JP4718943B2 - Distribution system load distribution estimation method, apparatus and program, and voltage estimation method, apparatus and program - Google Patents

Distribution system load distribution estimation method, apparatus and program, and voltage estimation method, apparatus and program Download PDF

Info

Publication number
JP4718943B2
JP4718943B2 JP2005268323A JP2005268323A JP4718943B2 JP 4718943 B2 JP4718943 B2 JP 4718943B2 JP 2005268323 A JP2005268323 A JP 2005268323A JP 2005268323 A JP2005268323 A JP 2005268323A JP 4718943 B2 JP4718943 B2 JP 4718943B2
Authority
JP
Japan
Prior art keywords
load
distribution system
power
distribution
system section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005268323A
Other languages
Japanese (ja)
Other versions
JP2007082346A (en
Inventor
将 田中
敏 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2005268323A priority Critical patent/JP4718943B2/en
Publication of JP2007082346A publication Critical patent/JP2007082346A/en
Application granted granted Critical
Publication of JP4718943B2 publication Critical patent/JP4718943B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、配電系統の負荷分布推定方法、装置及びプログラム、並びに電圧推定方法、装置及びプログラムに関する。さらに詳述すると、本発明は、需要家や分散型電源が連系している配電系統の負荷分布推定方法等並びに電圧推定方法等に関する。   The present invention relates to a load distribution estimation method, apparatus, and program for a distribution system, and a voltage estimation method, apparatus, and program. More specifically, the present invention relates to a load distribution estimation method and the like, a voltage estimation method, and the like of a distribution system in which consumers and distributed power sources are interconnected.

従来の配電系統における電圧計算法は、配電線の電圧計算のために系統から得られる変電所の送出電圧、送出電流、高低圧需要家の契約電力及び電力使用量等の情報を活用しながら電圧降下に特化した計算によって配電線路全般に亘る電圧を算定している(非特許文献1)。   The voltage calculation method in the conventional distribution system uses the information such as substation transmission voltage, transmission current, contracted power of high and low voltage consumers and power consumption obtained from the system for voltage calculation of distribution lines. The voltage over the entire distribution line is calculated by calculation specialized for descent (Non-Patent Document 1).

この方法は、変電所から配電線末端の負荷側に向かって電流が順潮流方向にのみ流れることを前提としたもので、柱上開閉器で区切られた各区間単位で電圧降下量を算出して、その積み上げによって各地点の電圧を算定している。   This method is based on the assumption that current flows only in the forward power flow direction from the substation toward the load side at the end of the distribution line.The voltage drop amount is calculated for each section divided by the pole switch. Thus, the voltage at each point is calculated by the accumulation.

また、各区間の電圧降下量の算定には区間毎の負荷分布情報が必要となるが、高低圧需要家の瞬時負荷を計測しているわけではないため、契約電力や電力使用量から大まかな負荷分布計算を行い、事前に負荷分布表を作成して電圧計算に用いている。   In addition, the load distribution information for each section is required to calculate the voltage drop in each section, but since the instantaneous load of high and low voltage consumers is not measured, it is roughly calculated from the contract power and power consumption. Load distribution calculation is performed, and a load distribution table is created in advance and used for voltage calculation.

関根泰次:配電技術総合マニュアル,オーム社,1991年.Taiji Sekine: Power Distribution Technology General Manual, Ohmsha, 1991.

しかしながら、非特許文献1の電圧計算法では、変電所送出しに設置された配電系統の片端一箇所の計測情報に基づいて配電系統全体の電圧を推定しているため、配電線の末端に向かうほど推定の精度が低い。更に、契約電力や電力使用量に基づく負荷按分をベースとした従来の手法は、負荷分布は常時一定であるとの仮定に基づくもので負荷分布の時間変化や季節変化を考慮していないため、負荷分布の変動が大きい系統においては電圧推定の精度が低い。   However, in the voltage calculation method of Non-Patent Document 1, since the voltage of the entire distribution system is estimated based on the measurement information at one end of the distribution system installed at the substation transmission, it goes to the end of the distribution line. The accuracy of estimation is low. Furthermore, the conventional method based on load apportionment based on contract power and power consumption is based on the assumption that the load distribution is always constant, and does not take into account the time change or seasonal change of the load distribution. In systems with large fluctuations in load distribution, the accuracy of voltage estimation is low.

また、近年、配電系統への分散型電源の連系が急激に進みつつある中、配電系統の運用制御への影響が懸念されている。特に電圧管理に関しては、需要家の調相設備の影響や配電線の太線化などによって現状でも運用制御が困難となっており、新しい電圧管理手法の開発が必要とされている。   Further, in recent years, there is a concern about the influence on the operation control of the power distribution system while the connection of the distributed power source to the power distribution system is rapidly progressing. With regard to voltage management in particular, operation control has become difficult even at present due to the influence of customer's phase adjusting equipment and the thickening of distribution lines, and the development of a new voltage management technique is required.

一方、半導体やセンシングなどの技術進歩に伴って配電系統設備の高度化が図られ、配電系統の事故区間判定や状態管理といった目的からセンサー付開閉器の導入が進んでおり、今後さらなる活用が期待されている。   On the other hand, with the advancement of technologies such as semiconductors and sensing, the distribution system facilities have become more sophisticated, and the introduction of switches with sensors has been promoted for the purpose of determining the fault section of the distribution system and managing the state. Has been.

また、分散型電源が多数連系した配電系統を制御するための新しい電力供給システム(以下、需要地系統と呼ぶ)への移行も予想される。そして、需要地系統の電圧管理については、精度の高い電圧管理が可能であることに加え、設備投資の問題などからその移行については全ての需要地系統制御機器を一度に導入するのでなく分散型電源の導入状況を踏まえて段階的に導入を進めて電圧管理の精度を徐々に高めていくという需要地系統特有の事情に対応することも必要とされる。   In addition, a shift to a new power supply system (hereinafter referred to as a demand area system) for controlling a distribution system in which a large number of distributed power sources are connected is expected. As for voltage management of demand area systems, in addition to being able to perform highly accurate voltage management, due to capital investment problems, etc. It is also necessary to respond to the situation peculiar to the demand point system where the voltage management accuracy is gradually increased by gradually introducing the power supply based on the power supply introduction situation.

ここで、分散型電源の連系が配電線へ拡大した場合における問題点として電圧の上限逸脱問題が最重要視されており、特に郊外地域など線路亘長が長い配電線においては、配電線設備容量に対してわずかな連系量で電圧管理幅を逸脱する可能性がある。そして、電圧管理幅の逸脱が発生した場合においても、変電所の測定データから原因の特定や逸脱区間の特定をすることは困難であり、非特許文献1の電圧計算法では分散型電源の連系による電圧の逸脱を知ることができない。更に、従来の電圧計算法は変電所から配電線の末端側に向かって電流が順潮流方向にのみ流れることを前提としたものであり、分散型電源からの逆潮流を考慮したものではない。したがって、分散型電源の連系可否を判断する場合の配電系統電圧計算については、従来の電圧計算と切り離した個別の計算で対応する必要があり、連系数の増加に伴って対応が困難になることが想定される。   Here, the problem of voltage deviation from the upper limit is regarded as the most important problem when the distributed power supply system is expanded to the distribution lines. There is a possibility of deviating from the voltage management range with a slight interconnection amount with respect to the capacity. Even when a deviation of the voltage management width occurs, it is difficult to specify the cause and the deviation section from the measurement data of the substation. In the voltage calculation method of Non-Patent Document 1, the distributed power supply is connected. The deviation of voltage due to the system cannot be known. Furthermore, the conventional voltage calculation method is based on the premise that current flows only in the forward power flow direction from the substation toward the terminal side of the distribution line, and does not consider the reverse power flow from the distributed power source. Therefore, it is necessary to deal with the distribution system voltage calculation when determining whether or not the interconnection of the distributed power supply is possible, and it becomes necessary to deal with the calculation separately from the conventional voltage calculation, and the correspondence becomes difficult as the number of interconnections increases. It is assumed that

これらの問題点から、配電線電圧管理の精度向上、導入が進められている設備や機器の有効活用、並びに分散型電源からの逆潮流も考慮した電圧管理手法の検討が必要とされている。   Because of these problems, it is necessary to improve the accuracy of distribution line voltage management, to effectively use facilities and equipment that have been introduced, and to investigate voltage management methods that take into account reverse power flow from distributed power sources.

そこで、本発明は、導入が進められている設備や機器を有効活用して配電系統の負荷分布並びに電圧を精度高く推定すると共に分散型電源の連系時においても負荷分布並びに電圧を精度高く推定可能な配電系統の負荷分布推定方法並びに電圧推定方法を提供することを目的とする。   Therefore, the present invention effectively estimates the load distribution and voltage of the distribution system by effectively utilizing the equipment and equipment that are being introduced, and also accurately estimates the load distribution and voltage even when the distributed power source is connected. An object is to provide a load distribution estimation method and a voltage estimation method of a possible distribution system.

かかる目的を達成するため、請求項1記載の配電系統の負荷分布推定方法は、配電系統区間内に分散して分布している配電系統負荷を配電系統区間内の複数のノードにおける仮想集中負荷で表して潮流計算回路を作成する工程(S1)と、配電系統区間の受電端電圧が異なる複数の仮想集中負荷の分布パターンを作成する工程(S2)と、数式1及び数式2で表される潮流計算回路における送電端有効電力Ps及び送電端無効電力Qsについて初期条件としてPloss及びQlossをゼロとして配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを算出し(S3−1)
(数1) Ps=PL+Pr+Ploss
ここに、Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数2) Qs=QL+Qr+Qloss
ここに、Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを仮想集中負荷の分布パターンに従って複数のノードにおける仮想集中負荷に配分して複数のノード毎の負荷を算出し(S3−2)
複数のノード毎の負荷を用いて潮流計算を行って配電系統区間の配電線の線路ロス(有効電力)Ploss及び線路ロス(無効電力)Qlossを算出し(S3−3)
数式3及び数式4を用いて実測値と計算値との差(有効電力)ΔP及び実測値と計算値との差(無効電力)ΔQを算出すると共にこれらΔP及びΔQに基づいて収束判定を行い(S3−4)
(数3) ΔP=Ps−(PL+Pr+Ploss)
ここに、ΔP:実測値と計算値との差(有効電力)[W]
Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数4) ΔQ=Qs−(QL+Qr+Qloss)
ここに、ΔQ:実測値と計算値との差(無効電力)[Var]
Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
収束判定の結果潮流計算が収束していると判断されるまで数式5及び数式6を用いて新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を算出する(S3−5)と共に
(数5) PL’=PL+ΔP
ここに、PL’:新たな配電系統区間の負荷(有効電力)の合計[W]
ΔP:実測値と計算値との差(有効電力)[W]
(数6) QL’=QL+ΔQ
ここに、QL’:新たな配電系統区間の負荷(無効電力)の合計[Var]
ΔQ:実測値と計算値との差(無効電力)[Var]
当該新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を用いてあらためてS3−2からS3−4までの処理を行うことによって仮想集中負荷の分布パターン毎に配電系統区間の計算受電端電圧を算出する工程(S3)と、実測受電端電圧と計算受電端電圧との差分が最も小さい仮想集中負荷の分布パターンを選定する工程とを有するようにしている。
In order to achieve such an object, a load distribution estimation method for a distribution system according to claim 1 is a virtual centralized load on a plurality of nodes in a distribution system section. A step (S1) for creating a power flow calculating circuit, a step (S2) for creating a distribution pattern of a plurality of virtual concentrated loads having different receiving end voltages in the distribution system section, and a power flow represented by Equation 1 and Equation 2 For the transmission end active power Ps and the transmission end reactive power Qs in the calculation circuit, Ploss and Qloss are set to zero as initial conditions, and the total PL (load) and total load load (reactive power) QL are calculated (S3 -1)
(Equation 1) Ps = PL + Pr + Ploss
Where Ps: active power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 2) Qs = QL + Qr + Qloss
Where Qs: reactive power at the transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
The total load PL (active power) and the total load QL (reactive power) in the distribution system section are distributed to the virtual centralized load in the plurality of nodes according to the distribution pattern of the virtual centralized load to calculate the load for each of the plurality of nodes ( S3-2)
Tidal current calculation is performed using the load of each node, and line loss (active power) Ploss and line loss (reactive power) Qloss of distribution lines in the distribution system section are calculated (S3-3)
The difference between the measured value and the calculated value (active power) ΔP and the difference between the actually measured value and the calculated value (reactive power) ΔQ are calculated using Formula 3 and Formula 4, and the convergence is determined based on these ΔP and ΔQ. (S3-4)
(Expression 3) ΔP = Ps− (PL + Pr + Ploss)
Where ΔP: difference between the actual measurement value and the calculated value (active power) [W]
Ps: Effective power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 4) ΔQ = Qs− (QL + Qr + Qloss)
Where ΔQ: difference between the measured value and the calculated value (reactive power) [Var]
Qs: Reactive power at transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
As a result of the convergence determination, a new load (active power) total PL ′ and a load (reactive power) total QL ′ are calculated using Formula 5 and Formula 6 until it is determined that the power flow calculation has converged (S3). With -5)
(Equation 5) PL ′ = PL + ΔP
Here, PL ′: total load (active power) in the new distribution system section [W]
ΔP: Difference between measured value and calculated value (active power) [W]
(Expression 6) QL ′ = QL + ΔQ
Here, QL ′: total load (reactive power) in the new distribution system section [Var]
ΔQ: Difference between the measured value and the calculated value (reactive power) [Var]
The new load total PL 'and the load sum QL (disabled power)' electrical distribution for each distribution pattern of virtual centralized load by performing the process anew from S3-2 to S3-4 using the (active power) A step (S3) of calculating a calculated power receiving end voltage of the system section and a step of selecting a distribution pattern of the virtual concentrated load having the smallest difference between the actually measured power receiving end voltage and the calculated power receiving end voltage are provided.

また、請求項5記載の配電系統の負荷分布推定装置は、配電系統区間内に分散して分布している配電系統負荷を配電系統区間内の複数のノードにおける仮想集中負荷で表して潮流計算回路を作成する手段と、配電系統区間の受電端電圧が異なる複数の仮想集中負荷の分布パターンを作成する手段と、数式1及び数式2で表される潮流計算回路における送電端有効電力Ps及び送電端無効電力Qsについて初期条件としてPloss及びQlossをゼロとして配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを算出し(S3−1)
(数1) Ps=PL+Pr+Ploss
ここに、Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数2) Qs=QL+Qr+Qloss
ここに、Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを仮想集中負荷の分布パターンに従って複数のノードにおける仮想集中負荷に配分して複数のノード毎の負荷を算出し(S3−2)
複数のノード毎の負荷を用いて潮流計算を行って配電系統区間の配電線の線路ロス(有効電力)Ploss及び線路ロス(無効電力)Qlossを算出し(S3−3)
数式3及び数式4を用いて実測値と計算値との差(有効電力)ΔP及び実測値と計算値との差(無効電力)ΔQを算出すると共にこれらΔP及びΔQに基づいて収束判定を行い(S3−4)
(数3) ΔP=Ps−(PL+Pr+Ploss)
ここに、ΔP:実測値と計算値との差(有効電力)[W]
Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数4) ΔQ=Qs−(QL+Qr+Qloss)
ここに、ΔQ:実測値と計算値との差(無効電力)[Var]
Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
収束判定の結果潮流計算が収束していると判断されるまで数式5及び数式6を用いて新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を算出する(S3−5)と共に
(数5) PL’=PL+ΔP
ここに、PL’:新たな配電系統区間の負荷(有効電力)の合計[W]
ΔP:実測値と計算値との差(有効電力)[W]
(数6) QL’=QL+ΔQ
ここに、QL’:新たな配電系統区間の負荷(無効電力)の合計[Var]
ΔQ:実測値と計算値との差(無効電力)[Var]
当該新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を用いてあらためてS3−2からS3−4までの処理を行うことによって仮想集中負荷の分布パターン毎に配電系統区間の計算受電端電圧を算出する手段と、実測受電端電圧と計算受電端電圧との差分が最も小さい仮想集中負荷の分布パターンを選定する手段とを有するようにしている。
According to another aspect of the present invention, there is provided a distribution distribution load estimation apparatus for a distribution system, wherein a distribution system load distributed and distributed in a distribution system section is represented by a virtual concentrated load at a plurality of nodes in the distribution system section. , Means for creating a distribution pattern of a plurality of virtual concentrated loads having different receiving end voltages in the distribution system section, and the transmitting end active power Ps and the transmitting end in the power flow calculation circuit expressed by Equation 1 and Equation 2 With respect to reactive power Qs, Ploss and Qloss are set to zero as initial conditions, and total PL of load (active power) and total QL of load (reactive power) are calculated (S3-1)
(Equation 1) Ps = PL + Pr + Ploss
Where Ps: active power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 2) Qs = QL + Qr + Qloss
Where Qs: reactive power at the transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
The total load PL (active power) and the total load QL (reactive power) in the distribution system section are distributed to the virtual centralized load in the plurality of nodes according to the distribution pattern of the virtual centralized load to calculate the load for each of the plurality of nodes ( S3-2)
Tidal current calculation is performed using the load of each node, and line loss (active power) Ploss and line loss (reactive power) Qloss of distribution lines in the distribution system section are calculated (S3-3)
The difference between the measured value and the calculated value (active power) ΔP and the difference between the actually measured value and the calculated value (reactive power) ΔQ are calculated using Formula 3 and Formula 4, and the convergence is determined based on these ΔP and ΔQ. (S3-4)
(Expression 3) ΔP = Ps− (PL + Pr + Ploss)
Where ΔP: difference between the actual measurement value and the calculated value (active power) [W]
Ps: Effective power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 4) ΔQ = Qs− (QL + Qr + Qloss)
Where ΔQ: difference between the measured value and the calculated value (reactive power) [Var]
Qs: Reactive power at transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
As a result of the convergence determination, a new load (active power) total PL ′ and a load (reactive power) total QL ′ are calculated using Formula 5 and Formula 6 until it is determined that the power flow calculation has converged (S3). With -5)
(Equation 5) PL ′ = PL + ΔP
Here, PL ′: total load (active power) in the new distribution system section [W]
ΔP: Difference between measured value and calculated value (active power) [W]
(Expression 6) QL ′ = QL + ΔQ
Here, QL ′: total load (reactive power) in the new distribution system section [Var]
ΔQ: Difference between the measured value and the calculated value (reactive power) [Var]
The new load total PL 'and the load sum QL (disabled power)' electrical distribution for each distribution pattern of virtual centralized load by performing the process anew from S3-2 to S3-4 using the (active power) Means for calculating the calculated power receiving end voltage of the system section and means for selecting the distribution pattern of the virtual concentrated load having the smallest difference between the actually measured power receiving end voltage and the calculated power receiving end voltage are provided.

更に、請求項9記載の配電系統の負荷分布推定プログラムは、コンピュータを、少なくとも、配電系統区間内に分散して分布している配電系統負荷を配電系統区間内の複数のノードにおける仮想集中負荷で表して潮流計算回路を作成する手段、配電系統区間の受電端電圧が異なる複数の仮想集中負荷の分布パターンを作成する手段、数式1及び数式2で表される潮流計算回路における送電端有効電力Ps及び送電端無効電力Qsについて初期条件としてPloss及びQlossをゼロとして配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを算出し(S3−1)
(数1) Ps=PL+Pr+Ploss
ここに、Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数2) Qs=QL+Qr+Qloss
ここに、Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを仮想集中負荷の分布パターンに従って複数のノードにおける仮想集中負荷に配分して複数のノード毎の負荷を算出し(S3−2)
複数のノード毎の負荷を用いて潮流計算を行って配電系統区間の配電線の線路ロス(有効電力)Ploss及び線路ロス(無効電力)Qlossを算出し(S3−3)
数式3及び数式4を用いて実測値と計算値との差(有効電力)ΔP及び実測値と計算値との差(無効電力)ΔQを算出すると共にこれらΔP及びΔQに基づいて収束判定を行い(S3−4)
(数3) ΔP=Ps−(PL+Pr+Ploss)
ここに、ΔP:実測値と計算値との差(有効電力)[W]
Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数4) ΔQ=Qs−(QL+Qr+Qloss)
ここに、ΔQ:実測値と計算値との差(無効電力)[Var]
Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
収束判定の結果潮流計算が収束していると判断されるまで数式5及び数式6を用いて新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を算出する(S3−5)と共に
(数5) PL’=PL+ΔP
ここに、PL’:新たな配電系統区間の負荷(有効電力)の合計[W]
ΔP:実測値と計算値との差(有効電力)[W]
(数6) QL’=QL+ΔQ
ここに、QL’:新たな配電系統区間の負荷(無効電力)の合計[Var]
ΔQ:実測値と計算値との差(無効電力)[Var]
当該新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を用いてあらためてS3−2からS3−4までの処理を行うことによって仮想集中負荷の分布パターン毎に配電系統区間の計算受電端電圧を算出する手段、実測受電端電圧と計算受電端電圧との差分が最も小さい仮想集中負荷の分布パターンを選定する手段として機能させるようにしている。
Furthermore, the distribution distribution load estimation program according to claim 9 is a virtual centralized load on a plurality of nodes in the distribution system section, wherein the computer distributes the distribution system load distributed at least in the distribution system section. Means for generating a power flow calculating circuit, means for generating a distribution pattern of a plurality of virtual concentrated loads having different power receiving end voltages in the distribution system section, and power transmitting end active power Ps in the power flow calculating circuit expressed by Formula 1 and Formula 2. And the total PL of the load (active power) and the total QL of the load (reactive power) are calculated with Ploss and Qloss set to zero as initial conditions for the transmission end reactive power Qs (S3-1)
(Equation 1) Ps = PL + Pr + Ploss
Where Ps: active power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 2) Qs = QL + Qr + Qloss
Where Qs: reactive power at the transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
The total load PL (active power) and the total load QL (reactive power) in the distribution system section are distributed to the virtual centralized load in the plurality of nodes according to the distribution pattern of the virtual centralized load to calculate the load for each of the plurality of nodes ( S3-2)
Tidal current calculation is performed using the load of each node, and line loss (active power) Ploss and line loss (reactive power) Qloss of distribution lines in the distribution system section are calculated (S3-3)
The difference between the measured value and the calculated value (active power) ΔP and the difference between the actually measured value and the calculated value (reactive power) ΔQ are calculated using Formula 3 and Formula 4, and the convergence is determined based on these ΔP and ΔQ. (S3-4)
(Expression 3) ΔP = Ps− (PL + Pr + Ploss)
Where ΔP: difference between the actual measurement value and the calculated value (active power) [W]
Ps: Effective power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 4) ΔQ = Qs− (QL + Qr + Qloss)
Where ΔQ: difference between the measured value and the calculated value (reactive power) [Var]
Qs: Reactive power at transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
As a result of the convergence determination, a new load (active power) total PL ′ and a load (reactive power) total QL ′ are calculated using Formula 5 and Formula 6 until it is determined that the power flow calculation has converged (S3). With -5)
(Equation 5) PL ′ = PL + ΔP
Here, PL ′: total load (active power) in the new distribution system section [W]
ΔP: Difference between measured value and calculated value (active power) [W]
(Expression 6) QL ′ = QL + ΔQ
Here, QL ′: total load (reactive power) in the new distribution system section [Var]
ΔQ: Difference between the measured value and the calculated value (reactive power) [Var]
The new total load PL 'and the load sum QL (disabled power)' electrical distribution for each distribution pattern of virtual centralized load by performing the process anew from S3-2 to S3-4 using the (active power) It is made to function as means for calculating the calculated power receiving end voltage of the system section and means for selecting the distribution pattern of the virtual concentrated load having the smallest difference between the actually measured power receiving end voltage and the calculated power receiving end voltage.

したがって、この配電系統の負荷分布推定方法、装置及びプログラムによると、送電端の実測値だけでなく受電端の実測値に基づいて配電系統の負荷分布を推定するようにしているので、配電系統の送電端及び受電端の電圧を反映した配電系統の負荷分布が推定される。また、配電系統区間内に実際には分散して多数分布している配電系統負荷をある範囲でまとめて仮想的に複数の集中負荷で表して潮流計算を行うことにより配電系統の負荷分布が推定される。更に、配電系統区間の受電端電圧が異なるように複数の仮想集中負荷の分布パターンを作成し、その複数の仮想集中負荷の分布パターンの中から実測受電端電圧に最も近い計算受電端電圧を有する分布パターンを選定するようにしているので、配電系統の実際の負荷の分布状況に近い配電系統の負荷分布が推定されると共に、配電系統の負荷の分布状況が変化した場合でもその変化に合わせた負荷分布が推定される。   Therefore, according to the load distribution estimation method, apparatus and program of this distribution system, the load distribution of the distribution system is estimated based not only on the actual measurement value at the transmission end but also the actual measurement value at the reception end. The load distribution of the distribution system reflecting the voltages at the transmission end and the reception end is estimated. In addition, the distribution distribution load is estimated by performing a power flow calculation by collecting the distribution system loads that are actually distributed and distributed in the distribution system section within a certain range and virtually expressing them as multiple concentrated loads. Is done. Further, a plurality of virtual concentrated load distribution patterns are created so that the receiving end voltages in the distribution system section are different, and the calculated receiving end voltage closest to the actually measured receiving end voltage is selected from the plurality of virtual concentrated load distribution patterns. Since the distribution pattern is selected, the load distribution of the distribution system that is close to the actual distribution of the load of the distribution system is estimated, and even if the distribution of the load of the distribution system changes, it is adjusted to the change The load distribution is estimated.

また、請求項2記載の配電系統の負荷分布推定方法は、配電系統区間内に分散して分布している配電系統負荷を配電系統区間内の複数のノードにおける仮想集中負荷で表して潮流計算回路を作成する工程(S1)と、配電系統区間の受電端電圧が異なる複数の仮想集中負荷の分布パターンを作成する工程(S2)と、数式1及び数式2で表される潮流計算回路における送電端有効電力Ps及び送電端無効電力Qsについて初期条件としてPloss及びQlossをゼロとして配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを算出し(S3−1)
(数1) Ps=PL+Pr+Ploss
ここに、Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数2) Qs=QL+Qr+Qloss
ここに、Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを仮想集中負荷の分布パターンに従って複数のノードにおける仮想集中負荷に配分して複数のノード毎の負荷を算出し(S3−2)
複数のノード毎の負荷を用いて潮流計算を行って配電系統区間の配電線の線路ロス(有効電力)Ploss及び線路ロス(無効電力)Qlossを算出し(S3−3)
数式3及び数式4を用いて実測値と計算値との差(有効電力)ΔP及び実測値と計算値との差(無効電力)ΔQを算出すると共にこれらΔP及びΔQに基づいて収束判定を行い(S3−4)
(数3) ΔP=Ps−(PL+Pr+Ploss)
ここに、ΔP:実測値と計算値との差(有効電力)[W]
Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数4) ΔQ=Qs−(QL+Qr+Qloss)
ここに、ΔQ:実測値と計算値との差(無効電力)[Var]
Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
収束判定の結果潮流計算が収束していると判断されるまで数式5及び数式6を用いて新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を算出する(S3−5)と共に
(数5) PL’=PL+ΔP
ここに、PL’:新たな配電系統区間の負荷(有効電力)の合計[W]
ΔP:実測値と計算値との差(有効電力)[W]
(数6) QL’=QL+ΔQ
ここに、QL’:新たな配電系統区間の負荷(無効電力)の合計[Var]
ΔQ:実測値と計算値との差(無効電力)[Var]
当該新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を用いてあらためてS3−2からS3−4までの処理を行うことによって仮想集中負荷の分布パターン毎に配電系統区間の計算受電端電圧を算出する工程(S3)と、実測受電端電圧並びに仮想集中負荷の分布パターン毎の計算受電端電圧を値の大きい順又は小さい順に並べて実測受電端電圧の前後の計算受電端電圧の仮想集中負荷の分布パターンを選定する工程と、選定した二つの仮想集中負荷の分布パターンの負荷分布を線形補間して配電系統区間内の負荷分布を推定する工程とを有するようにしている。
According to a second aspect of the present invention, there is provided a load distribution estimating method for a distribution system, wherein a distribution system load distributed and distributed in a distribution system section is represented by a virtual concentrated load at a plurality of nodes in the distribution system section. (S1) , a step (S2) of creating a distribution pattern of a plurality of virtual concentrated loads having different receiving end voltages in the distribution system section, and a power transmission end in the power flow calculation circuit expressed by Equation 1 and Equation 2 With regard to the active power Ps and the transmission end reactive power Qs, Ploss and Qloss are set to zero as initial conditions, and a total PL of loads (active power) and a total QL of loads (reactive power) are calculated (S3-1).
(Equation 1) Ps = PL + Pr + Ploss
Where Ps: active power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 2) Qs = QL + Qr + Qloss
Where Qs: reactive power at the transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
The total load PL (active power) and the total load QL (reactive power) in the distribution system section are distributed to the virtual centralized load in the plurality of nodes according to the distribution pattern of the virtual centralized load to calculate the load for each of the plurality of nodes ( S3-2)
Tidal current calculation is performed using the load of each node, and line loss (active power) Ploss and line loss (reactive power) Qloss of distribution lines in the distribution system section are calculated (S3-3)
The difference between the measured value and the calculated value (active power) ΔP and the difference between the actually measured value and the calculated value (reactive power) ΔQ are calculated using Formula 3 and Formula 4, and the convergence is determined based on these ΔP and ΔQ. (S3-4)
(Expression 3) ΔP = Ps− (PL + Pr + Ploss)
Where ΔP: difference between the actual measurement value and the calculated value (active power) [W]
Ps: Effective power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 4) ΔQ = Qs− (QL + Qr + Qloss)
Where ΔQ: difference between the measured value and the calculated value (reactive power) [Var]
Qs: Reactive power at transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
As a result of the convergence determination, a new load (active power) total PL ′ and a load (reactive power) total QL ′ are calculated using Formula 5 and Formula 6 until it is determined that the power flow calculation has converged (S3). With -5)
(Equation 5) PL ′ = PL + ΔP
Here, PL ′: total load (active power) in the new distribution system section [W]
ΔP: Difference between measured value and calculated value (active power) [W]
(Expression 6) QL ′ = QL + ΔQ
Here, QL ′: total load (reactive power) in the new distribution system section [Var]
ΔQ: Difference between the measured value and the calculated value (reactive power) [Var]
The new load total PL 'and the load sum QL (disabled power)' electrical distribution for each distribution pattern of virtual centralized load by performing the process anew from S3-2 to S3-4 using the (active power) A step (S3) of calculating the calculated power receiving end voltage of the system section, and the measured power receiving end voltage and the calculated power receiving end voltage for each distribution pattern of the virtual concentrated load are arranged in descending order of the value, and calculation before and after the actual power receiving end voltage. A step of selecting a distribution pattern of the virtual concentrated load of the receiving end voltage, and a step of estimating the load distribution in the distribution system section by linearly interpolating the load distribution of the two selected distribution patterns of the virtual concentrated load. ing.

請求項6記載の配電系統の負荷分布推定装置は、配電系統区間内に分散して分布している配電系統負荷を配電系統区間内の複数のノードにおける仮想集中負荷で表して潮流計算回路を作成する手段と、配電系統区間の受電端電圧が異なる複数の仮想集中負荷の分布パターンを作成する手段と、数式1及び数式2で表される潮流計算回路における送電端有効電力Ps及び送電端無効電力Qsについて初期条件としてPloss及びQlossをゼロとして配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを算出し(S3−1)
(数1) Ps=PL+Pr+Ploss
ここに、Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数2) Qs=QL+Qr+Qloss
ここに、Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを仮想集中負荷の分布パターンに従って複数のノードにおける仮想集中負荷に配分して複数のノード毎の負荷を算出し(S3−2)
複数のノード毎の負荷を用いて潮流計算を行って配電系統区間の配電線の線路ロス(有効電力)Ploss及び線路ロス(無効電力)Qlossを算出し(S3−3)
数式3及び数式4を用いて実測値と計算値との差(有効電力)ΔP及び実測値と計算値との差(無効電力)ΔQを算出すると共にこれらΔP及びΔQに基づいて収束判定を行い(S3−4)
(数3) ΔP=Ps−(PL+Pr+Ploss)
ここに、ΔP:実測値と計算値との差(有効電力)[W]
Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数4) ΔQ=Qs−(QL+Qr+Qloss)
ここに、ΔQ:実測値と計算値との差(無効電力)[Var]
Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
収束判定の結果潮流計算が収束していると判断されるまで数式5及び数式6を用いて新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を算出する(S3−5)と共に
(数5) PL’=PL+ΔP
ここに、PL’:新たな配電系統区間の負荷(有効電力)の合計[W]
ΔP:実測値と計算値との差(有効電力)[W]
(数6) QL’=QL+ΔQ
ここに、QL’:新たな配電系統区間の負荷(無効電力)の合計[Var]
ΔQ:実測値と計算値との差(無効電力)[Var]
当該新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を用いてあらためてS3−2からS3−4までの処理を行うことによって仮想集中負荷の分布パターン毎に配電系統区間の計算受電端電圧を算出する手段と、実測受電端電圧並びに仮想集中負荷の分布パターン毎の計算受電端電圧を値の大きい順又は小さい順に並べて実測受電端電圧の前後の計算受電端電圧の仮想集中負荷の分布パターンを選定する手段と、選定した二つの仮想集中負荷の分布パターンの負荷分布を線形補間して配電系統区間内の負荷分布を推定する手段とを有するようにしている。
The distribution distribution load estimation device according to claim 6 creates a power flow calculation circuit by expressing distribution distribution loads distributed and distributed in the distribution system section as virtual concentrated loads at a plurality of nodes in the distribution system section. Means for generating a distribution pattern of a plurality of virtual concentrated loads having different receiving end voltages in the distribution system section, and transmitting end active power Ps and transmitting end reactive power in the power flow calculation circuit expressed by Equation 1 and Equation 2. With respect to Qs, Ploss and Qloss are set to zero as an initial condition, and the total PL of the load (active power) and the total QL of the load (reactive power) in the distribution system section are calculated (S3-1)
(Equation 1) Ps = PL + Pr + Ploss
Where Ps: active power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 2) Qs = QL + Qr + Qloss
Where Qs: reactive power at the transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
The total load PL (active power) and the total load QL (reactive power) in the distribution system section are distributed to the virtual centralized load in the plurality of nodes according to the distribution pattern of the virtual centralized load to calculate the load for each of the plurality of nodes ( S3-2)
Tidal current calculation is performed using the load of each node, and line loss (active power) Ploss and line loss (reactive power) Qloss of distribution lines in the distribution system section are calculated (S3-3)
The difference between the measured value and the calculated value (active power) ΔP and the difference between the actually measured value and the calculated value (reactive power) ΔQ are calculated using Formula 3 and Formula 4, and the convergence is determined based on these ΔP and ΔQ. (S3-4)
(Expression 3) ΔP = Ps− (PL + Pr + Ploss)
Where ΔP: difference between the actual measurement value and the calculated value (active power) [W]
Ps: Effective power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 4) ΔQ = Qs− (QL + Qr + Qloss)
Where ΔQ: difference between the measured value and the calculated value (reactive power) [Var]
Qs: Reactive power at transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
As a result of the convergence determination, a new load (active power) total PL ′ and a load (reactive power) total QL ′ are calculated using Formula 5 and Formula 6 until it is determined that the power flow calculation has converged (S3). With -5)
(Equation 5) PL ′ = PL + ΔP
Here, PL ′: total load (active power) in the new distribution system section [W]
ΔP: Difference between measured value and calculated value (active power) [W]
(Expression 6) QL ′ = QL + ΔQ
Here, QL ′: total load (reactive power) in the new distribution system section [Var]
ΔQ: Difference between the measured value and the calculated value (reactive power) [Var]
The new load total PL 'and the load sum QL (disabled power)' electrical distribution for each distribution pattern of virtual centralized load by performing the process anew from S3-2 to S3-4 using the (active power) The means for calculating the calculated receiving end voltage of the system section, the measured receiving end voltage and the calculated receiving end voltage for each distribution pattern of the virtual concentrated load are arranged in descending order of the value, and the calculated receiving end voltage before and after the actually measured receiving end voltage. And a means for linearly interpolating the load distributions of the two selected virtual concentrated load distribution patterns to estimate the load distribution in the distribution system section.

請求項10記載の配電系統の負荷分布推定プログラムは、コンピュータを、少なくとも、配電系統区間内に分散して分布している配電系統負荷を配電系統区間内の複数のノードにおける仮想集中負荷で表して潮流計算回路を作成する手段、配電系統区間の受電端電圧が異なる複数の仮想集中負荷の分布パターンを作成する手段、数式1及び数式2で表される潮流計算回路における送電端有効電力Ps及び送電端無効電力Qsについて初期条件としてPloss及びQlossをゼロとして配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを算出し(S3−1)
(数1) Ps=PL+Pr+Ploss
ここに、Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数2) Qs=QL+Qr+Qloss
ここに、Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを仮想集中負荷の分布パターンに従って複数のノードにおける仮想集中負荷に配分して複数のノード毎の負荷を算出し(S3−2)
複数のノード毎の負荷を用いて潮流計算を行って配電系統区間の配電線の線路ロス(有効電力)Ploss及び線路ロス(無効電力)Qlossを算出し(S3−3)
数式3及び数式4を用いて実測値と計算値との差(有効電力)ΔP及び実測値と計算値との差(無効電力)ΔQを算出すると共にこれらΔP及びΔQに基づいて収束判定を行い(S3−4)
(数3) ΔP=Ps−(PL+Pr+Ploss)
ここに、ΔP:実測値と計算値との差(有効電力)[W]
Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数4) ΔQ=Qs−(QL+Qr+Qloss)
ここに、ΔQ:実測値と計算値との差(無効電力)[Var]
Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
収束判定の結果潮流計算が収束していると判断されるまで数式5及び数式6を用いて新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を算出する(S3−5)と共に
(数5) PL’=PL+ΔP
ここに、PL’:新たな配電系統区間の負荷(有効電力)の合計[W]
ΔP:実測値と計算値との差(有効電力)[W]
(数6) QL’=QL+ΔQ
ここに、QL’:新たな配電系統区間の負荷(無効電力)の合計[Var]
ΔQ:実測値と計算値との差(無効電力)[Var]
当該新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を用いてあらためてS3−2からS3−4までの処理を行うことによって仮想集中負荷の分布パターン毎に配電系統区間の計算受電端電圧を算出する手段、実測受電端電圧並びに仮想集中負荷の分布パターン毎の計算受電端電圧を値の大きい順又は小さい順に並べて実測受電端電圧の前後の計算受電端電圧の仮想集中負荷の分布パターンを選定する手段、選定した二つの仮想集中負荷の分布パターンの負荷分布を線形補間して配電系統区間内の負荷分布を推定する手段として機能させるようにしている。
The distribution system load distribution estimation program according to claim 10, wherein the computer represents at least a distribution system load distributed and distributed in the distribution system section as a virtual concentrated load in a plurality of nodes in the distribution system section. Means for creating a power flow calculation circuit, means for creating a distribution pattern of a plurality of virtual concentrated loads having different receiving end voltages in the distribution system section, power transmission end active power Ps and power transmission in the power flow calculation circuit expressed by Formulas 1 and 2 With respect to the end reactive power Qs, Ploss and Qloss are set to zero as the initial condition, and the total PL of the load (active power) in the distribution system section and the total QL of the load (reactive power) are calculated (S3-1)
(Equation 1) Ps = PL + Pr + Ploss
Where Ps: active power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 2) Qs = QL + Qr + Qloss
Where Qs: reactive power at the transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
The total load PL (active power) and the total load QL (reactive power) in the distribution system section are distributed to the virtual centralized load in the plurality of nodes according to the distribution pattern of the virtual centralized load to calculate the load for each of the plurality of nodes ( S3-2)
Tidal current calculation is performed using the load of each node, and line loss (active power) Ploss and line loss (reactive power) Qloss of distribution lines in the distribution system section are calculated (S3-3)
The difference between the measured value and the calculated value (active power) ΔP and the difference between the actually measured value and the calculated value (reactive power) ΔQ are calculated using Formula 3 and Formula 4, and the convergence is determined based on these ΔP and ΔQ. (S3-4)
(Expression 3) ΔP = Ps− (PL + Pr + Ploss)
Where ΔP: difference between the actual measurement value and the calculated value (active power) [W]
Ps: Effective power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 4) ΔQ = Qs− (QL + Qr + Qloss)
Where ΔQ: difference between the measured value and the calculated value (reactive power) [Var]
Qs: Reactive power at transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
As a result of the convergence determination, a new load (active power) total PL ′ and a load (reactive power) total QL ′ are calculated using Formula 5 and Formula 6 until it is determined that the power flow calculation has converged (S3). With -5)
(Equation 5) PL ′ = PL + ΔP
Here, PL ′: total load (active power) in the new distribution system section [W]
ΔP: Difference between measured value and calculated value (active power) [W]
(Expression 6) QL ′ = QL + ΔQ
Here, QL ′: total load (reactive power) in the new distribution system section [Var]
ΔQ: Difference between the measured value and the calculated value (reactive power) [Var]
The new load total PL 'and the load sum QL (disabled power)' electrical distribution for each distribution pattern of virtual centralized load by performing the process anew from S3-2 to S3-4 using the (active power) The means for calculating the calculated receiving end voltage of the system section, the measured receiving end voltage and the calculated receiving end voltage for each virtual concentrated load distribution pattern are arranged in order of increasing or decreasing value, and the calculated receiving end voltage before and after the actual receiving end voltage A function for selecting a distribution pattern of virtual concentrated loads and a function for estimating a load distribution in a distribution system section by linearly interpolating the load distributions of the two selected distribution patterns of virtual concentrated loads are used.

したがって、この配電系統の負荷分布推定方法、装置及びプログラムによると、送電端の実測値だけでなく受電端の実測値に基づいて配電系統の負荷分布を推定するようにしているので、配電系統の送電端及び受電端の電圧を反映した配電系統の負荷分布が推定される。また、配電系統区間内に実際には分散して多数分布している配電系統負荷をある範囲でまとめて仮想的に複数の集中負荷で表して潮流計算を行うことにより配電系統の負荷分布が推定される。更に、配電系統区間の受電端電圧が異なるように複数の仮想集中負荷の分布パターンを作成し、その複数の仮想集中負荷の分布パターンの中から実測受電端電圧に近い計算受電端電圧を有する二つの仮想集中負荷の分布パターンを選定して線形補間することにより配電系統の負荷分布を推定するようにしているので、配電系統の実際の負荷の分布状況により近い配電系統の負荷分布が推定されると共に、配電系統の負荷の分布状況が変化した場合もその変化に合わせた負荷分布が推定される。   Therefore, according to the load distribution estimation method, apparatus and program of this distribution system, the load distribution of the distribution system is estimated based not only on the actual measurement value at the transmission end but also the actual measurement value at the reception end. The load distribution of the distribution system reflecting the voltages at the transmission end and the reception end is estimated. In addition, the distribution distribution load is estimated by performing a power flow calculation by collecting the distribution system loads that are actually distributed and distributed in the distribution system section within a certain range and virtually expressing them as multiple concentrated loads. Is done. Further, a plurality of virtual concentrated load distribution patterns are created so that the receiving end voltages in the distribution system section are different, and a calculation receiving end voltage close to the actually measured receiving end voltage is selected from the plurality of virtual concentrated load distribution patterns. Since the distribution distribution of the distribution system is estimated by selecting the distribution pattern of the two virtual concentrated loads and performing linear interpolation, the load distribution of the distribution system closer to the actual distribution status of the distribution system is estimated. At the same time, when the load distribution of the power distribution system changes, the load distribution according to the change is estimated.

また、請求項3記載の配電系統の電圧推定方法は、配電系統区間内に分散して分布している配電系統負荷を配電系統区間内の複数のノードにおける仮想集中負荷で表して潮流計算回路を作成する工程(S1)と、配電系統区間の受電端電圧が異なる複数の仮想集中負荷の分布パターンを作成する工程(S2)と、数式1及び数式2で表される潮流計算回路における送電端有効電力Ps及び送電端無効電力Qsについて初期条件としてPloss及びQlossをゼロとして配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを算出し(S3−1)
(数1) Ps=PL+Pr+Ploss
ここに、Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数2) Qs=QL+Qr+Qloss
ここに、Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを仮想集中負荷の分布パターンに従って複数のノードにおける仮想集中負荷に配分して複数のノード毎の負荷を算出し(S3−2)
複数のノード毎の負荷を用いて潮流計算を行って配電系統区間の配電線の線路ロス(有効電力)Ploss及び線路ロス(無効電力)Qlossを算出し(S3−3)
数式3及び数式4を用いて実測値と計算値との差(有効電力)ΔP及び実測値と計算値との差(無効電力)ΔQを算出すると共にこれらΔP及びΔQに基づいて収束判定を行い(S3−4)
(数3) ΔP=Ps−(PL+Pr+Ploss)
ここに、ΔP:実測値と計算値との差(有効電力)[W]
Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数4) ΔQ=Qs−(QL+Qr+Qloss)
ここに、ΔQ:実測値と計算値との差(無効電力)[Var]
Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
収束判定の結果潮流計算が収束していると判断されるまで数式5及び数式6を用いて新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を算出する(S3−5)と共に
(数5) PL’=PL+ΔP
ここに、PL’:新たな配電系統区間の負荷(有効電力)の合計[W]
ΔP:実測値と計算値との差(有効電力)[W]
(数6) QL’=QL+ΔQ
ここに、QL’:新たな配電系統区間の負荷(無効電力)の合計[Var]
ΔQ:実測値と計算値との差(無効電力)[Var]
当該新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を用いてあらためてS3−2からS3−4までの処理を行うことによって仮想集中負荷の分布パターン毎に配電系統区間の計算受電端電圧を算出する工程(S3)と、実測受電端電圧と計算受電端電圧との差分が最も小さい仮想集中負荷の分布パターンを選定する工程と、選定した仮想集中負荷の分布パターンを用いて潮流計算を行うことにより配電系統区間内の各地点における電圧を推定する工程とを有するようにしている。
According to a third aspect of the present invention, there is provided a voltage estimation method for a distribution system, wherein a distribution current distributed in a distribution system section is represented by a virtual concentrated load at a plurality of nodes in the distribution system section, and a power flow calculation circuit is provided. Step (S1) for creating, step (S2) for creating a distribution pattern of a plurality of virtual concentrated loads with different receiving end voltages in the distribution system section, and the power transmission end effective in the power flow calculation circuit expressed by Equation 1 and Equation 2 With respect to power Ps and transmission end reactive power Qs, Ploss and Qloss are set to zero as initial conditions to calculate total PL (load power) and total load load (reactive power) QL in the distribution system section (S3-1)
(Equation 1) Ps = PL + Pr + Ploss
Where Ps: active power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 2) Qs = QL + Qr + Qloss
Where Qs: reactive power at the transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
The total load PL (active power) and the total load QL (reactive power) in the distribution system section are distributed to the virtual centralized load in the plurality of nodes according to the distribution pattern of the virtual centralized load to calculate the load for each of the plurality of nodes ( S3-2)
Tidal current calculation is performed using the load of each node, and line loss (active power) Ploss and line loss (reactive power) Qloss of distribution lines in the distribution system section are calculated (S3-3)
The difference between the measured value and the calculated value (active power) ΔP and the difference between the actually measured value and the calculated value (reactive power) ΔQ are calculated using Formula 3 and Formula 4, and the convergence is determined based on these ΔP and ΔQ. (S3-4)
(Expression 3) ΔP = Ps− (PL + Pr + Ploss)
Where ΔP: difference between the actual measurement value and the calculated value (active power) [W]
Ps: Effective power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 4) ΔQ = Qs− (QL + Qr + Qloss)
Where ΔQ: difference between the measured value and the calculated value (reactive power) [Var]
Qs: Reactive power at transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
As a result of the convergence determination, a new load (active power) total PL ′ and a load (reactive power) total QL ′ are calculated using Formula 5 and Formula 6 until it is determined that the power flow calculation has converged (S3). With -5)
(Equation 5) PL ′ = PL + ΔP
Here, PL ′: total load (active power) in the new distribution system section [W]
ΔP: Difference between measured value and calculated value (active power) [W]
(Expression 6) QL ′ = QL + ΔQ
Here, QL ′: total load (reactive power) in the new distribution system section [Var]
ΔQ: Difference between the measured value and the calculated value (reactive power) [Var]
The new load total PL 'and the load sum QL (disabled power)' electrical distribution for each distribution pattern of virtual centralized load by performing the process anew from S3-2 to S3-4 using the (active power) A step (S3) of calculating the calculated power receiving end voltage of the system section, a step of selecting a distribution pattern of the virtual concentrated load having the smallest difference between the measured power receiving end voltage and the calculated power receiving end voltage, and the distribution of the selected virtual concentrated load And a step of estimating a voltage at each point in the distribution system section by performing a tidal current calculation using a pattern.

請求項7記載の配電系統の電圧推定装置は、配電系統区間内に分散して分布している配電系統負荷を配電系統区間内の複数のノードにおける仮想集中負荷で表して潮流計算回路を作成する手段と、配電系統区間の受電端電圧が異なる複数の仮想集中負荷の分布パターンを作成する手段と、数式1及び数式2で表される潮流計算回路における送電端有効電力Ps及び送電端無効電力Qsについて初期条件としてPloss及びQlossをゼロとして配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを算出し(S3−1)
(数1) Ps=PL+Pr+Ploss
ここに、Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数2) Qs=QL+Qr+Qloss
ここに、Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを仮想集中負荷の分布パターンに従って複数のノードにおける仮想集中負荷に配分して複数のノード毎の負荷を算出し(S3−2)
複数のノード毎の負荷を用いて潮流計算を行って配電系統区間の配電線の線路ロス(有効電力)Ploss及び線路ロス(無効電力)Qlossを算出し(S3−3)
数式3及び数式4を用いて実測値と計算値との差(有効電力)ΔP及び実測値と計算値との差(無効電力)ΔQを算出すると共にこれらΔP及びΔQに基づいて収束判定を行い(S3−4)
(数3) ΔP=Ps−(PL+Pr+Ploss)
ここに、ΔP:実測値と計算値との差(有効電力)[W]
Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数4) ΔQ=Qs−(QL+Qr+Qloss)
ここに、ΔQ:実測値と計算値との差(無効電力)[Var]
Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
収束判定の結果潮流計算が収束していると判断されるまで数式5及び数式6を用いて新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を算出する(S3−5)と共に
(数5) PL’=PL+ΔP
ここに、PL’:新たな配電系統区間の負荷(有効電力)の合計[W]
ΔP:実測値と計算値との差(有効電力)[W]
(数6) QL’=QL+ΔQ
ここに、QL’:新たな配電系統区間の負荷(無効電力)の合計[Var]
ΔQ:実測値と計算値との差(無効電力)[Var]
当該新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を用いてあらためてS3−2からS3−4までの処理を行うことによって仮想集中負荷の分布パターン毎に配電系統区間の計算受電端電圧を算出する手段と、実測受電端電圧と計算受電端電圧との差分が最も小さい仮想集中負荷の分布パターンを選定する手段と、選定した仮想集中負荷の分布パターンを用いて潮流計算を行うことにより配電系統区間内の各地点における電圧を推定する手段とを有するようにしている。
The voltage estimation device for a distribution system according to claim 7 creates a power flow calculation circuit by expressing the distribution system load distributed and distributed in the distribution system section as virtual concentrated loads at a plurality of nodes in the distribution system section. Means, means for creating a distribution pattern of a plurality of virtual concentrated loads having different receiving end voltages in the distribution system section, and transmitting end active power Ps and transmitting end reactive power Qs in the power flow calculation circuit expressed by Equation 1 and Equation 2. Assuming that Ploss and Qloss are zero as the initial condition, the total PL of the load (active power) in the distribution system section and the total QL of the load (reactive power) are calculated (S3-1)
(Equation 1) Ps = PL + Pr + Ploss
Where Ps: active power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 2) Qs = QL + Qr + Qloss
Where Qs: reactive power at the transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
The total load PL (active power) and the total load QL (reactive power) in the distribution system section are distributed to the virtual centralized load in the plurality of nodes according to the distribution pattern of the virtual centralized load to calculate the load for each of the plurality of nodes ( S3-2)
Tidal current calculation is performed using the load of each node, and line loss (active power) Ploss and line loss (reactive power) Qloss of distribution lines in the distribution system section are calculated (S3-3)
The difference between the measured value and the calculated value (active power) ΔP and the difference between the actually measured value and the calculated value (reactive power) ΔQ are calculated using Formula 3 and Formula 4, and the convergence is determined based on these ΔP and ΔQ. (S3-4)
(Expression 3) ΔP = Ps− (PL + Pr + Ploss)
Where ΔP: difference between the actual measurement value and the calculated value (active power) [W]
Ps: Effective power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 4) ΔQ = Qs− (QL + Qr + Qloss)
Where ΔQ: difference between the measured value and the calculated value (reactive power) [Var]
Qs: Reactive power at transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
As a result of the convergence determination, a new load (active power) total PL ′ and a load (reactive power) total QL ′ are calculated using Formula 5 and Formula 6 until it is determined that the power flow calculation has converged (S3). With -5)
(Equation 5) PL ′ = PL + ΔP
Here, PL ′: total load (active power) in the new distribution system section [W]
ΔP: Difference between measured value and calculated value (active power) [W]
(Expression 6) QL ′ = QL + ΔQ
Here, QL ′: total load (reactive power) in the new distribution system section [Var]
ΔQ: Difference between the measured value and the calculated value (reactive power) [Var]
The new load total PL 'and the load sum QL (disabled power)' electrical distribution for each distribution pattern of virtual centralized load by performing the process anew from S3-2 to S3-4 using the (active power) Using the means for calculating the calculated receiving end voltage of the system section, the means for selecting the distribution pattern of the virtual concentrated load with the smallest difference between the measured receiving end voltage and the calculated receiving end voltage, and the selected virtual concentrated load distribution pattern And a means for estimating the voltage at each point in the distribution system section by performing the power flow calculation.

請求項11記載の配電系統の電圧推定プログラムは、コンピュータを、少なくとも、配電系統区間内に分散して分布している配電系統負荷を配電系統区間内の複数のノードにおける仮想集中負荷で表して潮流計算回路を作成する手段、配電系統区間の受電端電圧が異なる複数の仮想集中負荷の分布パターンを作成する手段、数式1及び数式2で表される潮流計算回路における送電端有効電力Ps及び送電端無効電力Qsについて初期条件としてPloss及びQlossをゼロとして配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを算出し(S3−1)
(数1) Ps=PL+Pr+Ploss
ここに、Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数2) Qs=QL+Qr+Qloss
ここに、Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを仮想集中負荷の分布パターンに従って複数のノードにおける仮想集中負荷に配分して複数のノード毎の負荷を算出し(S3−2)
複数のノード毎の負荷を用いて潮流計算を行って配電系統区間の配電線の線路ロス(有効電力)Ploss及び線路ロス(無効電力)Qlossを算出し(S3−3)
数式3及び数式4を用いて実測値と計算値との差(有効電力)ΔP及び実測値と計算値との差(無効電力)ΔQを算出すると共にこれらΔP及びΔQに基づいて収束判定を行い(S3−4)
(数3) ΔP=Ps−(PL+Pr+Ploss)
ここに、ΔP:実測値と計算値との差(有効電力)[W]
Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数4) ΔQ=Qs−(QL+Qr+Qloss)
ここに、ΔQ:実測値と計算値との差(無効電力)[Var]
Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
収束判定の結果潮流計算が収束していると判断されるまで数式5及び数式6を用いて新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を算出する(S3−5)と共に
(数5) PL’=PL+ΔP
ここに、PL’:新たな配電系統区間の負荷(有効電力)の合計[W]
ΔP:実測値と計算値との差(有効電力)[W]
(数6) QL’=QL+ΔQ
ここに、QL’:新たな配電系統区間の負荷(無効電力)の合計[Var]
ΔQ:実測値と計算値との差(無効電力)[Var]
当該新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を用いてあらためてS3−2からS3−4までの処理を行うことによって仮想集中負荷の分布パターン毎に配電系統区間の計算受電端電圧を算出する手段、実測受電端電圧と計算受電端電圧との差分が最も小さい仮想集中負荷の分布パターンを選定する手段、選定した仮想集中負荷の分布パターンを用いて潮流計算を行うことにより配電系統区間内の各地点における電圧を推定する手段として機能させるようにしている。
12. The distribution system voltage estimation program according to claim 11, wherein the computer represents at least a distribution system load distributed and distributed in the distribution system section as virtual concentrated loads in a plurality of nodes in the distribution system section. Means for creating a calculation circuit, means for creating a distribution pattern of a plurality of virtual concentrated loads having different receiving end voltages in the distribution system section, and transmitting end active power Ps and transmitting end in the power flow calculating circuit expressed by Equations 1 and 2 For reactive power Qs, Ploss and Qloss are set to zero as initial conditions, and the total PL of loads (active power) and the total QL of loads (reactive power) are calculated (S3-1).
(Equation 1) Ps = PL + Pr + Ploss
Where Ps: active power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 2) Qs = QL + Qr + Qloss
Where Qs: reactive power at the transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
The total load PL (active power) and the total load QL (reactive power) in the distribution system section are distributed to the virtual centralized load in the plurality of nodes according to the distribution pattern of the virtual centralized load to calculate the load for each of the plurality of nodes ( S3-2)
Tidal current calculation is performed using the load of each node, and line loss (active power) Ploss and line loss (reactive power) Qloss of distribution lines in the distribution system section are calculated (S3-3)
The difference between the measured value and the calculated value (active power) ΔP and the difference between the actually measured value and the calculated value (reactive power) ΔQ are calculated using Formula 3 and Formula 4, and the convergence is determined based on these ΔP and ΔQ. (S3-4)
(Expression 3) ΔP = Ps− (PL + Pr + Ploss)
Where ΔP: difference between the actual measurement value and the calculated value (active power) [W]
Ps: Effective power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 4) ΔQ = Qs− (QL + Qr + Qloss)
Where ΔQ: difference between the measured value and the calculated value (reactive power) [Var]
Qs: Reactive power at transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
As a result of the convergence determination, a new load (active power) total PL ′ and a load (reactive power) total QL ′ are calculated using Formula 5 and Formula 6 until it is determined that the power flow calculation has converged (S3). With -5)
(Equation 5) PL ′ = PL + ΔP
Here, PL ′: total load (active power) in the new distribution system section [W]
ΔP: Difference between measured value and calculated value (active power) [W]
(Expression 6) QL ′ = QL + ΔQ
Here, QL ′: total load (reactive power) in the new distribution system section [Var]
ΔQ: Difference between the measured value and the calculated value (reactive power) [Var]
The new load total PL 'and the load sum QL (disabled power)' electrical distribution for each distribution pattern of virtual centralized load by performing the process anew from S3-2 to S3-4 using the (active power) Means for calculating the calculated receiving end voltage of the system section, means for selecting the distribution pattern of the virtual concentrated load having the smallest difference between the measured receiving end voltage and the calculated receiving end voltage, and the tidal current using the selected virtual concentrated load distribution pattern It is made to function as a means to estimate the voltage in each point in a distribution system section by calculating.

したがって、この配電系統の電圧推定方法、装置及びプログラムによると、送電端の実測値だけでなく受電端の実測値に基づいて配電系統の負荷分布を推定した上で配電系統区間内の各地点における電圧を推定するようにしているので、配電系統の送電端及び受電端の電圧を反映した配電系統区間内の各地点における電圧が推定される。また、配電系統区間内に実際には分散して多数分布している配電系統負荷をある範囲でまとめて仮想的に複数の集中負荷で表して潮流計算を行うことにより配電系統の負荷分布を推定した上で配電系統区間内の各地点における電圧が推定される。更に、配電系統区間の受電端電圧が異なるように複数の仮想集中負荷の分布パターンを作成し、その複数の仮想集中負荷の分布パターンの中から実測受電端電圧に最も近い計算受電端電圧を有する分布パターンを選定して配電系統の負荷分布を推定した上で配電系統区間内の各地点における電圧を推定するようにしているので、配電系統の実際の負荷の分布状況を反映した配電系統区間内の各地点における電圧が推定されると共に、配電系統の負荷の分布状況が変化した場合でもその変化に合わせた負荷分布を推定した上で配電系統区間内の各地点における電圧が推定される。   Therefore, according to the voltage estimation method, apparatus, and program of this distribution system, the load distribution of the distribution system is estimated based on not only the actual measurement value at the transmission end but also the actual measurement value at the reception end, and then at each point in the distribution system section. Since the voltage is estimated, the voltage at each point in the distribution system section reflecting the voltages at the transmission end and the reception end of the distribution system is estimated. In addition, the distribution distribution system load distribution is estimated by performing a power flow calculation by collecting a large number of distribution system loads that are actually distributed and distributed in a certain range and virtually expressing them as multiple concentrated loads. After that, the voltage at each point in the distribution system section is estimated. Further, a plurality of virtual concentrated load distribution patterns are created so that the receiving end voltages in the distribution system section are different, and the calculated receiving end voltage closest to the actually measured receiving end voltage is selected from the plurality of virtual concentrated load distribution patterns. Since the distribution pattern is selected and the load distribution of the distribution system is estimated, the voltage at each point in the distribution system section is estimated, so the distribution system section reflects the actual load distribution in the distribution system section. In addition, the voltage at each point in the distribution system section is estimated after estimating the load distribution according to the change even when the distribution state of the distribution system load changes.

更に、請求項4記載の配電系統の電圧推定方法は、配電系統区間内に分散して分布している配電系統負荷を配電系統区間内の複数のノードにおける仮想集中負荷で表して潮流計算回路を作成する工程(S1)と、配電系統区間の受電端電圧が異なる複数の仮想集中負荷の分布パターンを作成する工程(S2)と、数式1及び数式2で表される潮流計算回路における送電端有効電力Ps及び送電端無効電力Qsについて初期条件としてPloss及びQlossをゼロとして配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを算出し(S3−1)
(数1) Ps=PL+Pr+Ploss
ここに、Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数2) Qs=QL+Qr+Qloss
ここに、Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを仮想集中負荷の分布パターンに従って複数のノードにおける仮想集中負荷に配分して複数のノード毎の負荷を算出し(S3−2)
複数のノード毎の負荷を用いて潮流計算を行って配電系統区間の配電線の線路ロス(有効電力)Ploss及び線路ロス(無効電力)Qlossを算出し(S3−3)
数式3及び数式4を用いて実測値と計算値との差(有効電力)ΔP及び実測値と計算値との差(無効電力)ΔQを算出すると共にこれらΔP及びΔQに基づいて収束判定を行い(S3−4)
(数3) ΔP=Ps−(PL+Pr+Ploss)
ここに、ΔP:実測値と計算値との差(有効電力)[W]
Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数4) ΔQ=Qs−(QL+Qr+Qloss)
ここに、ΔQ:実測値と計算値との差(無効電力)[Var]
Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
収束判定の結果潮流計算が収束していると判断されるまで数式5及び数式6を用いて新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を算出する(S3−5)と共に
(数5) PL’=PL+ΔP
ここに、PL’:新たな配電系統区間の負荷(有効電力)の合計[W]
ΔP:実測値と計算値との差(有効電力)[W]
(数6) QL’=QL+ΔQ
ここに、QL’:新たな配電系統区間の負荷(無効電力)の合計[Var]
ΔQ:実測値と計算値との差(無効電力)[Var]
当該新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を用いてあらためてS3−2からS3−4までの処理を行うことによって仮想集中負荷の分布パターン毎に配電系統区間の計算受電端電圧を算出する工程(S3)と、実測受電端電圧並びに仮想集中負荷の分布パターン毎の計算受電端電圧を値の大きい順又は小さい順に並べて実測受電端電圧の前後の計算受電端電圧の仮想集中負荷の分布パターンを選定する工程と、選定した二つの仮想集中負荷の分布パターンの負荷分布を線形補間して配電系統区間内の負荷分布を推定する工程と、線形補間して求めた負荷分布を用いて潮流計算を行うことにより配電系統区間内の各地点における電圧を推定する工程とを有するようにしている。
Further, the voltage estimation method for the distribution system according to claim 4 is a power flow calculation circuit in which the distribution system load distributed and distributed in the distribution system section is represented by virtual concentrated loads at a plurality of nodes in the distribution system section. Step (S1) for creating, step (S2) for creating a distribution pattern of a plurality of virtual concentrated loads having different receiving end voltages in the distribution system section, and the power transmission end effective in the power flow calculation circuit expressed by Equation 1 and Equation 2 With respect to power Ps and transmission end reactive power Qs, Ploss and Qloss are set to zero as initial conditions, and total PL (load power) and total QL of load (reactive power) in the distribution system section are calculated (S3-1).
(Equation 1) Ps = PL + Pr + Ploss
Where Ps: active power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 2) Qs = QL + Qr + Qloss
Where Qs: reactive power at the transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
The total load PL (active power) and the total load QL (reactive power) in the distribution system section are distributed to the virtual centralized load in the plurality of nodes according to the distribution pattern of the virtual centralized load to calculate the load for each of the plurality of nodes ( S3-2)
Tidal current calculation is performed using the load of each node, and line loss (active power) Ploss and line loss (reactive power) Qloss of distribution lines in the distribution system section are calculated (S3-3)
The difference between the measured value and the calculated value (active power) ΔP and the difference between the actually measured value and the calculated value (reactive power) ΔQ are calculated using Formula 3 and Formula 4, and the convergence is determined based on these ΔP and ΔQ. (S3-4)
(Expression 3) ΔP = Ps− (PL + Pr + Ploss)
Where ΔP: difference between the actual measurement value and the calculated value (active power) [W]
Ps: Effective power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 4) ΔQ = Qs− (QL + Qr + Qloss)
Where ΔQ: difference between the measured value and the calculated value (reactive power) [Var]
Qs: Reactive power at transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
As a result of the convergence determination, a new load (active power) total PL ′ and a load (reactive power) total QL ′ are calculated using Formula 5 and Formula 6 until it is determined that the power flow calculation has converged (S3). With -5)
(Equation 5) PL ′ = PL + ΔP
Here, PL ′: total load (active power) in the new distribution system section [W]
ΔP: Difference between measured value and calculated value (active power) [W]
(Expression 6) QL ′ = QL + ΔQ
Here, QL ′: total load (reactive power) in the new distribution system section [Var]
ΔQ: Difference between the measured value and the calculated value (reactive power) [Var]
The new load total PL 'and the load sum QL (disabled power)' electrical distribution for each distribution pattern of virtual centralized load by performing the process anew from S3-2 to S3-4 using the (active power) A step (S3) of calculating the calculated power receiving end voltage of the system section, and the measured power receiving end voltage and the calculated power receiving end voltage for each distribution pattern of the virtual concentrated load are arranged in descending order of the value, and calculation before and after the actual power receiving end voltage. The process of selecting the distribution pattern of the virtual concentrated load of the receiving end voltage, the process of estimating the load distribution in the distribution system section by linearly interpolating the load distribution of the distribution pattern of the two selected virtual concentrated loads, and the linear interpolation A step of estimating a voltage at each point in the distribution system section by performing a power flow calculation using the load distribution obtained in the above.

請求項8記載の配電系統の電圧推定装置は、配電系統区間内に分散して分布している配電系統負荷を配電系統区間内の複数のノードにおける仮想集中負荷で表して潮流計算回路を作成する手段と、配電系統区間の受電端電圧が異なる複数の仮想集中負荷の分布パターンを作成する手段と、数式1及び数式2で表される潮流計算回路における送電端有効電力Ps及び送電端無効電力Qsについて初期条件としてPloss及びQlossをゼロとして配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを算出し(S3−1)
(数1) Ps=PL+Pr+Ploss
ここに、Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数2) Qs=QL+Qr+Qloss
ここに、Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを仮想集中負荷の分布パターンに従って複数のノードにおける仮想集中負荷に配分して複数のノード毎の負荷を算出し(S3−2)
複数のノード毎の負荷を用いて潮流計算を行って配電系統区間の配電線の線路ロス(有効電力)Ploss及び線路ロス(無効電力)Qlossを算出し(S3−3)
数式3及び数式4を用いて実測値と計算値との差(有効電力)ΔP及び実測値と計算値との差(無効電力)ΔQを算出すると共にこれらΔP及びΔQに基づいて収束判定を行い(S3−4)
(数3) ΔP=Ps−(PL+Pr+Ploss)
ここに、ΔP:実測値と計算値との差(有効電力)[W]
Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数4) ΔQ=Qs−(QL+Qr+Qloss)
ここに、ΔQ:実測値と計算値との差(無効電力)[Var]
Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
収束判定の結果潮流計算が収束していると判断されるまで数式5及び数式6を用いて新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を算出する(S3−5)と共に
(数5) PL’=PL+ΔP
ここに、PL’:新たな配電系統区間の負荷(有効電力)の合計[W]
ΔP:実測値と計算値との差(有効電力)[W]
(数6) QL’=QL+ΔQ
ここに、QL’:新たな配電系統区間の負荷(無効電力)の合計[Var]
ΔQ:実測値と計算値との差(無効電力)[Var]
当該新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を用いてあらためてS3−2からS3−4までの処理を行うことによって仮想集中負荷の分布パターン毎に配電系統区間の計算受電端電圧を算出する手段と、実測受電端電圧並びに仮想集中負荷の分布パターン毎の計算受電端電圧を値の大きい順又は小さい順に並べて実測受電端電圧の前後の計算受電端電圧の仮想集中負荷の分布パターンを選定する手段と、選定した二つの仮想集中負荷の分布パターンの負荷分布を線形補間して配電系統区間内の負荷分布を推定する手段と、線形補間して求めた負荷分布を用いて潮流計算を行うことにより配電系統区間内の各地点における電圧を推定する手段とを有するようにしている。
The voltage estimation device for a distribution system according to claim 8 creates a power flow calculation circuit by representing distribution system loads distributed and distributed in the distribution system section as virtual concentrated loads at a plurality of nodes in the distribution system section. Means for generating a distribution pattern of a plurality of virtual concentrated loads having different receiving end voltages in the distribution system section, and transmitting end active power Ps and transmitting end reactive power Qs in the power flow calculation circuit expressed by Equation 1 and Equation 2. Assuming that Ploss and Qloss are zero as the initial condition, the total PL of the load (active power) and the total QL of the load (reactive power) in the distribution system section are calculated (S3-1)
(Equation 1) Ps = PL + Pr + Ploss
Where Ps: active power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 2) Qs = QL + Qr + Qloss
Where Qs: reactive power at the transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
The total load PL (active power) and the total load QL (reactive power) in the distribution system section are distributed to the virtual centralized load in the plurality of nodes according to the distribution pattern of the virtual centralized load to calculate the load for each of the plurality of nodes ( S3-2)
Tidal current calculation is performed using the load of each node, and line loss (active power) Ploss and line loss (reactive power) Qloss of distribution lines in the distribution system section are calculated (S3-3)
The difference between the measured value and the calculated value (active power) ΔP and the difference between the actually measured value and the calculated value (reactive power) ΔQ are calculated using Formula 3 and Formula 4, and the convergence is determined based on these ΔP and ΔQ. (S3-4)
(Expression 3) ΔP = Ps− (PL + Pr + Ploss)
Where ΔP: difference between the actual measurement value and the calculated value (active power) [W]
Ps: Effective power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 4) ΔQ = Qs− (QL + Qr + Qloss)
Where ΔQ: difference between the measured value and the calculated value (reactive power) [Var]
Qs: Reactive power at transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
As a result of the convergence determination, a new load (active power) total PL ′ and a load (reactive power) total QL ′ are calculated using Formula 5 and Formula 6 until it is determined that the power flow calculation has converged (S3). With -5)
(Equation 5) PL ′ = PL + ΔP
Here, PL ′: total load (active power) in the new distribution system section [W]
ΔP: Difference between measured value and calculated value (active power) [W]
(Expression 6) QL ′ = QL + ΔQ
Here, QL ′: total load (reactive power) in the new distribution system section [Var]
ΔQ: Difference between the measured value and the calculated value (reactive power) [Var]
The new load total PL 'and the load sum QL (disabled power)' electrical distribution for each distribution pattern of virtual centralized load by performing the process anew from S3-2 to S3-4 using the (active power) The means for calculating the calculated receiving end voltage of the system section, the measured receiving end voltage and the calculated receiving end voltage for each distribution pattern of the virtual concentrated load are arranged in order of increasing or decreasing value, and the calculated receiving end voltage before and after the actual receiving end voltage. The means for selecting the distribution pattern of the virtual concentrated load of the two, the means for estimating the load distribution in the distribution system section by linearly interpolating the load distribution of the distribution pattern of the two selected virtual concentrated loads, and obtained by linear interpolation Means for estimating the voltage at each point in the distribution system section by performing tidal current calculation using the load distribution.

請求項12記載の配電系統の電圧推定プログラムは、コンピュータを、少なくとも、配電系統区間内に分散して分布している配電系統負荷を配電系統区間内の複数のノードにおける仮想集中負荷で表して潮流計算回路を作成する手段、配電系統区間の受電端電圧が異なる複数の仮想集中負荷の分布パターンを作成する手段、数式1及び数式2で表される潮流計算回路における送電端有効電力Ps及び送電端無効電力Qsについて初期条件としてPloss及びQlossをゼロとして配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを算出し(S3−1)
(数1) Ps=PL+Pr+Ploss
ここに、Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数2) Qs=QL+Qr+Qloss
ここに、Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを仮想集中負荷の分布パターンに従って複数のノードにおける仮想集中負荷に配分して複数のノード毎の負荷を算出し(S3−2)
複数のノード毎の負荷を用いて潮流計算を行って配電系統区間の配電線の線路ロス(有効電力)Ploss及び線路ロス(無効電力)Qlossを算出し(S3−3)
数式3及び数式4を用いて実測値と計算値との差(有効電力)ΔP及び実測値と計算値との差(無効電力)ΔQを算出すると共にこれらΔP及びΔQに基づいて収束判定を行い(S3−4)
(数3) ΔP=Ps−(PL+Pr+Ploss)
ここに、ΔP:実測値と計算値との差(有効電力)[W]
Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数4) ΔQ=Qs−(QL+Qr+Qloss)
ここに、ΔQ:実測値と計算値との差(無効電力)[Var]
Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
収束判定の結果潮流計算が収束していると判断されるまで数式5及び数式6を用いて新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を算出する(S3−5)と共に
(数5) PL’=PL+ΔP
ここに、PL’:新たな配電系統区間の負荷(有効電力)の合計[W]
ΔP:実測値と計算値との差(有効電力)[W]
(数6) QL’=QL+ΔQ
ここに、QL’:新たな配電系統区間の負荷(無効電力)の合計[Var]
ΔQ:実測値と計算値との差(無効電力)[Var]
当該新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を用いてあらためてS3−2からS3−4までの処理を行うことによって仮想集中負荷の分布パターン毎に配電系統区間の計算受電端電圧を算出する手段、実測受電端電圧並びに仮想集中負荷の分布パターン毎の計算受電端電圧を値の大きい順又は小さい順に並べて実測受電端電圧の前後の計算受電端電圧の仮想集中負荷の分布パターンを選定する手段、選定した二つの仮想集中負荷の分布パターンの負荷分布を線形補間して配電系統区間内の負荷分布を推定する手段、線形補間して求めた負荷分布を用いて潮流計算を行うことにより配電系統区間内の各地点における電圧を推定する手段として機能させるようにしている。
13. The distribution system voltage estimation program according to claim 12, wherein the computer represents at least a distribution system load distributed and distributed in the distribution system section as a virtual concentrated load at a plurality of nodes in the distribution system section. Means for creating a calculation circuit, means for creating a distribution pattern of a plurality of virtual concentrated loads having different receiving end voltages in a distribution system section, and power transmission end active power Ps and power transmission end in the power flow calculation circuit expressed by Equation 1 and Equation 2 With respect to reactive power Qs, Ploss and Qloss are set to zero as initial conditions, and total PL of load (active power) and total QL of load (reactive power) are calculated (S3-1)
(Equation 1) Ps = PL + Pr + Ploss
Where Ps: active power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 2) Qs = QL + Qr + Qloss
Where Qs: reactive power at the transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
The total load PL (active power) and the total load QL (reactive power) in the distribution system section are distributed to the virtual centralized load in the plurality of nodes according to the distribution pattern of the virtual centralized load to calculate the load for each of the plurality of nodes ( S3-2)
Tidal current calculation is performed using the load of each node, and line loss (active power) Ploss and line loss (reactive power) Qloss of distribution lines in the distribution system section are calculated (S3-3)
The difference between the measured value and the calculated value (active power) ΔP and the difference between the actually measured value and the calculated value (reactive power) ΔQ are calculated using Formula 3 and Formula 4, and the convergence is determined based on these ΔP and ΔQ. (S3-4)
(Expression 3) ΔP = Ps− (PL + Pr + Ploss)
Where ΔP: difference between the actual measurement value and the calculated value (active power) [W]
Ps: Effective power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 4) ΔQ = Qs− (QL + Qr + Qloss)
Where ΔQ: difference between the measured value and the calculated value (reactive power) [Var]
Qs: Reactive power at transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
As a result of the convergence determination, a new load (active power) total PL ′ and a load (reactive power) total QL ′ are calculated using Formula 5 and Formula 6 until it is determined that the power flow calculation has converged (S3). With -5)
(Equation 5) PL ′ = PL + ΔP
Here, PL ′: total load (active power) in the new distribution system section [W]
ΔP: Difference between measured value and calculated value (active power) [W]
(Expression 6) QL ′ = QL + ΔQ
Here, QL ′: total load (reactive power) in the new distribution system section [Var]
ΔQ: Difference between the measured value and the calculated value (reactive power) [Var]
The new load total PL 'and the load sum QL (disabled power)' electrical distribution for each distribution pattern of virtual centralized load by performing the process anew from S3-2 to S3-4 using the (active power) The means for calculating the calculated receiving end voltage of the system section, the measured receiving end voltage and the calculated receiving end voltage for each virtual concentrated load distribution pattern are arranged in order of increasing or decreasing value, and the calculated receiving end voltage before and after the actual receiving end voltage Means to select distribution pattern of virtual concentrated load, means to estimate load distribution in distribution system section by linear interpolation of load distribution of two selected virtual concentrated load distribution patterns, load distribution obtained by linear interpolation It is made to function as a means to estimate the voltage in each point in a distribution system section by performing tidal current calculation using it.

したがって、この配電系統の電圧推定方法、装置及びプログラムによると、送電端の実測値だけでなく受電端の実測値に基づいて配電系統の負荷分布を推定した上で配電系統区間内の各地点における電圧を推定するようにしているので、配電系統の送電端及び受電端の電圧を反映した配電系統区間内の各地点における電圧が推定される。また、配電系統区間内に実際には分散して多数分布している配電系統負荷をある範囲でまとめて仮想的に複数の集中負荷で表して潮流計算を行うことにより配電系統の負荷分布を推定した上で配電系統区間内の各地点における電圧が推定される。更に、配電系統区間の受電端電圧が異なるように複数の仮想集中負荷の分布パターンを作成し、その複数の仮想集中負荷の分布パターンの中から実測受電端電圧に近い計算受電端電圧を有する二つの仮想集中負荷の分布パターンを選定して線形補間することにより配電系統の負荷分布を推定した上で配電系統区間内の各地点における電圧を推定するようにしているので、配電系統の実際の負荷の分布状況をより反映した配電系統区間内の各地点における電圧が推定されると共に、配電系統の負荷の分布状況が変化した場合でもその変化に合わせた負荷分布を推定した上で配電系統区間内の各地点における電圧が推定される。   Therefore, according to the voltage estimation method, apparatus, and program of this distribution system, the load distribution of the distribution system is estimated based on not only the actual measurement value at the transmission end but also the actual measurement value at the reception end, and then at each point in the distribution system section. Since the voltage is estimated, the voltage at each point in the distribution system section reflecting the voltages at the transmission end and the reception end of the distribution system is estimated. In addition, the distribution distribution system load distribution is estimated by performing a power flow calculation by collecting a large number of distribution system loads that are actually distributed and distributed in a certain range and virtually expressing them as multiple concentrated loads. After that, the voltage at each point in the distribution system section is estimated. Further, a plurality of virtual concentrated load distribution patterns are created so that the receiving end voltages in the distribution system section are different, and a calculation receiving end voltage close to the actually measured receiving end voltage is selected from the plurality of virtual concentrated load distribution patterns. Since the distribution distribution of one virtual concentrated load is selected and linear interpolation is performed to estimate the distribution of the distribution system, the voltage at each point in the distribution system section is estimated, so the actual load of the distribution system The voltage at each point in the distribution system section that better reflects the distribution status of the distribution system is estimated, and even if the distribution status of the load on the distribution system changes, the load distribution according to the change is estimated and the distribution system section The voltage at each point is estimated.

以上説明したように、本発明の配電系統の負荷分布推定方法、装置及びプログラムによれば、配電系統の送電端及び受電端の電圧を反映した配電系統の負荷分布が推定されるので、配電系統の負荷分布の推定精度を向上させることが可能となる。また、分散して多数分布している配電系統負荷を仮想的に複数の集中負荷で表して配電系統の負荷分布を推定するので、配電系統の負荷分布の推定を簡便に行うことが可能となる。更に、複数の仮想集中負荷の分布パターンの中から分布パターンを選定したり二つの分布パターンを線形補間することにより配電系統の実際の負荷の分布状況に近い配電系統の負荷分布が推定されると共に、配電系統の実際の負荷の分布状況の変化に合わせた負荷分布が推定されるので、配電系統の負荷分布の推定精度を向上させることが可能となる。   As described above, according to the load distribution estimation method, apparatus and program of the distribution system of the present invention, the load distribution of the distribution system reflecting the voltages at the transmission end and the reception end of the distribution system is estimated. It is possible to improve the estimation accuracy of the load distribution. In addition, distribution system loads distributed in large numbers are virtually represented by a plurality of concentrated loads to estimate distribution distribution load distribution, so it is possible to easily estimate distribution distribution load distribution. . Furthermore, by selecting a distribution pattern from a plurality of virtual concentrated load distribution patterns or linearly interpolating the two distribution patterns, the distribution distribution load distribution that is close to the actual distribution distribution distribution distribution distribution is estimated. Since the load distribution is estimated in accordance with the change of the actual load distribution status of the distribution system, it is possible to improve the estimation accuracy of the load distribution of the distribution system.

また、本発明の配電系統の電圧推定方法、装置及びプログラムによれば、配電系統の送電端及び受電端の電圧を反映した配電系統区間内の各地点における電圧が推定されるので、配電系統区間内の各地点における電圧の推定精度を向上させることが可能となる。また、分散して多数分布している配電系統負荷を仮想的に複数の集中負荷で表して配電系統の負荷分布を推定した上で配電系統区間内の各地点における電圧が推定されるので、配電系統区間内の各地点における電圧の推定を簡便に行うことが可能となる。更に、複数の仮想集中負荷の分布パターンの中から分布パターンを選定したり二つの分布パターンを線形補間することにより配電系統の実際の負荷の分布状況を反映した配電系統区間内の各地点における電圧が推定されるので、配電系統区間内の各地点における電圧の推定精度を向上させることが可能となる。更に、配電系統の実際の負荷の分布状況の変化に合わせた配電系統区間内の各地点における電圧が推定されるので、例えば一日の中で負荷の分布状況が変化したり又は需要家や分散型電源の連系状況が変化した場合についても配電系統区間内の各地点における電圧を精度高く推定することが可能となる。   Further, according to the voltage estimation method, apparatus and program of the distribution system of the present invention, the voltage at each point in the distribution system section reflecting the voltage at the transmission end and the reception end of the distribution system is estimated. It is possible to improve the estimation accuracy of the voltage at each point. In addition, the distribution system load distributed in large numbers is virtually represented by multiple concentrated loads, and the load distribution of the distribution system is estimated, and then the voltage at each point in the distribution system section is estimated. It is possible to easily estimate the voltage at each point in the system section. In addition, the voltage at each point in the distribution system section reflects the actual load distribution status of the distribution system by selecting a distribution pattern from the distribution patterns of multiple virtual concentrated loads or linearly interpolating the two distribution patterns. Therefore, it is possible to improve voltage estimation accuracy at each point in the distribution system section. Furthermore, since the voltage at each point in the distribution system section is estimated according to the change in the actual load distribution status of the distribution system, for example, the load distribution status changes during the day, or the customer and the distribution It is possible to estimate the voltage at each point in the distribution system section with high accuracy even when the interconnection state of the type power source changes.

以下、本発明の構成を図面に示す最良の形態に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on the best mode shown in the drawings.

図1から図5に、本発明の配電系統の負荷分布並びに電圧推定方法及び装置の実施形態の一例を示す。なお、本実施形態では、配電系統として、図2に示すように、変圧器3に接続している配電線4上に計測器5A、5B、5C及び5D(以下、計測器5A〜5Dと表記する)が設置された配電系統1を例に挙げている。   1 to 5 show an example of an embodiment of a load distribution and voltage estimation method and apparatus of a distribution system according to the present invention. In addition, in this embodiment, as shown in FIG. 2, as a power distribution system, measuring devices 5A, 5B, 5C, and 5D (hereinafter referred to as measuring devices 5A to 5D) are placed on a distribution line 4 connected to the transformer 3. Is taken as an example.

計測器5A〜5Dは、例えばセンサー付区分開閉器である。センサー付区分開閉器は、通常の区分開閉器としての役割に加え、例えば配電線4の電圧、有効電力及び無効電力等のデータを計測することができる区分開閉器である。なお、計測器5A〜5Dはこれに限られるものではなく、少なくとも配電線4の電圧、有効電力及び無効電力を計測してそれら計測データを表示したり外部機器に提供したりすることができるものであればいずれの機器であっても構わない。   Measuring instrument 5A-5D is a division switch with a sensor, for example. The sensor-equipped sorting switch is a sorting switch capable of measuring data such as voltage, active power, and reactive power of the distribution line 4 in addition to the role as a normal sorting switch. In addition, measuring instrument 5A-5D is not restricted to this, The voltage, active power, and reactive power of the distribution line 4 can be measured and those measured data can be displayed or provided to an external device. Any device may be used.

また、本実施形態では、図2において計測器5Bと5Cに囲まれた配電系統区間2を対象として負荷分布並びに電圧を推定する場合を例に挙げて説明する。なお、計測器5Bと5Cの設置間隔である配電系統区間2の区間長は例えば5km程度が考えられるがこれに限られるものではなく、これより長くても又はこれより短くても構わない。   Further, in the present embodiment, a case where the load distribution and the voltage are estimated for the distribution system section 2 surrounded by the measuring instruments 5B and 5C in FIG. 2 will be described as an example. In addition, although the section length of the distribution system section 2 which is an installation space | interval of the measuring instruments 5B and 5C can consider about 5 km, for example, it is not restricted to this, It may be longer or shorter than this.

本発明の配電系統の負荷分布並びに電圧推定装置は、配電系統区間内に分散して分布している配電系統負荷を複数の仮想集中負荷で表して潮流計算回路を作成する回路設定手段と、配電系統区間の受電端電圧が異なる複数の仮想集中負荷の分布パターンを作成する仮想集中負荷分布パターン設定手段と、潮流計算回路を用いて仮想集中負荷の分布パターン毎に潮流計算を行って配電系統区間の計算受電端電圧を算出する仮想集中負荷算出手段と、実測受電端電圧と計算受電端電圧との差分が最も小さい仮想集中負荷の分布パターンを選定する選定手段と、推定した負荷分布を用いて潮流計算を行うことにより配電系統区間内の各地点における電圧を推定する電圧推定手段とから構成されている。ここで、選定部は、実測受電端電圧並びに仮想集中負荷の分布パターン毎の計算受電端電圧を値の大きい順又は小さい順に並べて実測受電端電圧の前後の計算受電端電圧の仮想集中負荷の分布パターンを選定するようにしても良く、この場合には、配電系統の負荷分布並びに電圧推定装置は、更に、選定した二つの仮想集中負荷の分布パターンの負荷分布を線形補間して配電系統区間内の負荷分布を推定する負荷分布算出手段を有する。   The distribution distribution load and voltage estimation device according to the present invention includes a circuit setting means for creating a power flow calculation circuit by representing a distribution system load distributed and distributed in a distribution system section as a plurality of virtual concentrated loads, Distribution section of the distribution system by calculating the power flow for each virtual concentrated load distribution pattern using the virtual power distribution pattern setting means that creates a distribution pattern of multiple virtual power loads with different receiving end voltages in the power system section and the power flow calculation circuit A virtual concentrated load calculating means for calculating the calculated receiving end voltage, a selecting means for selecting a distribution pattern of the virtual concentrated load having the smallest difference between the measured receiving end voltage and the calculated receiving end voltage, and the estimated load distribution. It is composed of voltage estimation means for estimating the voltage at each point in the distribution system section by performing power flow calculation. Here, the selection unit arranges the calculated power receiving end voltage and the calculated power receiving end voltage for each virtual concentrated load distribution pattern in order of increasing or decreasing value, and the distribution of the virtual concentrated load of the calculated power receiving end voltage before and after the measured power receiving end voltage. A pattern may be selected. In this case, the load distribution and voltage estimation device of the distribution system further linearly interpolates the load distribution of the distribution patterns of the two selected virtual concentrated loads in the distribution system section. Load distribution calculating means for estimating the load distribution.

そして、本発明の配電系統の負荷分布並びに電圧推定方法は、図1のフロー図に示すように、送電端の計測器5B及び受電端の計測器5Cに囲まれた配電系統区間2内に分散して分布している配電系統負荷を複数の仮想集中負荷で表して潮流計算回路6を作成し(S1)、配電系統区間2の受電端電圧が異なる複数の仮想集中負荷の分布パターンを作成し(S2)、潮流計算回路6を用いて仮想集中負荷の分布パターン毎に潮流計算を行って配電系統区間2の計算受電端電圧を算出し(S3)、実測受電端電圧Vr並びに仮想集中負荷の分布パターン毎の計算受電端電圧を値の大きい順又は小さい順に並べて実測受電端電圧Vrの前後の計算受電端電圧の仮想集中負荷の分布パターンを選定し(S4)、選定した二つの仮想集中負荷の分布パターンの負荷分布を線形補間して配電系統区間2内の負荷分布を推定する(S5)と共に、線形補間して求めた負荷分布を用いて潮流計算を行うことにより配電系統区間2内の各地点における電圧を推定する(S6)ようにしている。   The load distribution and voltage estimation method of the power distribution system according to the present invention is distributed in the power distribution system section 2 surrounded by the power transmission end measuring instrument 5B and the power receiving end measuring instrument 5C, as shown in the flowchart of FIG. The power distribution calculation load 6 is generated by expressing the distributed distribution system load as a plurality of virtual concentrated loads (S1), and a distribution pattern of a plurality of virtual concentrated loads having different receiving end voltages in the distribution system section 2 is generated. (S2) The power flow calculation circuit 6 is used to calculate the power flow for each virtual concentrated load distribution pattern to calculate the calculated power receiving end voltage of the distribution system section 2 (S3), and the measured power receiving end voltage Vr and the virtual concentrated load Arrange the calculated receiving end voltage for each distribution pattern in order of increasing or decreasing value and select the distribution pattern of the virtual concentrated load of the calculated receiving end voltage before and after the actually measured receiving end voltage Vr (S4), and select the two selected virtual concentrated loads Distribution of The load distribution in the distribution system section 2 is estimated by linearly interpolating the load distribution in the distribution system (S5), and the power flow is calculated using the load distribution obtained by the linear interpolation, so that the various locations in the distribution system section 2 are calculated. The voltage at the point is estimated (S6).

以下に、図1に示すフロー図に従って、本発明の負荷分布推定方法並びに電圧推定方法について説明する。   The load distribution estimation method and voltage estimation method of the present invention will be described below with reference to the flowchart shown in FIG.

(1)仮想集中負荷分布推定のための潮流計算回路の作成(S1) (1) Creation of tidal current calculation circuit for virtual concentrated load distribution estimation (S1)

本発明の推定方法の適用にあたっては、まず、図3に示すように、配電系統区間2内の仮想集中負荷分布を推定するための潮流計算回路6を作成する(S1)。   In applying the estimation method of the present invention, first, as shown in FIG. 3, a power flow calculation circuit 6 for estimating the virtual concentrated load distribution in the distribution system section 2 is created (S1).

本発明の推定方法は、配電系統区間2内に実際には分散して多数分布している配電系統負荷を仮想的に複数の集中負荷(以下、仮想集中負荷と呼ぶ)として扱うことにより電圧を推定する。   The estimation method of the present invention treats a voltage by virtually treating a distribution system load distributed in a large number in the distribution system section 2 as a plurality of concentrated loads (hereinafter referred to as virtual concentrated loads). presume.

本実施形態では、配電系統区間2内に五つのノードL1、L2、L3、L4及びL5(以下、ノードL1〜L5と表記する)のそれぞれに仮想集中負荷があるものとする。また、送電端の計測器5B側の端点を基準ノードL0とし、受電端の計測器5C側の端点をノードL6とする。   In this embodiment, it is assumed that each of the five nodes L1, L2, L3, L4, and L5 (hereinafter referred to as nodes L1 to L5) has a virtual concentrated load in the distribution system section 2. Further, an end point on the measuring instrument 5B side at the power transmission end is set as a reference node L0, and an end point on the measuring instrument 5C side at the power receiving end is set as a node L6.

ここで、ノードL1は計測器5Bの計測器5C側の直近にあるものとし、ノードL5は計測器5Cの計測器5B側の直近にあるものとする。そして、ノードL1からL5までの区間と配電系統区間2は同一のものとして扱う。   Here, it is assumed that the node L1 is closest to the measuring instrument 5C side of the measuring instrument 5B, and the node L5 is closest to the measuring instrument 5B side of the measuring instrument 5C. The section from the nodes L1 to L5 and the distribution system section 2 are treated as the same.

また、実測値として、計測器5Bにより送電端電圧Vs、送電端有効電力Ps及び送電端無効電力Qs、並びに計測器5Cにより受電端電圧Vr、受電端有効電力Pr及び受電端無効電力Qrをそれぞれ得ている。   Further, as measured values, the transmission end voltage Vs, the transmission end active power Ps, and the transmission end reactive power Qs are measured by the measuring instrument 5B, and the receiving end voltage Vr, the receiving end effective power Pr, and the receiving end reactive power Qr are respectively measured by the measuring instrument 5C. It has gained.

ここで、ノードL0は計測器5Bの計測器5Cと反対側の直近にあるものとし、ノードL0の電圧は計測器5Bにおける送電端電圧Vsに等しいものとする。また、ノードL6は計測器5Cの計測器5Bと反対側の直近にあるものとし、ノードL6の電圧と計測器5Cの電圧は等しいものとする。したがって、実測値については、ノードL6の電圧は計測器5Cにおける受電端電圧Vrに等しいものとする。   Here, it is assumed that the node L0 is in the immediate vicinity of the measuring instrument 5B opposite to the measuring instrument 5C, and the voltage of the node L0 is equal to the power transmission end voltage Vs in the measuring instrument 5B. Further, it is assumed that the node L6 is in the immediate vicinity of the measuring instrument 5C on the side opposite to the measuring instrument 5B, and the voltage of the node L6 is equal to the voltage of the measuring instrument 5C. Therefore, regarding the measured value, the voltage at the node L6 is assumed to be equal to the power receiving end voltage Vr in the measuring instrument 5C.

更に、(数1)で表される配電系統区間2全体の線路インピーダンスZも配電線4の種類や直径等に基づいて既知であるものとする。   Furthermore, it is assumed that the line impedance Z of the entire distribution system section 2 represented by (Equation 1) is also known based on the type, diameter, and the like of the distribution line 4.

Z=R+jX …(数1)   Z = R + jX (Expression 1)

ここに、Z:配電系統区間2全体の線路インピーダンス[Ω]、R:配電系統区間2の等価抵抗[Ω]、j:虚数単位、X:配電系統区間2の等価リアクタンス[Ω]。   Here, Z: line impedance of the entire distribution system section 2 [Ω], R: equivalent resistance of the distribution system section 2 [Ω], j: imaginary unit, X: equivalent reactance of the distribution system section 2 [Ω].

なお、配電系統区間2上のノード数は二つ以上であれば良く、ノード数に特に上限はない。しかしながら、一般的にノード数が多いほど、即ち仮想集中負荷の数が多いほど推定精度が高くなる一方で計算がそれだけ煩雑になるので、必要とされる推定精度と推定作業量等を勘案して作業者が適当なノード数を設定する。   In addition, the number of nodes on the power distribution system section 2 should just be two or more, and there is no upper limit in particular in the number of nodes. However, in general, the larger the number of nodes, that is, the greater the number of virtual concentrated loads, the higher the estimation accuracy and the more complicated the calculation becomes. Therefore, taking into account the required estimation accuracy and the estimated work amount, etc. The operator sets an appropriate number of nodes.

また、ノードL1とL2に囲まれた区間をブランチB1、ノードL2とL3に囲まれた区間をブランチB2、ノードL3とL4に囲まれた区間をブランチB3、並びにノードL4とL5に囲まれた区間をブランチB4とする(以下、ブランチB1〜B4と表記する)。   Further, a section surrounded by nodes L1 and L2 is surrounded by branch B1, a section surrounded by nodes L2 and L3 is surrounded by branch B2, a section surrounded by nodes L3 and L4 is surrounded by branch B3, and nodes L4 and L5. The section is referred to as branch B4 (hereinafter referred to as branches B1 to B4).

また、ノードL1からL5までの区間長をD、並びにブランチB1〜B4の区間長をそれぞれd1、d2、d3及びd4とする(以下、ブランチ区間長d1〜d4と表記する)。なお、ノード相互の間隔であるブランチ区間長d1〜d4に特に制限はなく、各ノードがどのような間隔であっても構わない。好ましくは、配電系統区間の全体を等分し、等分した区間のそれぞれの中間点にノードを設定することである。具体的には、図3において、配電系統区間2を三等分し、三等分した区間のそれぞれの中間点にノードL2〜L4を設定する(なおこの場合も、ノードL1及びL5は計測器の直近に設定することが前提である)。   Further, the section length from the nodes L1 to L5 is D, and the section lengths of the branches B1 to B4 are d1, d2, d3, and d4, respectively (hereinafter referred to as branch section lengths d1 to d4). There are no particular restrictions on the branch section lengths d1 to d4, which are intervals between nodes, and any interval may be used for each node. Preferably, the entire distribution system section is equally divided, and nodes are set at the intermediate points of the equally divided sections. Specifically, in FIG. 3, the distribution system section 2 is divided into three equal parts, and nodes L2 to L4 are set at the intermediate points of the three divided sections (in this case also, the nodes L1 and L5 are measuring instruments). It is premised that it is set in the immediate vicinity of).

ここで、(数2)を用い、配電系統区間2全体の線路インピーダンスZを配電系統区間2の区間長Dに対する各ブランチB1〜B4のブランチ区間長d1〜d4の構成比率に基づいて配分することによりブランチB1〜B4毎の線路インピーダンスを設定する。   Here, using (Equation 2), the line impedance Z of the entire distribution system section 2 is distributed based on the composition ratio of the branch section lengths d1 to d4 of the branches B1 to B4 with respect to the section length D of the distribution system section 2. To set the line impedance for each of the branches B1 to B4.

Ri+jXi=di/D×(R+jX) …(数2)   Ri + jXi = di / D * (R + jX) (Expression 2)

ここに、添字i:ブランチ番号(1〜4)、Ri+jXi:ブランチBiの線路インピーダンス[Ω](Ri:ブランチBiの等価抵抗、j:虚数単位、Xi:ブランチBiの等価リアクタンス)、di:ブランチBiの区間長[m]、D:配電系統区間2の区間長[m]、R+jX:配電系統区間2全体の線路インピーダンス[Ω](R:配電系統区間2の等価抵抗、j:虚数単位、X:配電系統区間2の等価リアクタンス)。   Where subscript i: branch number (1-4), Ri + jXi: line impedance [Ω] of branch Bi (Ri: equivalent resistance of branch Bi, j: imaginary unit, Xi: equivalent reactance of branch Bi), di: branch Bi section length [m], D: section length [m] of distribution system section 2, R + jX: line impedance [Ω] of entire distribution system section 2 (R: equivalent resistance of distribution system section 2, j: imaginary unit, X: equivalent reactance of distribution system section 2).

また、配電系統区間2の途中で線路インピーダンスが変化する場合も同様に線路長に比例して配分する。例えば、配電系統区間2を三等分した区間のそれぞれの中間点にノードL2〜L4を設定し、ノードL1から区間長Dの3分の1の地点までのインピーダンスがRa+jXaで、その地点からノードL5までのインピーダンスがRb+jXbの場合は(数2−1)から(数2−4)を用いて配分する。   Further, when the line impedance changes in the middle of the distribution system section 2, the distribution is similarly performed in proportion to the line length. For example, nodes L2 to L4 are set at the intermediate points of the section obtained by dividing the distribution system section 2 into three equal parts, and the impedance from the node L1 to a point of one third of the section length D is Ra + jXa. When the impedance up to L5 is Rb + jXb, it is distributed using (Equation 2-1) to (Equation 2-4).

RB1+jXB1=1/2×(Ra+jXa) …(数2−1)   RB1 + jXB1 = 1/2 × (Ra + jXa) (Equation 2-1)

ここに、RB1+jXB1:ブランチB1の線路インピーダンス[Ω]。   Here, RB1 + jXB1: Line impedance [Ω] of branch B1.

RB2+jXB2=1/2×(Ra+jXa)+1/4×(Rb+jXb) …(数2−2)   RB2 + jXB2 = 1/2 × (Ra + jXa) + 1/4 × (Rb + jXb) (Equation 2-2)

ここに、RB2+jXB2:ブランチB2の線路インピーダンス[Ω]。   Here, RB2 + jXB2: line impedance [Ω] of the branch B2.

RB3+jXB3=1/2×(Rb+jXb) …(数2−3)   RB3 + jXB3 = 1/2 × (Rb + jXb) (Equation 2-3)

ここに、RB3+jXB3:ブランチB3の線路インピーダンス[Ω]。   Here, RB3 + jXB3: line impedance [Ω] of the branch B3.

RB4+jXB4=1/4×(Rb+jXb) …(数2−4)
ここに、RB4+jXB4:ブランチB4の線路インピーダンス[Ω]。
RB4 + jXB4 = 1/4 × (Rb + jXb) (Equation 2-4)
Here, RB4 + jXB4: line impedance [Ω] of the branch B4.

なお、前記は線路インピーダンスの変位点が一箇所の場合の例であるが、変位点の箇所数は一箇所には限られない。変位点の数が複数の場合も前記と同様にそれぞれの線路インピーダンスを線路長に比例して配分するようにすれば良い。   In addition, although the above is an example in case the displacement point of a line impedance is one place, the number of places of a displacement point is not restricted to one place. Even when there are a plurality of displacement points, each line impedance may be distributed in proportion to the line length in the same manner as described above.

また、ノードL1における仮想集中負荷は、有効電力PL1と無効電力QL1を用いてPL1+jQL1とする。ノードL2〜L5における仮想集中負荷についても同様に、有効電力PL2〜PL5と無効電力QL2〜QL5を用いて表す。   The virtual concentrated load at the node L1 is set to PL1 + jQL1 using the active power PL1 and the reactive power QL1. Similarly, the virtual concentrated loads in the nodes L2 to L5 are expressed using active powers PL2 to PL5 and reactive powers QL2 to QL5.

(2)配電系統区間内の仮想集中負荷の分布パターンの作成(S2) (2) Creation of distribution pattern of virtual concentrated load in distribution system section (S2)

次に、配電系統区間2の負荷の合計をノードL1〜L5の仮想集中負荷に配分するための仮想集中負荷の分布パターンを複数作成する。仮想集中負荷の分布パターンは、S1で作成した潮流計算回路6のノードL1〜L5の仮想集中負荷に配電系統区間2の負荷の合計を配分するためのノードL1〜L5の仮想集中負荷のそれぞれの大きさのパターンである。つまり、本実施形態では五つの仮想集中負荷があるものとしているので、配電系統区間2の負荷の合計をこれら五つの仮想集中負荷に配分するための配分比率を様々に変えた複数の分布パターンを作成することになる。   Next, a plurality of virtual concentrated load distribution patterns for distributing the total load of the distribution system section 2 to the virtual concentrated loads of the nodes L1 to L5 are created. The distribution pattern of the virtual concentrated load is that of each of the virtual concentrated loads of the nodes L1 to L5 for allocating the total load of the distribution system section 2 to the virtual concentrated loads of the nodes L1 to L5 of the power flow calculation circuit 6 created in S1. It is a pattern of size. That is, in the present embodiment, since there are five virtual concentrated loads, a plurality of distribution patterns in which the distribution ratio for distributing the total load of the distribution system section 2 to these five virtual concentrated loads is variously changed. Will be created.

本実施形態では、仮想集中負荷の分布パターンとして、図4に示すように、パターンAからGまでの七つの分布パターンを作成する。   In the present embodiment, seven distribution patterns from patterns A to G are created as virtual concentrated load distribution patterns as shown in FIG.

本実施形態におけるノードL1〜L5毎の仮想集中負荷への配分比率α1〜α5は、仮想集中負荷の分布パターンAからG別に表1に示す値とする。   The distribution ratios α1 to α5 to the virtual concentrated load for each of the nodes L1 to L5 in the present embodiment are the values shown in Table 1 for each virtual concentrated load distribution pattern A to G.

Figure 0004718943
Figure 0004718943

パターンAは、ノードL1の仮想集中負荷が配電系統区間2の負荷の合計に等しい場合である。即ち、ノードL1にのみ仮想集中負荷があり、他のノードの仮想集中負荷はゼロの場合である。   Pattern A is a case where the virtual concentrated load of the node L1 is equal to the total load of the distribution system section 2. That is, only the node L1 has a virtual concentrated load, and the virtual concentrated loads of other nodes are zero.

パターンBは、ノードL2の仮想集中負荷が配電系統区間2の負荷の合計に等しい場合である。即ち、ノードL2にのみ仮想集中負荷があり、他のノードの仮想集中負荷はゼロの場合である。   Pattern B is a case where the virtual concentrated load of the node L2 is equal to the total load of the distribution system section 2. That is, only the node L2 has a virtual concentrated load, and the virtual concentrated loads of other nodes are zero.

パターンCは、ノードL2の仮想集中負荷が配電系統区間2の負荷の合計の3分の2を占めると共にノードL3の仮想集中負荷が配電系統区間2の負荷の合計の3分の1を占め、他のノードの仮想集中負荷がゼロの場合である。   In pattern C, the virtual concentrated load of node L2 occupies two-thirds of the total load of distribution system section 2, and the virtual concentrated load of node L3 occupies one-third of the total load of distribution system section 2, This is a case where the virtual centralized load of other nodes is zero.

パターンDは、ノードL2、L3及びL4の仮想集中負荷のそれぞれが配電系統区間2の負荷の合計の3分の1になっており、他のノードの仮想集中負荷がゼロの場合である。   Pattern D is a case where each of the virtual concentrated loads of the nodes L2, L3, and L4 is one third of the total load of the distribution system section 2, and the virtual concentrated loads of the other nodes are zero.

パターンEは、ノードL3の仮想集中負荷が配電系統区間2の負荷の合計の3分の1を占めると共にノードL4の仮想集中負荷が配電系統区間2の負荷の合計の3分の2を占め、他のノードの仮想集中負荷がゼロの場合である。   In the pattern E, the virtual concentrated load of the node L3 occupies one third of the total load of the distribution system section 2, and the virtual concentrated load of the node L4 occupies two thirds of the total load of the distribution system section 2. This is a case where the virtual centralized load of other nodes is zero.

パターンFは、ノードL4の仮想集中負荷が配電系統区間2の負荷の合計に等しい場合である。即ち、ノードL2にのみ仮想集中負荷があり、他のノードの仮想集中負荷はゼロの場合である。   The pattern F is a case where the virtual concentrated load of the node L4 is equal to the total load of the distribution system section 2. That is, only the node L2 has a virtual concentrated load, and the virtual concentrated loads of other nodes are zero.

パターンGは、ノードL5の仮想集中負荷が配電系統区間2の負荷の合計に等しい場合である。即ち、ノードL5にのみ仮想集中負荷があり、他のノードの仮想集中負荷はゼロの場合である。   The pattern G is a case where the virtual concentrated load of the node L5 is equal to the total load of the distribution system section 2. That is, only the node L5 has a virtual concentrated load, and the virtual concentrated loads of other nodes are zero.

ここで、パターンA及びGは、パターンBからFで仮想集中負荷の分布の推定が収束しない場合を想定したものである。具体的には、ノードL0の送電端電圧Vsは一定であるため、パターンAはノードL6の受電端電圧が最も高くなる状況、即ち送電端の計測器5Bの直近に全て若しくは殆ど全ての負荷が集中している場合であり、パターンGはノードL6の受電端電圧が最も低くなる状況、即ち受電端の計測器5Cの直近に全て若しくは殆ど全ての負荷が集中している場合である。   Here, patterns A and G assume a case where the estimation of the distribution of the virtual concentrated load does not converge in patterns B to F. Specifically, since the power transmission end voltage Vs of the node L0 is constant, the pattern A has a situation in which the power reception end voltage of the node L6 is the highest, that is, all or almost all the loads are in the immediate vicinity of the measuring device 5B at the power transmission end. The pattern G is a situation where the power receiving end voltage of the node L6 is the lowest, that is, a case where all or almost all loads are concentrated in the immediate vicinity of the measuring device 5C at the power receiving end.

なお、仮想集中負荷の分布パターンはこれらのパターンに限られるものではなく、ノードL1〜L5のそれぞれの仮想集中負荷の配分比率α1〜α5をより多様なものとしても良い。例えば、本実施形態ではパターンCにおいてノードL2とL3の仮想集中負荷の配分比率α2とα3を2:1としたが、これに限られるものではなく、3:1や4:1とするパターンを作成しても良い。   The distribution pattern of the virtual concentrated load is not limited to these patterns, and the distribution ratios α1 to α5 of the virtual concentrated loads of the nodes L1 to L5 may be more diverse. For example, in the present embodiment, the distribution ratios α2 and α3 of the virtual concentrated loads of the nodes L2 and L3 are set to 2: 1 in the pattern C. However, the present invention is not limited to this. You may create it.

仮想集中負荷の分布パターンを作成する際には、図4に示すように、負荷分布が送電端側(計測器5B側)から受電端側(計測器5C側)に次第に移り行くように負荷を配分し、ノードL6の受電端電圧が次第に小さくなるようにする。具体的には、本実施形態であれば、仮想集中負荷の分布パターンAのノードL6の受電端電圧をVaとし、仮想集中負荷の分布パターンBからGについても同様に受電端電圧をVb、Vc、…、Vgとすると、Va>Vb>Vc>Vd>Ve>Vf>Vgとなり、パターンAからパターンGの順に受電端電圧が小さくなる。   When creating the distribution pattern of the virtual concentrated load, as shown in FIG. 4, the load is gradually shifted from the power transmission end side (the measuring instrument 5B side) to the power receiving end side (the measuring instrument 5C side). The power receiving end voltage of the node L6 is gradually decreased. Specifically, in the present embodiment, the receiving end voltage of the node L6 of the virtual concentrated load distribution pattern A is Va, and the receiving end voltages of the virtual concentrated load distribution patterns B to G are similarly Vb, Vc. ,..., Vg, Va> Vb> Vc> Vd> Ve> Vf> Vg, and the receiving end voltage decreases in the order of pattern A to pattern G.

なお、仮想集中負荷の分布パターンの数に特に制限はなく、本実施形態の七つより少なくても良いし又は多くても良い。なお、一般的に分布パターンの数が多いほど推定精度が高くなる一方で計算がそれだけ煩雑になるので、必要とされる推定精度と推定作業量等を勘案して作業者が適当な分布パターン数を判断する。   Note that the number of virtual concentrated load distribution patterns is not particularly limited, and may be smaller or larger than seven in the present embodiment. In general, the greater the number of distribution patterns, the higher the estimation accuracy, but the more complicated the calculation becomes. Therefore, the operator must take into account the required estimation accuracy and the estimated amount of work. Judging.

(3)仮想集中負荷の分布パターン毎の計算受電端電圧の算出(S3) (3) Calculation of power receiving end voltage for each distribution pattern of virtual concentrated load (S3)

次に、S1で作成した潮流計算回路6を用い、S2で作成した仮想集中負荷の分布パターンA〜G毎に潮流計算を行って計算受電端電圧Va〜Vgを算出する(S3)。   Next, using the power flow calculation circuit 6 created in S1, power flow calculation is performed for each of the virtual concentrated load distribution patterns A to G created in S2 to calculate calculated power receiving end voltages Va to Vg (S3).

計算受電端電圧Va〜Vgの算出は、仮想集中負荷の分布パターンA〜G別に、図5に示すフローに従って行う。   Calculation of the calculated power receiving end voltages Va to Vg is performed according to the flow shown in FIG. 5 for each of the virtual concentrated load distribution patterns A to G.

まず、潮流計算回路6において、(数3)及び(数4)の関係が成り立つ。   First, in the power flow calculation circuit 6, the relationship of (Equation 3) and (Equation 4) is established.

Ps=PL+Pr+Ploss …(数3)   Ps = PL + Pr + Ploss (Equation 3)

ここに、Ps:送電端有効電力、PL:配電系統区間2の負荷(有効電力)の合計、Pr:受電端有効電力、Ploss:配電系統区間2の配電線4の線路ロス(有効電力)。単位は全て[W]。   Here, Ps: transmission end active power, PL: total load (active power) in distribution system section 2, Pr: receiving end active power, Ploss: line loss (active power) of distribution line 4 in distribution system section 2. All units are [W].

Qs=QL+Qr+Qloss …(数4)   Qs = QL + Qr + Qloss (Equation 4)

ここに、Qs:送電端無効電力、QL:配電系統区間2の負荷(無効電力)の合計、Qr:受電端無効電力、Qloss:配電系統区間2の配電線4の線路ロス(無効電力)。単位は全て[Var]。   Here, Qs: power transmission end reactive power, QL: total load (reactive power) in distribution system section 2, Qr: power receiving end reactive power, Qloss: line loss (reactive power) of distribution line 4 in distribution system section 2. All units are [Var].

(数3)及び(数4)において、Ploss及びQlossは未知であるため、初期条件としてこれらをゼロとする(S3−1)。   In (Equation 3) and (Equation 4), since Ploss and Qloss are unknown, they are set to zero as an initial condition (S3-1).

これにより、(数3)及び(数4)から(数5)及び(数6)がそれぞれ得られる。   Thereby, (Equation 5) and (Equation 6) are obtained from (Equation 3) and (Equation 4), respectively.

PL=Ps−Pr …(数5)   PL = Ps−Pr (Equation 5)

QL=Qs−Qr …(数6)   QL = Qs−Qr (Expression 6)

次に、前述した表1の仮想集中負荷の分布パターンに従って配電系統区間2の負荷の合計をノードL1〜L5の仮想集中負荷に配分する(S3−2)。   Next, the total load of the distribution system section 2 is distributed to the virtual concentrated loads of the nodes L1 to L5 in accordance with the virtual concentrated load distribution pattern of Table 1 described above (S3-2).

配電系統区間2の負荷の合計(有効電力成分の合計、無効電力成分の合計)の配分は(数7)を用いて行い、これによりノードL1〜L5毎の有効電力及び無効電力を算出する。   Distribution of the total load (total active power component, total reactive power component) in the distribution system section 2 is performed using (Equation 7), thereby calculating the active power and reactive power for each of the nodes L1 to L5.

PLi+jQLi=αi/Σαi×(PL+jQL) …(数7)   PLi + jQLi = αi / Σαi × (PL + jQL) (Equation 7)

ここに、添字i:ノード番号(1〜5)、PLi+jQLi:ノードLiの仮想集中負荷[VA](PLi:ノードLiの仮想集中負荷の有効電力、j:虚数単位、QLi:ノードLiの仮想集中負荷の無効電力)、αi:ノードLiの仮想集中負荷の配分比率、PL+jQL:配電系統区間2の負荷の合計[VA](PL:配電系統区間2の負荷の有効電力、j:虚数単位、QL:配電系統区間2の負荷の無効電力)。なお、Σαi=α1+α2+α3+α4+α5。   Here, subscript i: node number (1-5), PLi + jQLi: virtual concentrated load [VA] of node Li (PLi: effective power of virtual concentrated load of node Li, j: imaginary unit, QLi: virtual concentrated of node Li Reactive power of load), αi: distribution ratio of virtual concentrated load of node Li, PL + jQL: total load of distribution system section 2 [VA] (PL: active power of load of distribution system section 2, j: imaginary unit, QL : Reactive power of load in distribution system section 2). Note that Σαi = α1 + α2 + α3 + α4 + α5.

仮想集中負荷の分布パターンA〜G別のノードL1〜L5毎の仮想集中負荷の配分比率α1〜α5は表1に示す値とする。   The distribution ratios α1 to α5 of the virtual concentrated load for each of the nodes L1 to L5 for the virtual concentrated load distribution patterns A to G are as shown in Table 1.

次に、S3−2の結果としてノードL1〜L5毎の負荷が得られるので、ノードL0を基準ノードとして潮流計算を行う(S3−3)。   Next, since the load for each of the nodes L1 to L5 is obtained as a result of S3-2, the power flow is calculated using the node L0 as a reference node (S3-3).

ここでいう潮流計算とは、電力系統の電力方程式を解いて、電圧、位相角、電力、無効電力潮流を求めるもので、ニュートン・ラプソン法をはじめとする交流法の潮流計算であれば特にその方式を問わない。   The power flow calculation here is to solve the power equation of the power system to find the voltage, phase angle, power, reactive power flow, especially if it is a power flow calculation of AC method including Newton-Raphson method. Regardless of the method.

潮流計算の結果、線路ロス(有効電力)Ploss及び線路ロス(無効電力)Qlossが算出される。   As a result of the power flow calculation, a line loss (active power) Ploss and a line loss (reactive power) Qloss are calculated.

次に、配電系統区間2について、実測値である送電端電力及び受電端電力、並びに計算値である負荷及び線路ロスを用いて収束判定を行う(S3−4)。   Next, for the distribution system section 2, convergence determination is performed using the measured power transmission end power and power reception end power and the calculated values load and line loss (S3-4).

まず、収束判定の判断指標となる実測値と計算値との差を(数8)及び(数9)を用いて算出する。   First, a difference between an actual measurement value and a calculation value that is a determination index for convergence determination is calculated using (Equation 8) and (Equation 9).

ΔP=Ps−(PL+Pr+Ploss) …(数8)   ΔP = Ps− (PL + Pr + Ploss) (Equation 8)

ここに、ΔP:実測値と計算値との差(有効電力)、Ps:送電端有効電力、PL:配電系統区間2の負荷(有効電力)の合計、Pr:受電端有効電力、Ploss:配電系統区間2の配電線4の線路ロス(有効電力)。単位は全て[W]。   Here, ΔP: difference between the measured value and the calculated value (active power), Ps: transmission end active power, PL: total load (active power) of distribution system section 2, Pr: receiving end effective power, Ploss: distribution Line loss (active power) of the distribution line 4 in the system section 2. All units are [W].

ΔQ=Qs−(QL+Qr+Qloss) …(数9)   ΔQ = Qs− (QL + Qr + Qloss) (Equation 9)

ここに、ΔQ:実測値と計算値との差(無効電力)、Qs:送電端無効電力、QL:配電系統区間2の負荷(無効電力)の合計、Qr:受電端無効電力、Qloss:配電系統区間2の配電線4の線路ロス(無効電力)。単位は全て[Var]。   Here, ΔQ: difference between the measured value and the calculated value (reactive power), Qs: transmission end reactive power, QL: total load (reactive power) in distribution system section 2, Qr: receiving end reactive power, Qloss: power distribution Line loss (reactive power) of the distribution line 4 in the system section 2. All units are [Var].

そして、│ΔP│≦Plimitかつ│ΔQ│≦Qlimitの場合は潮流計算が収束していると判断し(S3−4;Yes)、それ以外の場合は収束していないと判断する(S3−4;No)。   If | ΔP | ≦ Plimit and | ΔQ | ≦ Qlimit, it is determined that the power flow calculation has converged (S3-4; Yes), and otherwise, it is determined that it has not converged (S3-4). No).

ここで、Plimit及びQlimitは、(数8)及び(数9)により表される実測値に対する計算値の収束性を判定する指標であって、実測値と計算値の差の閾値である。Plimit及びQlimitの値に特に制限はなく、必要とされる推定精度等を勘案して作業者が適当な閾値数を設定する。具体的には例えば、送電端電力Ps、Qsの1%程度をPlimit、Qlimitとして設定することが考えられる。   Here, Plimit and Qlimit are indices for determining the convergence of the calculated value with respect to the actual value represented by (Equation 8) and (Equation 9), and are threshold values for the difference between the actual value and the calculated value. There are no particular restrictions on the values of Plimit and Qlimit, and the operator sets an appropriate threshold number in consideration of the required estimation accuracy and the like. Specifically, for example, it is conceivable to set about 1% of the transmission end power Ps and Qs as Plimit and Qlimit.

│ΔP│と│ΔQ│のどちらか一方又は両方が収束判定の閾値Plimit、Qlimitを超えている場合(S3−4;No)は、(数10)及び(数11)を用いて新たな負荷の合計PL’及びQL’を算出する(S3−5)。   When one or both of | ΔP | and | ΔQ | exceed the thresholds Plimit and Qlimit for convergence determination (S3-4; No), a new load is calculated using (Equation 10) and (Equation 11). The total PL ′ and QL ′ are calculated (S3-5).

PL’=PL+ΔP …(数10)   PL ′ = PL + ΔP (Equation 10)

ここに、PL’:新たな配電系統区間2の負荷(有効電力)の合計、ΔP:有効電力についての実測値と計算値との差(S3−4の(数8)の計算結果)。単位は全て[W]。   Here, PL ′: the total load (active power) of the new distribution system section 2, ΔP: difference between the actually measured value and the calculated value for the active power (the calculation result of (Equation 8) in S 3-4). All units are [W].

QL’=QL+ΔQ …(数11)   QL ′ = QL + ΔQ (Expression 11)

ここに、QL’:新たな配電系統区間2の負荷(無効電力)の合計、ΔQ:無効電力についての実測値と計算値との差(S3−4の(数9)の計算結果)。単位は全て[Var]。   Here, QL ′: the total load (reactive power) of the new distribution system section 2, ΔQ: difference between the measured value and the calculated value of the reactive power (calculation result of (Equation 9) of S 3-4). All units are [Var].

そして、新たな負荷の合計PL’、QL’を用いて、あらためて、S3−2からS3−4までの処理を行う。   Then, the processes from S3-2 to S3-4 are performed again by using the new load totals PL 'and QL'.

一方で、S3−4において、潮流計算が収束していると判断された場合(S3−4;Yes)は、計算対象とした仮想集中負荷の分布パターンについての計算を終了する(S3−6)。   On the other hand, when it is determined in S3-4 that the tidal current calculation has converged (S3-4; Yes), the calculation for the distribution pattern of the virtual concentrated load as the calculation target is terminated (S3-6). .

そして、このときのノードL1〜L5毎の負荷及びノードL6の電圧が、計算対象の仮想集中負荷分布パターン(A〜Gのいずれか)のノードL1〜L5毎の仮想集中負荷(PLi+jQLi)及び計算受電端電圧(Va〜Vgのいずれか)である。   Then, the load for each of the nodes L1 to L5 and the voltage of the node L6 at this time are the virtual concentrated load (PLi + jQLi) and the calculation for each of the nodes L1 to L5 of the virtual concentrated load distribution pattern (A to G) to be calculated. It is a receiving end voltage (any one of Va-Vg).

これらS3−1からS3−6の処理過程を仮想集中負荷の分布パターンA〜G毎に繰り返し行い、仮想集中負荷の分布パターンA〜Gの全てについての計算が終了した場合にはS4の処理に移る。 The processes from S3-1 to S3-6 are repeated for each of the virtual concentrated load distribution patterns A to G, and when the calculation for all of the virtual concentrated load distribution patterns A to G is completed, the process proceeds to S4. Move.

(4)実測した受電端電圧に近い計算受電端電圧を有する二つの仮想集中負荷の分布パターンの選定(S4) (4) Selection of distribution patterns of two virtual concentrated loads having calculated receiving end voltages close to the actually measured receiving end voltages (S4)

続いて、計測器5Cで実測した受電端電圧VrとS3で算出した仮想集中負荷の分布パターンA〜G別の計算受電端電圧Va〜Vgを比較し、計算受電端電圧が受電端電圧Vrに近くなっている仮想集中負荷の分布パターンを二つ選定する(S4)。   Subsequently, the receiving end voltage Vr actually measured by the measuring instrument 5C is compared with the calculated receiving end voltages Va to Vg according to the distribution patterns A to G of the virtual concentrated load calculated in S3, and the calculated receiving end voltage becomes the receiving end voltage Vr. Two distribution patterns of close virtual concentrated loads are selected (S4).

前述した通り、仮想集中負荷の分布パターンA〜G別の計算受電端電圧Va〜Vgは、Va>Vb>Vc>Vd>Ve>Vf>Vgの関係になっている。   As described above, the calculated power receiving end voltages Va to Vg for the virtual concentrated load distribution patterns A to G have a relationship of Va> Vb> Vc> Vd> Ve> Vf> Vg.

本実施形態では、計測器5Cで実測した受電端電圧Vr及び仮想集中負荷の分布パターンA〜G別の計算受電端電圧Va〜Vgの全てを大きい順に並べた場合に例えば、Va>Vb>Vc>Vr>Vd>Ve>Vf>Vgの関係にあったとする。   In the present embodiment, when all of the power receiving end voltage Vr measured by the measuring instrument 5C and the calculated power receiving end voltages Va to Vg according to the distribution patterns A to G of the virtual concentrated load are arranged in descending order, for example, Va> Vb> Vc It is assumed that the relationship is> Vr> Vd> Ve> Vf> Vg.

このとき、仮想集中負荷の分布パターンA〜G別の計算受電端電圧Va〜Vgのうち計測器5Cで実測した受電端電圧Vrに近いのは、Vc及びVdであり、受電端電圧Vrを再現し得る仮想集中負荷の分布パターンとして分布パターンCとDを選定する。   At this time, among the calculated receiving end voltages Va to Vg for the virtual concentrated load distribution patterns A to G, Vc and Vd are close to the receiving end voltage Vr measured by the measuring instrument 5C, and the receiving end voltage Vr is reproduced. Distribution patterns C and D are selected as possible distribution patterns of the virtual concentrated load.

(5)選定した二つの仮想集中負荷の分布パターンの組み合わせによる配電系統の負荷の分布の算出(S5) (5) Calculation of distribution of distribution system load by combination of distribution patterns of two selected virtual concentrated loads (S5)

次に、S3で算定した仮想集中負荷(PLi+jQLi)及び計算受電端電圧(Va〜Vgのいずれか)のうち、S4で選定した二つの仮想集中負荷の分布パターンに関する仮想集中負荷及び計算受電端電圧を用いて最終的な配電系統区間2内の負荷の分布を算出する(S5)。   Next, of the virtual concentrated load (PLi + jQLi) and the calculated receiving end voltage (any one of Va to Vg) calculated in S3, the virtual concentrated load and the calculated receiving end voltage relating to the distribution pattern of the two virtual concentrated loads selected in S4. Is used to calculate the distribution of the load in the final distribution system section 2 (S5).

具体的には、S3で算出した仮想集中負荷の分布パターンCのノードL2の仮想集中負荷(有効電力)をPL2cとし、仮想集中負荷の分布パターンDのノードL2の仮想集中負荷(有効電力)をPL2dとすると、S4から仮想集中負荷パターンの線形補間により(数12)の関係が成り立つ。   Specifically, the virtual concentrated load (active power) of the node L2 of the virtual concentrated load distribution pattern C calculated in S3 is set as PL2c, and the virtual concentrated load (active power) of the node L2 of the virtual concentrated load distribution pattern D is set as PL2c. Assuming that PL2d, the relationship of (Equation 12) is established by linear interpolation of the virtual concentrated load pattern from S4.

(PL2−PL2c):(PL2d−PL2c)=(Vr−Vc):(Vd−Vc) …(数12)   (PL2−PL2c): (PL2d−PL2c) = (Vr−Vc): (Vd−Vc) (Equation 12)

ここに、PL2:ノードL2の最終的な負荷(有効電力)[W]、PL2c:仮想集中負荷の分布パターンCのノードL2の仮想集中負荷(有効電力)[W]、PL2d:仮想集中負荷の分布パターンDのノードL2の仮想集中負荷(有効電力)[W]、Vr:計測器5Cで実測した受電端電圧[V]、Vc:仮想集中負荷の分布パターンCの計算受電端電圧[V]、Vd:仮想集中負荷の分布パターンDの計算受電端電圧[V]。   Here, PL2: final load (active power) [W] of the node L2, PL2c: virtual concentrated load (active power) [W] of the node L2 of the distribution pattern C of the virtual concentrated load, PL2d: virtual concentrated load Virtual concentrated load (active power) [W] at node L2 of distribution pattern D, Vr: power receiving end voltage [V] measured by measuring instrument 5C, Vc: calculated power receiving end voltage [V] of virtual concentrated load distribution pattern C , Vd: Calculated power receiving end voltage [V] of the distribution pattern D of the virtual concentrated load.

(数12)において、パターンCが収束(S3−6)した際の条件から計算受電端電圧Vc及び仮想集中負荷PL2cが求められ、同様にパターンDが収束した際の条件からVd及びPL2dも求められる。またVrは計測器5Cにより実測されていることから、ノードL2の最終的な負荷(有効電力)PL2を求めることができる。   In (Expression 12), the calculated power receiving end voltage Vc and the virtual concentrated load PL2c are obtained from the conditions when the pattern C converges (S3-6), and Vd and PL2d are also obtained from the conditions when the pattern D converges. It is done. Since Vr is actually measured by the measuring instrument 5C, the final load (active power) PL2 of the node L2 can be obtained.

(数12)と同様にしてノードL3についてPL3並びにノードL4についてPL4を求めることができる。   Similarly to (Equation 12), PL3 can be obtained for the node L3 and PL4 can be obtained for the node L4.

更に、パターンCが収束した際の条件から仮想集中負荷QL2cが求められ、同様にパターンDが収束した際の条件からQL2dも求められるので(数13)を用いてQL2を求めることができ、また更に同様にしてQL3並びにQL4を求めることができる。   Furthermore, since the virtual concentrated load QL2c is obtained from the conditions when the pattern C converges, and similarly QL2d is obtained from the conditions when the pattern D converges, the expression QL2 can be obtained using (Equation 13). Further, QL3 and QL4 can be obtained in the same manner.

(QL2−QL2c):(QL2d−QL2c)=(Vr−Vc):(Vd−Vc) …(数13)   (QL2-QL2c): (QL2d-QL2c) = (Vr-Vc): (Vd-Vc) (Equation 13)

ここに、QL2:ノードL2の最終的な負荷(無効電力)[Var]、QL2c:仮想集中負荷の分布パターンCのノードL2の仮想集中負荷(無効電力)[Var]、QL2d:仮想集中負荷の分布パターンDのノードL2の仮想集中負荷(無効電力)[Var]、Vr:計測器5Cで実測した受電端電圧[V]、Vc:仮想集中負荷の分布パターンCの計算受電端電圧[V]、Vd:仮想集中負荷の分布パターンDの計算受電端電圧[V]。   QL2: final load (reactive power) [Var] of the node L2, QL2c: virtual concentrated load (reactive power) [Var] of the node L2 of the virtual concentrated load distribution pattern C, QL2d: virtual concentrated load Virtual concentrated load (reactive power) [Var] at node L2 of distribution pattern D, Vr: power receiving end voltage [V] measured by measuring instrument 5C, Vc: calculated power receiving end voltage [V] of virtual concentrated load distribution pattern C , Vd: Calculated power receiving end voltage [V] of the distribution pattern D of the virtual concentrated load.

なお、分布パターンCとDのどちらもノードL1及びL5の仮想集中負荷がゼロであるため、ノードL1及びL5については上記の処理は必要ない。   Note that in both the distribution patterns C and D, the virtual concentrated load of the nodes L1 and L5 is zero, and thus the above processing is not necessary for the nodes L1 and L5.

以上により、ノードL1〜L5毎の最終的な負荷の大きさを求めることができ、最終的な配電系統区間2内の負荷の分布を算出することができる。   As described above, the final load size for each of the nodes L1 to L5 can be obtained, and the final load distribution in the power distribution system section 2 can be calculated.

ここで、実測した受電端電圧Vrを再現し得る仮想集中負荷の分布パターンの選定(S4)については、好ましくは本実施形態として説明した前述の方法であるが、前述の方法の他に、受電端電圧Vrとの差の絶対値が最も小さくなる計算受電端電圧となる仮想集中負荷の分布パターンを選定するようにしても良い。そしてこの場合にはS5の処理を行う必要はなく、S4で選定した仮想集中負荷の分布パターンが最終的な配電系統区間2内の負荷の分布となる。   Here, the selection of the distribution pattern of the virtual concentrated load (S4) that can reproduce the actually measured power receiving end voltage Vr is preferably the above-described method described in the present embodiment. The distribution pattern of the virtual concentrated load that becomes the calculated power receiving end voltage that minimizes the absolute value of the difference from the end voltage Vr may be selected. In this case, it is not necessary to perform the process of S5, and the distribution pattern of the virtual concentrated load selected in S4 becomes the final load distribution in the distribution system section 2.

更には、図2で作成した潮流計算回路6の任意の地点に無負荷のノードを設けて、S5で求めた配電系統区間2の負荷分布を用いて潮流計算を行うことにより任意の地点における電圧を推定することができる(S6)。   Further, by providing a no-load node at an arbitrary point of the power flow calculation circuit 6 created in FIG. 2, and performing the power flow calculation using the load distribution of the distribution system section 2 obtained at S5, the voltage at the arbitrary point Can be estimated (S6).

無負荷ノードの数に特に制限はないが、ノード数が多いほど計算もそれだけ煩雑になるので、作業者が必要とされる地点を判断して設定する。   There is no particular limitation on the number of no-load nodes, but the calculation becomes more complicated as the number of nodes increases, so the operator needs to determine and set the point where it is needed.

さらには、計測器5Bと計測器5Cとの間に既知の負荷があれば、潮流計算回路6の作成(S1)時に、潮流計算回路6上の該当する箇所に負荷ノードを設けて、既知の負荷を固定値として入力することもできる。この場合に本手法では、既知の負荷を除いた未知の負荷を推定することとなる。   Furthermore, if there is a known load between the measuring instrument 5B and the measuring instrument 5C, a load node is provided at a corresponding location on the tidal current calculation circuit 6 when the tidal current calculation circuit 6 is created (S1). It is also possible to input the load as a fixed value. In this case, the present method estimates an unknown load excluding a known load.

上述の配電系統の負荷分布並びに電圧推定方法及び装置は配電系統の負荷分布並びに電圧推定プログラム13をコンピュータ上で実行することによっても実現される。この実施の一例を以下に示す。   The above-described load distribution and voltage estimation method and apparatus for the distribution system can also be realized by executing the distribution distribution and voltage estimation program 13 on the computer. An example of this implementation is shown below.

配電系統の負荷分布並びに電圧推定プログラム13を実行するための配電系統の負荷分布並びに電圧推定装置7の全体構成を図6に示す。配電系統の負荷分布並びに電圧推定装置7は、制御部8、記憶部9、入力部10、表示部11及びメモリ12を備え相互にバス等の信号回線により接続されている。また、配電系統の負荷分布並びに電圧推定装置7には計測器5B及び5Cが通信回線等により接続されており、その通信回線等を介して相互にデータや制御指令等の信号の送受信(出入力)が行われる。   The load distribution of the distribution system and the load distribution of the distribution system for executing the voltage estimation program 13 and the overall configuration of the voltage estimation device 7 are shown in FIG. The load distribution and voltage estimation device 7 of the distribution system includes a control unit 8, a storage unit 9, an input unit 10, a display unit 11, and a memory 12, and is connected to each other by a signal line such as a bus. Further, the load distribution and voltage estimation device 7 of the distribution system is connected to measuring instruments 5B and 5C via a communication line or the like, and transmission / reception of signals such as data and control commands (input / output) via the communication line etc. ) Is performed.

制御部8は記憶部9に記憶されている配電系統の負荷分布並びに電圧推定プログラム13により配電系統の負荷分布並びに電圧推定装置7全体の制御並びに配電系統の負荷分布並びに電圧推定に係る演算を行うものであり、例えばCPUである。記憶部9は少なくともデータやプログラムを記憶可能な装置であり、例えばハードディスクである。入力部10は少なくとも作業者の命令をCPUに与えるためのインターフェイスであり、例えばキーボードである。表示部11は制御部8の制御により文字や図形等の表示を行うものであり、例えばディスプレイである。メモリ12は制御部8が各種制御を実行する際に作業領域となるメモリ空間となる。   The control unit 8 controls the distribution distribution system load distribution and the voltage estimation device 7 as a whole, and the calculation related to the distribution distribution load distribution and voltage estimation by the distribution system load distribution stored in the storage unit 9 and the voltage estimation program 13. For example, a CPU. The storage unit 9 is a device that can store at least data and programs, and is, for example, a hard disk. The input unit 10 is an interface for giving at least an operator command to the CPU, and is, for example, a keyboard. The display unit 11 displays characters, graphics, and the like under the control of the control unit 8 and is, for example, a display. The memory 12 becomes a memory space that becomes a work area when the control unit 8 executes various controls.

電圧制御装置7の制御部8は、配電系統の負荷分布並びに電圧推定プログラム13を実行することにより、潮流計算回路6の設定を行う回路設定部8a、配電系統区間2内の仮想集中負荷の分布パターンの設定を行う仮想集中負荷分布パターン設定部8b、配電系統区間2の負荷(有効電力、無効電力)の合計を算出する第一の負荷合計算出部8c、ノードL1〜L5毎の負荷を算出する仮想集中負荷算出部8d、線路ロス(有効電力、無効電力)を算出する線路ロス算出部8e、電力の実測値と計算値との差とその差の閾値との比較を行う比較部8f、配電系統区間2の新たな負荷(有効電力、無効電力)の合計を算出する第二の負荷合計算出部8g、実測受電端電圧の値に近い計算受電端電圧の仮想集中負荷の分布パターンを選定する選定部8h、ノードL1〜L5毎の最終的な負荷(有効電力、無効電力)を算出する負荷分布算出部8i、無負荷のノード位置における電圧を算出する電圧推定部8jが構成される。   The control unit 8 of the voltage control device 7 executes the distribution distribution of the distribution system and the voltage estimation program 13, thereby setting the power flow calculation circuit 6 and the distribution of the virtual concentrated load in the distribution system section 2. Virtual centralized load distribution pattern setting unit 8b for setting a pattern, first load total calculating unit 8c for calculating the total of loads (active power and reactive power) in distribution system section 2, and calculating loads for nodes L1 to L5 A virtual concentrated load calculation unit 8d, a line loss calculation unit 8e that calculates line loss (active power, reactive power), a comparison unit 8f that compares a difference between an actual measurement value and a calculation value of power and a threshold value of the difference, Second load total calculation unit 8g for calculating the total of new loads (active power and reactive power) in distribution system section 2, and selection of distribution pattern of virtual concentrated load of calculated receiving end voltage close to measured receiving end voltage value Selection Part 8h, final load (active power, reactive power) for each node L1~L5 load distribution calculation section 8i that calculates a voltage estimate unit 8j configured to calculate the voltage at the node position of the no-load.

まず、制御部8の回路設定部8aは、潮流計算回路6の設定の内容を例えば入力部10により入力して予め記憶部9に記憶しておく(S1)。なお、潮流計算回路6の設定の内容とは配電系統区間2内の仮想集中負荷分布の推定に必要な変数であって、具体的には例えば配電系統区間2内の仮想集中負荷の数(即ちノード数)や位置、配電系統区間2全体の線路インピーダンスZ等である。更に、送電端の電圧Vs、有効電力Ps及び無効電力Qs並びに受電端の電圧Vr、有効電力Pr並びに無効電力Qrを送電端の計測器5B並びに受電端の計測器5Cから通信回線等を介して入力して記憶部9に記憶しておく。   First, the circuit setting unit 8a of the control unit 8 inputs the setting contents of the power flow calculation circuit 6 through, for example, the input unit 10 and stores them in the storage unit 9 in advance (S1). The setting content of the power flow calculation circuit 6 is a variable necessary for estimating the virtual concentrated load distribution in the distribution system section 2, and specifically, for example, the number of virtual concentrated loads in the distribution system section 2 (that is, the number of virtual concentrated loads in the distribution system section 2). The number of nodes), the position, the line impedance Z of the entire distribution system section 2, and the like. Further, the voltage Vs, active power Ps and reactive power Qs at the power transmission end, and the voltage Vr, active power Pr and reactive power Qr at the power receiving end are transmitted from the measuring device 5B at the power transmission end and the measuring device 5C at the power receiving end via a communication line or the like. The data is input and stored in the storage unit 9.

次に、制御部8の仮想集中負荷分布パターン設定部8bは、配電系統区間2内の仮想集中負荷の分布パターンの設定の内容を例えば入力部10により入力して予め記憶部9に記憶しておく(S2)。なお、仮想集中負荷の分布パターンの設定の内容とは具体的には例えば仮想集中負荷の分布パターンA〜G別のノードL1〜L5毎の仮想集中負荷への配分比率α1〜α5の値である。   Next, the virtual concentrated load distribution pattern setting unit 8b of the control unit 8 inputs, for example, the setting content of the virtual concentrated load distribution pattern in the distribution system section 2 through the input unit 10 and stores it in the storage unit 9 in advance. (S2). The setting contents of the distribution pattern of the virtual concentrated load are specifically values of the distribution ratios α1 to α5 to the virtual concentrated load for each of the nodes L1 to L5 for each of the virtual concentrated load distribution patterns A to G, for example. .

次に、仮想集中負荷の分布パターンA〜G別に計算受電端電圧Va〜Vgを算出する(S3)。   Next, calculated power receiving end voltages Va to Vg are calculated according to the distribution patterns A to G of the virtual concentrated load (S3).

まず、制御部8の第一の負荷合計算出部8cは、記憶部9に記憶した送電端の有効電力Ps及び無効電力Qs並びに受電端の有効電力Pr並びに無効電力Qrを読み込み、(数5)及び(数6)により配電系統区間2の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを算出する(S3−1)。そして、算出した配電系統区間2の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLをメモリ12又は記憶部9に記憶する。   First, the first load total calculation unit 8c of the control unit 8 reads the active power Ps and reactive power Qs of the power transmission end and the active power Pr and reactive power Qr of the power receiving end stored in the storage unit 9, and (Equation 5) And the total PL of the load (active power) and the total QL of the load (reactive power) of the distribution system section 2 are calculated by (Equation 6) (S3-1). Then, the calculated total PL of the load (active power) and the total QL of the load (reactive power) in the distribution system section 2 are stored in the memory 12 or the storage unit 9.

次に、制御部8の仮想集中負荷算出部8dは、予め記憶部9に記憶した潮流計算回路6の設定の内容及び仮想集中負荷の分布パターンの設定内容、並びにS3−1でメモリ12又は記憶部9に記憶した配電系統区間2の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを読み込み、(数7)により配電系統区間2の負荷の合計をノードL1〜L5の仮想集中負荷に配分してノードL1〜L5毎の負荷を算出する(S3−2)。そして、算出したノードL1〜L5毎の負荷をメモリ12又は記憶部9に記憶する。   Next, the virtual concentrated load calculation unit 8d of the control unit 8 stores the setting content of the power flow calculation circuit 6 and the setting content of the virtual concentrated load distribution pattern stored in the storage unit 9 in advance, and the memory 12 or the storage in S3-1. The total PL of the load (active power) and the total QL of the load (reactive power) in the distribution system section 2 stored in the unit 9 are read, and the total load of the distribution system section 2 is calculated in the virtual of the nodes L1 to L5 by (Equation 7). The load for each of the nodes L1 to L5 is calculated by allocating to the concentrated load (S3-2). Then, the calculated loads for the nodes L1 to L5 are stored in the memory 12 or the storage unit 9.

次に、制御部8の線路ロス算出部8eは、予め記憶部9に記憶した潮流計算回路6の設定の内容及びS3−2でメモリ12又は記憶部9に記憶したノードL1〜L5毎の負荷読み込み、ノードL0を基準ノードとして潮流計算を行って線路ロス(有効電力)Ploss及び線路ロス(無効電力)Qlossを算出する(S3−3)。そして、算出した線路ロス(有効電力)Ploss及び線路ロス(無効電力)Qlossをメモリ12又は記憶部9に記憶する。   Next, the line loss calculation unit 8e of the control unit 8 includes the settings of the power flow calculation circuit 6 stored in the storage unit 9 in advance and the loads for the nodes L1 to L5 stored in the memory 12 or the storage unit 9 in S3-2. The load is calculated using the node L0 as a reference node to calculate line loss (active power) Ploss and line loss (reactive power) Qloss (S3-3). The calculated line loss (active power) Ploss and line loss (reactive power) Qloss are stored in the memory 12 or the storage unit 9.

次に、制御部8の比較部8fは、記憶部9に記憶した送電端の有効電力Ps及び無効電力Qs並びに受電端の有効電力Pr並びに無効電力Qr、S3−1でメモリ12又は記憶部9に記憶した配電系統区間2の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QL、更にS3−3でメモリ12又は記憶部9に記憶した線路ロス(有効電力)Ploss及び線路ロス(無効電力)Qlossを読み込み、(数8)及び(数9)により実測値と計算値との差(有効電力)ΔP及び実測値と計算値との差(無効電力)ΔQを算出する。そして、│ΔP│とPlimitの比較及び│ΔQ│とQlimitの比較を行う(S3−4)。ここで、Plimit及びQlimitの値は例えば入力部10により入力して予め記憶部9に記憶しておき、S3−4を処理する段階で比較部8fが読み出すようにする。更に、算出した実測値と計算値との差(有効電力)ΔP及び実測値と計算値との差(無効電力)ΔQをメモリ12又は記憶部9に記憶する。   Next, the comparison unit 8f of the control unit 8 uses the memory 12 or the storage unit 9 with the active power Ps and reactive power Qs of the power transmission end and the active power Pr and reactive power Qr and reactive power Qr and S3-1 stored in the storage unit 9. The total load PL (active power) and the total load Q (reactive power) QL stored in the distribution system section 2, and the line loss (active power) Ploss and the line loss stored in the memory 12 or the storage unit 9 in S3-3. (Reactive power) Qloss is read, and the difference between the actual value and the calculated value (active power) ΔP and the difference between the actual value and the calculated value (reactive power) ΔQ are calculated by (Equation 8) and (Equation 9). Then, | ΔP | and Plimit are compared, and | ΔQ | and Qlimit are compared (S3-4). Here, for example, the values of Plimit and Qlimit are input by the input unit 10 and stored in the storage unit 9 in advance, and the comparison unit 8f reads them out at the stage of processing S3-4. Furthermore, the difference (active power) ΔP between the calculated actual value and the calculated value and the difference (reactive power) ΔQ between the actual measured value and the calculated value are stored in the memory 12 or the storage unit 9.

そして、│ΔP│と│ΔQ│の一方又は両方が収束判定の閾値Plimit、Qlimitを超えた場合(S3−4;No)は、制御部8の比較部8fの判定結果に基づき、第二の負荷合計算出部8gは、S3−1でメモリ12又は記憶部9に記憶した配電系統区間2の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QL並びにS3−4でメモリ12又は記憶部9に記憶した実測値と計算値との差(有効電力)ΔP及び実測値と計算値との差(無効電力)ΔQを読み込み、(数10)及び(数11)により新たな負荷の合計PL’及びQL’を算出する(S3−5)。更に、算出した新たな負荷の合計PL’及びQL’をメモリ12又は記憶部9に記憶する。そして、仮想集中負荷算出部8dがノードL1〜L5毎の負荷を算出する処理(S3−2)に戻り、線路ロス算出部8eが線路ロス(有効電力)Ploss及び線路ロス(無効電力)Qlossを算出する処理(S3−3)並びに比較部8fが実測値と計算値との差(有効電力)ΔP及び実測値と計算値との差(無効電力)ΔQを算出すると共に│ΔP│とPlimitの比較及び│ΔQ│とQlimitの比較を行う処理(S3−4)を繰り返す。   When one or both of | ΔP | and | ΔQ | exceed the thresholds Plimit and Qlimit for convergence determination (S3-4; No), the second determination is made based on the determination result of the comparison unit 8f of the control unit 8. The load total calculation unit 8g includes the load PL (active power) total PL and the load (reactive power) total QL stored in the memory 12 or the storage unit 9 in S3-1 and the memory 12 or S3-4 in S3-4. The difference (active power) ΔP between the actually measured value and the calculated value stored in the storage unit 9 and the difference (reactive power) ΔQ between the actually measured value and the calculated value are read, and a new load is calculated by (Equation 10) and (Equation 11). Total PL ′ and QL ′ are calculated (S3-5). Further, the calculated total new loads PL ′ and QL ′ are stored in the memory 12 or the storage unit 9. Then, the virtual concentrated load calculation unit 8d returns to the process (S3-2) for calculating the loads for the nodes L1 to L5, and the line loss calculation unit 8e calculates the line loss (active power) Ploss and the line loss (reactive power) Qloss. The calculation process (S3-3) and the comparison unit 8f calculate the difference between the actual value and the calculated value (active power) ΔP and the difference between the actual value and the calculated value (reactive power) ΔQ, and also | ΔP | and Plimit The process of comparing and comparing | ΔQ | with Qlimit (S3-4) is repeated.

一方で、│ΔP│≦Plimitかつ│ΔQ│≦Qlimitの場合(S3−4;Yes)は、計算対象とした仮想集中負荷の分布パターンについての計算を終了し(S3−6)、S3−2でメモリ12又は記憶部9に記憶したノードL1〜L5毎の負荷及びS3−3でメモリ12又は記憶部9に記憶したノードL6における電圧を計算対象の仮想集中負荷分布パターン(A〜Gのいずれか)のノードL1〜L5毎の仮想集中負荷及び計算受電端電圧(Va〜Vg)としてメモリ12又は記憶部9に記憶する。   On the other hand, when | ΔP | ≦ Plimit and | ΔQ | ≦ Qlimit (S3-4; Yes), the calculation for the distribution pattern of the virtual concentrated load to be calculated is terminated (S3-6), and S3-2 The virtual concentrated load distribution pattern (A to G) for calculating the load for each of the nodes L1 to L5 stored in the memory 12 or the storage unit 9 and the voltage at the node L6 stored in the memory 12 or the storage unit 9 in S3-3. The virtual concentrated load and calculated power receiving end voltage (Va to Vg) for each of the nodes L1 to L5 are stored in the memory 12 or the storage unit 9.

配電系統の負荷分布並びに電圧推定プログラム13は、S3−1からS3−6の処理過程を仮想集中負荷の分布パターンA〜G毎に繰り返し行い、仮想集中負荷の分布パターンA〜G毎にS3−6の処理の段階でノードL1〜L5毎の仮想集中負荷及び計算受電端電圧をメモリ12又は記憶部9に記憶する。そして、仮想集中負荷の分布パターンA〜Gの全てについての計算が終了した場合にはS4の処理に移る。   The load distribution and voltage estimation program 13 of the power distribution system repeats the process from S3-1 to S3-6 for each of the virtual concentrated load distribution patterns A to G, and performs S3- for each of the virtual concentrated load distribution patterns A to G. In step 6, the virtual concentrated load and the calculated power receiving end voltage for each of the nodes L1 to L5 are stored in the memory 12 or the storage unit 9. Then, when the calculation for all of the virtual concentrated load distribution patterns A to G is completed, the process proceeds to S4.

続いて、制御部8の選定部8hは、記憶部9に記憶した実測受電端電圧Vr並びにS3−6でメモリ12又は記憶部9に記憶した計算受電端電圧Va〜Vgを読み込み、それらの全てを大きい順に並べて実測受電端電圧Vrの前後の値となる二つの計算受電端電圧を特定する。そして、特定された計算受電端電圧の仮想集中負荷の分布パターンを選定し(S4)、選定した二つの仮想集中負荷の分布パターンの種類をメモリ12又は記憶部9に記憶する。   Subsequently, the selection unit 8h of the control unit 8 reads the actually measured power receiving end voltage Vr stored in the storage unit 9 and the calculated power receiving end voltages Va to Vg stored in the memory 12 or the storage unit 9 in S3-6, all of them. Are arranged in descending order, and two calculated receiving end voltages that are values before and after the actually measured receiving end voltage Vr are specified. Then, the distribution pattern of the virtual concentrated load of the specified calculated power receiving end voltage is selected (S4), and the types of the selected two virtual concentrated load distribution patterns are stored in the memory 12 or the storage unit 9.

次に、制御部8の負荷分布算出部8iは、S4で選定した二つの仮想集中負荷の分布パターンの種類を読み込み、その二つの分布パターンについて、S3−6でメモリ12又は記憶部9に記憶したノードL1〜L5毎の仮想集中負荷及び計算受電端電圧を読み出す。更に、記憶部9に記憶した実測受電端電圧Vrを読み出す。そして、ノードL2の場合の例として挙げた(数12)の関係によりノードL1〜L5毎の最終的な負荷(有効電力)を算出し、同様にノードL2の場合の例として挙げた(数13)の関係によりノードL1〜L5毎の最終的な負荷(無効電力)を算出する(S5)。更に、算出したノードL1〜L5毎の最終的な負荷(有効電力、無効電力)をメモリ12又は記憶部9に記憶する。   Next, the load distribution calculation unit 8i of the control unit 8 reads the types of the two virtual concentrated load distribution patterns selected in S4, and stores the two distribution patterns in the memory 12 or the storage unit 9 in S3-6. The virtual concentrated load and the calculated power receiving end voltage for each of the nodes L1 to L5 are read out. Further, the measured power receiving end voltage Vr stored in the storage unit 9 is read out. Then, the final load (active power) for each of the nodes L1 to L5 is calculated based on the relationship (Expression 12) given as an example in the case of the node L2, and similarly given as an example in the case of the node L2 (Expression 13). ) To calculate the final load (reactive power) for each of the nodes L1 to L5 (S5). Furthermore, the calculated final loads (active power and reactive power) for each of the nodes L1 to L5 are stored in the memory 12 or the storage unit 9.

続いて、入力部10を介して任意の地点における電圧を推定する内容の作業者の命令が入力された場合には、制御部8の電圧推定部8jは、まず、記憶部9に記憶した潮流計算回路6の設定内容を読み込むと共にその潮流計算回路6に無負荷のノードを設ける。ここで、無負荷のノードの位置は、作業者の電圧推定の命令が入力された場合に電圧推定を行う位置の指定を要求する内容のメッセージを表示部11に表示し、作業者の指定位置を入力部10を介して入力する。そして、記憶部9に記憶した送電端の電圧Vs、有効電力Ps及び無効電力QsやS5でメモリ12又は記憶部9に記憶したノードL1〜L5毎の最終的な負荷(有効電力、無効電力)を読み込んで潮流計算を行い、無負荷のノード位置における電圧を算出する(S6)。更に、算出結果を表示部11に表示すると共に必要な場合には記憶部9に記憶する。   Subsequently, when the operator's command with the content of estimating the voltage at an arbitrary point is input via the input unit 10, the voltage estimation unit 8 j of the control unit 8 first stores the tidal current stored in the storage unit 9. The setting contents of the calculation circuit 6 are read, and a no-load node is provided in the power flow calculation circuit 6. Here, the position of the no-load node is displayed on the display unit 11 with a message requesting the designation of the position where voltage estimation is performed when the operator's voltage estimation command is input. Is input via the input unit 10. Then, the final load (active power, reactive power) for each of the nodes L1 to L5 stored in the memory 12 or the storage unit 9 with the voltage Vs, the active power Ps, the reactive power Qs, or the S5 stored in the storage unit 9 is stored. To calculate the current, and calculate the voltage at the no-load node position (S6). Further, the calculation result is displayed on the display unit 11 and stored in the storage unit 9 when necessary.

なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、本実施形態では、一つの配電系統区間を対象に推定を行った場合を例に挙げて説明したが、これに限られず、隣接する複数の配電系統区間を一体として推定しても良い。   In addition, although the above-mentioned form is an example of the suitable form of this invention, it is not limited to this, A various deformation | transformation implementation is possible in the range which does not deviate from the summary of this invention. For example, in this embodiment, the case where estimation is performed for one distribution system section has been described as an example. However, the present invention is not limited thereto, and a plurality of adjacent distribution system sections may be estimated as a unit.

本発明の実施例として、図7に示すように、変電所3’並びにセンサー付開閉器5a、5b及び5cが設置されている実際の配電系統14を対象にセンサー付開閉器5bの位置の電圧の推定を行った。   As an embodiment of the present invention, as shown in FIG. 7, the voltage at the position of the sensor-equipped switch 5b is targeted for the actual distribution system 14 in which the substation 3 ′ and the sensor-equipped switches 5a, 5b and 5c are installed. Was estimated.

本実施例では、電源側のセンサー付開閉器5a及び末端側のセンサー付開閉器5cの情報に基づいて本発明の方法を適用して電圧推定を行った。   In this example, voltage estimation was performed by applying the method of the present invention based on the information of the sensor-side sensor-equipped switch 5a and the terminal-side sensor-equipped switch 5c.

また、本発明の電圧推定方法を用いた推定結果と比較するため、他の手法として、配電技術マニュアルによる従来の電圧計算法及び電源側のセンサー付開閉器5aの電圧と末端側のセンサー付開閉器5cの電圧の単純平均による簡易電圧計算法を用いた推定も行った。   Moreover, in order to compare with the estimation result using the voltage estimation method of the present invention, as another method, the conventional voltage calculation method according to the distribution technology manual and the voltage of the power source side sensor-equipped switch 5a and the terminal side sensor-equipped switching Estimation was also performed using a simple voltage calculation method based on a simple average of the voltage of the device 5c.

更に、センサー付開閉器5bによる電圧の実測値との比較も行った。なお、実際に設置されている開閉器センサーのうち電圧計の誤差は1%であった。   Furthermore, the comparison with the measured value of the voltage by the switch with sensor 5b was also performed. The error of the voltmeter among the actually installed switch sensors was 1%.

上記に整理した四種類の電圧のそれぞれを30分毎に24時間解析(データ数は48)して、図8の結果を得た。図8において、記号の+はセンサー実測値、△は従来の電圧計算法による算出値、□は簡易電圧計算法による算出値、■は本発明の電圧推定方法による算出値の結果を表す。この結果から、全体として本発明の電圧推定方法による算出値(■)がセンサー実測値(+)の傾向と最も良く合致していることが確認できた。   Each of the four kinds of voltages arranged as described above was analyzed every 30 minutes for 24 hours (the number of data was 48), and the result of FIG. 8 was obtained. In FIG. 8, the symbol + indicates the sensor actual measurement value, Δ indicates the calculated value by the conventional voltage calculation method, □ indicates the calculated value by the simple voltage calculation method, and ■ indicates the result of the calculated value by the voltage estimation method of the present invention. From this result, it was confirmed that the calculated value (■) by the voltage estimation method of the present invention as a whole best matched with the tendency of the sensor actual measurement value (+).

また、三種類の推定電圧のそれぞれについて、(数14)で表される電圧推定誤差の評価関数Eを用いて評価を行い、表2の結果を得た。   Each of the three types of estimated voltages was evaluated using the evaluation function E of the voltage estimation error expressed by (Equation 14), and the results of Table 2 were obtained.

Figure 0004718943
Figure 0004718943

ここに、E:電圧推定誤差の評価関数(=電圧推定誤差の二乗平均の平方根)、V(k):データkにおけるセンサー付開閉器5bの位置の電圧の推定値[V]、v(k):センサー付開閉器5bの電圧実測値[V]、n:データ数(=48)。   Here, E: evaluation function of voltage estimation error (= square root of root mean square of voltage estimation error), V (k): estimated value [V], v (k) of voltage at position of sensor-equipped switch 5b in data k ): Actual measured voltage [V] of the sensor-equipped switch 5b, n: number of data (= 48).

Figure 0004718943
Figure 0004718943

表2の結果から、従来の電圧計算法のE=121.6[V]及び簡易電圧計算法のE=36.5[V]に対して本発明の電圧推定方法はE=19.2[V]となり、本発明の電圧推定方法が従来法や簡易法に比べて精度の高い良好な推定を行い得ることが確認できた。   From the results of Table 2, the voltage estimation method of the present invention is E = 19.2 [E] while E = 1121.6 [V] of the conventional voltage calculation method and E = 36.5 [V] of the simple voltage calculation method. V], and it has been confirmed that the voltage estimation method of the present invention can perform good estimation with higher accuracy than the conventional method and the simple method.

本発明の配電系統の負荷分布推定方法並びに電圧推定方法の実施形態の一例を説明するフローチャートである。It is a flowchart explaining an example of embodiment of the load distribution estimation method and voltage estimation method of the distribution system of this invention. 本実施形態の配電系統を示す図である。It is a figure which shows the power distribution system of this embodiment. 本実施形態の潮流計算回路を示す図である。It is a figure which shows the tidal current calculation circuit of this embodiment. 本実施形態の仮想集中負荷の分布パターンを説明する図である。It is a figure explaining the distribution pattern of the virtual concentrated load of this embodiment. 本実施形態の仮想集中負荷の分布パターン毎の受電端電圧の算出方法を説明するフローチャートである。It is a flowchart explaining the calculation method of the receiving end voltage for every distribution pattern of the virtual concentrated load of this embodiment. 本実施形態の配電系統の負荷分布推定方法並びに電圧推定方法をプログラムを用いて実施する場合の配電系統の負荷分布並びに電圧推定装置の機能ブロック図である。It is a functional block diagram of the load distribution of a power distribution system when implementing the load distribution estimation method and the voltage estimation method of a power distribution system of this embodiment using a program. 実施例の配電系統を示す図である。It is a figure which shows the power distribution system of an Example. 実施例のセンサー実測値と計算方法別算出値の比較の結果を示す図である。It is a figure which shows the result of the comparison of the sensor actual value of an Example, and the calculated value according to a calculation method.

符号の説明Explanation of symbols

1 配電系統
2 配電系統区間
3 変圧器
4 配電線
5A、5B、5C、5D 計測器
6 潮流計算回路
7 配電系統の負荷分布並びに電圧推定装置
8 制御部
9 記憶部
10 入力部
11 表示部
12 メモリ
DESCRIPTION OF SYMBOLS 1 Distribution system 2 Distribution system section 3 Transformer 4 Distribution line 5A, 5B, 5C, 5D Measuring instrument 6 Power flow calculation circuit 7 Distribution distribution system load distribution and voltage estimation device 8 Control unit 9 Storage unit 10 Input unit 11 Display unit 12 Memory

Claims (12)

配電系統区間内に分散して分布している配電系統負荷を前記配電系統区間内の複数のノードにおける仮想集中負荷で表して潮流計算回路を作成する工程(S1)と、前記配電系統区間の受電端電圧が異なる複数の前記仮想集中負荷の分布パターンを作成する工程(S2)と、数式1及び数式2で表される前記潮流計算回路における送電端有効電力Ps及び送電端無効電力Qsについて初期条件としてPloss及びQlossをゼロとして前記配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを算出し(S3−1)
(数1) Ps=PL+Pr+Ploss
ここに、Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数2) Qs=QL+Qr+Qloss
ここに、Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
前記配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを前記仮想集中負荷の分布パターンに従って前記複数のノードにおける仮想集中負荷に配分して前記複数のノード毎の負荷を算出し(S3−2)
前記複数のノード毎の負荷を用いて潮流計算を行って前記配電系統区間の配電線の線路ロス(有効電力)Ploss及び線路ロス(無効電力)Qlossを算出し(S3−3)
数式3及び数式4を用いて実測値と計算値との差(有効電力)ΔP及び実測値と計算値との差(無効電力)ΔQを算出すると共にこれらΔP及びΔQに基づいて収束判定を行い(S3−4)
(数3) ΔP=Ps−(PL+Pr+Ploss)
ここに、ΔP:実測値と計算値との差(有効電力)[W]
Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数4) ΔQ=Qs−(QL+Qr+Qloss)
ここに、ΔQ:実測値と計算値との差(無効電力)[Var]
Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
前記収束判定の結果前記潮流計算が収束していると判断されるまで数式5及び数式6を用いて新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を算出する(S3−5)と共に
(数5) PL’=PL+ΔP
ここに、PL’:新たな配電系統区間の負荷(有効電力)の合計[W]
ΔP:実測値と計算値との差(有効電力)[W]
(数6) QL’=QL+ΔQ
ここに、QL’:新たな配電系統区間の負荷(無効電力)の合計[Var]
ΔQ:実測値と計算値との差(無効電力)[Var]
当該新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を用いてあらためて前記S3−2から前記S3−4までの処理を行うことによって前記仮想集中負荷の分布パターン毎に前記配電系統区間の計算受電端電圧を算出する工程(S3)と、実測受電端電圧と前記計算受電端電圧との差分が最も小さい仮想集中負荷の分布パターンを選定する工程とを有することを特徴とする配電系統の負荷分布推定方法。
A step (S1) of creating a power flow calculation circuit by expressing the distribution system load distributed and distributed in the distribution system section as a virtual concentrated load in a plurality of nodes in the distribution system section, and receiving power in the distribution system section A step (S2) of creating a plurality of virtual concentrated load distribution patterns having different end voltages, and initial conditions for the transmitting end active power Ps and the transmitting end reactive power Qs in the power flow calculation circuit expressed by Equation 1 and Equation 2 Assuming that Ploss and Qloss are zero, the total PL of the load (active power) and the total QL of the load (reactive power) in the distribution system section are calculated (S3-1)
(Equation 1) Ps = PL + Pr + Ploss
Where Ps: active power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 2) Qs = QL + Qr + Qloss
Where Qs: reactive power at the transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
The load for each of the plurality of nodes is distributed by distributing the total PL of the load (active power) and the total load QL of the load (reactive power) to the virtual concentrated load in the plurality of nodes according to the distribution pattern of the virtual concentrated load. Is calculated (S3-2)
The power flow is calculated using the load for each of the plurality of nodes to calculate the line loss (active power) Ploss and the line loss (reactive power) Qloss of the distribution lines in the distribution system section (S3-3)
The difference between the measured value and the calculated value (active power) ΔP and the difference between the actually measured value and the calculated value (reactive power) ΔQ are calculated using Formula 3 and Formula 4, and the convergence is determined based on these ΔP and ΔQ. (S3-4)
(Expression 3) ΔP = Ps− (PL + Pr + Ploss)
Where ΔP: difference between the actual measurement value and the calculated value (active power) [W]
Ps: Effective power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 4) ΔQ = Qs− (QL + Qr + Qloss)
Where ΔQ: difference between the measured value and the calculated value (reactive power) [Var]
Qs: Reactive power at transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
As a result of the convergence determination, a new load (active power) total PL ′ and a load (reactive power) total QL ′ are calculated using Formula 5 and Formula 6 until it is determined that the power flow calculation has converged. With (S3-5)
(Equation 5) PL ′ = PL + ΔP
Here, PL ′: total load (active power) in the new distribution system section [W]
ΔP: Difference between measured value and calculated value (active power) [W]
(Expression 6) QL ′ = QL + ΔQ
Here, QL ′: total load (reactive power) in the new distribution system section [Var]
ΔQ: Difference between the measured value and the calculated value (reactive power) [Var]
For each distribution pattern of the virtual concentrated load, the processes from S3-2 to S3-4 are performed again using the total PL ′ of the new load (active power) and the total QL ′ of the load (reactive power). having a step of calculating a calculated receiving end voltage before Symbol distribution system section (S3), a step of difference between the calculated receiving end voltage and the measured receiving end voltage is selected distribution pattern of the smallest imaginary concentrated load A load distribution estimation method for a distribution system, characterized by:
配電系統区間内に分散して分布している配電系統負荷を前記配電系統区間内の複数のノードにおける仮想集中負荷で表して潮流計算回路を作成する工程(S1)と、前記配電系統区間の受電端電圧が異なる複数の前記仮想集中負荷の分布パターンを作成する工程(S2)と、数式1及び数式2で表される前記潮流計算回路における送電端有効電力Ps及び送電端無効電力Qsについて初期条件としてPloss及びQlossをゼロとして前記配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを算出し(S3−1)
(数1) Ps=PL+Pr+Ploss
ここに、Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数2) Qs=QL+Qr+Qloss
ここに、Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
前記配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを前記仮想集中負荷の分布パターンに従って前記複数のノードにおける仮想集中負荷に配分して前記複数のノード毎の負荷を算出し(S3−2)
前記複数のノード毎の負荷を用いて潮流計算を行って前記配電系統区間の配電線の線路ロス(有効電力)Ploss及び線路ロス(無効電力)Qlossを算出し(S3−3)
数式3及び数式4を用いて実測値と計算値との差(有効電力)ΔP及び実測値と計算値との差(無効電力)ΔQを算出すると共にこれらΔP及びΔQに基づいて収束判定を行い(S3−4)
(数3) ΔP=Ps−(PL+Pr+Ploss)
ここに、ΔP:実測値と計算値との差(有効電力)[W]
Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数4) ΔQ=Qs−(QL+Qr+Qloss)
ここに、ΔQ:実測値と計算値との差(無効電力)[Var]
Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
前記収束判定の結果前記潮流計算が収束していると判断されるまで数式5及び数式6を用いて新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を算出する(S3−5)と共に
(数5) PL’=PL+ΔP
ここに、PL’:新たな配電系統区間の負荷(有効電力)の合計[W]
ΔP:実測値と計算値との差(有効電力)[W]
(数6) QL’=QL+ΔQ
ここに、QL’:新たな配電系統区間の負荷(無効電力)の合計[Var]
ΔQ:実測値と計算値との差(無効電力)[Var]
当該新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を用いてあらためて前記S3−2から前記S3−4までの処理を行うことによって前記仮想集中負荷の分布パターン毎に前記配電系統区間の計算受電端電圧を算出する工程(S3)と、実測受電端電圧並びに前記仮想集中負荷の分布パターン毎の前記計算受電端電圧を値の大きい順又は小さい順に並べて前記実測受電端電圧の前後の前記計算受電端電圧の仮想集中負荷の分布パターンを選定する工程と、当該選定した二つの仮想集中負荷の分布パターンの負荷分布を線形補間して前記配電系統区間内の負荷分布を推定する工程とを有することを特徴とする配電系統の負荷分布推定方法。
A step (S1) of creating a power flow calculation circuit by expressing the distribution system load distributed and distributed in the distribution system section as a virtual concentrated load in a plurality of nodes in the distribution system section, and receiving power in the distribution system section A step (S2) of creating a plurality of virtual concentrated load distribution patterns having different end voltages, and initial conditions for the transmitting end active power Ps and the transmitting end reactive power Qs in the power flow calculation circuit expressed by Equation 1 and Equation 2 Assuming that Ploss and Qloss are zero, the total PL of the load (active power) and the total QL of the load (reactive power) in the distribution system section are calculated (S3-1)
(Equation 1) Ps = PL + Pr + Ploss
Where Ps: active power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 2) Qs = QL + Qr + Qloss
Where Qs: reactive power at the transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
The load for each of the plurality of nodes is distributed by distributing the total PL of the load (active power) and the total load QL of the load (reactive power) to the virtual concentrated load in the plurality of nodes according to the distribution pattern of the virtual concentrated load. Is calculated (S3-2)
The power flow is calculated using the load for each of the plurality of nodes to calculate the line loss (active power) Ploss and the line loss (reactive power) Qloss of the distribution lines in the distribution system section (S3-3)
The difference between the measured value and the calculated value (active power) ΔP and the difference between the actually measured value and the calculated value (reactive power) ΔQ are calculated using Formula 3 and Formula 4, and the convergence is determined based on these ΔP and ΔQ. (S3-4)
(Expression 3) ΔP = Ps− (PL + Pr + Ploss)
Where ΔP: difference between the actual measurement value and the calculated value (active power) [W]
Ps: Effective power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 4) ΔQ = Qs− (QL + Qr + Qloss)
Where ΔQ: difference between the measured value and the calculated value (reactive power) [Var]
Qs: Reactive power at transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
As a result of the convergence determination, a new load (active power) total PL ′ and a load (reactive power) total QL ′ are calculated using Formula 5 and Formula 6 until it is determined that the power flow calculation has converged. With (S3-5)
(Equation 5) PL ′ = PL + ΔP
Here, PL ′: total load (active power) in the new distribution system section [W]
ΔP: Difference between measured value and calculated value (active power) [W]
(Expression 6) QL ′ = QL + ΔQ
Here, QL ′: total load (reactive power) in the new distribution system section [Var]
ΔQ: Difference between the measured value and the calculated value (reactive power) [Var]
For each distribution pattern of the virtual concentrated load, the processes from S3-2 to S3-4 are performed again using the total PL ′ of the new load (active power) and the total QL ′ of the load (reactive power). the actual pre-Symbol distribution and step (S3) of calculating a calculated receiving end voltage of the system section, measured voltage at reception end and side by side the calculated receiving end voltage of each distribution pattern of the virtual concentrated load in descending order or ascending order of the values in The step of selecting the distribution pattern of the virtual concentrated load of the calculated receiving end voltage before and after the receiving end voltage, and the load in the distribution system section by linearly interpolating the load distribution of the two selected virtual concentrated load distribution patterns A load distribution estimation method for a power distribution system.
配電系統区間内に分散して分布している配電系統負荷を前記配電系統区間内の複数のノードにおける仮想集中負荷で表して潮流計算回路を作成する工程(S1)と、前記配電系統区間の受電端電圧が異なる複数の前記仮想集中負荷の分布パターンを作成する工程(S2)と、数式1及び数式2で表される前記潮流計算回路における送電端有効電力Ps及び送電端無効電力Qsについて初期条件としてPloss及びQlossをゼロとして前記配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを算出し(S3−1)
(数1) Ps=PL+Pr+Ploss
ここに、Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数2) Qs=QL+Qr+Qloss
ここに、Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
前記配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを前記仮想集中負荷の分布パターンに従って前記複数のノードにおける仮想集中負荷に配分して前記複数のノード毎の負荷を算出し(S3−2)
前記複数のノード毎の負荷を用いて潮流計算を行って前記配電系統区間の配電線の線路ロス(有効電力)Ploss及び線路ロス(無効電力)Qlossを算出し(S3−3)
数式3及び数式4を用いて実測値と計算値との差(有効電力)ΔP及び実測値と計算値との差(無効電力)ΔQを算出すると共にこれらΔP及びΔQに基づいて収束判定を行い(S3−4)
(数3) ΔP=Ps−(PL+Pr+Ploss)
ここに、ΔP:実測値と計算値との差(有効電力)[W]
Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数4) ΔQ=Qs−(QL+Qr+Qloss)
ここに、ΔQ:実測値と計算値との差(無効電力)[Var]
Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
前記収束判定の結果前記潮流計算が収束していると判断されるまで数式5及び数式6を用いて新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を算出する(S3−5)と共に
(数5) PL’=PL+ΔP
ここに、PL’:新たな配電系統区間の負荷(有効電力)の合計[W]
ΔP:実測値と計算値との差(有効電力)[W]
(数6) QL’=QL+ΔQ
ここに、QL’:新たな配電系統区間の負荷(無効電力)の合計[Var]
ΔQ:実測値と計算値との差(無効電力)[Var]
当該新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を用いてあらためて前記S3−2から前記S3−4までの処理を行うことによって前記仮想集中負荷の分布パターン毎に前記配電系統区間の計算受電端電圧を算出する工程(S3)と、実測受電端電圧と前記計算受電端電圧との差分が最も小さい仮想集中負荷の分布パターンを選定する工程と、当該選定した仮想集中負荷の分布パターンを用いて潮流計算を行うことにより前記配電系統区間内の各地点における電圧を推定する工程とを有することを特徴とする配電系統の電圧推定方法。
A step (S1) of creating a power flow calculation circuit by expressing the distribution system load distributed and distributed in the distribution system section as a virtual concentrated load in a plurality of nodes in the distribution system section, and receiving power in the distribution system section A step (S2) of creating a plurality of virtual concentrated load distribution patterns having different end voltages, and initial conditions for the transmitting end active power Ps and the transmitting end reactive power Qs in the power flow calculation circuit expressed by Equation 1 and Equation 2 Assuming that Ploss and Qloss are zero, the total PL of the load (active power) and the total QL of the load (reactive power) in the distribution system section are calculated (S3-1)
(Equation 1) Ps = PL + Pr + Ploss
Where Ps: active power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 2) Qs = QL + Qr + Qloss
Where Qs: reactive power at the transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
The load for each of the plurality of nodes is distributed by distributing the total PL of the load (active power) and the total load QL of the load (reactive power) to the virtual concentrated load in the plurality of nodes according to the distribution pattern of the virtual concentrated load. Is calculated (S3-2)
The power flow is calculated using the load for each of the plurality of nodes to calculate the line loss (active power) Ploss and the line loss (reactive power) Qloss of the distribution lines in the distribution system section (S3-3)
The difference between the measured value and the calculated value (active power) ΔP and the difference between the actually measured value and the calculated value (reactive power) ΔQ are calculated using Formula 3 and Formula 4, and the convergence is determined based on these ΔP and ΔQ. (S3-4)
(Expression 3) ΔP = Ps− (PL + Pr + Ploss)
Where ΔP: difference between the actual measurement value and the calculated value (active power) [W]
Ps: Effective power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 4) ΔQ = Qs− (QL + Qr + Qloss)
Where ΔQ: difference between the measured value and the calculated value (reactive power) [Var]
Qs: Reactive power at transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
As a result of the convergence determination, a new load (active power) total PL ′ and a load (reactive power) total QL ′ are calculated using Formula 5 and Formula 6 until it is determined that the power flow calculation has converged. With (S3-5)
(Equation 5) PL ′ = PL + ΔP
Here, PL ′: total load (active power) in the new distribution system section [W]
ΔP: Difference between measured value and calculated value (active power) [W]
(Expression 6) QL ′ = QL + ΔQ
Here, QL ′: total load (reactive power) in the new distribution system section [Var]
ΔQ: Difference between the measured value and the calculated value (reactive power) [Var]
For each distribution pattern of the virtual concentrated load, the processing from S3-2 to S3-4 is performed again using the total PL ′ of the new load (active power) and the total QL ′ of the load (reactive power). a step of selecting the step of calculating the calculated receiving end voltage before Symbol distribution system section (S3), the distribution pattern of the smallest imaginary concentrated load difference between the calculated receiving end voltage and the measured voltage at reception end, the said selection A voltage estimation method for a distribution system, comprising: estimating a voltage at each point in the distribution system section by performing a power flow calculation using the distribution pattern of the virtual concentrated load.
配電系統区間内に分散して分布している配電系統負荷を前記配電系統区間内の複数のノードにおける仮想集中負荷で表して潮流計算回路を作成する工程(S1)と、前記配電系統区間の受電端電圧が異なる複数の前記仮想集中負荷の分布パターンを作成する工程(S2)と、数式1及び数式2で表される前記潮流計算回路における送電端有効電力Ps及び送電端無効電力Qsについて初期条件としてPloss及びQlossをゼロとして前記配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを算出し(S3−1)
(数1) Ps=PL+Pr+Ploss
ここに、Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数2) Qs=QL+Qr+Qloss
ここに、Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
前記配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを前記仮想集中負荷の分布パターンに従って前記複数のノードにおける仮想集中負荷に配分して前記複数のノード毎の負荷を算出し(S3−2)
前記複数のノード毎の負荷を用いて潮流計算を行って前記配電系統区間の配電線の線路ロス(有効電力)Ploss及び線路ロス(無効電力)Qlossを算出し(S3−3)
数式3及び数式4を用いて実測値と計算値との差(有効電力)ΔP及び実測値と計算値との差(無効電力)ΔQを算出すると共にこれらΔP及びΔQに基づいて収束判定を行い(S3−4)
(数3) ΔP=Ps−(PL+Pr+Ploss)
ここに、ΔP:実測値と計算値との差(有効電力)[W]
Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数4) ΔQ=Qs−(QL+Qr+Qloss)
ここに、ΔQ:実測値と計算値との差(無効電力)[Var]
Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
前記収束判定の結果前記潮流計算が収束していると判断されるまで数式5及び数式6を用いて新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を算出する(S3−5)と共に
(数5) PL’=PL+ΔP
ここに、PL’:新たな配電系統区間の負荷(有効電力)の合計[W]
ΔP:実測値と計算値との差(有効電力)[W]
(数6) QL’=QL+ΔQ
ここに、QL’:新たな配電系統区間の負荷(無効電力)の合計[Var]
ΔQ:実測値と計算値との差(無効電力)[Var]
当該新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を用いてあらためて前記S3−2から前記S3−4までの処理を行うことによって前記仮想集中負荷の分布パターン毎に前記配電系統区間の計算受電端電圧を算出する工程(S3)と、実測受電端電圧並びに前記仮想集中負荷の分布パターン毎の前記計算受電端電圧を値の大きい順又は小さい順に並べて前記実測受電端電圧の前後の前記計算受電端電圧の仮想集中負荷の分布パターンを選定する工程と、当該選定した二つの仮想集中負荷の分布パターンの負荷分布を線形補間して前記配電系統区間内の負荷分布を推定する工程と、該線形補間して求めた負荷分布を用いて潮流計算を行うことにより前記配電系統区間内の各地点における電圧を推定する工程とを有することを特徴とする配電系統の電圧推定方法。
A step (S1) of creating a power flow calculation circuit by expressing the distribution system load distributed and distributed in the distribution system section as a virtual concentrated load in a plurality of nodes in the distribution system section, and receiving power in the distribution system section A step (S2) of creating a plurality of virtual concentrated load distribution patterns having different end voltages, and initial conditions for the transmitting end active power Ps and the transmitting end reactive power Qs in the power flow calculation circuit expressed by Equation 1 and Equation 2 Assuming that Ploss and Qloss are zero, the total PL of the load (active power) and the total QL of the load (reactive power) in the distribution system section are calculated (S3-1)
(Equation 1) Ps = PL + Pr + Ploss
Where Ps: active power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 2) Qs = QL + Qr + Qloss
Where Qs: reactive power at the transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
The load for each of the plurality of nodes is distributed by distributing the total PL of the load (active power) and the total load QL of the load (reactive power) to the virtual concentrated load in the plurality of nodes according to the distribution pattern of the virtual concentrated load. Is calculated (S3-2)
The power flow is calculated using the load for each of the plurality of nodes to calculate the line loss (active power) Ploss and the line loss (reactive power) Qloss of the distribution lines in the distribution system section (S3-3)
The difference between the measured value and the calculated value (active power) ΔP and the difference between the actually measured value and the calculated value (reactive power) ΔQ are calculated using Formula 3 and Formula 4, and the convergence is determined based on these ΔP and ΔQ. (S3-4)
(Expression 3) ΔP = Ps− (PL + Pr + Ploss)
Where ΔP: difference between the actual measurement value and the calculated value (active power) [W]
Ps: Effective power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 4) ΔQ = Qs− (QL + Qr + Qloss)
Where ΔQ: difference between the measured value and the calculated value (reactive power) [Var]
Qs: Reactive power at transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
As a result of the convergence determination, a new load (active power) total PL ′ and a load (reactive power) total QL ′ are calculated using Formula 5 and Formula 6 until it is determined that the power flow calculation has converged. With (S3-5)
(Equation 5) PL ′ = PL + ΔP
Here, PL ′: total load (active power) in the new distribution system section [W]
ΔP: Difference between measured value and calculated value (active power) [W]
(Expression 6) QL ′ = QL + ΔQ
Here, QL ′: total load (reactive power) in the new distribution system section [Var]
ΔQ: Difference between the measured value and the calculated value (reactive power) [Var]
For each distribution pattern of the virtual concentrated load, the processing from S3-2 to S3-4 is performed again using the total PL ′ of the new load (active power) and the total QL ′ of the load (reactive power). the actual pre-Symbol distribution and process (S3) for calculating a calculated voltage at reception end of the system section, measured voltage at reception end and side by side the calculated receiving end voltage of each distribution pattern of the virtual concentrated load in descending order or ascending order of the values in The step of selecting the distribution pattern of the virtual concentrated load of the calculated receiving end voltage before and after the receiving end voltage, and the load in the distribution system section by linearly interpolating the load distribution of the two selected virtual concentrated load distribution patterns A step of estimating a distribution, and a step of estimating a voltage at each point in the distribution system section by performing a power flow calculation using the load distribution obtained by the linear interpolation. Voltage estimation method of the distribution system to symptoms.
配電系統区間内に分散して分布している配電系統負荷を前記配電系統区間内の複数のノードにおける仮想集中負荷で表して潮流計算回路を作成する手段と、前記配電系統区間の受電端電圧が異なる複数の前記仮想集中負荷の分布パターンを作成する手段と、数式1及び数式2で表される前記潮流計算回路における送電端有効電力Ps及び送電端無効電力Qsについて初期条件としてPloss及びQlossをゼロとして前記配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを算出し(S3−1)
(数1) Ps=PL+Pr+Ploss
ここに、Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数2) Qs=QL+Qr+Qloss
ここに、Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
前記配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを前記仮想集中負荷の分布パターンに従って前記複数のノードにおける仮想集中負荷に配分して前記複数のノード毎の負荷を算出し(S3−2)
前記複数のノード毎の負荷を用いて潮流計算を行って前記配電系統区間の配電線の線路ロス(有効電力)Ploss及び線路ロス(無効電力)Qlossを算出し(S3−3)
数式3及び数式4を用いて実測値と計算値との差(有効電力)ΔP及び実測値と計算値との差(無効電力)ΔQを算出すると共にこれらΔP及びΔQに基づいて収束判定を行い(S3−4)
(数3) ΔP=Ps−(PL+Pr+Ploss)
ここに、ΔP:実測値と計算値との差(有効電力)[W]
Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数4) ΔQ=Qs−(QL+Qr+Qloss)
ここに、ΔQ:実測値と計算値との差(無効電力)[Var]
Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
前記収束判定の結果前記潮流計算が収束していると判断されるまで数式5及び数式6を用いて新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を算出する(S3−5)と共に
(数5) PL’=PL+ΔP
ここに、PL’:新たな配電系統区間の負荷(有効電力)の合計[W]
ΔP:実測値と計算値との差(有効電力)[W]
(数6) QL’=QL+ΔQ
ここに、QL’:新たな配電系統区間の負荷(無効電力)の合計[Var]
ΔQ:実測値と計算値との差(無効電力)[Var]
当該新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を用いてあらためて前記S3−2から前記S3−4までの処理を行うことによって前記仮想集中負荷の分布パターン毎に前記配電系統区間の計算受電端電圧を算出する手段と、実測受電端電圧と前記計算受電端電圧との差分が最も小さい仮想集中負荷の分布パターンを選定する手段とを有することを特徴とする配電系統の負荷分布推定装置。
Means for creating a power flow calculation circuit by representing the distribution system load distributed and distributed in the distribution system section as virtual concentrated loads at a plurality of nodes in the distribution system section, and the receiving end voltage of the distribution system section A means for creating a plurality of different virtual concentrated load distribution patterns, and Ploss and Qloss as zero as initial conditions for the transmission end active power Ps and the transmission end reactive power Qs in the power flow calculation circuit expressed by Equation 1 and Equation 2 And calculating the total PL of the load (active power) and the total QL of the load (reactive power) in the distribution system section (S3-1)
(Equation 1) Ps = PL + Pr + Ploss
Where Ps: active power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 2) Qs = QL + Qr + Qloss
Where Qs: reactive power at the transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
The load for each of the plurality of nodes is distributed by distributing the total PL of the load (active power) and the total load QL of the load (reactive power) to the virtual concentrated load in the plurality of nodes according to the distribution pattern of the virtual concentrated load. Is calculated (S3-2)
The power flow is calculated using the load for each of the plurality of nodes to calculate the line loss (active power) Ploss and the line loss (reactive power) Qloss of the distribution lines in the distribution system section (S3-3)
The difference between the measured value and the calculated value (active power) ΔP and the difference between the actually measured value and the calculated value (reactive power) ΔQ are calculated using Formula 3 and Formula 4, and the convergence is determined based on these ΔP and ΔQ. (S3-4)
(Expression 3) ΔP = Ps− (PL + Pr + Ploss)
Where ΔP: difference between the actual measurement value and the calculated value (active power) [W]
Ps: Effective power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 4) ΔQ = Qs− (QL + Qr + Qloss)
Where ΔQ: difference between the measured value and the calculated value (reactive power) [Var]
Qs: Reactive power at transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
As a result of the convergence determination, a new load (active power) total PL ′ and a load (reactive power) total QL ′ are calculated using Formula 5 and Formula 6 until it is determined that the power flow calculation has converged. With (S3-5)
(Equation 5) PL ′ = PL + ΔP
Here, PL ′: total load (active power) in the new distribution system section [W]
ΔP: Difference between measured value and calculated value (active power) [W]
(Expression 6) QL ′ = QL + ΔQ
Here, QL ′: total load (reactive power) in the new distribution system section [Var]
ΔQ: Difference between the measured value and the calculated value (reactive power) [Var]
For each distribution pattern of the virtual concentrated load, the processing from S3-2 to S3-4 is performed again using the total PL ′ of the new load (active power) and the total QL ′ of the load (reactive power). means for calculating the calculated receiving end voltage before Symbol distribution system section in a feature that the difference between the measured receiving end voltage the calculated receiving end voltage and means for selecting a distribution pattern of the smallest imaginary concentrated load Load distribution estimation device for distribution system.
配電系統区間内に分散して分布している配電系統負荷を前記配電系統区間内の複数のノードにおける仮想集中負荷で表して潮流計算回路を作成する手段と、前記配電系統区間の受電端電圧が異なる複数の前記仮想集中負荷の分布パターンを作成する手段と、数式1及び数式2で表される前記潮流計算回路における送電端有効電力Ps及び送電端無効電力Qsについて初期条件としてPloss及びQlossをゼロとして前記配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを算出し(S3−1)
(数1) Ps=PL+Pr+Ploss
ここに、Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数2) Qs=QL+Qr+Qloss
ここに、Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
前記配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを前記仮想集中負荷の分布パターンに従って前記複数のノードにおける仮想集中負荷に配分して前記複数のノード毎の負荷を算出し(S3−2)
前記複数のノード毎の負荷を用いて潮流計算を行って前記配電系統区間の配電線の線路ロス(有効電力)Ploss及び線路ロス(無効電力)Qlossを算出し(S3−3)
数式3及び数式4を用いて実測値と計算値との差(有効電力)ΔP及び実測値と計算値との差(無効電力)ΔQを算出すると共にこれらΔP及びΔQに基づいて収束判定を行い(S3−4)
(数3) ΔP=Ps−(PL+Pr+Ploss)
ここに、ΔP:実測値と計算値との差(有効電力)[W]
Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数4) ΔQ=Qs−(QL+Qr+Qloss)
ここに、ΔQ:実測値と計算値との差(無効電力)[Var]
Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
前記収束判定の結果前記潮流計算が収束していると判断されるまで数式5及び数式6を用いて新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を算出する(S3−5)と共に
(数5) PL’=PL+ΔP
ここに、PL’:新たな配電系統区間の負荷(有効電力)の合計[W]
ΔP:実測値と計算値との差(有効電力)[W]
(数6) QL’=QL+ΔQ
ここに、QL’:新たな配電系統区間の負荷(無効電力)の合計[Var]
ΔQ:実測値と計算値との差(無効電力)[Var]
当該新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を用いてあらためて前記S3−2から前記S3−4までの処理を行うことによって前記仮想集中負荷の分布パターン毎に前記配電系統区間の計算受電端電圧を算出する手段と、実測受電端電圧並びに前記仮想集中負荷の分布パターン毎の前記計算受電端電圧を値の大きい順又は小さい順に並べて前記実測受電端電圧の前後の前記計算受電端電圧の仮想集中負荷の分布パターンを選定する手段と、当該選定した二つの仮想集中負荷の分布パターンの負荷分布を線形補間して前記配電系統区間内の負荷分布を推定する手段とを有することを特徴とする配電系統の負荷分布推定装置。
Means for creating a power flow calculation circuit by representing the distribution system load distributed and distributed in the distribution system section as virtual concentrated loads at a plurality of nodes in the distribution system section, and the receiving end voltage of the distribution system section A means for creating a plurality of different virtual concentrated load distribution patterns, and Ploss and Qloss as zero as initial conditions for the transmission end active power Ps and the transmission end reactive power Qs in the power flow calculation circuit expressed by Equation 1 and Equation 2 And calculating the total PL of the load (active power) and the total QL of the load (reactive power) in the distribution system section (S3-1)
(Equation 1) Ps = PL + Pr + Ploss
Where Ps: active power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 2) Qs = QL + Qr + Qloss
Where Qs: reactive power at the transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
The load for each of the plurality of nodes is distributed by distributing the total PL of the load (active power) and the total load QL of the load (reactive power) to the virtual concentrated load in the plurality of nodes according to the distribution pattern of the virtual concentrated load. Is calculated (S3-2)
The power flow is calculated using the load for each of the plurality of nodes to calculate the line loss (active power) Ploss and the line loss (reactive power) Qloss of the distribution lines in the distribution system section (S3-3)
The difference between the measured value and the calculated value (active power) ΔP and the difference between the actually measured value and the calculated value (reactive power) ΔQ are calculated using Formula 3 and Formula 4, and the convergence is determined based on these ΔP and ΔQ. (S3-4)
(Expression 3) ΔP = Ps− (PL + Pr + Ploss)
Where ΔP: difference between the actual measurement value and the calculated value (active power) [W]
Ps: Effective power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 4) ΔQ = Qs− (QL + Qr + Qloss)
Where ΔQ: difference between the measured value and the calculated value (reactive power) [Var]
Qs: Reactive power at transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
As a result of the convergence determination, a new load (active power) total PL ′ and a load (reactive power) total QL ′ are calculated using Formula 5 and Formula 6 until it is determined that the power flow calculation has converged. With (S3-5)
(Equation 5) PL ′ = PL + ΔP
Here, PL ′: total load (active power) in the new distribution system section [W]
ΔP: Difference between measured value and calculated value (active power) [W]
(Expression 6) QL ′ = QL + ΔQ
Here, QL ′: total load (reactive power) in the new distribution system section [Var]
ΔQ: Difference between the measured value and the calculated value (reactive power) [Var]
For each distribution pattern of the virtual concentrated load, the processes from S3-2 to S3-4 are performed again using the total PL ′ of the new load (active power) and the total QL ′ of the load (reactive power). before SL distribution means for calculating the calculated receiving end voltage of the system section, measured receiving end voltage and the virtual concentration load distribution pattern each of the calculated receiving end voltage value of the descending order or ascending order Tile the measured receiving end voltage The means for selecting the distribution pattern of the virtual concentrated load of the calculated receiving end voltage before and after the load and the load distribution of the distribution pattern of the two selected virtual concentrated loads are linearly interpolated to estimate the load distribution in the distribution system section A load distribution estimating device for a power distribution system.
配電系統区間内に分散して分布している配電系統負荷を前記配電系統区間内の複数のノードにおける仮想集中負荷で表して潮流計算回路を作成する手段と、前記配電系統区間の受電端電圧が異なる複数の前記仮想集中負荷の分布パターンを作成する手段と、数式1及び数式2で表される前記潮流計算回路における送電端有効電力Ps及び送電端無効電力Qsについて初期条件としてPloss及びQlossをゼロとして前記配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを算出し(S3−1)
(数1) Ps=PL+Pr+Ploss
ここに、Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数2) Qs=QL+Qr+Qloss
ここに、Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
前記配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを前記仮想集中負荷の分布パターンに従って前記複数のノードにおける仮想集中負荷に配分して前記複数のノード毎の負荷を算出し(S3−2)
前記複数のノード毎の負荷を用いて潮流計算を行って前記配電系統区間の配電線の線路ロス(有効電力)Ploss及び線路ロス(無効電力)Qlossを算出し(S3−3)
数式3及び数式4を用いて実測値と計算値との差(有効電力)ΔP及び実測値と計算値との差(無効電力)ΔQを算出すると共にこれらΔP及びΔQに基づいて収束判定を行い(S3−4)
(数3) ΔP=Ps−(PL+Pr+Ploss)
ここに、ΔP:実測値と計算値との差(有効電力)[W]
Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数4) ΔQ=Qs−(QL+Qr+Qloss)
ここに、ΔQ:実測値と計算値との差(無効電力)[Var]
Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
前記収束判定の結果前記潮流計算が収束していると判断されるまで数式5及び数式6を用いて新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を算出する(S3−5)と共に
(数5) PL’=PL+ΔP
ここに、PL’:新たな配電系統区間の負荷(有効電力)の合計[W]
ΔP:実測値と計算値との差(有効電力)[W]
(数6) QL’=QL+ΔQ
ここに、QL’:新たな配電系統区間の負荷(無効電力)の合計[Var]
ΔQ:実測値と計算値との差(無効電力)[Var]
当該新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を用いてあらためて前記S3−2から前記S3−4までの処理を行うことによって前記仮想集中負荷の分布パターン毎に前記配電系統区間の計算受電端電圧を算出する手段と、実測受電端電圧と前記計算受電端電圧との差分が最も小さい仮想集中負荷の分布パターンを選定する手段と、当該選定した仮想集中負荷の分布パターンを用いて潮流計算を行うことにより前記配電系統区間内の各地点における電圧を推定する手段とを有することを特徴とする配電系統の電圧推定装置。
Means for creating a power flow calculation circuit by representing the distribution system load distributed and distributed in the distribution system section as virtual concentrated loads at a plurality of nodes in the distribution system section, and the receiving end voltage of the distribution system section A means for creating a plurality of different virtual concentrated load distribution patterns, and Ploss and Qloss as zero as initial conditions for the transmission end active power Ps and the transmission end reactive power Qs in the power flow calculation circuit expressed by Equation 1 and Equation 2 And calculating the total PL of the load (active power) and the total QL of the load (reactive power) in the distribution system section (S3-1)
(Equation 1) Ps = PL + Pr + Ploss
Where Ps: active power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 2) Qs = QL + Qr + Qloss
Where Qs: reactive power at the transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
The load for each of the plurality of nodes is distributed by distributing the total PL of the load (active power) and the total load QL of the load (reactive power) to the virtual concentrated load in the plurality of nodes according to the distribution pattern of the virtual concentrated load. Is calculated (S3-2)
The power flow is calculated using the load for each of the plurality of nodes to calculate the line loss (active power) Ploss and the line loss (reactive power) Qloss of the distribution lines in the distribution system section (S3-3)
The difference between the measured value and the calculated value (active power) ΔP and the difference between the actually measured value and the calculated value (reactive power) ΔQ are calculated using Formula 3 and Formula 4, and the convergence is determined based on these ΔP and ΔQ. (S3-4)
(Expression 3) ΔP = Ps− (PL + Pr + Ploss)
Where ΔP: difference between the actual measurement value and the calculated value (active power) [W]
Ps: Effective power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 4) ΔQ = Qs− (QL + Qr + Qloss)
Where ΔQ: difference between the measured value and the calculated value (reactive power) [Var]
Qs: Reactive power at transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
As a result of the convergence determination, a new load (active power) total PL ′ and a load (reactive power) total QL ′ are calculated using Formula 5 and Formula 6 until it is determined that the power flow calculation has converged. With (S3-5)
(Equation 5) PL ′ = PL + ΔP
Here, PL ′: total load (active power) in the new distribution system section [W]
ΔP: Difference between measured value and calculated value (active power) [W]
(Expression 6) QL ′ = QL + ΔQ
Here, QL ′: total load (reactive power) in the new distribution system section [Var]
ΔQ: Difference between the measured value and the calculated value (reactive power) [Var]
For each distribution pattern of the virtual concentrated load, the processes from S3-2 to S3-4 are performed again using the total PL ′ of the new load (active power) and the total QL ′ of the load (reactive power). means for pre-Symbol selection means for calculating the calculated receiving end voltage of the distribution system section, the distribution pattern of the smallest imaginary concentrated load difference between the calculated receiving end voltage and the measured voltage at reception end, the virtual concentration was the chosen A voltage estimation device for a distribution system, comprising means for estimating a voltage at each point in the distribution system section by performing a power flow calculation using a load distribution pattern.
配電系統区間内に分散して分布している配電系統負荷を前記配電系統区間内の複数のノードにおける仮想集中負荷で表して潮流計算回路を作成する手段と、前記配電系統区間の受電端電圧が異なる複数の前記仮想集中負荷の分布パターンを作成する手段と、数式1及び数式2で表される前記潮流計算回路における送電端有効電力Ps及び送電端無効電力Qsについて初期条件としてPloss及びQlossをゼロとして前記配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを算出し(S3−1)
(数1) Ps=PL+Pr+Ploss
ここに、Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数2) Qs=QL+Qr+Qloss
ここに、Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
前記配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを前記仮想集中負荷の分布パターンに従って前記複数のノードにおける仮想集中負荷に配分して前記複数のノード毎の負荷を算出し(S3−2)
前記複数のノード毎の負荷を用いて潮流計算を行って前記配電系統区間の配電線の線路ロス(有効電力)Ploss及び線路ロス(無効電力)Qlossを算出し(S3−3)
数式3及び数式4を用いて実測値と計算値との差(有効電力)ΔP及び実測値と計算値との差(無効電力)ΔQを算出すると共にこれらΔP及びΔQに基づいて収束判定を行い(S3−4)
(数3) ΔP=Ps−(PL+Pr+Ploss)
ここに、ΔP:実測値と計算値との差(有効電力)[W]
Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数4) ΔQ=Qs−(QL+Qr+Qloss)
ここに、ΔQ:実測値と計算値との差(無効電力)[Var]
Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
前記収束判定の結果前記潮流計算が収束していると判断されるまで数式5及び数式6を用いて新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を算出する(S3−5)と共に
(数5) PL’=PL+ΔP
ここに、PL’:新たな配電系統区間の負荷(有効電力)の合計[W]
ΔP:実測値と計算値との差(有効電力)[W]
(数6) QL’=QL+ΔQ
ここに、QL’:新たな配電系統区間の負荷(無効電力)の合計[Var]
ΔQ:実測値と計算値との差(無効電力)[Var]
当該新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を用いてあらためて前記S3−2から前記S3−4までの処理を行うことによって前記仮想集中負荷の分布パターン毎に前記配電系統区間の計算受電端電圧を算出する手段と、実測受電端電圧並びに前記仮想集中負荷の分布パターン毎の前記計算受電端電圧を値の大きい順又は小さい順に並べて前記実測受電端電圧の前後の前記計算受電端電圧の仮想集中負荷の分布パターンを選定する手段と、当該選定した二つの仮想集中負荷の分布パターンの負荷分布を線形補間して前記配電系統区間内の負荷分布を推定する手段と、該線形補間して求めた負荷分布を用いて潮流計算を行うことにより前記配電系統区間内の各地点における電圧を推定する手段とを有することを特徴とする配電系統の電圧推定装置。
Means for creating a power flow calculation circuit by representing the distribution system load distributed and distributed in the distribution system section as virtual concentrated loads at a plurality of nodes in the distribution system section, and the receiving end voltage of the distribution system section A means for creating a plurality of different virtual concentrated load distribution patterns, and Ploss and Qloss as zero as initial conditions for the transmission end active power Ps and the transmission end reactive power Qs in the power flow calculation circuit expressed by Equation 1 and Equation 2 And calculating the total PL of the load (active power) and the total QL of the load (reactive power) in the distribution system section (S3-1)
(Equation 1) Ps = PL + Pr + Ploss
Where Ps: active power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 2) Qs = QL + Qr + Qloss
Where Qs: reactive power at the transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
The load for each of the plurality of nodes is distributed by distributing the total PL of the load (active power) and the total load QL of the load (reactive power) to the virtual concentrated load in the plurality of nodes according to the distribution pattern of the virtual concentrated load. Is calculated (S3-2)
The power flow is calculated using the load for each of the plurality of nodes to calculate the line loss (active power) Ploss and the line loss (reactive power) Qloss of the distribution lines in the distribution system section (S3-3)
The difference between the measured value and the calculated value (active power) ΔP and the difference between the actually measured value and the calculated value (reactive power) ΔQ are calculated using Formula 3 and Formula 4, and the convergence is determined based on these ΔP and ΔQ. (S3-4)
(Expression 3) ΔP = Ps− (PL + Pr + Ploss)
Where ΔP: difference between the actual measurement value and the calculated value (active power) [W]
Ps: Effective power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 4) ΔQ = Qs− (QL + Qr + Qloss)
Where ΔQ: difference between the measured value and the calculated value (reactive power) [Var]
Qs: Reactive power at transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
As a result of the convergence determination, a new load (active power) total PL ′ and a load (reactive power) total QL ′ are calculated using Formula 5 and Formula 6 until it is determined that the power flow calculation has converged. With (S3-5)
(Equation 5) PL ′ = PL + ΔP
Here, PL ′: total load (active power) in the new distribution system section [W]
ΔP: Difference between measured value and calculated value (active power) [W]
(Expression 6) QL ′ = QL + ΔQ
Here, QL ′: total load (reactive power) in the new distribution system section [Var]
ΔQ: Difference between the measured value and the calculated value (reactive power) [Var]
For each distribution pattern of the virtual concentrated load, the processing from S3-2 to S3-4 is performed again using the total PL ′ of the new load (active power) and the total QL ′ of the load (reactive power). before SL distribution means for calculating the calculated receiving end voltage of the system section, measured receiving end voltage and the virtual concentration load distribution pattern each of the calculated receiving end voltage value of the descending order or ascending order Tile the measured receiving end voltage A means for selecting the distribution pattern of the virtual concentrated load of the calculated power receiving end voltage before and after the load, and estimating the load distribution in the distribution system section by linearly interpolating the load distribution of the two selected virtual concentrated load distribution patterns And means for estimating a voltage at each point in the distribution system section by performing a power flow calculation using the load distribution obtained by the linear interpolation. Voltage estimation apparatus of the distribution system.
コンピュータを、少なくとも、配電系統区間内に分散して分布している配電系統負荷を前記配電系統区間内の複数のノードにおける仮想集中負荷で表して潮流計算回路を作成する手段、前記配電系統区間の受電端電圧が異なる複数の前記仮想集中負荷の分布パターンを作成する手段、数式1及び数式2で表される前記潮流計算回路における送電端有効電力Ps及び送電端無効電力Qsについて初期条件としてPloss及びQlossをゼロとして前記配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを算出し(S3−1)
(数1) Ps=PL+Pr+Ploss
ここに、Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数2) Qs=QL+Qr+Qloss
ここに、Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
前記配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを前記仮想集中負荷の分布パターンに従って前記複数のノードにおける仮想集中負荷に配分して前記複数のノード毎の負荷を算出し(S3−2)
前記複数のノード毎の負荷を用いて潮流計算を行って前記配電系統区間の配電線の線路ロス(有効電力)Ploss及び線路ロス(無効電力)Qlossを算出し(S3−3)
数式3及び数式4を用いて実測値と計算値との差(有効電力)ΔP及び実測値と計算値との差(無効電力)ΔQを算出すると共にこれらΔP及びΔQに基づいて収束判定を行い(S3−4)
(数3) ΔP=Ps−(PL+Pr+Ploss)
ここに、ΔP:実測値と計算値との差(有効電力)[W]
Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数4) ΔQ=Qs−(QL+Qr+Qloss)
ここに、ΔQ:実測値と計算値との差(無効電力)[Var]
Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
前記収束判定の結果前記潮流計算が収束していると判断されるまで数式5及び数式6を用いて新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を算出する(S3−5)と共に
(数5) PL’=PL+ΔP
ここに、PL’:新たな配電系統区間の負荷(有効電力)の合計[W]
ΔP:実測値と計算値との差(有効電力)[W]
(数6) QL’=QL+ΔQ
ここに、QL’:新たな配電系統区間の負荷(無効電力)の合計[Var]
ΔQ:実測値と計算値との差(無効電力)[Var]
当該新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を用いてあらためて前記S3−2から前記S3−4までの処理を行うことによって前記仮想集中負荷の分布パターン毎に前記配電系統区間の計算受電端電圧を算出する手段、実測受電端電圧と前記計算受電端電圧との差分が最も小さい仮想集中負荷の分布パターンを選定する手段として機能させるための配電系統の負荷分布推定プログラム。
Means for creating a power flow calculation circuit by representing at least a distribution system load distributed and distributed in the distribution system section as a virtual concentrated load at a plurality of nodes in the distribution system section; Means for creating a plurality of virtual concentrated load distribution patterns having different receiving end voltages , Ploss as the initial conditions for the transmitting end active power Ps and the transmitting end reactive power Qs in the power flow calculation circuit represented by Equation 1 and Equation 2 The total PL of the load (active power) and the total QL of the load (reactive power) in the distribution system section are calculated with Qloss as zero (S3-1)
(Equation 1) Ps = PL + Pr + Ploss
Where Ps: active power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 2) Qs = QL + Qr + Qloss
Where Qs: reactive power at the transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
The load for each of the plurality of nodes is distributed by distributing the total PL of the load (active power) and the total load QL of the load (reactive power) to the virtual concentrated load in the plurality of nodes according to the distribution pattern of the virtual concentrated load. Is calculated (S3-2)
The power flow is calculated using the load for each of the plurality of nodes to calculate the line loss (active power) Ploss and the line loss (reactive power) Qloss of the distribution lines in the distribution system section (S3-3)
The difference between the measured value and the calculated value (active power) ΔP and the difference between the actually measured value and the calculated value (reactive power) ΔQ are calculated using Formula 3 and Formula 4, and the convergence is determined based on these ΔP and ΔQ. (S3-4)
(Expression 3) ΔP = Ps− (PL + Pr + Ploss)
Where ΔP: difference between the actual measurement value and the calculated value (active power) [W]
Ps: Effective power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 4) ΔQ = Qs− (QL + Qr + Qloss)
Where ΔQ: difference between the measured value and the calculated value (reactive power) [Var]
Qs: Reactive power at transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
As a result of the convergence determination, a new load (active power) total PL ′ and a load (reactive power) total QL ′ are calculated using Formula 5 and Formula 6 until it is determined that the power flow calculation has converged. With (S3-5)
(Equation 5) PL ′ = PL + ΔP
Here, PL ′: total load (active power) in the new distribution system section [W]
ΔP: Difference between measured value and calculated value (active power) [W]
(Expression 6) QL ′ = QL + ΔQ
Here, QL ′: total load (reactive power) in the new distribution system section [Var]
ΔQ: Difference between the measured value and the calculated value (reactive power) [Var]
For each distribution pattern of the virtual concentrated load, the processing from S3-2 to S3-4 is performed again using the total PL ′ of the new load (active power) and the total QL ′ of the load (reactive power). calculating the calculated receiving end voltage before Symbol distribution system section to section, the measured receiving end voltage and the calculated receiving end voltage and the difference is the distribution system to function as means for selecting the distribution pattern of the smallest imaginary concentrated load Load distribution estimation program.
コンピュータを、少なくとも、配電系統区間内に分散して分布している配電系統負荷を前記配電系統区間内の複数のノードにおける仮想集中負荷で表して潮流計算回路を作成する手段、前記配電系統区間の受電端電圧が異なる複数の前記仮想集中負荷の分布パターンを作成する手段、数式1及び数式2で表される前記潮流計算回路における送電端有効電力Ps及び送電端無効電力Qsについて初期条件としてPloss及びQlossをゼロとして前記配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを算出し(S3−1)
(数1) Ps=PL+Pr+Ploss
ここに、Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数2) Qs=QL+Qr+Qloss
ここに、Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
前記配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを前記仮想集中負荷の分布パターンに従って前記複数のノードにおける仮想集中負荷に配分して前記複数のノード毎の負荷を算出し(S3−2)
前記複数のノード毎の負荷を用いて潮流計算を行って前記配電系統区間の配電線の線路ロス(有効電力)Ploss及び線路ロス(無効電力)Qlossを算出し(S3−3)
数式3及び数式4を用いて実測値と計算値との差(有効電力)ΔP及び実測値と計算値との差(無効電力)ΔQを算出すると共にこれらΔP及びΔQに基づいて収束判定を行い(S3−4)
(数3) ΔP=Ps−(PL+Pr+Ploss)
ここに、ΔP:実測値と計算値との差(有効電力)[W]
Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数4) ΔQ=Qs−(QL+Qr+Qloss)
ここに、ΔQ:実測値と計算値との差(無効電力)[Var]
Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
前記収束判定の結果前記潮流計算が収束していると判断されるまで数式5及び数式6を用いて新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を算出する(S3−5)と共に
(数5) PL’=PL+ΔP
ここに、PL’:新たな配電系統区間の負荷(有効電力)の合計[W]
ΔP:実測値と計算値との差(有効電力)[W]
(数6) QL’=QL+ΔQ
ここに、QL’:新たな配電系統区間の負荷(無効電力)の合計[Var]
ΔQ:実測値と計算値との差(無効電力)[Var]
当該新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を用いてあらためて前記S3−2から前記S3−4までの処理を行うことによって前記仮想集中負荷の分布パターン毎に前記配電系統区間の計算受電端電圧を算出する手段、実測受電端電圧並びに前記仮想集中負荷の分布パターン毎の前記計算受電端電圧を値の大きい順又は小さい順に並べて前記実測受電端電圧の前後の前記計算受電端電圧の仮想集中負荷の分布パターンを選定する手段、該選定した二つの仮想集中負荷の分布パターンの負荷分布を線形補間して前記配電系統区間内の負荷分布を推定する手段として機能させるための配電系統の負荷分布推定プログラム。
Means for creating a power flow calculation circuit by representing at least a distribution system load distributed and distributed in the distribution system section as a virtual concentrated load at a plurality of nodes in the distribution system section; Means for creating a plurality of virtual concentrated load distribution patterns having different receiving end voltages , Ploss as the initial conditions for the transmitting end active power Ps and the transmitting end reactive power Qs in the power flow calculation circuit represented by Equation 1 and Equation 2 The total PL of the load (active power) and the total QL of the load (reactive power) in the distribution system section are calculated with Qloss as zero (S3-1)
(Equation 1) Ps = PL + Pr + Ploss
Where Ps: active power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 2) Qs = QL + Qr + Qloss
Where Qs: reactive power at the transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
The load for each of the plurality of nodes is distributed by distributing the total PL of the load (active power) and the total load QL of the load (reactive power) to the virtual concentrated load in the plurality of nodes according to the distribution pattern of the virtual concentrated load. Is calculated (S3-2)
The power flow is calculated using the load for each of the plurality of nodes to calculate the line loss (active power) Ploss and the line loss (reactive power) Qloss of the distribution lines in the distribution system section (S3-3)
The difference between the measured value and the calculated value (active power) ΔP and the difference between the actually measured value and the calculated value (reactive power) ΔQ are calculated using Formula 3 and Formula 4, and the convergence is determined based on these ΔP and ΔQ. (S3-4)
(Expression 3) ΔP = Ps− (PL + Pr + Ploss)
Where ΔP: difference between the actual measurement value and the calculated value (active power) [W]
Ps: Effective power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 4) ΔQ = Qs− (QL + Qr + Qloss)
Where ΔQ: difference between the measured value and the calculated value (reactive power) [Var]
Qs: Reactive power at transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
As a result of the convergence determination, a new load (active power) total PL ′ and a load (reactive power) total QL ′ are calculated using Formula 5 and Formula 6 until it is determined that the power flow calculation has converged. With (S3-5)
(Equation 5) PL ′ = PL + ΔP
Here, PL ′: total load (active power) in the new distribution system section [W]
ΔP: Difference between measured value and calculated value (active power) [W]
(Expression 6) QL ′ = QL + ΔQ
Here, QL ′: total load (reactive power) in the new distribution system section [Var]
ΔQ: Difference between the measured value and the calculated value (reactive power) [Var]
For each distribution pattern of the virtual concentrated load, the processes from S3-2 to S3-4 are performed again using the total PL ′ of the new load (active power) and the total QL ′ of the load (reactive power). calculating the calculated receiving end voltage before Symbol distribution system section to section, the measured voltage at reception end and said virtual load concentration distribution of the calculated receiving end voltage value of each pattern descending order or less arranged in order of the measured receiving end voltage Means for selecting the distribution pattern of the virtual concentrated load of the calculated power receiving end voltage before and after, and means for estimating the load distribution in the distribution system section by linearly interpolating the load distribution of the distribution pattern of the two selected virtual concentrated loads Load distribution estimation program for distribution system to function as
コンピュータを、少なくとも、配電系統区間内に分散して分布している配電系統負荷を前記配電系統区間内の複数のノードにおける仮想集中負荷で表して潮流計算回路を作成する手段、前記配電系統区間の受電端電圧が異なる複数の前記仮想集中負荷の分布パターンを作成する手段、数式1及び数式2で表される前記潮流計算回路における送電端有効電力Ps及び送電端無効電力Qsについて初期条件としてPloss及びQlossをゼロとして前記配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを算出し(S3−1)
(数1) Ps=PL+Pr+Ploss
ここに、Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数2) Qs=QL+Qr+Qloss
ここに、Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
前記配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを前記仮想集中負荷の分布パターンに従って前記複数のノードにおける仮想集中負荷に配分して前記複数のノード毎の負荷を算出し(S3−2)
前記複数のノード毎の負荷を用いて潮流計算を行って前記配電系統区間の配電線の線路ロス(有効電力)Ploss及び線路ロス(無効電力)Qlossを算出し(S3−3)
数式3及び数式4を用いて実測値と計算値との差(有効電力)ΔP及び実測値と計算値との差(無効電力)ΔQを算出すると共にこれらΔP及びΔQに基づいて収束判定を行い(S3−4)
(数3) ΔP=Ps−(PL+Pr+Ploss)
ここに、ΔP:実測値と計算値との差(有効電力)[W]
Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数4) ΔQ=Qs−(QL+Qr+Qloss)
ここに、ΔQ:実測値と計算値との差(無効電力)[Var]
Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
前記収束判定の結果前記潮流計算が収束していると判断されるまで数式5及び数式6を用いて新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を算出する(S3−5)と共に
(数5) PL’=PL+ΔP
ここに、PL’:新たな配電系統区間の負荷(有効電力)の合計[W]
ΔP:実測値と計算値との差(有効電力)[W]
(数6) QL’=QL+ΔQ
ここに、QL’:新たな配電系統区間の負荷(無効電力)の合計[Var]
ΔQ:実測値と計算値との差(無効電力)[Var]
当該新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を用いてあらためて前記S3−2から前記S3−4までの処理を行うことによって前記仮想集中負荷の分布パターン毎に前記配電系統区間の計算受電端電圧を算出する手段、実測受電端電圧と前記計算受電端電圧との差分が最も小さい仮想集中負荷の分布パターンを選定する手段、該選定した仮想集中負荷の分布パターンを用いて潮流計算を行うことにより前記配電系統区間内の各地点における電圧を推定する手段として機能させるための配電系統の電圧推定プログラム。
Means for creating a power flow calculation circuit by representing at least a distribution system load distributed and distributed in the distribution system section as a virtual concentrated load at a plurality of nodes in the distribution system section; Means for creating a plurality of virtual concentrated load distribution patterns having different receiving end voltages , Ploss as the initial conditions for the transmitting end active power Ps and the transmitting end reactive power Qs in the power flow calculation circuit represented by Equation 1 and Equation 2 The total PL of the load (active power) and the total QL of the load (reactive power) in the distribution system section are calculated with Qloss as zero (S3-1)
(Equation 1) Ps = PL + Pr + Ploss
Where Ps: active power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 2) Qs = QL + Qr + Qloss
Where Qs: reactive power at the transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
The load for each of the plurality of nodes is distributed by distributing the total PL of the load (active power) and the total load QL of the load (reactive power) to the virtual concentrated load in the plurality of nodes according to the distribution pattern of the virtual concentrated load. Is calculated (S3-2)
The power flow is calculated using the load for each of the plurality of nodes to calculate the line loss (active power) Ploss and the line loss (reactive power) Qloss of the distribution lines in the distribution system section (S3-3)
The difference between the measured value and the calculated value (active power) ΔP and the difference between the actually measured value and the calculated value (reactive power) ΔQ are calculated using Formula 3 and Formula 4, and the convergence is determined based on these ΔP and ΔQ. (S3-4)
(Expression 3) ΔP = Ps− (PL + Pr + Ploss)
Where ΔP: difference between the actual measurement value and the calculated value (active power) [W]
Ps: Effective power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 4) ΔQ = Qs− (QL + Qr + Qloss)
Where ΔQ: difference between the measured value and the calculated value (reactive power) [Var]
Qs: Reactive power at transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
As a result of the convergence determination, a new load (active power) total PL ′ and a load (reactive power) total QL ′ are calculated using Formula 5 and Formula 6 until it is determined that the power flow calculation has converged. With (S3-5)
(Equation 5) PL ′ = PL + ΔP
Here, PL ′: total load (active power) in the new distribution system section [W]
ΔP: Difference between measured value and calculated value (active power) [W]
(Expression 6) QL ′ = QL + ΔQ
Here, QL ′: total load (reactive power) in the new distribution system section [Var]
ΔQ: Difference between the measured value and the calculated value (reactive power) [Var]
For each distribution pattern of the virtual concentrated load, the processing from S3-2 to S3-4 is performed again using the total PL ′ of the new load (active power) and the total QL ′ of the load (reactive power). calculating the calculated receiving end voltage before Symbol distribution system section to section, means the difference between the calculated receiving end voltage and the measured receiving end voltage is selected distribution pattern of the smallest imaginary concentrated load, the virtual concentrated load to the selected A distribution system voltage estimation program for functioning as a means for estimating a voltage at each point in the distribution system section by performing a power flow calculation using a distribution pattern.
コンピュータを、少なくとも、配電系統区間内に分散して分布している配電系統負荷を前記配電系統区間内の複数のノードにおける仮想集中負荷で表して潮流計算回路を作成する手段、前記配電系統区間の受電端電圧が異なる複数の前記仮想集中負荷の分布パターンを作成する手段、数式1及び数式2で表される前記潮流計算回路における送電端有効電力Ps及び送電端無効電力Qsについて初期条件としてPloss及びQlossをゼロとして前記配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを算出し(S3−1)
(数1) Ps=PL+Pr+Ploss
ここに、Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数2) Qs=QL+Qr+Qloss
ここに、Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
前記配電系統区間の負荷(有効電力)の合計PL及び負荷(無効電力)の合計QLを前記仮想集中負荷の分布パターンに従って前記複数のノードにおける仮想集中負荷に配分して前記複数のノード毎の負荷を算出し(S3−2)
前記複数のノード毎の負荷を用いて潮流計算を行って前記配電系統区間の配電線の線路ロス(有効電力)Ploss及び線路ロス(無効電力)Qlossを算出し(S3−3)
数式3及び数式4を用いて実測値と計算値との差(有効電力)ΔP及び実測値と計算値との差(無効電力)ΔQを算出すると共にこれらΔP及びΔQに基づいて収束判定を行い(S3−4)
(数3) ΔP=Ps−(PL+Pr+Ploss)
ここに、ΔP:実測値と計算値との差(有効電力)[W]
Ps:送電端有効電力[W]
PL:配電系統区間の負荷(有効電力)の合計[W]
Pr:受電端有効電力[W]
Ploss:配電系統区間の配電線の線路ロス(有効電力)[W]
(数4) ΔQ=Qs−(QL+Qr+Qloss)
ここに、ΔQ:実測値と計算値との差(無効電力)[Var]
Qs:送電端無効電力[Var]
QL:配電系統区間の負荷(無効電力)の合計[Var]
Qr:受電端無効電力[Var]
Qloss:配電系統区間の配電線の線路ロス(無効電力)[Var]
前記収束判定の結果前記潮流計算が収束していると判断されるまで数式5及び数式6を用いて新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を算出する(S3−5)と共に
(数5) PL’=PL+ΔP
ここに、PL’:新たな配電系統区間の負荷(有効電力)の合計[W]
ΔP:実測値と計算値との差(有効電力)[W]
(数6) QL’=QL+ΔQ
ここに、QL’:新たな配電系統区間の負荷(無効電力)の合計[Var]
ΔQ:実測値と計算値との差(無効電力)[Var]
当該新たな負荷(有効電力)の合計PL’及び負荷(無効電力)の合計QL’を用いてあらためて前記S3−2から前記S3−4までの処理を行うことによって前記仮想集中負荷の分布パターン毎に前記配電系統区間の計算受電端電圧を算出する手段、実測受電端電圧並びに前記仮想集中負荷の分布パターン毎の前記計算受電端電圧を値の大きい順又は小さい順に並べて前記実測受電端電圧の前後の前記計算受電端電圧の仮想集中負荷の分布パターンを選定する手段、該選定した二つの仮想集中負荷の分布パターンの負荷分布を線形補間して前記配電系統区間内の負荷分布を推定する手段、該線形補間して求めた負荷分布を用いて潮流計算を行うことにより前記配電系統区間内の各地点における電圧を推定する手段として機能させるための配電系統の電圧推定プログラム。
Means for creating a power flow calculation circuit by representing at least a distribution system load distributed and distributed in the distribution system section as a virtual concentrated load at a plurality of nodes in the distribution system section; Means for creating a plurality of virtual concentrated load distribution patterns having different receiving end voltages , Ploss as the initial conditions for the transmitting end active power Ps and the transmitting end reactive power Qs in the power flow calculation circuit represented by Equation 1 and Equation 2 The total PL of the load (active power) and the total QL of the load (reactive power) in the distribution system section are calculated with Qloss as zero (S3-1)
(Equation 1) Ps = PL + Pr + Ploss
Where Ps: active power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 2) Qs = QL + Qr + Qloss
Where Qs: reactive power at the transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
The load for each of the plurality of nodes is distributed by distributing the total PL of the load (active power) and the total load QL of the load (reactive power) to the virtual concentrated load in the plurality of nodes according to the distribution pattern of the virtual concentrated load. Is calculated (S3-2)
The power flow is calculated using the load for each of the plurality of nodes to calculate the line loss (active power) Ploss and the line loss (reactive power) Qloss of the distribution lines in the distribution system section (S3-3)
The difference between the measured value and the calculated value (active power) ΔP and the difference between the actually measured value and the calculated value (reactive power) ΔQ are calculated using Formula 3 and Formula 4, and the convergence is determined based on these ΔP and ΔQ. (S3-4)
(Expression 3) ΔP = Ps− (PL + Pr + Ploss)
Where ΔP: difference between the actual measurement value and the calculated value (active power) [W]
Ps: Effective power at the transmission end [W]
PL: Total load (active power) in the distribution system section [W]
Pr: Receiving end active power [W]
Ploss: Line loss (active power) of distribution lines in the distribution system section [W]
(Equation 4) ΔQ = Qs− (QL + Qr + Qloss)
Where ΔQ: difference between the measured value and the calculated value (reactive power) [Var]
Qs: Reactive power at transmission end [Var]
QL: Total load (reactive power) in the distribution system section [Var]
Qr: Receiving end reactive power [Var]
Qloss: Line loss (reactive power) of distribution lines in the distribution system section [Var]
As a result of the convergence determination, a new load (active power) total PL ′ and a load (reactive power) total QL ′ are calculated using Formula 5 and Formula 6 until it is determined that the power flow calculation has converged. With (S3-5)
(Equation 5) PL ′ = PL + ΔP
Here, PL ′: total load (active power) in the new distribution system section [W]
ΔP: Difference between measured value and calculated value (active power) [W]
(Expression 6) QL ′ = QL + ΔQ
Here, QL ′: total load (reactive power) in the new distribution system section [Var]
ΔQ: Difference between the measured value and the calculated value (reactive power) [Var]
For each distribution pattern of the virtual concentrated load, the processing from S3-2 to S3-4 is performed again using the total PL ′ of the new load (active power) and the total QL ′ of the load (reactive power). calculating the calculated receiving end voltage before Symbol distribution system section to section, the measured voltage at reception end and said virtual load concentration distribution of the calculated receiving end voltage value of each pattern descending order or less arranged in order of the measured receiving end voltage Means for selecting the distribution pattern of the virtual concentrated load of the calculated power receiving end voltage before and after, means for estimating the load distribution in the distribution system section by linearly interpolating the load distribution of the two selected distribution patterns of the virtual concentrated load The distribution system for functioning as a means for estimating the voltage at each point in the distribution system section by performing a power flow calculation using the load distribution obtained by the linear interpolation Pressure estimation program.
JP2005268323A 2005-09-15 2005-09-15 Distribution system load distribution estimation method, apparatus and program, and voltage estimation method, apparatus and program Active JP4718943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005268323A JP4718943B2 (en) 2005-09-15 2005-09-15 Distribution system load distribution estimation method, apparatus and program, and voltage estimation method, apparatus and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005268323A JP4718943B2 (en) 2005-09-15 2005-09-15 Distribution system load distribution estimation method, apparatus and program, and voltage estimation method, apparatus and program

Publications (2)

Publication Number Publication Date
JP2007082346A JP2007082346A (en) 2007-03-29
JP4718943B2 true JP4718943B2 (en) 2011-07-06

Family

ID=37942028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005268323A Active JP4718943B2 (en) 2005-09-15 2005-09-15 Distribution system load distribution estimation method, apparatus and program, and voltage estimation method, apparatus and program

Country Status (1)

Country Link
JP (1) JP4718943B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5159695B2 (en) * 2009-05-11 2013-03-06 中国電力株式会社 Distribution system state estimation method and distribution system state estimation apparatus
NL2003960C2 (en) * 2009-12-16 2011-06-20 Stichting Energie DISTRIBUTED STATUS CALCULATIONS IN AN ELECTRICITY NETWORK USING AGENTS.
JP5501796B2 (en) * 2010-02-24 2014-05-28 富士通株式会社 Distribution network estimation apparatus and distribution network estimation method
JP5452764B2 (en) * 2011-02-24 2014-03-26 三菱電機株式会社 Voltage control device
JP5372124B2 (en) * 2011-12-08 2013-12-18 中国電力株式会社 Distribution system management support apparatus, control method and program for distribution system management support apparatus
JP5372125B2 (en) * 2011-12-08 2013-12-18 中国電力株式会社 Distribution system control device, control method and program for distribution system control device
EP2905863B1 (en) * 2012-10-01 2017-10-11 Fujitsu Limited Power distribution management device, voltage determination method, and voltage determination program
JP6151137B2 (en) * 2013-09-10 2017-06-21 株式会社東芝 Ultimate voltage estimation device and estimation program
JP6135454B2 (en) 2013-10-23 2017-05-31 富士通株式会社 Estimation program, estimation apparatus, and estimation method
JP6173193B2 (en) * 2013-12-03 2017-08-02 株式会社日立製作所 Arrangement planning support apparatus and arrangement planning support method for sensor built-in switch
KR101625064B1 (en) * 2014-08-27 2016-05-27 한국전력공사 Section load calculation system for distribution network based on ami power usage
JP6625952B2 (en) * 2016-09-27 2019-12-25 株式会社日立製作所 Power system characteristic estimation device and method, and power system management device
CN110912206B (en) * 2019-11-27 2023-04-14 深圳供电局有限公司 Virtual power plant based power distribution network fault recovery power supply method and system
JP7424130B2 (en) 2020-03-16 2024-01-30 富士電機株式会社 Load apportionment method, load apportionment program, and distribution system control system in power distribution system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000245064A (en) * 1999-02-19 2000-09-08 Hitachi Ltd State estimation equipment of distribution system and its method
JP2003032915A (en) * 2001-07-19 2003-01-31 Toshiba Corp Monitoring and control system for distribution line load, computing method of intersection load of distribution line, and program thereof
JP2004064969A (en) * 2002-07-31 2004-02-26 Kansai Electric Power Co Inc:The Method of calculating section load of distribution line, and system and program for monitoring and controlling load of distribution line
JP2006217742A (en) * 2005-02-04 2006-08-17 Fuji Electric Systems Co Ltd Voltage distribution calculation device of power distribution system, inter-zone load calculation device, and its method

Also Published As

Publication number Publication date
JP2007082346A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
JP4718943B2 (en) Distribution system load distribution estimation method, apparatus and program, and voltage estimation method, apparatus and program
JP4890920B2 (en) Power quality maintenance support method and power quality maintenance support system for a distribution system in which a plurality of distributed power sources are connected
CN103559553B (en) Distributing line planning and distribution transform site selection optimizing method based on load moment theory
Ruiz et al. Voltage and reactive power estimation for contingency analysis using sensitivities
JP6209951B2 (en) Transformer connection phase determination device, method, and program
EP0771486A1 (en) Dynamic method for preventing voltage collapse in electrical power systems
US20140244189A1 (en) System For Achieving Real-Time Monitoring and State Estimation in Power Distribution Networks
CN109190792B (en) Method and system for determining configuration of distributed power supply in power distribution network
JP5914231B2 (en) Method and apparatus for calculating settling value of line voltage drop compensator
JP4831479B2 (en) Reduced model creation method and reduced model creation system for distribution system
JP3970130B2 (en) Method for estimating the state of interconnection of distributed power sources in distribution systems
US20180269681A1 (en) Power systems and related voltage stability methods
JP4203993B2 (en) Power system analysis support method
Haileselassie et al. Secondary control in multi-terminal VSC-HVDC transmission system
CN105470951B (en) A kind of power distribution network reliable power supply capability assessment method based on big data digging technology
Tong et al. A distributed slack bus model and its impact on distribution system application techniques
CN108229786B (en) Power grid investment distribution processing method and device
JP2020137164A (en) Power system stabilization system
CN108872915A (en) Determination method and decision maker
Gandomkar Phase balancing using genetic algorithm
JP7044199B1 (en) Information processing equipment, information processing methods and information processing programs
JP7424130B2 (en) Load apportionment method, load apportionment program, and distribution system control system in power distribution system
JP4584157B2 (en) Method, apparatus and program for evaluating voltage stability in power system
WO2017155047A1 (en) Power distribution monitoring control system
JPH08130828A (en) Method and device for monitoring voltage stability of power system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110401

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4718943

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250