であって、極板群の両端面に正極及び負極の集電板を接合後どちらか一方の集電板に第1の封口部材を接続した後に、極板群を外装缶に挿入し、他方の集電板を外装缶の底面部に接合し、第1の封口部材に設けられた穴より電解液を所定量注入後に、第2の封口部材をシール手段を介して第1の封口部材に固着することを特徴とする二次電池の製造方法。An outer can as one electrode terminal, an electrode plate group obtained by winding a positive and negative electrode plate through a separator, an electrolyte impregnated inside the electrode plate group, and a positive electrode bonded to both end faces of the electrode plate group A first sealing member connected to one of the positive and negative current collector plates and the positive and negative current collector plates and disposed in the opening of the outer can via an insulating member, and in response to an increase in internal pressure internal with explosion-proof means for performing exhaust gas Ri do and a second sealing member that is fixed through the sealing means to the first sealing member, the current collecting plate which is not bonded to the first sealing member is Te A method of manufacturing a secondary battery having an elastic joining piece and joining the inner bottom surface of the outer can through the elastic joining piece with a predetermined gap, and collecting positive and negative electrodes on both end faces of the electrode plate group. After joining the electric plates, connect the first sealing member to one of the current collector plates, and then insert the electrode plate group into the outer can The other current collector plate is joined to the bottom surface of the outer can, and after a predetermined amount of electrolyte is injected from the hole provided in the first sealing member, the second sealing member is sealed with the first sealing member via the sealing means. A method for manufacturing a secondary battery, wherein the secondary battery is fixed to a member. 絶縁部材が挿入される部分が他の部分よりも大なる径を有している外装缶を用い、第2の封口部材を第1の封口部材に固着後、外装缶の開口部をかしめた後に大径部分をほぼ他の部分の径まで塑性変形させることを特徴とする請求項4記載の二次電池の製造方法。  After using the exterior can in which the part into which the insulating member is inserted has a larger diameter than the other part, after fixing the second sealing member to the first sealing member and caulking the opening of the exterior can 5. The method of manufacturing a secondary battery according to claim 4, wherein the large-diameter portion is plastically deformed to substantially the diameter of the other portion.
JP2000264747A 2000-09-01 2000-09-01 Secondary battery and manufacturing method thereof Expired - Fee Related JP4719961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000264747A JP4719961B2 (en) 2000-09-01 2000-09-01 Secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000264747A JP4719961B2 (en) 2000-09-01 2000-09-01 Secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002075323A JP2002075323A (en) 2002-03-15
JP4719961B2 true JP4719961B2 (en) 2011-07-06

Family

ID=18752118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000264747A Expired - Fee Related JP4719961B2 (en) 2000-09-01 2000-09-01 Secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4719961B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3960877B2 (en) * 2002-08-05 2007-08-15 三洋電機株式会社 Battery manufacturing method
JP4567374B2 (en) * 2003-08-28 2010-10-20 パナソニック株式会社 Battery and manufacturing method thereof
JP2007122942A (en) * 2005-10-26 2007-05-17 Matsushita Electric Ind Co Ltd Storage battery
JP4708202B2 (en) * 2006-02-03 2011-06-22 本田技研工業株式会社 Battery and battery manufacturing method
JP2008243811A (en) * 2007-02-28 2008-10-09 Matsushita Electric Ind Co Ltd Battery
JP5095243B2 (en) * 2007-03-10 2012-12-12 Fdkエナジー株式会社 Anode current collector for alkaline battery, alkaline battery
JP4820929B2 (en) * 2009-07-17 2011-11-24 パナソニック株式会社 Battery and battery unit
FR2979473B1 (en) * 2011-08-29 2013-08-16 Batscap Sa LONG-TERM ENERGY STORAGE ASSEMBLY WITH INTERMEDIATE CONNECTION PIECE
KR20150119903A (en) * 2013-02-20 2015-10-26 타이코 일렉트로닉스 저팬 지.케이. Opening sealing body
CN112736340B (en) * 2020-12-30 2023-06-23 武汉富航精密工业有限公司 Injection molding assembly method of secondary battery top cover assembly and top cover assembly

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61233963A (en) * 1985-04-09 1986-10-18 Sanyo Electric Co Ltd Manufacture of cylindrical battery
JPH1027584A (en) * 1996-07-10 1998-01-27 Haibaru:Kk Cylindrical battery
JP2000156217A (en) * 1998-11-18 2000-06-06 Matsushita Electric Ind Co Ltd Cylindrical storage battery and its manufacture
JP2001093488A (en) * 1999-09-22 2001-04-06 Honda Motor Co Ltd Battery
JP2001093506A (en) * 1999-09-22 2001-04-06 Honda Motor Co Ltd Method of connecting electrode of storage battery
JP2001256994A (en) * 2000-03-10 2001-09-21 Sanyo Electric Co Ltd Manufacturing method for sealed alkaline battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61233963A (en) * 1985-04-09 1986-10-18 Sanyo Electric Co Ltd Manufacture of cylindrical battery
JPH1027584A (en) * 1996-07-10 1998-01-27 Haibaru:Kk Cylindrical battery
JP2000156217A (en) * 1998-11-18 2000-06-06 Matsushita Electric Ind Co Ltd Cylindrical storage battery and its manufacture
JP2001093488A (en) * 1999-09-22 2001-04-06 Honda Motor Co Ltd Battery
JP2001093506A (en) * 1999-09-22 2001-04-06 Honda Motor Co Ltd Method of connecting electrode of storage battery
JP2001256994A (en) * 2000-03-10 2001-09-21 Sanyo Electric Co Ltd Manufacturing method for sealed alkaline battery

Also Published As

Publication number Publication date
JP2002075323A (en) 2002-03-15

Similar Documents

Publication Publication Date Title
JP5111991B2 (en) battery
JP4436587B2 (en) Battery and battery pack
JP5106024B2 (en) battery
JP5100281B2 (en) Sealed battery and manufacturing method thereof
JP7035348B6 (en) Square secondary battery and its manufacturing method
JP6550848B2 (en) Prismatic secondary battery
KR101836339B1 (en) Closed type battery
KR20140016232A (en) Battery cover with attached electrode terminal, method for producing battery cover with attached electrode terminal, and airtight battery
JP5481527B2 (en) battery
JP6805288B2 (en) Square secondary battery and assembled battery using it
JP4719961B2 (en) Secondary battery and manufacturing method thereof
JP5677373B2 (en) battery
JP4356314B2 (en) Battery and battery pack
US20190103596A1 (en) Secondary battery and method for manufacturing the same
JP4298950B2 (en) Battery inlet sealing structure
JP2000243433A (en) Cylindrical alkaline storage battery and its manufacture
JP2018101568A (en) Square secondary battery and manufacturing method thereof
CN108232310B (en) Prismatic secondary battery and method for manufacturing same
EP4057439A1 (en) Terminal component and electricity storage device
JP7402202B2 (en) Terminal components and terminal component manufacturing method
JP4374828B2 (en) Battery manufacturing method
JP3629171B2 (en) Electrode wound type battery
JP2002141028A (en) Sealed cell and manufacturing method of the same
JP4304918B2 (en) battery
JP4204366B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070606

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081007

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090526

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091026

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091228

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20100120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees