JP4706806B2 - Non-aqueous electrolytic secondary battery - Google Patents

Non-aqueous electrolytic secondary battery Download PDF

Info

Publication number
JP4706806B2
JP4706806B2 JP09663699A JP9663699A JP4706806B2 JP 4706806 B2 JP4706806 B2 JP 4706806B2 JP 09663699 A JP09663699 A JP 09663699A JP 9663699 A JP9663699 A JP 9663699A JP 4706806 B2 JP4706806 B2 JP 4706806B2
Authority
JP
Japan
Prior art keywords
battery
secondary battery
electrolyte
aqueous
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09663699A
Other languages
Japanese (ja)
Other versions
JP2000294275A (en
Inventor
江美 鈴木
祐介 綿貫
隆広 六角
哲雄 小島
定夫 上田
稔 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomiyama Pure Chemical Industries Ltd
Original Assignee
Tomiyama Pure Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomiyama Pure Chemical Industries Ltd filed Critical Tomiyama Pure Chemical Industries Ltd
Priority to JP09663699A priority Critical patent/JP4706806B2/en
Publication of JP2000294275A publication Critical patent/JP2000294275A/en
Application granted granted Critical
Publication of JP4706806B2 publication Critical patent/JP4706806B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解型二次電池の改良技術に関し、特に、炭素材料よりなる負極を有してなる二次電池における非水溶媒系のリチウム化合物を電解質として含有する二次電池用非水電解液の改良技術に関する。
【0002】
【従来の技術】
近年、カメラ一体型ビデオテ−プレコ−ダ(VTR)、携帯電話、ラップトップコンピュータ等の新しいポータブル電源として、特に、従来のニッケルーカドミニウム(Ni−Cd)二次電池や鉛二次電池に比べ軽量で高容量且つ高エネルギー密度のリチウム二次電池が注目されている。
【0003】
従来より、リチウム二次電池の非水電解液の電解質としては、LiPF、LiBF等が、また、非水溶媒としては、炭酸エチレン(EC)、γーブチロラクトン(GBL)、炭酸ジメチル(DMC)、炭酸エチルメチル(MEC)、炭酸ジエチル(DEC)、酢酸エチル(EA)、プロピオン酸メチル(MPR)、1,2−ジメトキシエタン(DME)、2−メチルテトラヒドロフラン(2−MeTHF)等が用いられている。
【0004】
しかしながら、炭素材料よりなる負極を有してなる二次電池において、当該負極活物質である炭素材料と上記電解質との間で反応が起こり、その反応生成物が電極表面に被膜となって付着し、その被膜が電池特性に大きく影響を与えている。
炭酸エチレン(EC)は、リチウムと反応してイオン伝導性を有する炭酸塩の被膜を生成する為、電池内部抵抗の増加等の電池特性に及ぼす悪影響は少なく、さらに、この被膜が負極表面の保護膜となり、電池の保存特性等を良好にしているので、従来より炭素材料よりなる負極のリチウム二次電池用非水電解液の主成分となっている。
しかし、当該炭酸エチレン(EC)は、比較的に融点が高く、また、粘性率が高いという欠点があり、又、炭酸ジメチル(DMC)あるいは炭酸ジエチル(DEC)等の直鎖状の炭酸エステル類は、誘電率が低く、電解液溶媒とした時の電解液の導電率が小さく、高出力な二次電池として要求される充分な急速充電特性あるいは低温放電特性が得られ難かった。
一方、炭酸エステル類は、二次電池の充電放電時あるいは高温下での保存中に、分解により炭酸ガスやオレフィンガスを生成する為、内圧が上昇し、電池が膨れるという問題もあった。
更に、環状の炭酸エステル類として炭酸エチレン(EC)と共通する炭酸プロピレン(PC)も、非水溶媒として、リチウム二次電池用非水電解液に使用されることがあるが、前記炭素材料よりなる負極の二次電池では、分解が起こり、使用し難いものであった。
【0005】
【発明が解決しようとする課題】
本発明は、かかる従来技術の有する欠点を解消できる技術を提供することを目的としたものである。
即ち、本発明は、負極活物質である炭素材料とリチウム二次電池用非水電解液中の非水溶媒との間の反応に起因する高温及び低温時の放電特性の低下を防止することができる技術を提供することを目的としたものである。
又、本発明は、炭酸エステル類をはじめとする非水溶媒使用による電池の膨れという問題を解消できる技術を提供することを目的としたものである。
更に、本発明は、炭素材料よりなる負極の二次電池では、分解が起こり、使用し難いとされている炭酸プロピレン(PC)のような溶媒を使用できるようにする技術を提供することを目的としたものである。
更に又、本発明は、非水溶媒と、電解質としてリチウム化合物を含む二次電池用非水電解液を、炭素材料よりなる負極を有する二次電池において使用できるようにする技術を提供することを目的としたものである。
本発明の前記ならびにそのほかの目的と新規な特徴は、本明細書の記述および添付図面からもあきらかになるであろう。
【0006】
本発明は、Liのド−プおよび脱ド−プが可能で炭素−炭素間の層間距離が3.4Å以下の黒鉛系炭素材料よりなる負極と非水溶媒中に電解質としてのリチウム化合物を溶解させてなる非水電解液とを有してなる非水電解型二次電池において、当該非水電解液が、
次の式1で表されるシリコ−ンオイルを0.002〜2重量%
【0007】
【式1】

Figure 0004706806
[但し、上記式中のRは、アルキル基であり、同一でも、異なっていてもよい。n=0〜1000。]、
次の式2で表されるフルオロアルキル基を有するフッ素系非イオン界面活性剤0.001〜0.1重量%
【0008】
【式2】
(CxF2x+1)y
[但し、上記式中のx=1〜16、y=1〜10である。]、
次の式3で表されるプロピレンカ−ボネ−ト1〜10重量%
【0009】
【式3】
Figure 0004706806
を含有してなることを特徴とする非水電解型二次電池に係るものである。
【0010】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0011】
本発明において使用される非水溶媒としては、例えば、炭酸エチレン(EC)、炭酸ジメチル(DMC)、炭酸エチルメチル(MEC)、炭酸ジエチル(DEC)、γーブチロラクトン(GBL)、酢酸エチル(EA)、プロピオン酸メチル(MPR)、プロピオン酸エチル(EPR)、1,2−ジメトキシエタン(DME)、1,2−ジエトキシエタン(DEE)、2−メチルテトラヒドロフラン(2−MeTHF)、テトラヒドロフラン(THF)、スルホラン(SL)、メチルスルホラン(MeSL)等従来より二次電池用非水電解液において用いられているような溶媒を使用することができ、これらは二種以上を混合して用いてもよい。
【0012】
本発明の二次電池用非水電解液においては、電解質としてリチウム化合物を使用する。これにより、本電解質はリチウム二次電池の電解液として特に有用となる。このようなリチウム化合物としては、従来のリチウム二次電池において用いられているものを使用することができる。例えば、LiClO、LiAsF、LiPF、LiBF、LiCFSO、LiN(CFSO、LiC(CFSO等を使用できる。
電解質であるリチウム化合物の二次電池用非水電解液中での濃度は、導電率の点等から0.1〜3.0mol/リットル、好ましくは0.3〜2.0mol/リットルとするとよい。
【0013】
本発明において使用される上記シリコ−ンオイルにおける式1中のRは、メチル基、エチル基等のアルキル基であり、同一でも、異なっていてもよい。
また、nは、0〜1000である。nが1000を超えるときには、非水電解液の分解によるガス発生の抑制効果や充放電特性の改善に難点を生じる。
上記シリコ−ンオイルは、市販のものを使用することができ、具体例としては、信越化学工業株式会社製KF96(以下、シリコ−ンオイルKF96と称する)等が挙げられる。
当該シリコ−ンオイルには、上記のようなシリコ−ンオイルを溶剤に溶かした溶液型や各種添加剤を配合したもの等の二次製品的なものも包含する。
【0014】
上記シリコ−ンオイルの非水電解液中での濃度は、0.002〜2重量%好ましくは0.002〜0.5重量%である。0.002重量%未満では、高温保存下における非水電解液の分解によるガス発生の抑制効果、また、充放電特性等の改善効果が充分でなく、一方、2重量%を超えても、当該効果が飽和し、逆に電池容量が低下する傾向にある。
【0015】
本発明で使用されるフッ素系非イオン界面活性剤は、式2で表されるフルオロアルキル基を有する非イオン界面活性剤で、疎水基として当該フルオロアルキル基を有し、又、これに親水基を導入した界面活性剤である。
疎水基のフルオロアルキル基は、その炭素数(x)が1のCFや、炭素数(x)が2〜16のパ−フルオロアルキル基例えばC、C等により構成される。 上記x及びyの値が上記範囲を逸脱する時には、充放電時、高温保存下における非水電解液の分解によるガス発生の抑制効果や充放電特性の改善効果が充分でなくなる。
上記疎水基を有する中間体に、親水基としてポリオキシエチレンを付加導入することにより、フルオロポリオキシエチレンエ−テルからなるフッ素系非イオン界面活性剤を構成できる。
【0016】
本発明で使用されるフッ素系非イオン界面活性剤の具体例としては、次の式4で表されるフルオロポリオキシエチレンエ−テルが挙げられる。
【0017】
【式4】
Figure 0004706806
但し、上記式中のz=3〜20。
zが3未満では、充放電、高温保存下における非水電解液の分解によるガス発生の抑制効果、また、充放電特性等の改善効果が充分でなく、一方、20を超えても、当該効果が飽和し、逆に電池容量が低下する傾向にある。
【0018】
本発明におけるフッ素系非イオン界面活性剤としては、市販のものが使用でき、例えば、株式会社ネオス社製の商品名フタ−ジェントFT−251(以下、単に、FT−251という),FT−250等が使用できる。
【0019】
本発明において使用されるフッ素系非イオン界面活性剤の他の例としては、例えば、次の式5で表される界面活性剤が挙げられる。
【0020】
【式5】
Figure 0004706806
但し、上記式中のRは、炭素数2〜14のパ−フルオロアルキル(基)、Zは、上記Rの炭素および(CH)aの炭素原子に結合した2価の架橋基、R及びRは、同一又は相異なる水素原子またはメチル基、Iは、0又は1の整数、aは、1〜12の整数、bは、30〜100の整数である。
上記Zの2価の架橋基の例としては、エ−テル[−O−、−(CH−O−]が挙げられる。
当該フッ素系非イオン界面活性剤の具体例としては、1,1,2,2−テトラハイドロ・パ−フロロオクタノ−ル・ポリオキシエチレン付加重合体、N−プロピルパ−フロロオクタンスルホンアミドエタノ−ル・ポリオキシエチレン付加重合体、6−(パ−フロロオクチル)ヘキサノ−ル−1・ポリオキシエチレン付加重合体が挙げられる。
【0021】
上記界面活性剤の非水電解液中での濃度は、0.001〜0.1重量%好ましくは0.001〜0.02重量%である。0.001重量%未満では、充放電、高温保存下における非水電解液の分解によるガス発生の抑制効果、また、充放電特性等の改善効果が充分でなく、一方、0.1重量%を超えても、当該効果が飽和し、逆に電池容量が低下する傾向にある。
【0022】
上記式3で表されるプロピレンカ−ボネ−トの非水電解液中での濃度は、1〜10重量%好ましくは1〜6重量%である。1重量%未満では、充放電、高温保存下における非水電解液の分解によるガス発生の抑制効果、また、充放電特性等の改善効果が充分でなく、一方、10重量%を超えても、当該効果が飽和し、逆に電池容量が低下する傾向にある。
【0023】
本発明の二次電池用非水電解液は、例えば、非水溶媒を撹拌しながら、その中に電解質としてリチウム化合物を添加して溶解させ、上記シリコ−ンオイル、界面活性剤及びプロピレンカ−ボネ−トを添加して溶解させることにより製造することができる。
【0024】
本発明の二次電池用非水電解液は、リチウム化合物を電解質とする非水系二次電池で、Liのド−プおよび脱ド−プが可能で炭素−炭素間の層間距離が3.4Å以下の黒鉛系炭素材料よりなる負極を有してなる二次電池に適用することができる。
前記特定のシリコ−ンオイル、特定の界面活性剤及び特定のプロピレンカ−ボネ−トを用い、特にこれらを前記特定濃度で使用することにより、プロピレンカ−ボネ−トの使用も可能で、充放電特性を改善し、充放電、高温保存下における非水電解液の分解によるガスの発生を抑制することができる。
上記Liのド−プおよび脱ド−プは、例えば、リチウム金属、リチウム合金またはリチウムイオンにより行なうことができる。ここで、リチウム合金としては、リチウムーアルミニウム合金を例示することができる。
負極を構成する炭素材料には、例えば、熱分解炭素類、コ−クス類(ピッチコ−クス、ニ−ドルコークス、石油コ−クス等)、グラファイト類、有機高分子化合物焼成体(フェノ−ル樹脂、フラン樹脂等を適当な温度で焼成し炭素化したもの)、炭素繊維、活性炭等が挙げられるが、当該炭素材料は、黒鉛化したものであることが必要であり、その炭素−炭素間の層間距離は、本発明の目的達成の上からは、3.4Å(オングストロ−ム)以下であることが必要である。
【0025】
一方、正極は、充放電が可能な種々の材料から形成することができる。例えば、LiCoO、LiNiO、LiMn、LiMnOなどのLiMO(ここで、Mは一種以上の遷移金属であり、xは電池の充放電状態によって異なり、通常0.05≦x≦1.20である)で表される、リチウムと一種以上の遷移金属との複合酸化物や、FeS、TiS、V、MoO、MoSなどの遷移元素のカルコゲナイトあるいはポリアセチレン、ポリピロール等のポリマー等を使用することができる。
【0026】
本発明の二次電池用非水電解液を使用した二次電池の形状については特に限定されることはなく、ボタン型、円筒型、角型、コイン型等の種々の形状にすることができる。
【0027】
【実施例】
以下、本発明を実施例に基づいて更に説明する。
【0028】
実施例1.
当該実施例で用いた非水電解液二次電池につき、図1に基づいて説明する。
図1に示すごとく、本例の非水電解液二次電池1は、正極2と負極3とセパレ−タ4と非水電解液5とボタン型電池容器6と正極側集電体7と負極側集電体8とガスケット9とを有してなる。
上記正極2としては、LiCoOを正極活物質とする合剤をペレット状に加圧成形した成形品を使用した。また、負極3としては、炭素−炭素間の相関距離が2.4Åの黒鉛を負極活物質担体とした合剤をペレット状に加圧成形した成形品を使用した。
非水電解液5には、炭酸エチレン(EC)と炭酸ジエチル(DEC)との混合溶媒(容量比2:3)に、LiPFからなる電解質を濃度1mol/リットルにて含有させ、さらに、シリコ−ンオイルKF96を0.05重量%、フッ素系非イオン界面活性剤FT−251を0.003重量%、リチウム電池用プロピレンカ−ボネ−トを2重量%含有してなる溶液を使用した。
上記セパレ−タ4にはポリプロピレン製の不織布よりなるセパレ−タを用いた。また、正極側集電体7はステンレス鋼により構成し、一方、負極側集電体8はニッケルエキスパンドメタルにより構成した。さらに、前記電池容器6はステンレス鋼より構成し、その正極缶と負極缶をポリプロピレンのガスケット9により固定した。
以上のようにして作製した電池について、電池容量、高温保持後の電池容量を調べた。
尚、充電は定電流法とし、上限電圧を4.2V、定電流での電流密度を0.60(0.2C)mA/cmに設定し、放電は、電流密度を0.60(0.2C)mA/cmの定電流で行ない、終止電圧は2.7Vとした。
通常充放電は20℃で100サイクル行ない、100サイクル目の放電容量で評価した。
また、高温充放電は45℃において0.5Cの電流密度で充放電を行ない100サイクル目の電池容量の比較により評価した。
低温放電時の電池容量は、通常充電した電池を−10℃に放置し、電流密度1Cで放電を実施し、通常放電した電池容量の比較から評価した。
【0029】
実施例2.
実施例1における非水電解液5を、炭酸エチレン(EC)と炭酸ジメチル(DMC)との混合溶媒(容量比1:1)にシリコ−ンオイルKF96を0.3重量%、フッ素系非イオン界面活性剤FT−251を0.01重量%、リチウム電池用プロピレンカ−ボネ−トを4重量%を含有させたものに変えた以外は、上記実施例1と同様にしてボタン型電池を作製し、実施例1と同様の条件下で、通常充放電時、低温放電時及び高温放電時の電池容量を調べた。
【0030】
比較例1.
実施例1においてプロピレンカ−ボネ−トを添加しなかった以外は、上記実施例1と同様にしてボタン型電池を作製し、実施例1と同様の条件下で、通常充放電時、低温放電時及び高温放電時の電池容量を調べた。
【0031】
比較例2.
実施例2において、プロピレンカ−ボネ−トを添加しなかった以外は、実施例2と同様にしてボタン型電池を作製し、実施例1と同様の条件下で、通常充放電時、低温放電時及び高温放電時の電池容量を調べた。
【0032】
比較例3.
実施例1において、シリコ−ンオイル、界面活性剤及びプロピレンカ−ボネ−トを添加しなかった以外は、実施例1と同様にしてボタン型電池を作製し、実施例1と同様の条件下で、通常充放電時、低温放電時及び高温放電時の電池容量を調べた。
【0033】
比較例4.
実施例2において、シリコ−ンオイル、界面活性剤及びプロピレンカ−ボネ−トを添加しなかった以外は、実施例2と同様にしてボタン型電池を作製し、実施例1と同様の条件下で、通常充放電時、低温放電時及び高温放電時の電池容量を調べた。
【0034】
以上の結果を、表1に示す。
【0035】
【表1】
Figure 0004706806
【0036】
表1に示すように、本発明のシリコ−ンオイル、界面活性剤及びプロピレンカ−ボネ−トを添加した電解液(実施例1、2)は、通常充放電時、低温放電時及び高温放電時の電池容量の全てにおいて、当該シリコ−ンオイル及び界面活性剤のみを加えた電解液(比較例1、比較例2)及び当該シリコ−ンオイル、界面活性剤及びプロピレンカ−ボネ−トを加えない電解液(比較例3、比較例4)に比較して、増加が見られ、効果があることが判る。
又、シリコ−ンオイル、界面活性剤及びプロピレンカ−ボネ−トを添加した実施例1及び2の電解液について、電池の膨れ状態を、90℃、100時間放置後に、電池を分解し、電解液を赤外分光光度計を使用して炭酸ガス濃度を測定して評価した所、シリコ−ンオイル及び界面活性剤並びにシリコ−ンオイル、界面活性剤及びプロピレンカ−ボネ−トを添加しない比較品の電解液中の炭酸ガス濃度は1000〜1200ppmであったのに対し、本発明品は1000ppm以下で電池の膨れ防止効果があることを確認した。
【0037】
以上本発明者によってなされた発明を実施例にもとずき具体的に説明したが、本発明は上記実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
例えば、上記実施例では、電池の形状はボタン型で説明を行なったが、これに限定されるものではなく、他の角型、円筒型、コイン型等であっても同様の効果を得ることが出来る。
【0038】
【発明の効果】
本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば、下記のとおりである。
すなわち、本発明によれば、次ぎのような利点がある。
(1)負極活物質である炭素材料とリチウム二次電池用非水電解液中の非水溶媒との間の反応に起因する高温及び低温時の放電特性の低下を防止することができる。
(2) 二次電池用非水電解液において、非水溶媒使用による分解ガスの発生を抑制し電池の膨れ防止を果すことができる。シリコ−ンオイルを添加することにより、分解ガスの発生を抑制し電池の膨れ防止を果すことができ、電極特に負極表面に良好な皮膜を生成させることができる利点があるが、その皮膜が不均一であると負極表面の細部まで液の浸透がないことがあり、その為に、充分な放電特性を示さない時があるが、シリコ−ンオイルに加えて、更に、上記界面活性剤を添加することにより、負極表面細部まで均一な皮膜を生成することができ、より一層分解ガスの発生を抑制し電池の膨れ防止でき、非水電解液を用いた二次電池の放電特性、低温放電特性及び高温放電特性を向上させることができ、プロピレンカ−ボネ−トの添加により、更に、非水電解液を用いた二次電池の放電特性、低温放電特性及び高温放電特性をより一層向上させることができる。
(3)炭素材料よりなる負極の二次電池では、分解が起こり、使用し難いとされているヨウナ溶媒を使用できるようになる。
(4)非水溶媒と、電解質としてリチウム化合物を含む二次電池用非水電解液を、特定の炭素材料よりなる負極を有する二次電池において使用できるようにすることができる。
【図面の簡単な説明】
【図1】図1は、本発明の実施例に係る非水電解液二次電池の一例断面図である。
【符号の説明】
1…非水電解液二次電池
2…正極
3…負極
4…セパレータ
5…非水電解液
6…ボタン型電池容器
7…正極側集電体
8…負極側集電体
9…ガスケット[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for improving a non-aqueous electrolytic secondary battery , and in particular, a non-aqueous battery for a secondary battery containing a non-aqueous solvent-based lithium compound as an electrolyte in a secondary battery having a negative electrode made of a carbon material. The present invention relates to an improved electrolyte solution.
[0002]
[Prior art]
In recent years, as a new portable power source for camera-integrated video tape recorders (VTRs), mobile phones, laptop computers, etc., it is particularly lightweight compared to conventional nickel-cadmium (Ni-Cd) secondary batteries and lead secondary batteries. Therefore, lithium secondary batteries with high capacity and high energy density are attracting attention.
[0003]
Conventionally, LiPF 6 , LiBF 4, etc. have been used as electrolytes for non-aqueous electrolytes of lithium secondary batteries, and ethylene carbonate (EC), γ-butyrolactone (GBL), dimethyl carbonate (DMC) have been used as non-aqueous solvents. ), Ethyl methyl carbonate (MEC), diethyl carbonate (DEC), ethyl acetate (EA), methyl propionate (MPR), 1,2-dimethoxyethane (DME), 2-methyltetrahydrofuran (2-MeTHF) and the like are used. It has been.
[0004]
However, in a secondary battery having a negative electrode made of a carbon material, a reaction occurs between the carbon material as the negative electrode active material and the electrolyte, and the reaction product adheres to the electrode surface as a film. The film greatly affects the battery characteristics.
Ethylene carbonate (EC) reacts with lithium to produce a carbonate film with ion conductivity, so there is little adverse effect on battery characteristics such as an increase in battery internal resistance, and this film protects the negative electrode surface. Since it becomes a film and the storage characteristics and the like of the battery are improved, it has been a main component of a non-aqueous electrolyte for a negative electrode lithium secondary battery made of a carbon material.
However, the ethylene carbonate (EC) has a disadvantage that it has a relatively high melting point and a high viscosity, and linear carbonates such as dimethyl carbonate (DMC) or diethyl carbonate (DEC). Has a low dielectric constant, a low conductivity of the electrolyte when used as an electrolyte solvent, and it has been difficult to obtain sufficient rapid charge characteristics or low temperature discharge characteristics required for a high-power secondary battery.
On the other hand, since carbonic acid esters generate carbon dioxide gas and olefin gas by decomposition during charge discharge of the secondary battery or during storage at high temperature, there is also a problem that the internal pressure rises and the battery swells.
Furthermore, propylene carbonate (PC), which is common with ethylene carbonate (EC) as a cyclic carbonate, may be used as a non-aqueous solvent in a non-aqueous electrolyte for lithium secondary batteries. In such a negative electrode secondary battery, decomposition occurred and it was difficult to use.
[0005]
[Problems to be solved by the invention]
The object of the present invention is to provide a technique capable of eliminating the drawbacks of the prior art.
That is, the present invention can prevent deterioration in discharge characteristics at high and low temperatures due to the reaction between the carbon material that is the negative electrode active material and the non-aqueous solvent in the non-aqueous electrolyte for lithium secondary batteries. The purpose is to provide a possible technology.
Another object of the present invention is to provide a technique capable of solving the problem of battery swelling due to the use of non-aqueous solvents such as carbonate esters.
Another object of the present invention is to provide a technique for enabling the use of a solvent such as propylene carbonate (PC), which is considered to be decomposed and difficult to use in a negative electrode secondary battery made of a carbon material. It is what.
Furthermore, the present invention provides a technique that enables a nonaqueous solvent for a secondary battery containing a nonaqueous solvent and a lithium compound as an electrolyte to be used in a secondary battery having a negative electrode made of a carbon material. It is intended.
The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.
[0006]
The present invention dissolves a lithium compound as an electrolyte in a non-aqueous solvent and a negative electrode made of a graphite-based carbon material capable of Li doping and dedoping and having a carbon-carbon interlayer distance of 3.4 mm or less. In the non-aqueous electrolytic secondary battery having a non-aqueous electrolyte solution, the non-aqueous electrolyte solution is:
0.002 to 2% by weight of silicone oil represented by the following formula 1
[0007]
[Formula 1]
Figure 0004706806
[However, R in the above formula is an alkyl group, which may be the same or different. n = 0-1000. ],
0.001 to 0.1% by weight of a fluorine-based nonionic surfactant having a fluoroalkyl group represented by the following formula 2
[0008]
[Formula 2]
(CxF2x + 1) y
[However, x = 1 to 16 and y = 1 to 10 in the above formula. ],
1 to 10% by weight of propylene carbonate represented by the following formula 3
[0009]
[Formula 3]
Figure 0004706806
The present invention relates to a non-aqueous electrolytic secondary battery characterized by comprising:
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0011]
Examples of the non-aqueous solvent used in the present invention include ethylene carbonate (EC), dimethyl carbonate (DMC), ethyl methyl carbonate (MEC), diethyl carbonate (DEC), γ-butyrolactone (GBL), ethyl acetate (EA). ), Methyl propionate (MPR), ethyl propionate (EPR), 1,2-dimethoxyethane (DME), 1,2-diethoxyethane (DEE), 2-methyltetrahydrofuran (2-MeTHF), tetrahydrofuran (THF) ), Sulfolane (SL), methyl sulfolane (MeSL), and the like, which are conventionally used in non-aqueous electrolytes for secondary batteries, and these may be used as a mixture of two or more. Good.
[0012]
In the non-aqueous electrolyte for secondary batteries of the present invention, a lithium compound is used as the electrolyte. Thereby, the present electrolyte is particularly useful as an electrolytic solution for a lithium secondary battery. As such a lithium compound, what is used in the conventional lithium secondary battery can be used. For example, LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 and the like can be used.
The concentration of the lithium compound as an electrolyte in the non-aqueous electrolyte for secondary batteries is 0.1 to 3.0 mol / liter, preferably 0.3 to 2.0 mol / liter from the viewpoint of conductivity. .
[0013]
R in Formula 1 in the silicone oil used in the present invention is an alkyl group such as a methyl group or an ethyl group, and may be the same or different.
Moreover, n is 0-1000. When n exceeds 1000, there are difficulties in suppressing the gas generation due to the decomposition of the non-aqueous electrolyte and improving the charge / discharge characteristics.
Commercially available silicone oil can be used, and specific examples include KF96 (hereinafter referred to as silicone oil KF96) manufactured by Shin-Etsu Chemical Co., Ltd.
The silicone oil includes secondary products such as a solution type obtained by dissolving the above silicone oil in a solvent and a mixture of various additives.
[0014]
The concentration of the silicone oil in the non-aqueous electrolyte is 0.002 to 2% by weight, preferably 0.002 to 0.5% by weight . If it is less than 0.002% by weight, the effect of suppressing gas generation due to decomposition of the non-aqueous electrolyte under high temperature storage, and the effect of improving charge / discharge characteristics, etc. are not sufficient. The effect is saturated and the battery capacity tends to decrease.
[0015]
The fluorine-based nonionic surfactant used in the present invention is a nonionic surfactant having a fluoroalkyl group represented by the formula 2, having the fluoroalkyl group as a hydrophobic group, and a hydrophilic group. Is a surfactant.
The hydrophobic fluoroalkyl group is composed of CF 3 having a carbon number (x) of 1 or a perfluoroalkyl group having a carbon number (x) of 2 to 16 such as C 2 F 5 , C 3 F 7 or the like. The When the values of x and y deviate from the above ranges, the effect of suppressing gas generation and the effect of improving the charge / discharge characteristics due to the decomposition of the non-aqueous electrolyte under high temperature storage during charge / discharge are not sufficient.
By adding polyoxyethylene as a hydrophilic group to the intermediate having a hydrophobic group, a fluorine-based nonionic surfactant composed of fluoropolyoxyethylene ether can be constituted.
[0016]
Specific examples of the fluorine-based nonionic surfactant used in the present invention include fluoropolyoxyethylene ether represented by the following formula 4.
[0017]
[Formula 4]
Figure 0004706806
However, z = 3-20 in said formula.
If z is less than 3, the effect of suppressing gas generation due to charge / discharge, decomposition of the non-aqueous electrolyte under high-temperature storage, and the effect of improving charge / discharge characteristics, etc. are not sufficient. Is saturated, and conversely, the battery capacity tends to decrease.
[0018]
As a fluorine-type nonionic surfactant in this invention, a commercially available thing can be used, for example, brand name FT-251 (henceforth only FT-251), FT-250 by Neos Co., Ltd. Etc. can be used.
[0019]
Another example of the fluorine-based nonionic surfactant used in the present invention is a surfactant represented by the following formula 5.
[0020]
[Formula 5]
Figure 0004706806
However, R f in the above formula, Pa 2 to 14 carbon atoms - a divalent bridging group fluoroalkyl (group), Z is attached to the carbon atoms of carbon and (CH 2) a of the R f, R 1 and R 2 are the same or different hydrogen atoms or methyl groups, I is an integer of 0 or 1, a is an integer of 1 to 12, and b is an integer of 30 to 100.
Examples of the divalent bridging group for Z include ether [—O—, — (CH 2 ) 2 —O—].
Specific examples of the fluorine-based nonionic surfactant include 1,1,2,2-tetrahydro-perfluorooctanol polyoxyethylene addition polymer, N-propyl perfluorooctanesulfonamide ethanol, Examples thereof include polyoxyethylene addition polymers and 6- (perfluorooctyl) hexanol-1-polyoxyethylene addition polymers.
[0021]
The concentration of the surfactant in the nonaqueous electrolytic solution is 0.001 to 0.1% by weight, preferably 0.001 to 0.02% by weight . If it is less than 0.001% by weight, the effect of suppressing gas generation due to charge / discharge, decomposition of the non-aqueous electrolyte under high temperature storage, and the effect of improving charge / discharge characteristics, etc. are not sufficient, while 0.1% by weight Even if it exceeds, the said effect is saturated and there exists a tendency for battery capacity to fall conversely.
[0022]
The concentration of the propylene carbonate represented by the above formula 3 in the non-aqueous electrolyte is 1 to 10% by weight, preferably 1 to 6% by weight. If it is less than 1% by weight, the effect of suppressing gas generation due to decomposition of the non-aqueous electrolyte under storage at high temperature and storage, and the effect of improving charge / discharge characteristics, etc. are not sufficient. The effect is saturated and the battery capacity tends to decrease.
[0023]
The non-aqueous electrolyte for a secondary battery of the present invention is prepared, for example, by stirring a non-aqueous solvent and adding a lithium compound as an electrolyte therein to dissolve it, and the above-described silicone oil, surfactant, and propylene carbonate. -It can be produced by adding and dissolving the salt.
[0024]
The non-aqueous electrolyte for a secondary battery according to the present invention is a non-aqueous secondary battery using a lithium compound as an electrolyte, and Li can be doped and removed, and the carbon-carbon interlayer distance is 3.4 mm. The present invention can be applied to a secondary battery having a negative electrode made of the following graphite-based carbon material.
The specific silicone oil, the specific surfactant and the specific propylene carbonate are used. In particular, by using these at the specific concentration, it is possible to use propylene carbonate and charge / discharge The characteristics can be improved, and the generation of gas due to decomposition of the non-aqueous electrolyte under charge / discharge and storage at high temperature can be suppressed.
The above-described Li doping and de-doping can be performed by, for example, lithium metal, a lithium alloy, or lithium ions. Here, a lithium-aluminum alloy can be illustrated as a lithium alloy.
Examples of the carbon material constituting the negative electrode include pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphites, and organic polymer compound fired bodies (phenol). Resin, furan resin, etc., calcined and carbonized), carbon fiber, activated carbon, etc., but the carbon material must be graphitized, and the carbon-carbon space In order to achieve the object of the present invention, the interlayer distance is required to be 3.4 mm (angstrom) or less.
[0025]
On the other hand, the positive electrode can be formed from various materials that can be charged and discharged. For example, in LiCoO 2, LiNiO 2, LiMn 2 O 4, Li , such as LiMnO 2 x MO 2 (where, M is one or more transition metals, x is different according to the charge and discharge state of the battery, usually 0.05 ≦ x ≦ 1.20), a chalcogenite of a transition element such as a composite oxide of lithium and one or more transition metals, FeS 2 , TiS 2 , V 2 O 5 , MoO 3 , MoS 2, or the like Polymers such as polyacetylene and polypyrrole can be used.
[0026]
The shape of the secondary battery using the non-aqueous electrolyte for secondary battery of the present invention is not particularly limited, and can be various shapes such as a button shape, a cylindrical shape, a square shape, and a coin shape. .
[0027]
【Example】
Hereinafter, the present invention will be further described based on examples.
[0028]
Example 1.
The nonaqueous electrolyte secondary battery used in this example will be described with reference to FIG.
As shown in FIG. 1, the nonaqueous electrolyte secondary battery 1 of this example includes a positive electrode 2, a negative electrode 3, a separator 4, a nonaqueous electrolyte solution 5, a button type battery container 6, a positive electrode side current collector 7, and a negative electrode. A side current collector 8 and a gasket 9 are provided.
As the positive electrode 2, a molded product obtained by pressure-molding a mixture containing LiCoO 2 as a positive electrode active material into a pellet shape was used. Moreover, as the negative electrode 3, a molded product obtained by pressure-molding a mixture using graphite having a carbon-carbon correlation distance of 2.4 mm as a negative electrode active material carrier in a pellet form was used.
The non-aqueous electrolyte solution 5, a mixed solvent of ethylene carbonate and (EC) and diethyl carbonate (DEC) (volume ratio 2: 3), the electrolyte consisting of LiPF 6 is contained at a concentration 1mol / l, further, silicon A solution containing 0.05% by weight of oil oil KF96, 0.003% by weight of fluorine-based nonionic surfactant FT-251 and 2% by weight of propylene carbonate for lithium batteries was used.
For the separator 4, a separator made of a nonwoven fabric made of polypropylene was used. The positive electrode side current collector 7 was made of stainless steel, while the negative electrode side current collector 8 was made of nickel expanded metal. Further, the battery container 6 was made of stainless steel, and the positive electrode can and the negative electrode can were fixed by a polypropylene gasket 9.
The battery fabricated as described above were examined battery capacity, the battery capacity after the high temperature holding.
The charging is performed by the constant current method, the upper limit voltage is set to 4.2 V, the current density at constant current is set to 0.60 (0.2 C) mA / cm 2 , and the discharging is set to 0.60 (0 .2C) It was carried out at a constant current of mA / cm 2 and the final voltage was 2.7V.
Usually, charging / discharging was performed 100 cycles at 20 ° C., and the discharge capacity at the 100th cycle was evaluated.
In addition, high temperature charge / discharge was performed at a current density of 0.5 C at 45 ° C., and evaluation was performed by comparing battery capacities at the 100th cycle.
The battery capacity at the time of low temperature discharge was evaluated by comparing the normally discharged battery capacity by leaving the normally charged battery at −10 ° C. and discharging at a current density of 1 C.
[0029]
Example 2
The non-aqueous electrolyte 5 in Example 1 was mixed with 0.3% by weight of silicone oil KF96 in a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) (volume ratio 1: 1), fluorine-based nonionic interface. A button type battery was prepared in the same manner as in Example 1 except that 0.01% by weight of the activator FT-251 and 4% by weight of the propylene carbonate for lithium battery were changed. Under the same conditions as in Example 1, the battery capacities during normal charge / discharge, low temperature discharge, and high temperature discharge were examined.
[0030]
Comparative Example 1
A button-type battery was produced in the same manner as in Example 1 except that no propylene carbonate was added in Example 1. Under normal conditions of charge and discharge, low temperature discharge was performed under the same conditions as in Example 1. The battery capacity at the time and during high temperature discharge was investigated.
[0031]
Comparative Example 2
In Example 2, a button type battery was produced in the same manner as in Example 2 except that no propylene carbonate was added. Under normal conditions of charge and discharge, low temperature discharge was performed under the same conditions as in Example 1. The battery capacity at the time and during high temperature discharge was investigated.
[0032]
Comparative Example 3
In Example 1, a button type battery was prepared in the same manner as in Example 1 except that silicone oil, surfactant and propylene carbonate were not added. The battery capacity during normal charge / discharge, low temperature discharge, and high temperature discharge was examined.
[0033]
Comparative Example 4
In Example 2, a button-type battery was prepared in the same manner as in Example 2 except that silicone oil, surfactant and propylene carbonate were not added. The battery capacity during normal charge / discharge, low temperature discharge, and high temperature discharge was examined.
[0034]
The results are shown in Table 1.
[0035]
[Table 1]
Figure 0004706806
[0036]
As shown in Table 1, the electrolytes (Examples 1 and 2) to which the silicone oil, surfactant and propylene carbonate of the present invention were added were usually charged and discharged, at low temperature and at high temperature. In all of the battery capacities, the electrolytic solution (Comparative Example 1 and Comparative Example 2) to which only the silicone oil and the surfactant were added and the electrolysis without adding the silicone oil, the surfactant and the propylene carbonate. Compared to the liquids (Comparative Example 3 and Comparative Example 4), an increase is seen, and it can be seen that there is an effect.
In addition, with respect to the electrolytic solutions of Examples 1 and 2 to which silicone oil, a surfactant and propylene carbonate were added, the battery was left in the swollen state at 90 ° C. for 100 hours, and then the battery was disassembled. Was measured by measuring the carbon dioxide concentration using an infrared spectrophotometer. Silicon oil and surfactant, and electrolysis of a comparative product without addition of silicone oil, surfactant and propylene carbonate. While the carbon dioxide concentration in the liquid was 1000 to 1200 ppm, it was confirmed that the product of the present invention had an effect of preventing battery swelling at 1000 ppm or less.
[0037]
The invention made by the inventor has been specifically described based on the embodiments. However, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention. Needless to say.
For example, in the above embodiment, the battery shape is described as a button type, but the shape is not limited to this, and the same effect can be obtained even if it is other square type, cylindrical type, coin type, etc. I can do it.
[0038]
【The invention's effect】
The effects obtained by the representative ones of the inventions disclosed in the present application will be briefly described as follows.
That is, according to the present invention, there are the following advantages.
(1) It is possible to prevent deterioration in discharge characteristics at high and low temperatures due to a reaction between a carbon material which is a negative electrode active material and a non-aqueous solvent in a non-aqueous electrolyte for a lithium secondary battery.
(2) In the non-aqueous electrolyte for a secondary battery, generation of decomposition gas due to the use of a non-aqueous solvent can be suppressed, and the battery can be prevented from swelling. By adding silicone oil, the generation of decomposition gas can be suppressed and the battery can be prevented from swelling, and there is an advantage that a good film can be formed on the electrode, particularly the negative electrode surface. In some cases, the surface of the negative electrode may not be penetrated to the details. For this reason, sufficient discharge characteristics may not be exhibited, but in addition to silicone oil, the above surfactants should be added. Can produce a uniform film down to the surface details of the negative electrode, further suppress the generation of decomposition gas and prevent battery swelling, and discharge characteristics, low temperature discharge characteristics and high temperature of secondary batteries using non-aqueous electrolyte Discharge characteristics can be improved, and the addition of propylene carbonate can further improve the discharge characteristics, low-temperature discharge characteristics, and high-temperature discharge characteristics of secondary batteries using non-aqueous electrolytes. .
(3) In a secondary battery of a negative electrode made of a carbon material, decomposition occurs, and an iodine solvent that is difficult to use can be used.
(4) A non-aqueous solvent for a secondary battery containing a non-aqueous solvent and a lithium compound as an electrolyte can be used in a secondary battery having a negative electrode made of a specific carbon material.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an example of a non-aqueous electrolyte secondary battery according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Nonaqueous electrolyte secondary battery 2 ... Positive electrode 3 ... Negative electrode 4 ... Separator 5 ... Nonaqueous electrolyte solution 6 ... Button type battery container 7 ... Positive electrode side collector 8 ... Negative electrode side collector 9 ... Gasket

Claims (1)

Liのド−プおよび脱ド−プが可能で炭素−炭素間の層間距離が3.4Å以下の黒鉛系炭素材料よりなる負極と非水溶媒中に電解質としてのリチウム化合物を溶解させてなる非水電解液とを有してなる非水電解型二次電池において、当該非水電解液が、
次の式1で表されるシリコ−ンオイルを0.002〜2重量%
【式1】
Figure 0004706806
[但し、上記式中のRは、アルキル基であり、同一でも、異なっていてもよい。n=0〜1000。]、
次の式2で表されるフルオロアルキル基を有するフッ素系非イオン界面活性剤0.001〜0.1重量%
【式2】
(CxF2x+1)y
[但し、上記式中のx=1〜16、y=1〜10である。]、
次の式3で表されるプロピレンカ−ボネ−ト1〜10重量%
【式3】
Figure 0004706806
を含有してなることを特徴とする非水電解型二次電池
Non-lithium formed by dissolving a lithium compound as an electrolyte in a non-aqueous solvent and a negative electrode made of a graphite-based carbon material capable of doping and de-doping Li and having a carbon-carbon interlayer distance of 3.4 mm or less. In a non-aqueous electrolytic secondary battery comprising a water electrolyte, the non-aqueous electrolyte is
0.002 to 2% by weight of silicone oil represented by the following formula 1
[Formula 1]
Figure 0004706806
[However, R in the above formula is an alkyl group, which may be the same or different. n = 0-1000. ],
0.001 to 0.1% by weight of a fluorine-based nonionic surfactant having a fluoroalkyl group represented by the following formula 2
[Formula 2]
(CxF2x + 1) y
[However, x = 1 to 16 and y = 1 to 10 in the above formula. ],
1 to 10% by weight of propylene carbonate represented by the following formula 3
[Formula 3]
Figure 0004706806
A non-aqueous electrolytic secondary battery comprising:
JP09663699A 1999-04-02 1999-04-02 Non-aqueous electrolytic secondary battery Expired - Fee Related JP4706806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09663699A JP4706806B2 (en) 1999-04-02 1999-04-02 Non-aqueous electrolytic secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09663699A JP4706806B2 (en) 1999-04-02 1999-04-02 Non-aqueous electrolytic secondary battery

Publications (2)

Publication Number Publication Date
JP2000294275A JP2000294275A (en) 2000-10-20
JP4706806B2 true JP4706806B2 (en) 2011-06-22

Family

ID=14170330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09663699A Expired - Fee Related JP4706806B2 (en) 1999-04-02 1999-04-02 Non-aqueous electrolytic secondary battery

Country Status (1)

Country Link
JP (1) JP4706806B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109309249B (en) * 2017-07-27 2021-02-02 宁德时代新能源科技股份有限公司 Electrolyte and electrochemical energy storage device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04188572A (en) * 1990-11-20 1992-07-07 Matsushita Electric Ind Co Ltd Secondary battery with non-aqueous electrolyte
JPH05307977A (en) * 1992-04-28 1993-11-19 Mitsubishi Petrochem Co Ltd Nonaqueous solvent secondary battery and electrode material thereof
JPH06325753A (en) * 1993-05-14 1994-11-25 Sharp Corp Lithium secondary battery
JPH07153467A (en) * 1993-12-01 1995-06-16 Fuji Photo Film Co Ltd Chemical battery
JPH09147835A (en) * 1995-11-29 1997-06-06 Fuji Photo Film Co Ltd Nonaqueous secondary battery and its manufacture
JPH09204934A (en) * 1996-01-26 1997-08-05 Toshiba Battery Co Ltd Polymer electrolyte secondary battery and its manufacture
JPH1140156A (en) * 1997-07-16 1999-02-12 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2000173651A (en) * 1998-12-09 2000-06-23 Tomiyama Pure Chemical Industries Ltd Nonaqueous electrolyte for secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04188572A (en) * 1990-11-20 1992-07-07 Matsushita Electric Ind Co Ltd Secondary battery with non-aqueous electrolyte
JPH05307977A (en) * 1992-04-28 1993-11-19 Mitsubishi Petrochem Co Ltd Nonaqueous solvent secondary battery and electrode material thereof
JPH06325753A (en) * 1993-05-14 1994-11-25 Sharp Corp Lithium secondary battery
JPH07153467A (en) * 1993-12-01 1995-06-16 Fuji Photo Film Co Ltd Chemical battery
JPH09147835A (en) * 1995-11-29 1997-06-06 Fuji Photo Film Co Ltd Nonaqueous secondary battery and its manufacture
JPH09204934A (en) * 1996-01-26 1997-08-05 Toshiba Battery Co Ltd Polymer electrolyte secondary battery and its manufacture
JPH1140156A (en) * 1997-07-16 1999-02-12 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2000173651A (en) * 1998-12-09 2000-06-23 Tomiyama Pure Chemical Industries Ltd Nonaqueous electrolyte for secondary battery

Also Published As

Publication number Publication date
JP2000294275A (en) 2000-10-20

Similar Documents

Publication Publication Date Title
US8764853B2 (en) Non-aqueous electrolytic solutions and electrochemical cells comprising the same
US7223500B2 (en) Non-aqueous electrolyte and a lithium secondary battery comprising the same
JP4450550B2 (en) Non-aqueous electrolyte and secondary battery using the same
JP4092757B2 (en) Non-aqueous electrolyte secondary battery
JP5390736B2 (en) Non-aqueous electrolyte for electrochemical devices
US7687204B2 (en) Non-aqueous electrolyte and a lithium secondary battery comprising the same
US8313866B2 (en) Non-aqueous electrolytes and electrochemical devices including the same
JP4780833B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
KR101211127B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
CN104380517A (en) Electrolyte for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using same
JP2001023687A (en) Nonaqueous electrolyte battery
JP4711639B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP4968225B2 (en) Non-aqueous electrolyte battery
JPH07240232A (en) Nonaqueous electrolyte secondary battery
JPH11185804A (en) Nonaqueous electrolyte for secondary battery
US7306880B2 (en) Electrolyte for a lithium ion battery and a lithium ion battery comprising the same
JP2001023690A (en) Nonaqueous electrolyte for secondary battery
JP2004327444A (en) Electrolyte for lithium secondary battery, and lithium secondary battery including this
JP2005285492A (en) Nonaqueous electrolyte solution and lithium secondary battery using it
JPH11329496A (en) Nonaqueous electrolyte nonaqueous secondary battery
JPH11339851A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP2001015156A (en) Nonaqueous electrolyte battery
JP4465499B2 (en) Non-aqueous electrolyte for secondary batteries
JP3704589B2 (en) Non-aqueous electrolyte for secondary batteries
JP2005190978A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110301

R150 Certificate of patent or registration of utility model

Ref document number: 4706806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees