JP4715469B2 - Wavelength conversion laser temperature control circuit - Google Patents

Wavelength conversion laser temperature control circuit Download PDF

Info

Publication number
JP4715469B2
JP4715469B2 JP2005341385A JP2005341385A JP4715469B2 JP 4715469 B2 JP4715469 B2 JP 4715469B2 JP 2005341385 A JP2005341385 A JP 2005341385A JP 2005341385 A JP2005341385 A JP 2005341385A JP 4715469 B2 JP4715469 B2 JP 4715469B2
Authority
JP
Japan
Prior art keywords
voltage
circuit
biased
control
ref
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005341385A
Other languages
Japanese (ja)
Other versions
JP2007149904A (en
Inventor
一郎 福士
公資 東條
一馬 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2005341385A priority Critical patent/JP4715469B2/en
Publication of JP2007149904A publication Critical patent/JP2007149904A/en
Application granted granted Critical
Publication of JP4715469B2 publication Critical patent/JP4715469B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Description

本発明は、波長変換レーザ温度制御回路に関し、さらに詳しくは、ペルチェ素子の寿命低下を避けることが出来ると共に回路規模が小さくて済み更に単一極性かつ低電圧の電源で動作可能となる波長変換レーザ温度制御回路に関する。   The present invention relates to a wavelength conversion laser temperature control circuit. More specifically, the present invention relates to a wavelength conversion laser capable of avoiding a decrease in the life of a Peltier device and reducing the circuit scale and operating with a single polarity and low voltage power source. The present invention relates to a temperature control circuit.

光出力を安定に保つため、半導体レーザおよび非線形光学結晶を含む共振器の温度を制御する「波長変換レーザ」が知られている(例えば、特許文献1参照。)。
他方、ペルチェ素子を駆動する周期的パルスのデューティ比を制御することで、ペルチェ素子に流す電流の方向の比を制御して、ペルチェ素子を駆動する「電子デバイスの駆動回路」が知られている(例えば、特許文献2参照。)。
さらに、エミッタ接地電圧増幅回路を用いた「低飽和出力増幅回路」が知られている(例えば、特許文献3参照。)。
特開平8−171106号公報 特開平5−204470号公報 特開2001−177358号公報
A “wavelength conversion laser” that controls the temperature of a resonator including a semiconductor laser and a nonlinear optical crystal in order to keep the light output stable is known (see, for example, Patent Document 1).
On the other hand, there is known an “electronic device drive circuit” that drives the Peltier element by controlling the ratio of the direction of the current flowing through the Peltier element by controlling the duty ratio of the periodic pulse that drives the Peltier element. (For example, refer to Patent Document 2).
Furthermore, a “low saturation output amplifier circuit” using a grounded emitter voltage amplifier circuit is known (see, for example, Patent Document 3).
JP-A-8-171106 Japanese Patent Laid-Open No. 5-204470 JP 2001-177358 A

上記従来の「波長変換レーザ」では、温度制御回路の具体例は開示されていない。
他方、上記従来の「電子デバイスの駆動回路」では次のような課題がある。
(1)ペルチェ素子に流す電流の方向を周期的に切り替えるが、このような頻繁な切り替えはペルチェ素子の寿命低下を招く。
(2)パルス発生回路が必要となるため回路規模が大きくなる。また、周期的パルスのデューティ比を決定する回路をディジタル回路とすると、プログラマブルな素子を用いて制御を行うため、回路が規模的にもコスト的にも大掛りなものとなる。
(3)一方、周期的パルスのデューティ比を決定する回路をアナログ回路とすると、両極性の電源が必要になり、使用する電源が電池になるポータブルな波長変換レーザには向かない。
そこで、本発明の目的は、ペルチェ素子の寿命低下を避けることが出来ると共に回路規模が小さくて済み更に単一極性かつ低電圧の電源で動作可能となる波長変換レーザ温度制御回路を提供することにある。
In the conventional “wavelength conversion laser”, a specific example of the temperature control circuit is not disclosed.
On the other hand, the conventional “electronic device driving circuit” has the following problems.
(1) Although the direction of the current passed through the Peltier element is periodically switched, such frequent switching causes a decrease in the life of the Peltier element.
(2) Since a pulse generation circuit is required, the circuit scale increases. Further, if the circuit for determining the duty ratio of the periodic pulse is a digital circuit, control is performed using a programmable element, so that the circuit becomes large in terms of scale and cost.
(3) On the other hand, if the circuit for determining the duty ratio of the periodic pulse is an analog circuit, a bipolar power source is required, which is not suitable for a portable wavelength conversion laser in which the power source used is a battery.
SUMMARY OF THE INVENTION An object of the present invention is to provide a wavelength conversion laser temperature control circuit that can avoid a decrease in the life of a Peltier element and that can be operated with a single-polarity and low-voltage power supply, with a small circuit scale. is there.

第1の観点では、本発明は、波長変換レーザの半導体レーザおよび非線形光学結晶を含む光共振器の温度を制御するためのペルチェ素子(Q)を駆動する回路であって、目標温度に対応する電圧(V-set)と測定温度に対応する電圧(V-mon)の差である偏差電圧およびバイアス電圧(V-ref)を基に3V以下の単一極性電源で動作するアナログ演算回路(A1,A2,A3,A4)により比例利得増幅および積分利得増幅を行うバイアスド差動増幅回路対(10)と、前記比例利得増幅を行った電圧(V-P)、前記積分利得増幅を行った電圧(V-I’)とバイアス電圧(V-ref)とを基に3V以下の単一極性電源で動作するアナログ演算回路(A5)により積分を行った電圧(V-I)およびバイアス電圧(V-ref)を基にPI制御のための制御電圧(V-PI)を出力するバイアスドPI制御回路(20)と、前記制御電圧(V-PI)およびバイアス電圧(V-ref)を基にPNP型バイポーラトランジスタ(TR2,TR4)によるコレクタ出力型の一対の低飽和出力段に相補的動作をさせて前記ペルチェ素子(Q)に流す電流の方向を変えるTEC駆動回路(30)とを具備したことを特徴とする波長変換レーザ温度制御回路(100)を提供する。   In a first aspect, the present invention is a circuit for driving a Peltier element (Q) for controlling the temperature of an optical resonator including a semiconductor laser of a wavelength conversion laser and a nonlinear optical crystal, and corresponds to a target temperature. An analog arithmetic circuit (A1) that operates with a single polarity power supply of 3 V or less based on a deviation voltage and a bias voltage (V-ref), which is a difference between the voltage (V-set) and a voltage (V-mon) corresponding to the measured temperature , A 2, A 3, A 4), a biased differential amplifier circuit pair (10) that performs proportional gain amplification and integral gain amplification, a voltage (V−P) that performs the proportional gain amplification, and a voltage that performs the integral gain amplification Based on (V-I ') and the bias voltage (V-ref), the voltage (V-I) integrated with the analog arithmetic circuit (A5) operating with a single polarity power supply of 3 V or less and the bias voltage (V -ref) based on PI control voltage A biased PI control circuit (20) that outputs V-PI) and a collector output type pair of PNP bipolar transistors (TR2, TR4) based on the control voltage (V-PI) and bias voltage (V-ref). A wavelength conversion laser temperature control circuit (100) comprising: a TEC drive circuit (30) for changing the direction of a current flowing through the Peltier element (Q) by performing a complementary operation on the low-saturation output stage of provide.

上記第1の観点による波長変換レーザ温度制御回路(100)では、供給電圧(Vin)のほぼ中間に位置する低電圧のバイアス電圧(V-ref)を基準にしたPI制御方式のアナログ演算回路による制御電圧(V-PI)によってペルチェ素子(Q)に印加する電圧(V-TEC-,V-TEC+)の大きさ及びペルチェ素子(Q)に流す電流の方向を制御する。これにより、ペルチェ素子(Q)に流す電流の方向を周期的に切り替える必要がなくなるため、ペルチェ素子(Q)の寿命低下を避けることが出来る。また、パルス発生回路やデジタル回路を必要としないため回路規模が小さくて済む。さらに、PNP型バイポーラトランジスタ(TR2,TR4)によるコレクタ出力型の低飽和出力段(LDO;Low-Drop-Out)とすることで、供給電圧(Vin)とほぼ等しい電圧までペルチェ素子(Q)に印加でき、単一極性かつ低電圧の電源すなわち電池で動作可能となる。
なお、PI制御としたことで目標温度への高精度な追従が可能となり、屋外での−10℃から50℃程度の広い使用環境温度範囲でも精度の良い温度制御を行うことが出来るようになる。
The wavelength conversion laser temperature control circuit (100) according to the first aspect is based on an analog arithmetic circuit of a PI control method based on a low-voltage bias voltage (V-ref) located approximately in the middle of the supply voltage (Vin). The control voltage (V-PI) controls the magnitude of the voltage (V-TEC-, V-TEC +) applied to the Peltier element (Q) and the direction of the current flowing through the Peltier element (Q). This eliminates the need to periodically switch the direction of the current flowing through the Peltier element (Q), thereby avoiding a decrease in the life of the Peltier element (Q). Further, since a pulse generation circuit and a digital circuit are not required, the circuit scale can be reduced. Further, by using a collector output type low-saturation output stage (LDO; Low-Drop-Out) with PNP-type bipolar transistors (TR2, TR4), the Peltier element (Q) can reach a voltage substantially equal to the supply voltage (Vin). It can be applied and can be operated with a single polarity and low voltage power source, ie a battery.
Note that PI control enables high-precision tracking to the target temperature, and accurate temperature control can be performed even in a wide use environment temperature range of about −10 ° C. to 50 ° C. outdoors. .

本発明の波長変換レーザ温度制御回路によれば、ペルチェ素子の寿命低下を避けることが出来ると共に、回路規模が小さくて済み、更に単一極性かつ低電圧の電源で動作可能となる。   According to the wavelength conversion laser temperature control circuit of the present invention, the life of the Peltier element can be avoided, the circuit scale can be reduced, and the power supply can be operated with a single polarity and a low voltage.

以下、図に示す実施の形態により本発明をさらに詳細に説明する。なお、これにより本発明が限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to embodiments shown in the drawings. Note that the present invention is not limited thereby.

図1に、実施例1にかかる波長変換レーザ温度制御回路100のブロック図を示す。
波長変換レーザ温度制御回路100は、バイアスド差動増幅回路対10と、バイアスドPI制御回路20と、TEC(ThermoElectricCooler)駆動回路30とからなる。
TECは、波長変換レーザの半導体レーザおよび非線形光学結晶を含む光共振器の温度を制御するサーモモジュールであり、ペルチェ素子Qと温度センサMとを含んでいる。温度センサMは例えばサーミスタである。
波長変換レーザ温度制御回路100は、電池Bからの供給電圧Vinで動作する。
FIG. 1 is a block diagram of a wavelength conversion laser temperature control circuit 100 according to the first embodiment.
The wavelength conversion laser temperature control circuit 100 includes a biased differential amplifier circuit pair 10, a biased PI control circuit 20, and a TEC (ThermoElectricCooler) drive circuit 30.
The TEC is a thermo module that controls the temperature of an optical resonator including a semiconductor laser of a wavelength conversion laser and a nonlinear optical crystal, and includes a Peltier element Q and a temperature sensor M. The temperature sensor M is, for example, a thermistor.
The wavelength conversion laser temperature control circuit 100 operates with the supply voltage Vin from the battery B.

バイアスド差動増幅回路対10では、目標温度に対応する電圧「V-set」と温度センサMで検出した測定温度に対応する電圧「V-mon」の差である偏差電圧「V-set−V-mon」にバイアス電圧「V-ref」を加えた電圧を、P制御に対するバイアスド差動増幅回路11が比例利得「m」倍し、P制御出力電圧「V-P」を出力する。また、極性を入れ替えた偏差電圧「V-mon−V-set」にバイアス電圧「V-ref」を加えた電圧を、I制御に対するバイアスド差動増幅回路12が積分利得「n」倍し、積分前電圧「V-I’」を出力する。
後述するように、バイアス電圧「V-ref」は、ペルチェ素子Qに印加する駆動電圧「V-TEC-,V-TEC+」の大きさ及びペルチェ素子Qに流す電流の方向を決める基準となる電圧である。
In the biased differential amplifier circuit pair 10, the deviation voltage “V-set−V” which is the difference between the voltage “V-set” corresponding to the target temperature and the voltage “V-mon” corresponding to the measured temperature detected by the temperature sensor M. The biased differential amplifier circuit 11 for the P control is multiplied by the proportional gain “m” by adding the bias voltage “V-ref” to the “−mon”, and the P control output voltage “V-P” is output. In addition, the biased differential amplifier circuit 12 for I control multiplies the voltage obtained by adding the bias voltage “V-ref” to the deviation voltage “V-mon-V-set” whose polarity is changed, and the integral gain is multiplied by “n”. Output the previous voltage "V-I '".
As will be described later, the bias voltage “V-ref” is a reference voltage that determines the magnitude of the drive voltage “V-TEC−, V-TEC +” applied to the Peltier element Q and the direction of the current flowing through the Peltier element Q. It is.

バイアスドPI制御回路20では、積分前電圧「V-I’」をバイアスド積分回路21で積分したI制御出力電圧「V-I」とP制御出力電圧「V-P」とを加算し、余分に加算されたバイアス電圧「V-ref」を減算することで、制御電圧「V-PI」を出力する。
なお、極性を入れ替えた偏差電圧の対をバイアスド差動増幅回路対10で用いることにより、バイアスド積分回路21を反転型で容易に構成することが出来る。
In the biased PI control circuit 20, the I control output voltage “V-I” obtained by integrating the pre-integration voltage “V-I ′” in the biased integration circuit 21 and the P control output voltage “V-P” are added, and extra. By subtracting the added bias voltage “V-ref”, the control voltage “V-PI” is output.
Note that the biased integrating circuit 21 can be easily configured as an inverted type by using a pair of deviation voltages whose polarity is changed in the biased differential amplifier circuit pair 10.

TEC駆動回路30では、低飽和出力回路31により、制御電圧「V-PI」とバイアス電圧「V-ref」を比較し、比較結果に応じて駆動電圧「V-TEC-」および「V-TEC+」を出力する。   In the TEC drive circuit 30, the control voltage “V-PI” and the bias voltage “V-ref” are compared by the low saturation output circuit 31, and the drive voltages “V-TEC-” and “V-TEC +” are compared according to the comparison result. Is output.

図2は、バイアスド差動増幅回路対10およびバイアスドPI制御回路20の具体例である。
アンプA1〜A5は、3V以下の単一極性の電源で動作するアナログ演算回路である。
バイアスド差動増幅回路対10では、アンプA1およびA3が、P制御に対するバイアスド差動増幅回路11を構成する。
V-P=m(V-set−V-mon)+V-ref …(1)
である。
また、アンプA2およびA4が、I制御に対するバイアスド差動増幅回路12を構成する。
V-I’=n(V-mon−V-set)+V-ref …(2)
である。
FIG. 2 is a specific example of the biased differential amplifier circuit pair 10 and the biased PI control circuit 20.
The amplifiers A1 to A5 are analog arithmetic circuits that operate with a single polarity power supply of 3V or less.
In the biased differential amplifier circuit pair 10, the amplifiers A1 and A3 constitute a biased differential amplifier circuit 11 for P control.
V-P = m (V-set-V-mon) + V-ref (1)
It is.
The amplifiers A2 and A4 form a biased differential amplifier circuit 12 for I control.
V-I '= n (V-mon-V-set) + V-ref (2)
It is.

バイアスドPI制御回路20では、アンプA5が、バイアスド積分回路21を構成する。式(2)にバイアス電圧「V-ref」を用いた反転型積分を施すことにより、
V-I=1/(Cl・R2)・∫{n(V-set−V-mon)}dt+V-ref …(3)
である。
式(1)と式(3)を加算しバイアス電圧「V-ref」を減算することにより、
V-PI=m(V-set−V-mon)+1/(C1・R2)・∫{n(V-set−V-mon)}dt+V-ref …(4)
である。
In the biased PI control circuit 20, the amplifier A 5 constitutes a biased integration circuit 21. By applying inversion type integration using the bias voltage “V-ref” to the equation (2),
V-I = 1 / (Cl.R2) .∫ {n (V-set-V-mon)} dt + V-ref (3)
It is.
By adding equations (1) and (3) and subtracting the bias voltage “V-ref”,
V-PI = m (V-set-V-mon) + 1 / (C1.R2) .∫ {n (V-set-V-mon)} dt + V-ref (4)
It is.

式(4)における積分の項は、使用環境温度が変化して目標温度に対応する電圧と測定温度に対応する電圧の偏差すなわち偏差電圧「V-set−V-mon」が大きくなると、偏差電圧「V-set−V-mon」を小さくする方向に制御電圧「V-PI」を変化させる。   The integral term in equation (4) indicates that the deviation voltage “V-set−V-mon” increases as the deviation between the voltage corresponding to the target temperature and the voltage corresponding to the measured temperature increases. The control voltage “V-PI” is changed in the direction of decreasing “V-set-V-mon”.

図3は、TEC駆動回路30の具体例である。
アンプA6〜A9は、3V以下の単一極性の電源で動作するアナログ演算回路である。
また、トランジスタTR2,TR4,TR5,TR7への供給電圧Vinは、3V以下の単一極性の電源である。
FIG. 3 is a specific example of the TEC drive circuit 30.
The amplifiers A6 to A9 are analog arithmetic circuits that operate with a single polarity power supply of 3V or less.
The supply voltage Vin to the transistors TR2, TR4, TR5 and TR7 is a single polarity power supply of 3V or less.

目標温度よりも測定温度のほうが高い場合、制御電圧「V-PI」がバイアス電圧「V-ref」よりも小さくなるため、アンプA6の出力電圧が供給電圧側に振れた電圧になり、アンプA7の出力電圧が0側に振れた電圧になり、アンプA8の出力電圧が「L」に近くなり、アンプA9の出力電圧が「H」になる。これにより、アンプA6の出力電圧に応じたドロップアウトでトランジスタTR1,TR2がオンになり、トランジスタTR7,TR8が導通し、トランジスタTR3,TR4,TR5,TR6が遮断して、駆動電圧「V-TEC-」がアンプA6の出力電圧に応じた電圧となり、駆動電圧「V-TEC+」がほぼ0となり、ペルチェ素子Qには「V-TEC-」側から「V-TEC+」側へ駆動電流が流れる。
ペルチェ素子Qに「V-TEC-」側から「V-TEC+」側へ駆動電流が流れると、ペルチェ素子Qが吸熱する。これにより、制御温度(測定温度)が低下し、目標温度に近づく。
When the measured temperature is higher than the target temperature, the control voltage “V-PI” becomes smaller than the bias voltage “V-ref”, so that the output voltage of the amplifier A6 swings to the supply voltage side, and the amplifier A7 , The output voltage of the amplifier A8 becomes close to “L”, and the output voltage of the amplifier A9 becomes “H”. As a result, the transistors TR1 and TR2 are turned on by dropout corresponding to the output voltage of the amplifier A6, the transistors TR7 and TR8 are turned on, the transistors TR3, TR4, TR5 and TR6 are cut off, and the drive voltage “V-TEC -"Becomes the voltage according to the output voltage of the amplifier A6, the drive voltage" V-TEC + "becomes almost 0, and the drive current flows from the" V-TEC- "side to the" V-TEC + "side in the Peltier element Q .
When a drive current flows from the “V-TEC-” side to the “V-TEC +” side in the Peltier element Q, the Peltier element Q absorbs heat. Thereby, control temperature (measurement temperature) falls and it approaches target temperature.

目標温度よりも測定温度のほうが低い場合、制御電圧「V-PI」がバイアス電圧「V-ref」よりも大きくなるため、アンプA6の出力電圧が0側に振れた電圧になり、アンプA7の出力電圧が供給電圧側に振れた電圧になり、アンプA8の出力電圧が「H」になり、アンプA9の出力電圧が「L」になる。これにより、アンプA7の出力電圧に応じたドロップアウトでトランジスタTR3,TR4がオンになり、トランジスタTR5,TR6が導通し、トランジスタTR1,TR2,TR7,TR8が遮断して、駆動電圧「V-TEC-」がほぼ0となり、駆動電圧「V-TEC+」がアンプA7の出力電圧に応じた電圧となり、ペルチェ素子Qには「V-TEC+」側から「V-TEC-」側へ駆動電流が流れる。
ペルチェ素子Qに「V-TEC+」側から「V-TEC-」側へ駆動電流が流れると、ペルチェ素子Qが発熱する。これにより、制御温度(測定温度)が上昇し、目標温度に近づく。
When the measured temperature is lower than the target temperature, the control voltage “V-PI” becomes larger than the bias voltage “V-ref”, so that the output voltage of the amplifier A6 is swung to the 0 side, and the amplifier A7 The output voltage changes to the supply voltage side, the output voltage of the amplifier A8 becomes “H”, and the output voltage of the amplifier A9 becomes “L”. As a result, the transistors TR3 and TR4 are turned on by dropout corresponding to the output voltage of the amplifier A7, the transistors TR5 and TR6 are turned on, the transistors TR1, TR2, TR7 and TR8 are cut off, and the drive voltage “V-TEC -"Becomes almost 0, the drive voltage" V-TEC + "becomes the voltage according to the output voltage of the amplifier A7, and the drive current flows from the" V-TEC + "side to the" V-TEC- "side in the Peltier element Q .
When a drive current flows from the “V-TEC +” side to the “V-TEC-” side in the Peltier element Q, the Peltier element Q generates heat. As a result, the control temperature (measured temperature) rises and approaches the target temperature.

低飽和出力回路31では、出力段のトランジスタTR2およびTR4をPNPバイポーラトランジスタのコレクタ出力型としているから、供給電圧Vinよりも0.6V低い電圧でべースを駆動できる。これにより、NPN型バイポーラトランジスタでダーリントン接続する回路に比べてトランジスタTR2,TR4のエミッタ−コレクタ間の飽和電圧を小さく出来る。つまり、出力段で大きなドロップアウトが生じてペルチェ素子Qに印加する電圧が不足することを回避でき、供給電圧Vinに近い電圧までペルチェ素子Qに印加することが出来る。従って、単一極性かつ低電圧の電源で作動可能となる。   In the low saturation output circuit 31, since the transistors TR2 and TR4 in the output stage are collector output types of PNP bipolar transistors, the base can be driven with a voltage lower by 0.6V than the supply voltage Vin. As a result, the saturation voltage between the emitters and collectors of the transistors TR2 and TR4 can be reduced as compared with a circuit in which Darlington connection is performed using NPN bipolar transistors. That is, it can be avoided that a large dropout occurs at the output stage and the voltage applied to the Peltier element Q is insufficient, and a voltage close to the supply voltage Vin can be applied to the Peltier element Q. Accordingly, it is possible to operate with a single polarity and low voltage power source.

実施例1の波長変換レーザ温度制御回路100によれば、次の効果が得られる。
(1)ペルチェ素子Qに流す電流の方向を周期的に切り替える必要がなくなるため、ペルチェ素子Qの寿命低下を避けることが出来る。
(2)パルス発生回路やデジタル回路を必要としないため回路規模が小さくて済む。
(3)PNP型バイポーラトランジスタTR2,TR4によるコレクタ出力型の低飽和出力段とすることで、供給電圧Vinとほぼ等しい電圧までペルチェ素子Qに印加でき、単一極性かつ低電圧の電源すなわち電池で動作可能となる。
(4)PI制御としたことで目標温度への高精度な追従が可能となり、屋外での−10℃から50℃程度の広い使用環境温度範囲でも精度の良い温度制御を行うことが出来る。
According to the wavelength conversion laser temperature control circuit 100 of the first embodiment, the following effects can be obtained.
(1) Since it is not necessary to periodically switch the direction of the current flowing through the Peltier element Q, it is possible to avoid a decrease in the life of the Peltier element Q.
(2) Since no pulse generation circuit or digital circuit is required, the circuit scale can be reduced.
(3) By using a collector output type low saturation output stage with PNP type bipolar transistors TR2 and TR4, a voltage substantially equal to the supply voltage Vin can be applied to the Peltier element Q. It becomes possible to operate.
(4) By adopting PI control, it is possible to follow the target temperature with high accuracy, and accurate temperature control can be performed even in a wide use environment temperature range of about -10 ° C to 50 ° C outdoors.

本発明の波長変換レーザ温度制御回路は、ポータブルな電池駆動の波長変換レーザに利用することが出来る。   The wavelength conversion laser temperature control circuit of the present invention can be used for a portable battery-driven wavelength conversion laser.

実施例1に係る波長変換レーザ温度制御回路を示す構成ブロック図である。1 is a configuration block diagram illustrating a wavelength conversion laser temperature control circuit according to Embodiment 1. FIG. 実施例1に係る波長変換レーザ温度制御回路のバイアスド差動増幅回路対およびバイアスドPI制御回路の具体例を示す回路図である。3 is a circuit diagram illustrating a specific example of a biased differential amplifier circuit pair and a biased PI control circuit of the wavelength conversion laser temperature control circuit according to the first embodiment. FIG. 実施例1に係る波長変換レーザ温度制御回路のTEC駆動回路の具体例を示す回路図である。FIG. 3 is a circuit diagram illustrating a specific example of a TEC drive circuit of the wavelength conversion laser temperature control circuit according to the first embodiment.

符号の説明Explanation of symbols

10 バイアスド差動増幅回路対
20 バイアスドPI制御回路
30 TEC駆動回路
100 波長変換レーザ温度制御回路
A1〜A9 アナログ演算回路
TR2,TR4 PNP型バイポーラトランジスタ
Vin 供給電圧
DESCRIPTION OF SYMBOLS 10 Biased differential amplifier circuit pair 20 Biased PI control circuit 30 TEC drive circuit 100 Wavelength conversion laser temperature control circuit A1-A9 Analog arithmetic circuit TR2, TR4 PNP type bipolar transistor Vin Supply voltage

Claims (1)

波長変換レーザの半導体レーザおよび非線形光学結晶を含む光共振器の温度を制御するためのペルチェ素子(Q)を駆動する回路であって、
目標温度に対応する電圧(V-set)と測定温度に対応する電圧(V-mon)の差である偏差電圧バイアス電圧(V-ref)を加えた電圧を比例利得増幅してP制御出力電圧(V-P)を出力する第1のバイアスド差動増幅回路(11)と、極性を入れ替えた前記偏差電圧にバイアス電圧(V-ref)を加えた電圧を積分利得増幅して、積分前電圧(V-I’)を出力する第2のバイアスド差動増幅回路(12)とを備えたバイアスド差動増幅回路対(10)と、
前記比例利得増幅を行った電圧(V-P)、前記積分利得増幅を行った電圧(V-I’) をバイアスド積分回路(21)で積分したI制御出力電圧(V-I)を加算し、バイアス電圧(V-ref)を減算することで、PI制御のための制御電圧(V-PI)を出力するバイアスドPI制御回路(20)とを備え
前記第1のバイアスド差動増幅回路(11)および第2のバイアスド差動増幅回路(12)、及び、前記バイアスド積分回路(21)は、3V以下の単一極性電源で動作するアナログ演算回路から構成されており、
前記制御電圧(V-PI)バイアス電圧(V-ref)との差の符号に応じて、PNP型バイポーラトランジスタ(TR2,TR4)によるコレクタ出力型の一対の低飽和出力段の一方を選択する相補的動作をさせて前記ペルチェ素子(Q)に流す電流の方向を変えるTEC駆動回路(30)とを具備したことを特徴とする波長変換レーザ温度制御回路(100)。
A circuit for driving a Peltier element (Q) for controlling the temperature of an optical resonator including a semiconductor laser of a wavelength conversion laser and a nonlinear optical crystal,
P control output with proportional gain amplification of the voltage obtained by adding the bias voltage (V-ref) to the deviation voltage , which is the difference between the voltage (V-set) corresponding to the target temperature and the voltage (V-mon) corresponding to the measured temperature a voltage (V-P) first the biased differential amplifier circuit for outputting (11), a voltage obtained by adding a bias voltage (V-ref) to said difference voltage obtained by rearranging the polarity and integral gain amplifier, before integration A biased differential amplifier circuit pair (10) comprising a second biased differential amplifier circuit (12) for outputting a voltage (V-I ') ;
The I control output voltage (V-I) obtained by integrating the voltage (V-I ') after the integral gain amplification by the biased integration circuit (21) is added to the voltage (V-P) after the proportional gain amplification. and, by subtracting the bias voltage (V-ref), comprising a the biased PI control circuit (20) for outputting a control voltage for the PI control (V-PI),
The first biased differential amplifier circuit (11), the second biased differential amplifier circuit (12), and the biased integrator circuit (21) are derived from an analog arithmetic circuit that operates with a single polarity power supply of 3V or less. Configured,
Depending on the sign of the difference between the control voltage (V-PI) and the bias voltage (V-ref) , one of a pair of collector output type low-saturation output stages using PNP-type bipolar transistors (TR2, TR4) is selected. A wavelength conversion laser temperature control circuit (100) comprising a TEC drive circuit (30) that changes the direction of a current flowing through the Peltier element (Q) by performing a complementary operation.
JP2005341385A 2005-11-28 2005-11-28 Wavelength conversion laser temperature control circuit Active JP4715469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005341385A JP4715469B2 (en) 2005-11-28 2005-11-28 Wavelength conversion laser temperature control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005341385A JP4715469B2 (en) 2005-11-28 2005-11-28 Wavelength conversion laser temperature control circuit

Publications (2)

Publication Number Publication Date
JP2007149904A JP2007149904A (en) 2007-06-14
JP4715469B2 true JP4715469B2 (en) 2011-07-06

Family

ID=38210957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005341385A Active JP4715469B2 (en) 2005-11-28 2005-11-28 Wavelength conversion laser temperature control circuit

Country Status (1)

Country Link
JP (1) JP4715469B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104393479B (en) * 2014-11-24 2017-05-17 中航海信光电技术有限公司 Laser full-life self-adaptive state control method
JPWO2018061106A1 (en) * 2016-09-28 2018-09-27 三菱電機株式会社 Laser radar equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308396A (en) * 2000-04-24 2001-11-02 Fujitsu Ltd Peltier element drive circuit
JP2002236441A (en) * 2001-02-08 2002-08-23 Art Nau:Kk Device and method for manufacturing hologram
JP2003318481A (en) * 2002-04-25 2003-11-07 Sumitomo Electric Ind Ltd Laser control circuit and laser module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308396A (en) * 2000-04-24 2001-11-02 Fujitsu Ltd Peltier element drive circuit
JP2002236441A (en) * 2001-02-08 2002-08-23 Art Nau:Kk Device and method for manufacturing hologram
JP2003318481A (en) * 2002-04-25 2003-11-07 Sumitomo Electric Ind Ltd Laser control circuit and laser module

Also Published As

Publication number Publication date
JP2007149904A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
JP5233136B2 (en) Light-emitting diode driving device using constant current circuit and constant current circuit
ATE534066T1 (en) PROPORTIONAL TO ABSOLUTE TEMPERATURE VOLTAGE CIRCUIT
JP2008177330A (en) Constant current circuit and light-emitting diode driving device using the same
JP4715469B2 (en) Wavelength conversion laser temperature control circuit
JP2006269981A (en) Optical semiconductor light-emitting element driver circuit
US7420408B2 (en) Current control circuit with limiter, temperature control circuit, and brightness control circuit
JP6801918B2 (en) Temperature control circuit
JPH06180332A (en) Current detection circuit
KR101980526B1 (en) Reference current generating circuit and reference voltage generating circuit
JP3461276B2 (en) Current supply circuit and bias voltage circuit
US20140055166A1 (en) Reference voltage circuits
JP2006031246A (en) Reference current generation circuit
JP4341497B2 (en) Optical transmitter
JP2002185072A (en) Laser driver circuit
CN110189709B (en) Control circuit, backlight driving device and display device
JPH0992923A (en) Laser module temperature control circuit
JP2006259034A (en) Reference voltage generation circuit and driver for driving liquid crystal
KR100754391B1 (en) Light emitting device having thermal controller
JP2001175343A (en) Current mirror circuit and its current regulating method
JPH05241668A (en) Temperature control circuit
JP2938723B2 (en) Peltier drive circuit
JPH01152655A (en) Peltier element control circuit
JP2005156161A (en) Heater control circuit
JP2005260001A (en) Light emitting element driver circuit
JPS62236208A (en) Drive circuit for semiconductor light emitting element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110314

R151 Written notification of patent or utility model registration

Ref document number: 4715469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3