JP4701941B2 - Vehicle body speed estimation device - Google Patents

Vehicle body speed estimation device Download PDF

Info

Publication number
JP4701941B2
JP4701941B2 JP2005265464A JP2005265464A JP4701941B2 JP 4701941 B2 JP4701941 B2 JP 4701941B2 JP 2005265464 A JP2005265464 A JP 2005265464A JP 2005265464 A JP2005265464 A JP 2005265464A JP 4701941 B2 JP4701941 B2 JP 4701941B2
Authority
JP
Japan
Prior art keywords
wheel
braking
wheels
driving force
vehicle body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005265464A
Other languages
Japanese (ja)
Other versions
JP2007076463A (en
Inventor
和也 奥村
監介 吉末
義紀 前田
芳男 浦上
充孝 土田
暁彦 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005265464A priority Critical patent/JP4701941B2/en
Publication of JP2007076463A publication Critical patent/JP2007076463A/en
Application granted granted Critical
Publication of JP4701941B2 publication Critical patent/JP4701941B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、車輌の車体速度推定装置に係り、更に詳細には各車輪に制駆動力が付与され少なくとも制動力が相互に独立に制御される車輌の車体速度推定装置に係る。   The present invention relates to a vehicle body speed estimation device, and more particularly to a vehicle body speed estimation device in which braking / driving force is applied to each wheel and at least braking force is controlled independently of each other.

自動車等の車輌の車体速度推定装置は従来より種々提案されており、特に四輪駆動車の車体速度推定装置の一つとして、例えば下記の特許文献1に記載されている如く、車輌の加速時には四輪のうち最小の車輪速度に基づいて車体速度を推定し、車輌の減速時には四輪のうち最大の車輪速度に基づいて車体速度を推定するよう構成された車体速度推定装置が従来より知られている。
特開平10−141104号公報
Various body speed estimation devices for vehicles such as automobiles have been proposed, and as one of the body speed estimation devices for four-wheel drive vehicles, for example, as described in Patent Document 1 below, 2. Description of the Related Art Conventionally, there has been known a vehicle body speed estimation device configured to estimate a vehicle body speed based on the minimum wheel speed of four wheels and to estimate a vehicle body speed based on the maximum wheel speed of the four wheels when the vehicle is decelerated. ing.
JP-A-10-141104

上述の如き従来の車体速度推定装置に於いては、車輌の加速時には制動力が付与されている車輪が存在せず、何れの車輪の車輪速度も車体速度以上であり、逆に車輌の減速時には駆動力が付与されている車輪が存在せず、何れの車輪の車輪速度も車体速度以下であることが前提となっている。   In the conventional vehicle body speed estimation device as described above, there is no wheel to which braking force is applied when the vehicle is accelerated, and the wheel speed of any wheel is higher than the vehicle body speed, and conversely when the vehicle is decelerated. It is assumed that there is no wheel to which driving force is applied, and the wheel speed of any wheel is equal to or less than the vehicle body speed.

しかし例えば四輪駆動車に於いて車輌の走行性能の向上や車輌の走行運動の制御等の目的で各車輪の制駆動力が相互に独立に制御される場合には、車輌が加速状態にあっても制動力が付与されている車輪が存在し、その車輪の車輪速度が車体速度よりも低くなる場合があり、逆に車輌が減速状態にあっても駆動力が付与されている車輪が存在し、その車輪の車輪速度が車体速度よりも高くなる場合がある。   However, for example, in a four-wheel drive vehicle, if the braking / driving force of each wheel is controlled independently of each other for the purpose of improving the running performance of the vehicle or controlling the running motion of the vehicle, the vehicle is in an acceleration state. Even if there is a wheel to which braking force is applied, the wheel speed of the wheel may be lower than the vehicle body speed, and conversely, there is a wheel to which driving force is applied even when the vehicle is in a deceleration state. However, the wheel speed of the wheel may be higher than the vehicle body speed.

しかるに上述の従来の車体速度推定装置に於いては、車輌の加速時には制動力が付与されている車輪が存在せず、何れの車輪の車輪速度も車体速度以上であり、逆に車輌の減速時には駆動力が付与されている車輪が存在せず、何れの車輪の車輪速度も車体速度以下であることが前提となっているため、車輌が加速状態にあっても制動力が付与されている車輪が存在し、その車輪の車輪速度が車体速度よりも低い場合や、車輌が減速状態にあっても駆動力が付与されている車輪が存在し、その車輪の車輪速度が車体速度よりも高い場合には、車体速度を正確に推定することができない。   However, in the above-described conventional vehicle body speed estimation device, there is no wheel to which braking force is applied when the vehicle is accelerated, and the wheel speed of any wheel is higher than the vehicle body speed, and conversely when the vehicle is decelerated. There is no wheel to which driving force is applied, and it is assumed that the wheel speed of any wheel is equal to or less than the vehicle speed. Therefore, a wheel to which braking force is applied even when the vehicle is in an accelerated state When the wheel speed of the wheel is lower than the vehicle body speed, or there is a wheel to which driving force is applied even when the vehicle is in a deceleration state, and the wheel speed of the wheel is higher than the vehicle body speed. The vehicle speed cannot be estimated accurately.

本発明は、車輌の加速時には四輪のうち最小の車輪速度に基づいて車体速度を推定し、車輌の減速時には四輪のうち最大の車輪速度に基づいて車体速度を推定するよう構成された従来の車体速度推定装置に於ける上述の如き問題に鑑みてなされたものであり、本発明の主要な課題は、車輪のスリップ率と路面の摩擦係数との関係が線形の関係にある領域に於いては、車輪の制駆動状態に関係なく車輪のスリップ率に対する路面の摩擦係数の関係が一定であることに着目することにより、車輪の制駆動状態に関係なく車体速度を正確に推定することである。   The present invention is configured to estimate the vehicle body speed based on the minimum wheel speed of the four wheels when the vehicle is accelerated, and to estimate the vehicle body speed based on the maximum wheel speed of the four wheels when the vehicle is decelerated. The main problem of the present invention is that the relationship between the slip ratio of the wheel and the friction coefficient of the road surface is a linear relationship. Therefore, by focusing on the fact that the relationship of the friction coefficient of the road surface to the slip ratio of the wheel is constant regardless of the braking / driving state of the wheel, the vehicle speed can be accurately estimated regardless of the braking / driving state of the wheel. is there.

上述の主要な課題は、本発明によれば、請求項1の構成、即ち各車輪に制駆動力が付与され少なくとも制動力が相互に独立に制御される車輌の車体速度推定装置であって、各車輪の車輪速度を検出する手段と、各車輪について路面の摩擦係数を推定する手段と、各車輪の制駆動力が路面の最大摩擦係数に対応する制駆動力以下であるか否かを判定する判定手段と、制駆動力が路面の最大摩擦係数に対応する制駆動力以下である車輪が少なくとも二輪以上あるときには、制駆動力が路面の最大摩擦係数に対応する制駆動力以下である二つの車輪の車輪速度及び路面の摩擦係数に基づいて車体速度を演算する車体速度演算手段とを有することを特徴とする車輌の車体速度推定装置によって達成される。   According to the present invention, the main problem described above is the vehicle body speed estimating device for a vehicle in which the braking / driving force is applied to each wheel and at least the braking force is controlled independently of each other according to the present invention. Means for detecting the wheel speed of each wheel, means for estimating the friction coefficient of the road surface for each wheel, and determining whether the braking / driving force of each wheel is equal to or less than the braking / driving force corresponding to the maximum friction coefficient of the road surface And at least two wheels whose braking / driving force is equal to or less than the braking / driving force corresponding to the maximum friction coefficient of the road surface, the braking / driving force is equal to or less than the braking / driving force corresponding to the maximum friction coefficient of the road surface. It is achieved by a vehicle body speed estimation device comprising vehicle body speed calculation means for calculating a vehicle body speed based on the wheel speeds of two wheels and a friction coefficient of a road surface.

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1の構成に於いて、三輪以上の制駆動力が路面の最大摩擦係数に対応する制駆動力以下であり、全ての車輪が駆動状態にあるとき又は全ての車輪が制動状態にあるときには、前記二つの車輪は車輪速度の差が最も大きい二つの車輪であるよう構成される(請求項2の構成)。   Further, according to the present invention, in order to effectively achieve the above main problem, in the configuration of claim 1, the braking / driving force of three wheels or more is less than the braking / driving force corresponding to the maximum friction coefficient of the road surface. Yes, when all the wheels are in the driving state or when all the wheels are in the braking state, the two wheels are configured to be the two wheels having the largest difference in wheel speed (configuration of claim 2) .

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1の構成に於いて、三輪以上の制駆動力が路面の最大摩擦係数に対応する制駆動力以下であり、駆動状態の車輪が二輪以上であり且つ制動状態の車輪が一輪であるときには、前記二つの車輪の一方は駆動状態にある車輪のうち車輪速度が低い方の車輪であり、前記二つの車輪の他方は制動状態にある車輪であるよう構成される(請求項3の構成)。   Further, according to the present invention, in order to effectively achieve the above main problem, in the configuration of claim 1, the braking / driving force of three wheels or more is less than the braking / driving force corresponding to the maximum friction coefficient of the road surface. When there are two or more wheels in driving state and one wheel in braking state, one of the two wheels is a wheel having a lower wheel speed among wheels in driving state, and the two wheels The other of the wheels is configured to be a wheel in a braking state (structure of claim 3).

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1の構成に於いて、三輪以上の制駆動力が路面の最大摩擦係数に対応する制駆動力以下であり、駆動状態の車輪が一輪であり且つ制動状態の車輪が二輪以上であるときには、前記二つの車輪の一方は駆動状態にある車輪であり、前記二つの車輪の他方は制動状態にある車輪のうち車輪速度が高い方の車輪であるよう構成される(請求項4の構成)。   Further, according to the present invention, in order to effectively achieve the above main problem, in the configuration of claim 1, the braking / driving force of three wheels or more is less than the braking / driving force corresponding to the maximum friction coefficient of the road surface. Yes, when the driving wheel is one wheel and the braking wheel is two or more wheels, one of the two wheels is a driving wheel and the other wheel is a braking wheel. It is comprised so that it may be a wheel with a higher wheel speed (structure of Claim 4).

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1の構成に於いて、四輪の制駆動力が路面の最大摩擦係数に対応する制駆動力以下であり、四輪のうち二輪が駆動状態にあり且つ他の二輪が制動状態にあるときには、前記二つの車輪の一方は駆動状態にある二輪のうち車輪速度が低い方の車輪であり、前記二つの車輪の他方は制動状態にある二輪のうち車輪速度が高い方の車輪であるよう構成される(請求項5の構成)。   According to the present invention, in order to effectively achieve the above-mentioned main problems, in the configuration of claim 1, the braking / driving force of the four wheels is less than the braking / driving force corresponding to the maximum friction coefficient of the road surface. Yes, when two of the four wheels are in a driving state and the other two wheels are in a braking state, one of the two wheels is a wheel having a lower wheel speed of the two wheels in a driving state, and the two wheels The other of the wheels is configured to be a wheel having a higher wheel speed among the two wheels in a braking state (configuration of claim 5).

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1乃至5の構成に於いて、前記路面の摩擦係数を推定する手段は各車輪の接地荷重を検出する手段と、各車輪の制駆動力を検出する手段とを有し、接地荷重に対する制駆動力の比に基づいて路面の摩擦係数を推定するよう構成される(請求項6の構成)。   According to the present invention, the means for estimating the friction coefficient of the road surface detects the ground contact load of each wheel in the configuration of the above-mentioned claims 1 to 5 in order to effectively achieve the above main problems. And a means for detecting the braking / driving force of each wheel, and configured to estimate a friction coefficient of the road surface based on a ratio of the braking / driving force to the ground load (configuration of claim 6).

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1乃至6の構成に於いて、前記判定手段は車輪の制駆動力の変化量と車輪速度の変化量との関係に基づいて制駆動力が路面の最大摩擦係数に対応する制駆動力以下であるか否かを判定するよう構成される(請求項7の構成)。   According to the present invention, in order to effectively achieve the main problems described above, in the configuration according to any one of claims 1 to 6, the determination means includes a change amount of wheel braking / driving force and a change amount of wheel speed. And determining whether the braking / driving force is less than or equal to the braking / driving force corresponding to the maximum friction coefficient of the road surface (configuration of claim 7).

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1乃至7の構成に於いて、制駆動力が路面の最大摩擦係数に対応する制駆動力を越えているときには、制駆動力が路面の最大摩擦係数に対応する制駆動力を越えた時点を基準時点として、前記車体速度演算手段は前記基準時点に於ける当該車輪の車輪速度と前記基準時点よりの経過時間及び車輌の前後加速度に基づいて演算される車体速度の変化量との和として当該車輪の車輪速度を演算するよう構成される(請求項8の構成)。   According to the present invention, in order to effectively achieve the main problems described above, in the configuration of claims 1 to 7, the braking / driving force exceeds the braking / driving force corresponding to the maximum friction coefficient of the road surface. When the braking / driving force exceeds the braking / driving force corresponding to the maximum friction coefficient of the road surface, the vehicle body speed calculation means calculates the wheel speed of the wheel at the reference time and the reference time from the reference time. The wheel speed of the wheel is calculated as the sum of the elapsed time and the change amount of the vehicle body speed calculated based on the longitudinal acceleration of the vehicle.

制駆動力が路面の最大摩擦係数に対応する制駆動力以下であるときには、スリップ率に対する路面の摩擦係数の関係はスリップ率に関係なく実質的に一定であり、またスリップ率と車体速度及び車輪速度との間にも一定の関係がある。従って後に詳細に説明する如く、制駆動力が路面の最大摩擦係数に対応する制駆動力以下であるときには、二つの車輪の車輪速度及び路面の摩擦係数に基づいて車体速度を推定することができる。   When the braking / driving force is less than or equal to the braking / driving force corresponding to the maximum friction coefficient of the road surface, the relationship of the friction coefficient of the road surface to the slip ratio is substantially constant regardless of the slip ratio, and the slip ratio, the vehicle speed and the wheel There is also a certain relationship between speed. Therefore, as will be described in detail later, when the braking / driving force is equal to or less than the braking / driving force corresponding to the maximum friction coefficient of the road surface, the vehicle body speed can be estimated based on the wheel speeds of the two wheels and the friction coefficient of the road surface. .

上記請求項1の構成によれば、各車輪の制駆動力が路面の最大摩擦係数に対応する制駆動力以下であるか否かが判定され、制駆動力が路面の最大摩擦係数に対応する制駆動力以下である車輪が少なくとも二輪以上あるときには、制駆動力が路面の最大摩擦係数に対応する制駆動力以下である二つの車輪の車輪速度及び路面の摩擦係数に基づいて車体速度が演算されるので、それらの車輪の制駆動状態に関係なく車体速度を正確に推定することができる。   According to the configuration of claim 1, it is determined whether the braking / driving force of each wheel is equal to or less than the braking / driving force corresponding to the maximum friction coefficient of the road surface, and the braking / driving force corresponds to the maximum friction coefficient of the road surface. When there are at least two wheels that are less than the braking / driving force, the vehicle body speed is calculated based on the wheel speeds of the two wheels that are less than the braking / driving force corresponding to the maximum friction coefficient of the road surface and the friction coefficient of the road surface. Therefore, the vehicle body speed can be accurately estimated regardless of the braking / driving state of the wheels.

また上記請求項1の構成に従って二つの車輪の車輪速度及び路面の摩擦係数に基づいて車体速度を推定する場合には、後に詳細に説明する如く、三輪以上の制駆動力が路面の最大摩擦係数に対応する制駆動力以下であり、全ての車輪が駆動状態にあるとき又は全ての車輪が制動状態にあるときには、二つの車輪の車輪速度及び路面の摩擦係数の差が大きいほど正確に車体速度を推定することができるので、二つの車輪の車輪速度の差が大きいことが好ましい。   Further, when the vehicle body speed is estimated based on the wheel speeds of the two wheels and the friction coefficient of the road surface according to the configuration of claim 1, the braking / driving force of three wheels or more is applied to the maximum friction coefficient of the road surface, as will be described in detail later. When all the wheels are in the driving state or all the wheels are in the braking state, the greater the difference between the wheel speed of the two wheels and the friction coefficient of the road surface, the more accurately the vehicle speed It is preferable that the difference between the wheel speeds of the two wheels is large.

上記請求項2の構成によれば、三輪以上の制駆動力が路面の最大摩擦係数に対応する制駆動力以下であり、全ての車輪が駆動状態にあるとき又は全ての車輪が制動状態にあるときには、前記二つの車輪は車輪速度の差が最も大きい二つの車輪であるので、全ての車輪が駆動状態にあるとき又は全ての車輪が制動状態にあるときにも車体速度を正確に推定することができる。   According to the configuration of claim 2, the braking / driving force of three or more wheels is equal to or less than the braking / driving force corresponding to the maximum friction coefficient of the road surface, and all the wheels are in a driving state or all the wheels are in a braking state. Sometimes, the two wheels are the two wheels with the largest difference in wheel speed, so that the vehicle speed can be accurately estimated even when all wheels are in driving state or all wheels are in braking state. Can do.

また上記請求項1の構成に従って二つの車輪の車輪速度及び路面の摩擦係数に基づいて車体速度を推定する場合には、後に詳細に説明する如く、三輪以上の制駆動力が路面の最大摩擦係数に対応する制駆動力以下であり、駆動状態にある車輪と制動状態にある車輪とが存在するときには、二つの車輪の車輪速度及び路面の摩擦係数の差が小さいほど正確に車体速度を推定することができるので、二つの車輪の車輪速度の差が小さいことが好ましい。   Further, when the vehicle body speed is estimated based on the wheel speeds of the two wheels and the friction coefficient of the road surface according to the configuration of claim 1, the braking / driving force of three wheels or more is applied to the maximum friction coefficient of the road surface, as will be described in detail later. When there is a driving wheel and a braking wheel, the vehicle speed is estimated more accurately as the difference between the wheel speed of the two wheels and the friction coefficient of the road surface is smaller. Therefore, it is preferable that the difference between the wheel speeds of the two wheels is small.

上記請求項3の構成によれば、三輪以上の制駆動力が路面の最大摩擦係数に対応する制駆動力以下であり、駆動状態の車輪が二輪以上であり且つ制動状態の車輪が一輪であるときには、前記二つの車輪の一方は駆動状態にある車輪のうち車輪速度が低い方の車輪であり、前記二つの車輪の他方は制動状態にある車輪であるので、一方の車輪が駆動状態にあり且つ他方の車輪が制動状態にある場合にも車体速度を正確に推定することができると共に、駆動状態にある車輪のうち車輪速度が高い方の車輪が二つの車輪の一方に設定される場合に比して差が小さい車輪速度及び路面の摩擦係数に基づいて正確に車体速度を推定することができる。   According to the configuration of claim 3, the braking / driving force of three or more wheels is equal to or less than the braking / driving force corresponding to the maximum friction coefficient of the road surface, the number of driven wheels is two or more, and the number of braked wheels is one. Sometimes, one of the two wheels is in the driving state, the wheel having the lower wheel speed, and the other of the two wheels is in the braking state, so that one wheel is in the driving state. The vehicle speed can be accurately estimated even when the other wheel is in a braking state, and the wheel having the higher wheel speed among the wheels in the driving state is set to one of the two wheels. The vehicle body speed can be accurately estimated based on the wheel speed and the friction coefficient of the road surface, which are smaller in comparison.

また上記請求項4の構成によれば、三輪以上の制駆動力が路面の最大摩擦係数に対応する制駆動力以下であり、駆動状態の車輪が一輪であり且つ制動状態の車輪が二輪以上であるときには、前記二つの車輪の一方は駆動状態にある車輪であり、前記二つの車輪の他方は制動状態にある車輪のうち車輪速度が高い方の車輪であるので、一方の車輪が駆動状態にあり且つ他方の車輪が制動状態にある場合にも車体速度を正確に推定することができると共に、制動状態にある車輪のうち車輪速度が低い方の車輪が二つの車輪の他方に設定される場合に比して差が小さい車輪速度及び路面の摩擦係数に基づいて正確に車体速度を推定することができる。   According to the configuration of claim 4, the braking / driving force of three or more wheels is less than the braking / driving force corresponding to the maximum friction coefficient of the road surface, the driving wheel is one wheel, and the braking wheel is two or more wheels. In some cases, one of the two wheels is a wheel in a driving state, and the other of the two wheels is a wheel having a higher wheel speed among wheels in a braking state, so that one wheel is in a driving state. The vehicle speed can be accurately estimated even when the other wheel is in the braking state, and the wheel with the lower wheel speed among the wheels in the braking state is set as the other of the two wheels. Accordingly, the vehicle body speed can be accurately estimated based on the wheel speed and the friction coefficient of the road surface, which have a smaller difference than the above.

また上記請求項5の構成によれば、四輪の制駆動力が路面の最大摩擦係数に対応する制駆動力以下であり、四輪のうち二輪が駆動状態にあり且つ他の二輪が制動状態にあるときには、前記二つの車輪の一方は駆動状態にある二輪のうち車輪速度が低い方の車輪であり、前記二つの車輪の他方は制動状態にある二輪のうち車輪速度が高い方の車輪であるので、二つの車輪の一方が駆動状態にある二輪のうち車輪速度が高い方の車輪である場合や、二つの車輪の他方が制動状態にある二輪のうち車輪速度が低い方の車輪である場合に比して、差が小さい車輪速度及び路面の摩擦係数に基づいて車体速度を演算することができ、これにより他の車輪の組合せの場合に比して正確に車体速度を推定することができる。   According to the configuration of claim 5, the braking / driving force of the four wheels is equal to or less than the braking / driving force corresponding to the maximum friction coefficient of the road surface, two of the four wheels are in a driving state, and the other two wheels are in a braking state. One of the two wheels is a wheel with a lower wheel speed of the two wheels in a driving state, and the other of the two wheels is a wheel with a higher wheel speed of two wheels in a braking state. So, if one of the two wheels is the driving wheel, the wheel with the higher wheel speed, or the other of the two wheels is the braking wheel, the wheel with the lower wheel speed. Compared to the case, the vehicle speed can be calculated based on the wheel speed and the friction coefficient of the road surface with a small difference, so that the vehicle speed can be estimated more accurately than in the case of other wheel combinations. it can.

また上記請求項6の構成によれば、各車輪の接地荷重及び各車輪の制駆動力が検出され、各車輪毎に接地荷重に対する制駆動力の比に基づいて路面の摩擦係数が推定されるので、各車輪の路面の摩擦係数を正確に推定することができる。   According to the configuration of the sixth aspect, the ground load of each wheel and the braking / driving force of each wheel are detected, and the friction coefficient of the road surface is estimated for each wheel based on the ratio of the braking / driving force to the ground load. Therefore, the friction coefficient of the road surface of each wheel can be accurately estimated.

また一般に、車輪の制駆動力が路面の最大摩擦係数に対応する制駆動力以下であるときには、車輪の制駆動力の変化量及び車輪速度の変化量の大小に関係なくそれらの間の関係が実質的に一定であるのに対し、車輪の制駆動力が路面の最大摩擦係数に対応する制駆動力を越えているときには、車輪の制駆動力の変化量と車輪速度の変化量との関係が実質的に一定ではなくなる。   In general, when the braking / driving force of the wheel is equal to or less than the braking / driving force corresponding to the maximum friction coefficient of the road surface, the relationship between them is independent of the magnitude of the change amount of the wheel braking / driving force and the change amount of the wheel speed. When the braking / driving force of the wheel exceeds the braking / driving force corresponding to the maximum friction coefficient of the road surface, the relationship between the change amount of the wheel braking / driving force and the change amount of the wheel speed is substantially constant. Is not substantially constant.

上記請求項7の構成によれば、車輪の制駆動力の変化量と車輪速度の変化量との関係に基づいて制駆動力が路面の最大摩擦係数に対応する制駆動力以下であるか否かが判定されるので、車輪の制駆動力が路面の最大摩擦係数に対応する制駆動力以下であるか否かを確実に且つ正確に判定することができる。   According to the configuration of the seventh aspect, whether the braking / driving force is equal to or less than the braking / driving force corresponding to the maximum friction coefficient of the road surface based on the relationship between the change amount of the braking / driving force of the wheel and the change amount of the wheel speed. Therefore, it can be reliably and accurately determined whether or not the braking / driving force of the wheel is equal to or less than the braking / driving force corresponding to the maximum friction coefficient of the road surface.

また上記請求項8の構成によれば、制駆動力が路面の最大摩擦係数に対応する制駆動力を越えているときには、制駆動力が路面の最大摩擦係数に対応する制駆動力を越えた時点を基準時点として、基準時点に於ける当該車輪の車輪速度と基準時点よりの経過時間及び車輌の前後加速度に基づいて演算される車体速度の変化量との和として当該車輪の車輪速度が演算されるので、制駆動力が路面の最大摩擦係数に対応する制駆動力を越えた車輪についても車輪の制駆動力の変化量と車輪速度の変化量との関係が実質的に一定であると仮定した場合の車輪速度を演算することができる。   According to the configuration of claim 8, when the braking / driving force exceeds the braking / driving force corresponding to the maximum friction coefficient of the road surface, the braking / driving force exceeds the braking / driving force corresponding to the maximum friction coefficient of the road surface. Using the time point as the reference time point, the wheel speed of the wheel is calculated as the sum of the wheel speed of the wheel at the reference time point and the amount of change in the vehicle speed calculated based on the elapsed time from the reference time point and the longitudinal acceleration of the vehicle. Therefore, the relationship between the amount of change in wheel braking / driving force and the amount of change in wheel speed is substantially constant even for wheels whose braking / driving force exceeds the braking / driving force corresponding to the maximum friction coefficient of the road surface. The assumed wheel speed can be calculated.

[車体速度の推定原理]
本発明によれば、上述の如く制駆動力が路面の最大摩擦係数に対応する制駆動力以下である二つの車輪の車輪速度及び路面の摩擦係数に基づいて車体速度が演算されるが、本発明による車体速度の推定原理について説明する。
[Body speed estimation principle]
According to the present invention, as described above, the vehicle body speed is calculated based on the wheel speed of the two wheels whose braking / driving force is equal to or less than the braking / driving force corresponding to the maximum friction coefficient of the road surface and the friction coefficient of the road surface. The principle of estimating the vehicle speed according to the invention will be described.

(1)一方の車輪が駆動状態にあり且つ他方の車輪が制動状態にある場合
周知の如く、駆動状態にある車輪の車輪速度をVaとし、制動状態にある車輪の車輪速度をVbとし、車体速度をVvとすると、駆動状態にある車輪のスリップ率Sa及び制動状態にある車輪のスリップ率Sbはそれぞれ下記の式1及び2により表される。
Sa=(Va−Vv)/Va ……(1)
Sb=(Vb−Vv)/Vv ……(2)
(1) When one wheel is in the driving state and the other wheel is in the braking state As is well known, the wheel speed of the wheel in the driving state is Va, the wheel speed of the wheel in the braking state is Vb, If the speed is Vv, the slip ratio Sa of the wheel in the driving state and the slip ratio Sb of the wheel in the braking state are expressed by the following equations 1 and 2, respectively.
Sa = (Va−Vv) / Va (1)
Sb = (Vb−Vv) / Vv (2)

また車輪の制駆動力が路面の最大摩擦係数μamax(加速側)及びμdmax(減速側)に対応する制駆動力以下である場合には、図4に示されている如く、車輪のスリップ率と路面の摩擦係数との関係が線形であると考えられてよく、また車輪のスリップ率に対する路面の摩擦係数の比は駆動状態の場合も制動状態の場合も同一であると考えられてよいので、駆動状態にある車輪についての路面の摩擦係数μaとし、制動状態にある車輪についての路面の摩擦係数μdとすると、路面の摩擦係数μa及びμbと車輪のスリップ率Sa及びSbとの間には下記の式3の関係がある。
μa/Sa=μb/Sb ……(3)
Further, when the braking / driving force of the wheel is equal to or less than the braking / driving force corresponding to the maximum friction coefficient μamax (acceleration side) and μdmax (deceleration side) of the road surface, as shown in FIG. Since the relationship with the friction coefficient of the road surface may be considered to be linear, and the ratio of the friction coefficient of the road surface to the slip ratio of the wheels may be considered to be the same in both the driving state and the braking state, Assuming that the friction coefficient μa of the road surface for the wheel in the driving state and the friction coefficient μd of the road surface for the wheel in the braking state, the following is between the friction coefficient μa and μb of the road surface and the slip ratios Sa and Sb of the wheel: There is a relationship of the following formula 3.
μa / Sa = μb / Sb (3)

上記式3に上記式1及び2を代入して整理すると、車輌の前進時及び後進時に於ける車体速度Vvをそれぞれ下記の式4及び5により演算することができる。

Figure 0004701941
By substituting the above formulas 1 and 2 into the above formula 3, the vehicle body speed Vv when the vehicle moves forward and backward can be calculated by the following formulas 4 and 5, respectively.
Figure 0004701941

尚、路面の摩擦係数は車輪の接地荷重に対する車輪の制駆動力Fxの比であるので、駆動状態にある車輪の接地荷重をNaとし、制動状態にある車輪の接地荷重をNbとすると、駆動状態にある車輪についての路面の摩擦係数μa及び制動状態にある車輪についての路面の摩擦係数μbをそれぞれ下記の式6及び7により演算することができる。
μa=Fx/Na ……(6)
μb=Fx/Nb ……(7)
Since the friction coefficient of the road surface is the ratio of the braking / driving force Fx of the wheel to the ground load of the wheel, if the ground load of the wheel in the driving state is Na and the ground load of the wheel in the braking state is Nb, the driving is performed. The road surface friction coefficient μa for the wheel in the state and the road surface friction coefficient μb for the wheel in the braking state can be calculated by the following equations 6 and 7, respectively.
μa = Fx / Na (6)
μb = Fx / Nb (7)

(2)二つの車輪とも駆動状態又は制動状態にある場合
周知の如く、二つの車輪の車輪速度をV1及びV2とすると、駆動状態にある二つの車輪のスリップ率S1及びS2はそれぞれ下記の式8及び9により表され、制動状態にある二つの車輪のスリップ率S1及びS2はそれぞれ下記の式10及び11により表される。
(2) When both wheels are in the driving state or braking state As is well known, assuming that the wheel speeds of the two wheels are V1 and V2, the slip ratios S1 and S2 of the two wheels in the driving state are respectively given by The slip ratios S1 and S2 of the two wheels in the braking state represented by 8 and 9 are represented by the following equations 10 and 11, respectively.

S1=(V1−Vv)/V1 ……(8)
S2=(V2−Vv)/V2 ……(9)
S1=(V1−Vv)/Vv ……(10)
S2=(V2−Vv)/Vv ……(11)
S1 = (V1-Vv) / V1 (8)
S2 = (V2-Vv) / V2 (9)
S1 = (V1-Vv) / Vv (10)
S2 = (V2-Vv) / Vv (11)

また車輪の制駆動力が路面の最大摩擦係数に対応する制駆動力以下である場合には、車輪のスリップ率と路面の摩擦係数との関係が線形であると考えられてよいので、二つ車輪についての路面の摩擦係数μ1及びμ2とすると、二つ車輪が駆動状態にある場合(図5(A))及び制動状態にある場合(図5(B))の何れの場合にも、路面の摩擦係数μ1及びμ2と車輪のスリップ率S1及びS2との間には下記の式12の関係がある。
μ1/S1=μ2/S2 ……(12)
If the braking / driving force of the wheel is equal to or less than the braking / driving force corresponding to the maximum friction coefficient of the road surface, the relationship between the slip ratio of the wheel and the friction coefficient of the road surface may be considered to be linear. Assuming that the friction coefficient μ1 and μ2 of the road surface with respect to the wheels, the road surface is either in the case where the two wheels are in the driving state (FIG. 5A) or in the braking state (FIG. 5B). There is a relationship of the following formula 12 between the friction coefficients μ1 and μ2 of the wheel and the slip ratios S1 and S2 of the wheel.
μ1 / S1 = μ2 / S2 (12)

上記式12に上記式8及び9又は上記式10及び11を代入して整理すると、二つの車輪が駆動状態にあるか制動状態にあるかに関係なく車輌の車体速度Vvを下記の式13により演算することができる。
Vv=V1V2(μ1−μ2)/(μ1V1−μ2V2) ……(13)
Substituting the above formulas 8 and 9 or the above formulas 10 and 11 into the above formula 12, rearranging the vehicle body speed Vv of the vehicle according to the following formula 13 regardless of whether the two wheels are in a driving state or a braking state. It can be calculated.
Vv = V1V2 (μ1−μ2) / (μ1V1−μ2V2) (13)

尚、二つの車輪の接地荷重をN1及びN2とすると、二つの車輪についての路面の摩擦係数μ1及びμ2をそれぞれ下記の式14及び15により演算することができる。
μ1=Fx/N1 ……(14)
μ2=Fx/N2 ……(15)
If the contact loads of the two wheels are N1 and N2, the road surface friction coefficients μ1 and μ2 for the two wheels can be calculated by the following equations 14 and 15, respectively.
μ1 = Fx / N1 (14)
μ2 = Fx / N2 (15)

(3)車輪の制駆動力が路面の最大摩擦係数に対応する制駆動力を越えている場合
車輪の制駆動力が路面の最大摩擦係数に対応する制駆動力を越えている場合には、車輪の制駆動力と路面の摩擦係数との関係が線形ではないので、当該車輪の車輪速度をそのまま使用して車輌の車体速度Vvを演算することができない。従って車輪の制駆動力が路面の最大摩擦係数に対応する制駆動力を越えている場合には、車輪の制駆動力と路面の摩擦係数との関係が線形であると仮定したときの当該車輪の車輪速度が演算され、その車輪速度を使用して車輌の車体速度Vvが演算される。
(3) When the braking / driving force of the wheel exceeds the braking / driving force corresponding to the maximum friction coefficient of the road surface When the braking / driving force of the wheel exceeds the braking / driving force corresponding to the maximum friction coefficient of the road surface, Since the relationship between the braking / driving force of the wheel and the friction coefficient of the road surface is not linear, the vehicle body speed Vv cannot be calculated using the wheel speed of the wheel as it is. Therefore, when the braking / driving force of the wheel exceeds the braking / driving force corresponding to the maximum friction coefficient of the road surface, the wheel is assumed when the relationship between the braking / driving force of the wheel and the friction coefficient of the road surface is linear. The vehicle wheel speed Vv of the vehicle is calculated using the wheel speed.

車輪の制駆動力と路面の摩擦係数との関係が線形であると仮定したときの当該車輪の車輪速度は、車輪の制駆動力が路面の最大摩擦係数に対応する制駆動力を越えた時点を基準時点として、基準時点に於ける当該車輪の車輪速度と基準時点よりの車体速度の変化量との和と考えられてよく、基準時点よりの車体速度の変化量は経過時間及び車輌の前後加速度に基づいて演算可能である。   Assuming that the relationship between the braking / driving force of the wheel and the friction coefficient of the road surface is linear, the wheel speed of the wheel is the time when the braking / driving force of the wheel exceeds the braking / driving force corresponding to the maximum friction coefficient of the road surface. Can be considered as the sum of the wheel speed of the wheel at the reference time and the change in the vehicle speed from the reference time. The change in the vehicle speed from the reference time is the elapsed time and before and after the vehicle. Calculation is possible based on acceleration.

従って基準時点に於ける当該車輪の車輪速度をVwoとし、基準時点よりの経過時間をTとし、車輌の前後加速度をGxとすると、車輪の制駆動力が路面の最大摩擦係数に対応する制駆動力を越えている場合には、当該車輪の車輪速度Vwは下記の式16に従って演算され、その車輪速度を使用して車輌の車体速度Vvが演算される。

Figure 0004701941
Therefore, if the wheel speed of the wheel at the reference time is Vwo, the elapsed time from the reference time is T, and the longitudinal acceleration of the vehicle is Gx, the braking / driving force of the wheel corresponds to the maximum friction coefficient of the road surface. If the force is exceeded, the wheel speed Vw of the wheel is calculated according to the following equation 16, and the vehicle body speed Vv of the vehicle is calculated using the wheel speed.
Figure 0004701941

[課題解決手段の好ましい態様]
本発明の一つの好ましい態様によれば、上記請求項1乃至8の構成に於いて、車輌は四輪に制駆動力が付与され少なくとも制動力が相互に独立に制御される四輪駆動車であるよう構成される(好ましい態様1)。
[Preferred embodiment of problem solving means]
According to one preferable aspect of the present invention, in the configuration of the first to eighth aspects, the vehicle is a four-wheel drive vehicle in which braking / driving force is applied to the four wheels and at least braking force is controlled independently of each other. It is comprised so that it may exist (the preferable aspect 1).

本発明の他の一つの好ましい態様によれば、上記好ましい態様1の構成に於いて、車輌は四輪に相互に独立に駆動力が付与されると共に四輪に相互に独立に制動力が付与される四輪駆動車であるよう構成される(好ましい態様2)。   According to another preferred embodiment of the present invention, in the configuration of the preferred embodiment 1 described above, the vehicle imparts driving force to the four wheels independently of each other and imparts braking force to the four wheels independently of each other. It is comprised so that it may be a four wheel drive vehicle (preferable aspect 2).

本発明の他の一つの好ましい態様によれば、上記好ましい態様1の構成に於いて、車輌は四輪に相互に独立に制動力が付与されると共に少なくとも左右の車輪の駆動力配分を制御可能に左右の車輪に駆動力が付与される四輪駆動車であるよう構成される(好ましい態様3)。   According to another preferred embodiment of the present invention, in the configuration of the preferred embodiment 1, the vehicle is capable of independently applying braking force to the four wheels and controlling the driving force distribution of at least the left and right wheels. The vehicle is configured to be a four-wheel drive vehicle in which driving force is applied to the left and right wheels (preferred aspect 3).

本発明の他の一つの好ましい態様によれば、上記請求項1乃至8又は上記好ましい態様1乃至3の構成に於いて、車体速度演算手段は制駆動力及びスリップ率がそれらの実質的に線形の領域にある車輪が少なくとも二輪以上あるときに、制駆動力及びスリップ率がそれらの実質的に線形の領域にある二つの車輪の車輪速度及び路面の摩擦係数に基づいて車体速度を演算するよう構成される(好ましい態様4)。   According to another preferred aspect of the present invention, in the configuration of the above-described claims 1 to 8 or the preferred aspects 1 to 3, the vehicle body speed calculation means is configured such that the braking / driving force and the slip ratio are substantially linear. When there are at least two wheels in the area, the vehicle speed is calculated based on the wheel speed of the two wheels and the friction coefficient of the road surface in which the braking / driving force and the slip ratio are in a substantially linear region. (Preferred aspect 4)

本発明の他の一つの好ましい態様によれば、上記請求項1乃至8又は上記好ましい態様1乃至4の構成に於いて、車体速度演算手段は二つの車輪の車輪速度の差が基準値以上であるときに当該二つの車輪の車輪速度及び路面の摩擦係数に基づいて車体速度を演算するよう構成される(好ましい態様5)。   According to another preferred aspect of the present invention, in the configuration of the above-described claims 1 to 8 or the preferred aspects 1 to 4, the vehicle body speed calculation means is configured such that the difference between the wheel speeds of the two wheels is greater than or equal to a reference value. In some cases, the vehicle body speed is calculated based on the wheel speeds of the two wheels and the friction coefficient of the road surface (preferred aspect 5).

本発明の他の一つの好ましい態様によれば、上記請求項1又は3乃至8又は上記好ましい態様1乃至5の構成に於いて、車体速度演算手段は二つの車輪の一方が駆動状態にあり且つ二つの車輪の他方が制動状態にあるときには、上記式4又は式5に従って車体速度を演算するよう構成される(好ましい態様6)。   According to another preferred embodiment of the present invention, in the configuration of the above-mentioned claims 1 or 3 to 8 or the preferred embodiments 1 to 5, the vehicle body speed calculating means has one of the two wheels in a driving state and When the other of the two wheels is in a braking state, the vehicle body speed is calculated according to the above formula 4 or formula 5 (preferred aspect 6).

本発明の他の一つの好ましい態様によれば、上記請求項1又は2又は6乃至8又は上記好ましい態様1乃至5の構成に於いて、車体速度演算手段は二つの車輪の両方が駆動状態又は制動状態にあるときには、上記式13に従って車体速度を演算するよう構成される(好ましい態様7)。   According to another preferred aspect of the present invention, in the configuration of the above-mentioned claim 1 or 2 or 6 to 8 or the preferred aspects 1 to 5, the vehicle body speed calculation means is configured such that both of the two wheels are in a driving state or When in a braking state, the vehicle body speed is calculated according to the above equation 13 (preferred aspect 7).

本発明の他の一つの好ましい態様によれば、上記請求項1又は2又は6乃至8又は上記好ましい態様1乃至5又は7の構成に於いて、車体速度演算手段は二つの車輪の両方が駆動状態又は制動状態にあるときには、従来の方法に従って車体速度を演算するよう構成される(好ましい態様8)。   According to another preferred embodiment of the present invention, in the configuration of the above-mentioned claim 1 or 2 or 6 to 8 or the preferred embodiment 1 to 5 or 7, the vehicle body speed calculation means drives both wheels. When the vehicle is in a state or a braking state, the vehicle body speed is calculated according to a conventional method (preferred aspect 8).

本発明の他の一つの好ましい態様によれば、上記請求項1乃至8又は上記好ましい態様1乃至8の構成に於いて、車体速度演算手段は四つの車輪の何れについても車輪速度の差が基準値未満であるときには従来の方法に従って車体速度を演算するよう構成される(好ましい態様9)。   According to another preferred embodiment of the present invention, in the configuration of the above-described claims 1 to 8 or the preferred embodiments 1 to 8, the vehicle body speed calculation means is configured to use a difference in wheel speed as a reference for any of the four wheels. When it is less than the value, the vehicle speed is calculated according to the conventional method (preferred aspect 9).

本発明の他の一つの好ましい態様によれば、上記請求項8の構成に於いて、車体速度演算手段は基準時点より現在までの車輌の前後加速度の積分値として車体速度の変化量を演算するよう構成される(好ましい態様10)。   According to another preferred aspect of the present invention, in the configuration of claim 8, the vehicle body speed calculation means calculates the change amount of the vehicle body speed as an integrated value of the longitudinal acceleration of the vehicle from the reference time to the present. (Preferred embodiment 10).

以下に添付の図を参照しつつ、本発明を好ましい実施例について詳細に説明する。   The present invention will now be described in detail with reference to the accompanying drawings.

図1はインホイールモータ式の四輪駆動車に適用された本発明による車輌の車体速度推定装置の実施例1を示す概略構成図である。   FIG. 1 is a schematic configuration diagram showing a first embodiment of a vehicle body speed estimating device according to the present invention applied to an in-wheel motor type four-wheel drive vehicle.

図1に於いて、10FL及び10FRはそれぞれ操舵輪である左右の前輪を示し、10RL及び10RRはそれぞれ非操舵輪である左右の後輪を示している。左右の前輪10FL及び10FRにはそれぞれインホイールモータである電動機12FL及び12FRが組み込まれており、左右の前輪10FL及び10FRは電動機12FL及び12FRにより駆動される。同様に、左右の後輪10RL及び10RRにはそれぞれインホイールモータである電動機12RL及び12RRが組み込まれており、左右の前輪10RL及び10RRは電動機12RL及び12RRにより駆動される。   In FIG. 1, 10FL and 10FR respectively indicate left and right front wheels that are steering wheels, and 10RL and 10RR respectively indicate left and right rear wheels that are non-steering wheels. Electric motors 12FL and 12FR, which are in-wheel motors, are incorporated in the left and right front wheels 10FL and 10FR, respectively, and the left and right front wheels 10FL and 10FR are driven by the electric motors 12FL and 12FR. Similarly, electric motors 12RL and 12RR, which are in-wheel motors, are incorporated in the left and right rear wheels 10RL and 10RR, respectively, and the left and right front wheels 10RL and 10RR are driven by the electric motors 12RL and 12RR.

車輌の通常走行時には図1には示されていないバッテリに充電された電力が駆動回路を経て各電動機12FL〜12RRへ供給され、これにより各車輪10FL〜10RRにはそれぞれ対応する電動機12FL〜12RRより相互に独立に駆動力が付与される。尚車輌の減速制動時には必要に応じて各電動機12FL〜12RRによる回生制動が行われ、回生制動により発電された電力が駆動回路を経てバッテリに充電されるようになっていてよい。   During normal driving of the vehicle, electric power charged in a battery (not shown in FIG. 1) is supplied to each of the motors 12FL to 12RR through the drive circuit. Driving force is applied independently of each other. When the vehicle is decelerated, regenerative braking is performed by the electric motors 12FL to 12RR as necessary, and the electric power generated by the regenerative braking may be charged to the battery via the drive circuit.

電動機12FL〜12RRの駆動力はアクセル開度センサ14により検出される図1には示されていないアクセルペダルの踏み込み量としてのアクセル開度φに基づき駆動力制御用電子制御装置16により制御される。   The driving force of the electric motors 12FL to 12RR is controlled by the driving force control electronic control device 16 based on the accelerator opening φ as the accelerator pedal depression amount not shown in FIG. .

左右の前輪10FL、10FR及び左右の後輪10RL、10RRの摩擦制動力は摩擦制動装置18の油圧回路20により対応するホイールシリンダ22FL、22FR、22RL、22RRの制動圧が制御されることによって制御される。図には示されていないが、油圧回路20はリザーバ、オイルポンプ、種々の弁装置等を含み、各ホイールシリンダの制動圧力は通常時には運転者によるブレーキペダル24の踏み込み量及びブレーキペダル24の踏み込みに応じて駆動されるマスタシリンダ26の圧力に応じて制御され、また必要に応じてオイルポンプや種々の弁装置が制動力制御用電子制御装置28によって制御されることにより、運転者によるブレーキペダル24の踏み込み量に関係なく制御される。   The friction braking force of the left and right front wheels 10FL, 10FR and the left and right rear wheels 10RL, 10RR is controlled by controlling the braking pressure of the corresponding wheel cylinders 22FL, 22FR, 22RL, 22RR by the hydraulic circuit 20 of the friction braking device 18. The Although not shown in the drawing, the hydraulic circuit 20 includes a reservoir, an oil pump, various valve devices, etc., and the braking pressure of each wheel cylinder is normally determined by the amount of depression of the brake pedal 24 and depression of the brake pedal 24 by the driver. The brake pedal is controlled by the driver by controlling the oil pump and various valve devices by the electronic control device 28 for controlling the braking force as necessary. Control is performed regardless of the amount of depression of 24.

尚図1には詳細に示されていないが、駆動力制御用電子制御装置16及び制動力制御用電子制御装置28はそれぞれマイクロコンピュータと駆動回路とよりなり、マイクロコンピュータは例えばCPUと、ROMと、RAMと、入出力ポート装置とを有し、これらが双方向性のコモンバスにより互いに接続された一般的な構成のものであってよい。   Although not shown in detail in FIG. 1, each of the driving force control electronic control device 16 and the braking force control electronic control device 28 includes a microcomputer and a driving circuit. The microcomputer includes, for example, a CPU, a ROM, And a RAM and an input / output port device, which are connected to each other via a bidirectional common bus.

駆動力制御用電子制御装置16にはアクセル開度センサ14よりのアクセル開度φを示す信号に加えて、車輪速度センサ30FL〜30RRより各車輪の車輪速度Vwi(i=fl、fr、rl、rr)を示す信号、荷重センサ32FL〜32RRより各車輪の接地荷重Ni(i=fl、fr、rl、rr)を示す信号、前後加速度センサ34より車輌の前後加速度Gxを示す信号が入力される。また制動力制御用電子制御装置28には圧力センサ36よりマスタシリンダ圧力Pmを示す信号、圧力センサ38FL〜38RRより対応する車輪の制動圧(ホイールシリンダ圧力)Pbi(i=fl、fr、rl、rr)を示す信号が入力される。駆動力制御用電子制御装置16及び制動力制御用電子制御装置28は必要に応じて相互に信号の授受を行う。   In addition to the signal indicating the accelerator opening φ from the accelerator opening sensor 14, the driving force control electronic control device 16 receives wheel speeds Vwi (i = fl, fr, rl, rr), a signal indicating the ground load Ni (i = fl, fr, rl, rr) of each wheel from the load sensors 32FL to 32RR, and a signal indicating the longitudinal acceleration Gx of the vehicle from the longitudinal acceleration sensor 34. . Also, the braking force control electronic control unit 28 has a signal indicating the master cylinder pressure Pm from the pressure sensor 36, and a corresponding wheel braking pressure (wheel cylinder pressure) Pbi (i = fl, fr, rl,) from the pressure sensors 38FL to 38RR. rr) is input. The driving force control electronic control device 16 and the braking force control electronic control device 28 exchange signals with each other as necessary.

駆動力制御用電子制御装置16は、通常時には図には示されていない駆動力制御ルーチンに従って、運転者の加減速操作量であるアクセル開度φに基づき各車輪の目標駆動力Fdti(i=fl、fr、rl、rr)を演算すると共に、各車輪の駆動力Fdiがそれぞれ対応する目標駆動力Fdtiになるよう電動機12FL〜12RRを制御する。また駆動力制御用電子制御装置16は、図には示されていないトラクション制御ルーチンに従って、各車輪についてトラクション制御の開始条件が成立したか否かを判定し、何れかの車輪についてトラクション制御の開始条件が成立すると、トラクション制御の終了条件が成立するまで当該車輪の駆動スリップを抑制する当技術分野に於いて公知のトラクション制御を行う。   The electronic control unit 16 for controlling the driving force normally operates in accordance with a driving force control routine not shown in the drawing based on the accelerator opening φ that is the acceleration / deceleration operation amount of the driver, and the target driving force Fdti (i = fl, fr, rl, rr) are calculated, and the motors 12FL to 12RR are controlled so that the driving force Fdi of each wheel becomes the corresponding target driving force Fdti. The driving force control electronic control device 16 determines whether or not the traction control start condition is satisfied for each wheel according to a traction control routine not shown in the figure, and starts the traction control for any wheel. When the condition is satisfied, traction control known in the art for suppressing the drive slip of the wheel is performed until the traction control end condition is satisfied.

他方、制動力制御用電子制御装置38は、通常時には図には示されていない制動力制御ルーチンに従って、運転者の制動操作量であるマスタシリンダ圧力Pmに基づき各車輪の目標制動圧Pbtiを制御し、各車輪の制動圧Pbiがそれぞれ対応する目標制動圧Pbtiになるよう制御する。また制動力制御用電子制御装置38は、図には示されていないアンチスキッド制御ルーチンに従って、各車輪についてアンチスキッド制御の開始条件が成立したか否かを判定し、何れかの車輪についてアンチスキッド制御の開始条件が成立すると、アンチスキッド制御の終了条件が成立するまで当該車輪の制動スリを抑制する当技術分野に於いて公知のアンチスキッド制御を行う。   On the other hand, the braking force control electronic control unit 38 normally controls the target braking pressure Pbti of each wheel based on the master cylinder pressure Pm that is the amount of braking operation by the driver according to a braking force control routine not shown in the figure. Then, control is performed so that the braking pressure Pbi of each wheel becomes the corresponding target braking pressure Pbti. The braking force control electronic control unit 38 determines whether or not the anti-skid control start condition is satisfied for each wheel in accordance with an anti-skid control routine not shown in the figure, and the anti-skid for any wheel is determined. When the control start condition is satisfied, anti-skid control known in the art for suppressing braking slip of the wheel is performed until the end condition for anti-skid control is satisfied.

また駆動力制御用電子制御装置16は、後述の図2に示されたフローチャートに従って各車輪の駆動力Fdi及び制動力Fbiに基づき各車輪の制駆動力Fdbi(i=fl、fr、rl、rr)を演算し、制駆動力Fxi及び接地荷重Niに基づき各車輪について路面の摩擦係数μi(i=fl、fr、rl、rr)を演算し、車輪速度Vwiが互いに異なる二つの車輪の路面の摩擦係数μi及び車輪速度Vwiに基づいて車体速度Vvを演算し、上記トラクション制御及びアンチスキッド制御はこの車体速度Vvを使用して実行される。   In addition, the driving force control electronic control unit 16 performs braking / driving force Fdbi (i = fl, fr, rl, rr) of each wheel based on the driving force Fdi and braking force Fbi of each wheel according to the flowchart shown in FIG. ) And the friction coefficient μi (i = fl, fr, rl, rr) of the road surface for each wheel based on the braking / driving force Fxi and the ground load Ni, and the road surface of two wheels with different wheel speeds Vwi. A vehicle body speed Vv is calculated based on the friction coefficient μi and the wheel speed Vwi, and the traction control and anti-skid control are executed using the vehicle body speed Vv.

次に図2に示されたフローチャートを参照して図示の実施例1に於ける車体速度推定制御について説明する。尚図2に示されたフローチャートによる制御は駆動力制御用電子制御装置16が起動されることにより開始され、図には示されていないイグニッションスイッチがオフに切り換えられるまで所定の時間毎に繰返し実行される。   Next, the vehicle body speed estimation control in the illustrated embodiment 1 will be described with reference to the flowchart shown in FIG. The control according to the flowchart shown in FIG. 2 is started when the driving force control electronic control device 16 is activated, and is repeatedly executed every predetermined time until an ignition switch (not shown) is turned off. Is done.

まずステップ10に於いては荷重センサ32FL〜32RRにより検出された各車輪の接地荷重Niを示す信号等の読み込みが行われ、ステップ20に於いては駆動力制御ルーチンに従って電動機12FL〜12RRへ供給される駆動電流に基づいて各車輪の駆動力Fdiが演算され、制動力制御用電子制御装置38より入力される各車輪の制動圧Pbiに基づいて各車輪の制動力Fbiが演算され、駆動力Fdiと制動力Fbiとの差として各車輪の制駆動力Fxiが演算される。   First, in step 10, a signal indicating the ground load Ni of each wheel detected by the load sensors 32FL to 32RR is read, and in step 20, it is supplied to the motors 12FL to 12RR according to the driving force control routine. The driving force Fdi of each wheel is calculated based on the driving current to be calculated, and the braking force Fbi of each wheel is calculated based on the braking pressure Pbi of each wheel input from the electronic control device 38 for braking force control. The braking / driving force Fxi of each wheel is calculated as the difference between the braking force Fbi and the braking force Fbi.

ステップ30に於いては各車輪の制駆動力Fxi及び接地荷重Niに基づき接地荷重Niに対する制駆動力Fxiの比Fxi/Niとして各車輪について路面の摩擦係数μiが演算される。   In step 30, the road surface friction coefficient μi is calculated for each wheel as the ratio Fxi / Ni of the braking / driving force Fxi to the ground load Ni based on the braking / driving force Fxi and the ground load Ni of each wheel.

ステップ40に於いては各車輪について車輪のスリップ率Si及び路面の摩擦係数μiの関係が所謂μ−S線図の実質的に線形の領域にあるか否かの判別、即ち車輪の制駆動力Fxiが路面の最大摩擦係数μmax以下であるか否かの判別が行われると共に、Si及びμiの関係が実質的に線形の領域にある車輪が二輪以上存在するか否かの判別が行われ、肯定判別が行われたときにはステップ60へ進み、否定判別が行われたときにはステップ50へ進む。   In step 40, it is determined whether or not the relationship between the slip ratio Si of the wheel and the friction coefficient μi of the road surface is in a substantially linear region of the so-called μ-S diagram, that is, the braking / driving force of the wheel. It is determined whether or not Fxi is equal to or less than the maximum friction coefficient μmax of the road surface, and whether or not there are two or more wheels in which the relationship between Si and μi is in a substantially linear region, When a positive determination is made, the process proceeds to step 60, and when a negative determination is made, the process proceeds to step 50.

尚車輪のスリップ率Si及び路面の摩擦係数μiの関係が実質的に線形の領域にあるか否かの判別は、例えば車輪の制駆動力Fxiの変化量に対する車輪速度Vwiの変化量の比が所定の範囲内にあるか否かの判定により行われてよい。   Whether the relationship between the wheel slip ratio Si and the road friction coefficient μi is in a substantially linear region is determined, for example, by the ratio of the change amount of the wheel speed Vwi to the change amount of the braking / driving force Fxi of the wheel. It may be performed by determining whether or not it is within a predetermined range.

ステップ50に於いては車輪のスリップ率Si及び路面の摩擦係数μiの関係が実質的に線形の領域にない車輪について車輌の前後加速度Gxに基づいて車輪速度Vwiが演算される。例えば当該車輪のスリップ率Si及び路面の摩擦係数μiの関係が実質的に線形の領域より非線形領域に移行したと判定された時点を基準時点として、基準時点に於ける当該車輪の車輪速度をVwoiとし、基準時点よりの経過時間をTとして、車輪速度Vwiが上記式16に対応する下記の式17に従って演算される。

Figure 0004701941
In step 50, the wheel speed Vwi is calculated based on the longitudinal acceleration Gx of the vehicle for a wheel in which the relationship between the wheel slip ratio Si and the road friction coefficient μi is not in a substantially linear region. For example, assuming that the relationship between the slip ratio Si of the wheel and the friction coefficient μi of the road surface has shifted from a substantially linear region to a non-linear region, the wheel speed of the wheel at the reference time is expressed as Vwoi. Assuming that the elapsed time from the reference time is T, the wheel speed Vwi is calculated according to the following equation 17 corresponding to the above equation 16.
Figure 0004701941

ステップ60に於いては車輪速度Vwiが互いにΔVo(正の定数)以上異なる車輪の組合せが一組以上存在するか否かの判別、即ちスリップ率Siが互いに基準値以上異なる車輪の組合せが一組以上存在するか否かの判別が行われ、肯定判別が行われたときにはステップ80へ進み、否定判別が行われたときにはステップ70に於いて当技術分野に於いて公知の任意の要領にて車体速度Vvが演算され、しかる後ステップ10へ戻る。   In step 60, it is determined whether or not there are one or more wheel combinations whose wheel speeds Vwi are different from each other by ΔVo (positive constant), that is, a set of wheel combinations whose slip ratios Si are different from each other by a reference value or more. If a positive determination is made, the process proceeds to step 80. If a negative determination is made, the vehicle body is determined in step 70 in any manner known in the art. The speed Vv is calculated, and then the process returns to step 10.

ステップ80に於いては車輪速度Vwiが互いにΔVo(正の定数)以上異なる車輪の組合せに駆動状態の車輪(制駆動力Fxiが駆動力である車輪)及び制動状態の車輪(制駆動力Fxiが制動力である車輪)が存在するか否かの判別が行われ、否定判別が行われたときにはステップ110へ進み、肯定判別が行われたときにはステップ90へ進む。   In step 80, the wheels in the driving state (wheels where the braking / driving force Fxi is the driving force) and the wheels in the braking state (the braking / driving force Fxi is different from each other) are wheel combinations whose wheel speeds Vwi are different from each other by ΔVo (positive constant). It is determined whether or not there is a wheel (braking force). If a negative determination is made, the process proceeds to step 110. If an affirmative determination is made, the process proceeds to step 90.

ステップ90に於いては車体速度Vvの演算に使用される二つの車輪速度Vwi及び路面の摩擦係数μiを決定するための二つの車輪が特定されると共に、特定された二つの車輪のうち駆動状態の車輪の車輪速度VwiがVaに設定され、制動状態の車輪の車輪速度VwiがVbに設定される。   In step 90, the two wheel speeds Vwi used for calculating the vehicle body speed Vv and the two wheels for determining the friction coefficient μi of the road surface are specified, and the driving state of the two specified wheels is determined. The wheel speed Vwi is set to Va, and the wheel speed Vwi of the braked wheel is set to Vb.

一般に、車輪速度Vwiが互いにΔVo以上異なる車輪の組合せが二組以上であり、駆動状態の車輪及び制動状態の車輪があるときには、車体速度Vvは駆動状態の車輪の車輪速度と制動状態の車輪の車輪速度との間の値であるので、車体速度Vvの演算に使用される二つの車輪は車輪速度の差が小さい駆動状態の車輪及び制動状態の車輪であることが好ましい。例えば図8に示されている如く、制動状態の車輪Aと駆動状態の車輪B、Cがある場合に於いて車輪Bの車輪速度が車輪Cの車輪速度よりも高いとすると、車輪A及びCの車輪速度に基づいて推定される車体速度Vvの推定誤差ΔVvacは車輪A及びBの車輪速度に基づいて推定される車体速度Vvの推定誤差ΔVvabよりも小さい。   In general, when there are two or more combinations of wheels whose wheel speeds Vwi are different from each other by ΔVo, and there are a driving wheel and a braking wheel, the vehicle body speed Vv is the wheel speed of the driving wheel and the braking wheel. Since it is a value between the wheel speeds, the two wheels used for the calculation of the vehicle body speed Vv are preferably a driving wheel and a braking wheel with a small difference in wheel speed. For example, as shown in FIG. 8, if the wheel speed of the wheel B is higher than the wheel speed of the wheel C when there are the braked wheel A and the driven wheels B and C, the wheels A and C The estimated error ΔVvac of the vehicle body speed Vv estimated based on the wheel speed of the vehicle is smaller than the estimated error ΔVvab of the vehicle body speed Vv estimated based on the wheel speeds of the wheels A and B.

これに対し、車輪速度Vwiが互いにΔVo以上異なる車輪の組合せが二組以上であり、それらの車輪の何れも駆動状態であるとき又はそれらの車輪の何れも駆動状態であるときには、車体速度Vvの演算に使用される二つの車輪は車輪速度の差が大きい二つの車輪であることが好ましい。例えば図9に示されている如く、駆動状態の車輪A、B、Cがある場合に於いて車輪Aの車輪速度が車輪Bの車輪速度よりも高く且つ車輪Bの車輪速度が車輪Cの車輪速度よりも高いとすると、車輪A及びCの車輪速度に基づいて推定される車体速度Vvの推定誤差ΔVvacは車輪A及びBの車輪速度に基づいて推定される車体速度Vvの推定誤差ΔVvabよりも小さい。   On the other hand, when there are two or more combinations of wheels whose wheel speeds Vwi are different from each other by ΔVo and each of these wheels is in a driving state or when any of those wheels is in a driving state, the vehicle body speed Vv The two wheels used for calculation are preferably two wheels having a large difference in wheel speed. For example, as shown in FIG. 9, when there are driven wheels A, B, and C, the wheel speed of the wheel A is higher than the wheel speed of the wheel B, and the wheel speed of the wheel B is the wheel of the wheel C. If it is higher than the speed, the estimation error ΔVvac of the vehicle body speed Vv estimated based on the wheel speeds of the wheels A and C is larger than the estimation error ΔVvab of the vehicle body speed Vv estimated based on the wheel speeds of the wheels A and B. small.

従ってステップ90に於いては、車輪速度Vwiが互いにΔVo以上異なる車輪の組合せが一組であるときには、車体速度Vvの演算に使用される二つの車輪はそれらの車輪に決定される。また車輪速度Vwiが互いにΔVo以上異なる車輪の組合せが二組以上であり、駆動状態の車輪が二輪以上であり、制動状態の車輪が一輪であるときには、車体速度Vvの演算に使用される二つの車輪は駆動状態の車輪のうち車輪速度が低い方の車輪及び制動状態の車輪に決定される。   Therefore, in step 90, when the wheel speed Vwi is a set of combinations of wheels different from each other by ΔVo, the two wheels used for the calculation of the vehicle body speed Vv are determined as those wheels. In addition, when there are two or more combinations of wheels whose wheel speeds Vwi are different by ΔVo or more, two or more wheels are in the driving state, and one wheel is in the braking state, the two used for calculation of the vehicle body speed Vv are used. The wheel is determined as a wheel having a lower wheel speed and a braked wheel among the driven wheels.

また車輪速度Vwiが互いにΔVo以上異なる車輪の組合せが二組以上であり、駆動状態の車輪が一輪であり、制動状態の車輪が二輪以上であるときには、車体速度Vvの演算に使用される二つの車輪は駆動状態の車輪及び制動状態の車輪のうち車輪速度が高い方の車輪に決定される。更に車輪速度Vwiが互いにΔVo以上異なる車輪の組合せが二組以上であり、駆動状態の車輪が二輪であり、制動状態の車輪が二輪であるときには、車体速度Vvの演算に使用される二つの車輪は駆動状態の二つの車輪のうち車輪速度が低い方の車輪及及び制動状態の二つの車輪のうち車輪速度が高い方の車輪に決定される。   Further, when there are two or more combinations of wheels whose wheel speeds Vwi are different from each other by ΔVo, one wheel is in the driving state, and two or more wheels in the braking state, the two used for calculating the vehicle body speed Vv are used. The wheel is determined as the wheel having the higher wheel speed among the driving wheel and the braking wheel. Furthermore, when there are two or more combinations of wheels whose wheel speeds Vwi are different by ΔVo or more, two wheels are used in the driving state, and two wheels are in the braking state, two wheels used for calculation of the vehicle body speed Vv are used. Are determined as the wheel with the lower wheel speed of the two wheels in the driving state and the wheel with the higher wheel speed of the two wheels in the braking state.

ステップ100に於いては例えば図1には示されていないシフトポジションセンサにより検出されるシフトポジションに基づいて車輌の進行方向が判定されると共に、ステップ90に於いて特定された二つの車輪についての路面の摩擦係数をそれぞれμa及びμbとして、車輪速度Va、Vb及び路面の摩擦係数μa、μbに基づいて車輌の前進時には上記式4に従って車体速度Vvが演算され、車輌の後進時には上記式5に従って車体速度Vvが演算される。   In step 100, for example, the traveling direction of the vehicle is determined based on a shift position detected by a shift position sensor not shown in FIG. 1, and the two wheels identified in step 90 are determined. The road surface friction coefficients are μa and μb, respectively, and the vehicle body speed Vv is calculated according to the above formula 4 when the vehicle moves forward based on the wheel speeds Va and Vb and the road surface friction coefficients μa and μb. The vehicle body speed Vv is calculated.

ステップ110に於いては車体速度Vvの演算に使用される二つの車輪速度Vwi及び路面の摩擦係数μiを決定するための二つの車輪が車輪速度Vwiが最も高い車輪及び車輪速度Vwiが最も低い車輪に特定されると共に、特定された二つの車輪のうち車輪速度が高い方の車輪の車輪速度VwiがV1に設定され、車輪速度が低い方の車輪の車輪速度VwiがV
2に設定される。
In step 110, the two wheel speeds Vwi used for calculating the vehicle body speed Vv and the two wheels for determining the road friction coefficient μi are the wheels with the highest wheel speed Vwi and the wheels with the lowest wheel speed Vwi. The wheel speed Vwi of the wheel with the higher wheel speed of the two specified wheels is set to V1, and the wheel speed Vwi of the wheel with the lower wheel speed is set to V1.
Set to 2.

ステップ120に於いてはステップ110に於いて特定された二つの車輪についての路面の摩擦係数をそれぞれμ1及びμ2として、車輪速度V1、V2及び路面の摩擦係数μ1、μ2に基づいて上記式13に従って車体速度Vvが演算される。   In step 120, the road surface friction coefficients for the two wheels specified in step 110 are μ1 and μ2, respectively, and the wheel speeds V1 and V2 and the road surface friction coefficients μ1 and μ2 are used in accordance with equation 13 above. The vehicle body speed Vv is calculated.

かくして図示の実施例1によれば、ステップ20に於いて各車輪の制駆動力Fxiが演算され、ステップ30に於いて各車輪について路面の摩擦係数μiが演算され、ステップ40に於いてSi及びμiの関係が実質的に線形の領域にある車輪が二輪以上存在しないと判定されたときには、ステップ50に於いて車輪のスリップ率Si及び路面の摩擦係数μiの関係が実質的に線形の領域にない車輪について車輌の前後加速度Gxに基づいて車輪速度Vwiが演算される。   Thus, according to the illustrated embodiment 1, the braking / driving force Fxi of each wheel is calculated in step 20, the road friction coefficient μi is calculated for each wheel in step 30, and Si and When it is determined that there are no more than two wheels in which the relationship of μi is in a substantially linear region, in step 50, the relationship between the slip ratio Si of the wheel and the friction coefficient μi of the road surface is in a substantially linear region. The wheel speed Vwi is calculated based on the longitudinal acceleration Gx of the vehicle with no wheels.

そしてステップ60に於いて車輪速度Vwiが互いにΔVo以上異なる車輪の組合せが一組以上存在すると判定され、ステップ80に於いて車輪速度Vwiが互いにΔVo以上異なる車輪の組合せに駆動状態の車輪及び制動状態の車輪が存在すると判定されると、ステップ90に於いて車体速度Vvの演算に使用される二つの車輪速度Vwi及び路面の摩擦係数μiを決定するための二つの車輪が特定され、ステップ100に於いて駆動状態の車輪の車輪速度Va及び路面の摩擦係数μaと制動状態の車輪の車輪速度Vb及び路面の摩擦係数μbに基づいて車体速度Vvが演算される。   In step 60, it is determined that there are one or more combinations of wheels whose wheel speeds Vwi are different from each other by ΔVo or more. In step 80, a combination of wheels whose wheel speeds Vwi are different from each other by ΔVo or more is in a driving state and a braking state. If it is determined that there are two wheels, the two wheels for determining the two wheel speeds Vwi and the road friction coefficient μi used for the calculation of the vehicle body speed Vv are identified in step 90. The vehicle body speed Vv is calculated on the basis of the wheel speed Va of the driven wheel and the road friction coefficient μa, the wheel speed Vb of the braked wheel and the road friction coefficient μb.

従って図示の実施例1によれば、四輪に駆動状態の車輪及び制動状態の車輪が混在する状況に於いても、換言すれば車輌が駆動状態にあっても制動力が付与されている車輪が存在し、その車輪の車輪速度が車体速度よりも低い場合や、車輌が制動状態にあっても駆動力が付与されている車輪が存在し、その車輪の車輪速度が車体速度よりも高い場合にも、車体速度Vvを確実に且つ正確に演算することができる。   Therefore, according to the first embodiment shown in the drawing, even in a situation where the four wheels are mixed with the driving wheel and the braking wheel, in other words, the wheel to which the braking force is applied even when the vehicle is in the driving state. When the wheel speed of the wheel is lower than the vehicle body speed, or there is a wheel to which driving force is applied even when the vehicle is in a braking state, and the wheel speed of the wheel is higher than the vehicle body speed. In addition, the vehicle body speed Vv can be calculated reliably and accurately.

例えば図6は左前後輪が制動状態にあり右前後輪が駆動状態にあり、車輌は加速状態にある状況を示している。左前輪の車輪速度Vwflが左後輪の車輪速度Vwrlよりも大きく、右前輪の車輪速度Vwfrが右後輪の車輪速度Vwrrよりも大きく、図7に示されている如く車輌は加速状態にあり、車体速度Vvは左前輪の車輪速度Vwflよりも高く右後輪の車輪速度Vwrrよりも低い値であると仮定する。   For example, FIG. 6 shows a situation where the left front and rear wheels are in a braking state, the right front and rear wheels are in a driving state, and the vehicle is in an accelerating state. The wheel speed Vwfl of the left front wheel is larger than the wheel speed Vwrl of the left rear wheel, the wheel speed Vwfr of the right front wheel is larger than the wheel speed Vwrr of the right rear wheel, and the vehicle is in an accelerated state as shown in FIG. The vehicle body speed Vv is assumed to be higher than the wheel speed Vwfl of the left front wheel and lower than the wheel speed Vwrr of the right rear wheel.

前述の従来の車体速度推定装置に於いては、上記状況に於いては車体速度Vvは左後輪の車輪速度Vwrlと同一の値であると推定されてしまい、車体速度Vvを正確に推定することができない。   In the above-described conventional vehicle body speed estimation device, the vehicle body speed Vv is estimated to be the same value as the wheel speed Vwrl of the left rear wheel in the above situation, and the vehicle body speed Vv is accurately estimated. I can't.

これに対し図示の実施例1によれば、二番目に低い左前輪の車輪速度Vwfl及び二番目に高い右後輪の車輪速度Vwrrとこれらの車輪の路面の摩擦係数とに基づいて上述の如く車体速度Vvが演算されるので、車体速度Vvを正確に推定することができる。   On the other hand, according to the first embodiment shown in the drawing, as described above, the wheel speed Vwfl of the second lowest left front wheel, the wheel speed Vwrr of the second highest right rear wheel, and the friction coefficient of the road surface of these wheels are as described above. Since the vehicle body speed Vv is calculated, the vehicle body speed Vv can be accurately estimated.

また図示の実施例1によれば、ステップ60に於いて車輪速度Vwiが互いにΔVo以上異なる車輪の組合せが一組以上存在すると判定されても、ステップ80に於いて車輪速度Vwiが互いにΔVo以上異なる車輪の組合せに駆動状態の車輪及び制動状態の車輪が存在しないと判定されると、ステップ110に於いて車体速度Vvの演算に使用される二つの車輪速度Vwi及び路面の摩擦係数μiを決定するための二つの車輪が車輪速度Vwiが最も高い車輪及び車輪速度Vwiが最も低い車輪に特定され、ステップ120に於いてそれらの二つの車輪の車輪速度V1、V2及び路面の摩擦係数μ1、μ2に基づいて車体速度Vvが演算される。   Further, according to the first embodiment shown in the figure, even if it is determined in step 60 that there is at least one combination of wheels whose wheel speeds Vwi are different from each other by ΔVo, the wheel speeds Vwi are different from each other by ΔVo in step 80. If it is determined that there is no driving wheel and no braking wheel in the wheel combination, in step 110, two wheel speeds Vwi and a road surface friction coefficient μi used for calculating the vehicle body speed Vv are determined. The two wheels are identified as the wheel having the highest wheel speed Vwi and the wheel having the lowest wheel speed Vwi. In step 120, the wheel speeds V1 and V2 of these two wheels and the friction coefficients μ1 and μ2 of the road surface are set. Based on this, the vehicle body speed Vv is calculated.

従って図示の実施例1によれば、四輪の全てが駆動状態又は制動状態にある状況に於いても、従来の車体速度推定方法によらず車体速度Vvを確実に且つ正確に演算することができる。   Therefore, according to the first embodiment shown in the figure, the vehicle body speed Vv can be calculated reliably and accurately regardless of the conventional vehicle body speed estimation method even when all four wheels are in the driving state or the braking state. it can.

図3は本発明による車輌の車体速度推定装置の実施例2に於ける車体速度演算制御ルーチンを示すフローチャートである。尚図3に於いて図2に示されたステップと同一のステップには図2に於いて付されたステップ番号と同一のステップ番号が付されている。   FIG. 3 is a flowchart showing a vehicle body speed calculation control routine in Embodiment 2 of the vehicle body speed estimation apparatus according to the present invention. In FIG. 3, the same step number as the step number shown in FIG. 2 is assigned to the same step as the step shown in FIG.

実施例2に於いては、ステップ10〜30及びステップ50〜120は上述の実施例1の場合と同様に実行され、ステップ30が完了すると、ステップ45に於いて車輪のスリップ率Si及び路面の摩擦係数μiの関係が所謂μ−S線図の非線形領域にある車輪が存在するか否かの判別が行われ、否定判別が行われたときにはステップ60へ進み、肯定判別が行われたときにはステップ50へ進む。   In the second embodiment, steps 10 to 30 and steps 50 to 120 are executed in the same manner as in the first embodiment. When step 30 is completed, the slip ratio Si of the wheel and the road surface are determined in step 45. It is determined whether or not there is a wheel whose friction coefficient μi is in the non-linear region of the so-called μ-S diagram. If a negative determination is made, the process proceeds to step 60. If an affirmative determination is made, the process proceeds to step 60. Proceed to 50.

かくして図示の実施例2によれば、上述の実施例1の場合と同様、四輪に駆動状態の車輪及び制動状態の車輪が混在する状況に於いても、車体速度Vvを確実に且つ正確に演算することができ、また四輪の全てが駆動状態又は制動状態にある状況に於いても、従来の車体速度推定方法によらず車体速度Vvを確実に且つ正確に演算することができる。   Thus, according to the second embodiment shown in the figure, as in the first embodiment, the vehicle body speed Vv can be reliably and accurately adjusted even in a situation where four wheels are mixed with a driven wheel and a braked wheel. Even in a situation where all four wheels are in a driving state or a braking state, the vehicle body speed Vv can be calculated reliably and accurately regardless of the conventional vehicle body speed estimation method.

特に図示の実施例2によれば、ステップ45に於いて車輪のスリップ率Si及び路面の摩擦係数μiの関係が所謂μ−S線図の非線形領域にある車輪が存在すると判定されると、ステップ50に於いて当該車輪について車輌の前後加速度Gxに基づいて車輪速度Vwiが演算されるので、四輪の車輪速度の如何に拘らず、少なくとも一組の車輪速度の差が基準値以上である限り、常に四輪のうちの車体速度の演算に適した二つの車輪の車輪速度及び路面の摩擦係数に基づいて車体速度Vvを演算することができる。   In particular, according to the illustrated embodiment 2, if it is determined in step 45 that there is a wheel in which the relationship between the slip ratio Si of the wheel and the friction coefficient μi of the road surface is in the non-linear region of the so-called μ-S diagram. At 50, the wheel speed Vwi is calculated based on the longitudinal acceleration Gx of the vehicle for the wheel, so that at least one pair of wheel speeds is not less than the reference value regardless of the wheel speed of the four wheels. The vehicle body speed Vv can always be calculated based on the wheel speeds of the two wheels suitable for calculating the vehicle body speed of the four wheels and the friction coefficient of the road surface.

尚、図示の実施例1及び2によれば、ステップ90に於いて車輪速度Vwiが互いにΔVo以上異なる車輪の組合せが三輪以上あり、駆動状態の車輪及び制動状態の車輪があり且つ駆動状態又は制動状態の車輪が一輪であるときには、車体速度Vvの演算に使用される二つの車輪は車輪速度の差が小さい二つの車輪に決定され、また車輪速度Vwiが互いにΔVo以上異なる車輪が四輪あり、駆動状態の車輪が二輪であり、制動状態の車輪が二輪であるときには、車体速度Vvの演算に使用される二つの車輪は駆動状態の二つの車輪のうち車輪速度が低い方の車輪及及び制動状態の二つの車輪のうち車輪速度が高い方の車輪に決定される。   According to the first and second embodiments shown in the figure, in step 90, there are three or more wheel combinations in which the wheel speed Vwi differs from each other by ΔVo or more, there are a driving wheel and a braking wheel, and there is a driving state or braking. When the number of wheels in the state is one, the two wheels used for the calculation of the vehicle body speed Vv are determined to be two wheels having a small difference in wheel speed, and there are four wheels whose wheel speeds Vwi are different from each other by ΔVo, When there are two wheels in the driving state and two wheels in the braking state, the two wheels used for the calculation of the vehicle body speed Vv are the wheel having the lower wheel speed of the two driving wheels and the braking. Of the two wheels in the state, the wheel with the higher wheel speed is determined.

従って車輪速度Vwiが互いにΔVo以上異なる車輪の組合せが三輪以上あり、駆動状態の車輪及び制動状態の車輪があり且つ駆動状態又は制動状態の車輪が一輪である場合に於いて、車体速度Vvの演算に使用される二つの車輪が車輪速度の差が大きい二つの車輪に決定される場合や、車輪速度Vwiが互いにΔVo以上異なる車輪が四輪あり、駆動状態の車輪が二輪であり、制動状態の車輪が二輪である場合に於いて、車体速度Vvの演算に使用される二つの車輪が駆動状態の二つの車輪のうち車輪速度が高い方の車輪及及び制動状態の二つの車輪のうち車輪速度が低い方の車輪に決定される場合に比して、車体速度Vvを正確に演算することができる。   Therefore, when there are three or more wheel combinations in which the wheel speed Vwi is different by ΔVo or more, there is a driving wheel and a braking wheel, and the driving or braking wheel is a single wheel, the vehicle body speed Vv is calculated. When the two wheels used in the vehicle are determined to be two wheels having a large difference in wheel speed, there are four wheels whose wheel speeds Vwi are different from each other by ΔVo or more, the driven wheels are two wheels, and the braking state is In the case where the wheels are two wheels, the two wheels used for the calculation of the vehicle body speed Vv are the wheel with the higher wheel speed of the two wheels in the driving state and the wheel speed of the two wheels with the braking state. The vehicle speed Vv can be calculated more accurately than when the lower wheel is determined.

また図示の実施例1及び2によれば、四輪に駆動状態の車輪及び制動状態の車輪が混在する状況及び四輪の全てが駆動状態又は制動状態にある状況の何れに於いても、何れの車輪の車輪速度の差も基準値未満であるときには、ステップ80〜120は実行されず、ステップ70に於いて当技術分野に於いて公知の任意の要領にて車体速度Vvが演算されるので、何れの車輪の車輪速度の差も基準値未満である状況に於いてもステップ80〜120が実行される場合に比して、車輪速度の差が小さい二つの車輪の車輪速度及び路面の摩擦係数に基づいて車体速度が演算されることによる車体速度の推定精度の悪化を確実に防止することができる。   Further, according to the first and second embodiments shown in the drawings, in any of the situation where the four wheels are in a state of being mixed with the driven wheels and the braked wheels, and all of the four wheels are in the driven state or the braking state, When the wheel speed difference between the two wheels is also less than the reference value, steps 80 to 120 are not executed, and the vehicle body speed Vv is calculated at step 70 in any manner known in the art. The wheel speed of the two wheels and the friction of the road surface are small compared to the case where the steps 80 to 120 are executed even in the situation where the difference between the wheel speeds of both wheels is less than the reference value. It is possible to reliably prevent deterioration of the estimation accuracy of the vehicle body speed due to the calculation of the vehicle body speed based on the coefficient.

また図示の実施例1及び2によれば、ステップ40に於いて否定判別が行われた場合又はステップ45に於いて肯定判別が行われた場合には、ステップ50に於いて車輪のスリップ率Si及び路面の摩擦係数μiの関係が実質的に線形の領域にない車輪について車輌の前後加速度Gxに基づいて車輪速度Vwiが演算されるので、この車輪速度Vwiの演算が行われない場合に比して、ステップ90及び100又はステップ110及び120による車体速度Vvの推定の可能性を高くすることができる。   Further, according to the first and second embodiments shown in the drawings, when a negative determination is made at step 40 or when an affirmative determination is made at step 45, the slip ratio Si of the wheel is determined at step 50. And the wheel speed Vwi is calculated on the basis of the longitudinal acceleration Gx of the vehicle for wheels whose relationship between the road surface friction coefficient μi and the road surface friction coefficient μi are not in a substantially linear region, compared with the case where the wheel speed Vwi is not calculated. Thus, the possibility of estimating the vehicle body speed Vv in steps 90 and 100 or steps 110 and 120 can be increased.

以上に於いては本発明を特定の実施例について詳細に説明したが、本発明は上述の実施例に限定されるものではなく、本発明の範囲内にて他の種々の実施例が可能であることは当業者にとって明らかであろう。   Although the present invention has been described in detail with reference to specific embodiments, the present invention is not limited to the above-described embodiments, and various other embodiments are possible within the scope of the present invention. It will be apparent to those skilled in the art.

例えば上述の実施例1及び2に於いては、電動機12FL〜12RRはインホイールモータであるが、電動発電機は車体側に設けられてもよく、各車輪の駆動源は電動機以外のエンジンの如き駆動源であっても、駆動源は少なくとも二つの車輪に共通の駆動源であり、駆動源の駆動力が各車輪に駆動力配分制御可能に伝達されるようになっていてもよい。   For example, in the first and second embodiments described above, the motors 12FL to 12RR are in-wheel motors, but the motor generator may be provided on the vehicle body side, and the driving source of each wheel is an engine other than the motor. Even if it is a drive source, a drive source is a drive source common to at least two wheels, and the drive force of a drive source may be transmitted to each wheel so that drive force distribution control is possible.

また上述の実施例1及び2に於いては、四輪の全てが駆動状態又は制動状態にある場合には、少なくとも一組の車輪速度の差が基準値以上である限り、ステップ110及び120により二つの車輪の車輪速度及び路面の摩擦係数に基づいて車体速度Vvが演算されるようになっているが、少なくとも一組の車輪速度の差が基準値以上であるが四輪の全てが駆動状態又は制動状態にある場合には、当技術分野に於いて公知の任意の要領にて車体速度Vvが演算されるよう修正されてもよい。   In the first and second embodiments described above, when all four wheels are in a driving state or a braking state, as long as the difference between at least one set of wheel speeds is equal to or greater than a reference value, the steps 110 and 120 are performed. The vehicle body speed Vv is calculated based on the wheel speed of the two wheels and the friction coefficient of the road surface, but at least one set of wheel speeds is greater than or equal to a reference value, but all four wheels are driven. Alternatively, when the vehicle is in a braking state, the vehicle body speed Vv may be corrected so as to be calculated in an arbitrary manner known in the art.

また上述の実施例1及び2に於いては、四輪に駆動状態の車輪及び制動状態の車輪が混在する状況であるか四輪の全てが駆動状態又は制動状態にある状況であるかに関係なく、少なくとも一組の車輪速度の差が基準値以上であるか否かの判定の基準値は同一であるが、この基準値は四輪に駆動状態の車輪及び制動状態の車輪が混在する状況であるか四輪の全てが駆動状態又は制動状態にある状況であるかによって異なる値であってもよい。   In the first and second embodiments described above, it is related to whether the four wheels are in a state where a wheel in a driving state and a wheel in a braking state are mixed, or whether all four wheels are in a driving state or a braking state. The reference value for determining whether or not the difference between at least one pair of wheel speeds is greater than or equal to the reference value is the same, but this reference value is a situation where four wheels are mixed with a driving wheel and a braking wheel. Or different values depending on whether all four wheels are in a driving state or a braking state.

また上述の実施例1及び2に於いては、各車輪について路面の摩擦係数μiの演算に使用される各車輪の接地荷重Niは荷重センサ32FL〜32RRにより検出されるようになっているが、各車輪の接地荷重Niは例えば車輌の前後加速度及び横加速度に基づいて各車輪の接地荷重の変化量ΔNiが演算され、車輌の静止状態に於ける各車輪の静的接地荷重Noiと接地荷重の変化量ΔNiとの和として求められてもよい。   In the first and second embodiments, the ground load Ni of each wheel used for calculating the friction coefficient μi of the road surface for each wheel is detected by the load sensors 32FL to 32RR. As for the ground load Ni of each wheel, for example, the amount of change ΔNi of the ground load of each wheel is calculated based on the longitudinal acceleration and lateral acceleration of the vehicle, and the static ground load Noi and the ground load of each wheel in the stationary state of the vehicle are calculated. You may obtain | require as a sum with variation | change_quantity (DELTA) Ni.

また上述の実施例1及び2に於いては、電動機12FL〜12RRへ供給される駆動電流に基づいて各車輪の駆動力Fdiが演算され、制動力制御用電子制御装置38より入力される各車輪の制動圧Pbiに基づいて各車輪の制動力Fbiが演算され、駆動力Fdiと制動力Fbiとの差として各車輪の制駆動力Fxiが演算されるようになっているが、駆動源が少なくとも二つの車輪間に共通の駆動源である場合には、駆動源の駆動力(トルク)及び車輪間の駆動力の配分比に基づいて各車輪の駆動力Fdiが演算されてよい。   In the first and second embodiments described above, the driving force Fdi of each wheel is calculated based on the driving current supplied to the motors 12FL to 12RR, and each wheel input from the braking force control electronic control unit 38 is calculated. The braking force Fbi of each wheel is calculated based on the braking pressure Pbi, and the braking / driving force Fxi of each wheel is calculated as the difference between the driving force Fdi and the braking force Fbi. In the case of a common drive source between the two wheels, the drive force Fdi of each wheel may be calculated based on the drive force (torque) of the drive source and the distribution ratio of the drive force between the wheels.

ホイールインモータ式の四輪駆動車に適用された本発明による車体速度推定装置の実施例1を示す概略構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic block diagram which shows Example 1 of the vehicle body speed estimation apparatus by this invention applied to the wheel-in-motor type four-wheel drive vehicle. 実施例1に於ける車体速度推定制御ルーチンを示すフローチャートである。3 is a flowchart showing a vehicle body speed estimation control routine in the first embodiment. 本発明による車体速度推定装置の実施例2に於ける車体速度推定制御ルーチンを示すフローチャートである。7 is a flowchart showing a vehicle body speed estimation control routine in Embodiment 2 of the vehicle body speed estimation apparatus according to the present invention. 車輪が駆動状態及び制動状態にある場合について車輪のスリップ率と路面の摩擦係数との関係を示すグラフである。It is a graph which shows the relationship between the slip ratio of a wheel, and the friction coefficient of a road surface about the case where a wheel exists in a drive state and a braking state. 二つ車輪が駆動状態にある場合(A)及び制動状態にある場合(B)について、路面の摩擦係数μ1及びμ2と車輪のスリップ率S1及びS2との関係を示すグラフである。It is a graph which shows the relationship between the road surface friction coefficients (micro | micron | mu) 1 and (micro | micron | mu) 2, and the slip ratios S1 and S2 of a wheel about the case where two wheels are in a drive state (A) and the case where it is in a braking state (B). 左前後輪が制動状態にあり右前後輪が駆動状態にあり、車輌は駆動状態にある状況を示す説明図である。It is explanatory drawing which shows the condition where the left front-rear wheel is in a braking state, the right front-rear wheel is in a driving state, and the vehicle is in a driving state. 図6に示された状況に於ける各車輪の車輪速度Vwiと車体速度Vvとの関係を示すグラフである。It is a graph which shows the relationship between the wheel speed Vwi of each wheel and the vehicle body speed Vv in the condition shown by FIG. 制動状態の一つの車輪と駆動状態の二つの車輪とがある場合について車体速度Vvの推定誤差を示すグラフである。It is a graph which shows the estimation error of the vehicle body speed Vv about the case where there is one wheel in a braking state and two wheels in a driving state. 駆動状態の三つの車輪とがある場合について車体速度Vvの推定誤差を示すグラフである。It is a graph which shows the estimation error of the vehicle body speed Vv about the case where there are three wheels in the drive state.

符号の説明Explanation of symbols

12FL〜12RR 電動発電機
14 アクセル開度センサ
16 駆動力制御用電子制御装置
18 摩擦制動装置
24 ブレーキペダル
28 制動力制御用電子制御装置
30FL〜30RR 車輪速度センサ
32FL〜32RR 荷重センサ
34 前後加速度センサ
36、38FL〜38RR 圧力センサ
12FL to 12RR motor generator 14 accelerator opening sensor 16 electronic control device for driving force control 18 friction braking device 24 brake pedal 28 electronic control device for braking force control 30FL to 30RR wheel speed sensor 32FL to 32RR load sensor 34 longitudinal acceleration sensor 36 , 38FL ~ 38RR Pressure sensor

Claims (8)

各車輪に制駆動力が付与され少なくとも制動力が相互に独立に制御される車輌の車体速度推定装置であって、各車輪の車輪速度を検出する手段と、各車輪について路面の摩擦係数を推定する手段と、各車輪の制駆動力が路面の最大摩擦係数に対応する制駆動力以下であるか否かを判定する判定手段と、制駆動力が路面の最大摩擦係数に対応する制駆動力以下である車輪が少なくとも二輪以上あるときには、制駆動力が路面の最大摩擦係数に対応する制駆動力以下である二つの車輪の車輪速度及び路面の摩擦係数に基づいて車体速度を演算する車体速度演算手段とを有することを特徴とする車輌の車体速度推定装置。   A vehicle body speed estimation device in which braking / driving force is applied to each wheel and at least braking force is controlled independently of each other, and means for detecting the wheel speed of each wheel, and estimating a friction coefficient of a road surface for each wheel Means for determining whether the braking / driving force of each wheel is equal to or less than the braking / driving force corresponding to the maximum friction coefficient of the road surface, and the braking / driving force corresponding to the maximum friction coefficient of the road surface When there are at least two wheels below, the vehicle speed is calculated based on the wheel speed of the two wheels whose braking / driving force is less than the braking / driving force corresponding to the maximum friction coefficient of the road surface and the friction coefficient of the road surface And a vehicle body speed estimating device. 三輪以上の制駆動力が路面の最大摩擦係数に対応する制駆動力以下であり、全ての車輪が駆動状態にあるとき又は全ての車輪が制動状態にあるときには、前記二つの車輪は車輪速度の差が最も大きい二つの車輪であることを特徴とする請求項1に記載の車輌の車体速度推定装置。   When the braking / driving force of three or more wheels is equal to or less than the braking / driving force corresponding to the maximum friction coefficient of the road surface, when all the wheels are in the driving state or when all the wheels are in the braking state, the two wheels The vehicle body speed estimation device according to claim 1, wherein the two wheels have the largest difference. 三輪以上の制駆動力が路面の最大摩擦係数に対応する制駆動力以下であり、駆動状態の車輪が二輪以上であり且つ制動状態の車輪が一輪であるときには、前記二つの車輪の一方は駆動状態にある車輪のうち車輪速度が低い方の車輪であり、前記二つの車輪の他方は制動状態にある車輪であることを特徴とする請求項1に記載の車輌の車体速度推定装置。   When the braking / driving force of three or more wheels is less than or equal to the braking / driving force corresponding to the maximum friction coefficient of the road surface, when the driving wheel is two or more wheels and the braking wheel is one wheel, one of the two wheels is driven. The vehicle body speed estimation device according to claim 1, wherein a wheel speed of a wheel in a state is lower, and the other of the two wheels is a wheel in a braking state. 三輪以上の制駆動力が路面の最大摩擦係数に対応する制駆動力以下であり、駆動状態の車輪が一輪であり且つ制動状態の車輪が二輪以上であるときには、前記二つの車輪の一方は駆動状態にある車輪であり、前記二つの車輪の他方は制動状態にある車輪のうち車輪速度が高い方の車輪であることを特徴とする請求項1に記載の車輌の車体速度推定装置。   When the braking / driving force of three or more wheels is equal to or less than the braking / driving force corresponding to the maximum friction coefficient of the road surface, one of the two wheels is driven when the driving wheel is one wheel and the braking wheel is two or more wheels. 2. The vehicle body speed estimating device according to claim 1, wherein the other of the two wheels is a wheel having a higher wheel speed among the wheels in a braking state. 四輪の制駆動力が路面の最大摩擦係数に対応する制駆動力以下であり、四輪のうち二輪が駆動状態にあり且つ他の二輪が制動状態にあるときには、前記二つの車輪の一方は駆動状態にある二輪のうち車輪速度が低い方の車輪であり、前記二つの車輪の他方は制動状態にある二輪のうち車輪速度が高い方の車輪であることを特徴とする請求項1に記載の車輌の車体速度推定装置。   When the braking / driving force of the four wheels is equal to or less than the braking / driving force corresponding to the maximum friction coefficient of the road surface, when two of the four wheels are in a driving state and the other two wheels are in a braking state, one of the two wheels is 2. The wheel according to claim 1, wherein one of the two wheels in a driving state is a wheel having a lower wheel speed, and the other of the two wheels is a wheel having a higher wheel speed among two wheels in a braking state. Vehicle body speed estimation device. 前記路面の摩擦係数を推定する手段は各車輪の接地荷重を検出する手段と、各車輪の制駆動力を検出する手段とを有し、接地荷重に対する制駆動力の比に基づいて路面の摩擦係数を推定することを特徴とする請求項1乃至5に記載の車輌の車体速度推定装置。   The means for estimating the friction coefficient of the road surface includes a means for detecting a ground contact load of each wheel and a means for detecting a braking / driving force of each wheel, and the friction of the road surface based on a ratio of the braking / driving force to the ground load. 6. The vehicle body speed estimation device according to claim 1, wherein a coefficient is estimated. 前記判定手段は車輪の制駆動力の変化量と車輪速度の変化量との関係に基づいて制駆動力が路面の最大摩擦係数に対応する制駆動力以下であるか否かを判定することを特徴とする請求項1乃至6に記載の車輌の車体速度推定装置。   The determination means determines whether the braking / driving force is equal to or less than the braking / driving force corresponding to the maximum friction coefficient of the road surface based on the relationship between the change amount of the braking / driving force of the wheel and the change amount of the wheel speed. The vehicle body speed estimation device according to claim 1, wherein the vehicle body speed estimation device is a vehicle body speed estimation device. 制駆動力が路面の最大摩擦係数に対応する制駆動力を越えているときには、制駆動力が路面の最大摩擦係数に対応する制駆動力を越えた時点を基準時点として、前記車体速度演算手段は前記基準時点に於ける当該車輪の車輪速度と前記基準時点よりの経過時間及び車輌の前後加速度に基づいて演算される車体速度の変化量との和として当該車輪の車輪速度を演算することを特徴とする請求項1乃至7に記載の車輌の車体速度推定装置。
When the braking / driving force exceeds the braking / driving force corresponding to the maximum friction coefficient of the road surface, the vehicle speed calculation means is defined with the time when the braking / driving force exceeds the braking / driving force corresponding to the maximum friction coefficient of the road surface as a reference time point. Calculates the wheel speed of the wheel as the sum of the wheel speed of the wheel at the reference time and the amount of change in vehicle speed calculated based on the elapsed time from the reference time and the longitudinal acceleration of the vehicle. The vehicle body speed estimation device according to claim 1, wherein the vehicle body speed estimation device is a vehicle body speed estimation device.
JP2005265464A 2005-09-13 2005-09-13 Vehicle body speed estimation device Expired - Fee Related JP4701941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005265464A JP4701941B2 (en) 2005-09-13 2005-09-13 Vehicle body speed estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005265464A JP4701941B2 (en) 2005-09-13 2005-09-13 Vehicle body speed estimation device

Publications (2)

Publication Number Publication Date
JP2007076463A JP2007076463A (en) 2007-03-29
JP4701941B2 true JP4701941B2 (en) 2011-06-15

Family

ID=37937189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005265464A Expired - Fee Related JP4701941B2 (en) 2005-09-13 2005-09-13 Vehicle body speed estimation device

Country Status (1)

Country Link
JP (1) JP4701941B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4998091B2 (en) * 2007-05-30 2012-08-15 トヨタ自動車株式会社 Inter-vehicle distance control device
JP6396188B2 (en) * 2014-11-27 2018-09-26 Ntn株式会社 Vehicle body speed estimation device
WO2017094065A1 (en) * 2015-11-30 2017-06-08 パイオニア株式会社 Speed calculation device, control method, program, and storage medium
JP2019137163A (en) * 2018-02-08 2019-08-22 トヨタ自動車株式会社 Slip rate calculation device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62146755A (en) * 1985-12-20 1987-06-30 Tokico Ltd Anti-skid control device
JPH06293254A (en) * 1993-04-07 1994-10-21 Sumitomo Electric Ind Ltd Antilock brake control device
JPH10315736A (en) * 1997-05-22 1998-12-02 Honda Motor Co Ltd Ground load controller
JPH1148939A (en) * 1997-08-05 1999-02-23 Nissan Motor Co Ltd Antiskid controller
JPH1148938A (en) * 1997-08-05 1999-02-23 Nissan Motor Co Ltd Antiskid controller

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62146755A (en) * 1985-12-20 1987-06-30 Tokico Ltd Anti-skid control device
JPH06293254A (en) * 1993-04-07 1994-10-21 Sumitomo Electric Ind Ltd Antilock brake control device
JPH10315736A (en) * 1997-05-22 1998-12-02 Honda Motor Co Ltd Ground load controller
JPH1148939A (en) * 1997-08-05 1999-02-23 Nissan Motor Co Ltd Antiskid controller
JPH1148938A (en) * 1997-08-05 1999-02-23 Nissan Motor Co Ltd Antiskid controller

Also Published As

Publication number Publication date
JP2007076463A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
JP4534641B2 (en) Wheel slip ratio calculation device and wheel braking / driving force control device
EP1849745B1 (en) Braking/driving force controller of vehicle
JP3811372B2 (en) Braking force control device for vehicle
JP4058932B2 (en) Brake control device for vehicle
JP3719116B2 (en) Vehicle driving force control device
EP1864879B1 (en) Braking-driving force control device of vehicle
EP1876077A1 (en) Braking-driving force control device of vehicle
JP3610738B2 (en) Vehicle behavior control device with wheel slip control device
GB2437036A (en) Drive and braking force control device for vehicle
WO2010061432A1 (en) Travel control device for vehicle
JP3607985B2 (en) Vehicle body speed estimation device and control device
JPH01249554A (en) Antiskid control device for four-wheel-drive vehicle
JP5506632B2 (en) Brake device for vehicle
JP2005207953A (en) Road surface friction coefficient detector
JP4701941B2 (en) Vehicle body speed estimation device
JP2007106338A (en) Vehicle body speed estimating device for vehicle
JP2007124832A (en) Drive force controller of electric vehicle
US6471306B2 (en) Traction control apparatus and method for four-wheel drive vehicle
JP3781101B2 (en) Braking force control device for vehicle
JP3832499B2 (en) Vehicle driving force control device
JP2004242460A (en) Regenerative type brake control device for vehicle
JP2001315633A (en) Road surface friction coefficient detector
JP2005219580A (en) Vehicular behavior control device
JP2016190607A (en) Control apparatus of vehicle
JP3856041B2 (en) Vehicle driving force control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110221

R151 Written notification of patent or utility model registration

Ref document number: 4701941

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees