JP2007106338A - Vehicle body speed estimating device for vehicle - Google Patents

Vehicle body speed estimating device for vehicle Download PDF

Info

Publication number
JP2007106338A
JP2007106338A JP2005301395A JP2005301395A JP2007106338A JP 2007106338 A JP2007106338 A JP 2007106338A JP 2005301395 A JP2005301395 A JP 2005301395A JP 2005301395 A JP2005301395 A JP 2005301395A JP 2007106338 A JP2007106338 A JP 2007106338A
Authority
JP
Japan
Prior art keywords
wheel
vehicle
estimated
longitudinal acceleration
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005301395A
Other languages
Japanese (ja)
Inventor
Yoshinori Maeda
義紀 前田
Kansuke Yoshisue
監介 吉末
Kazuya Okumura
和也 奥村
Mitsutaka Tsuchida
充孝 土田
Yoshio Uragami
芳男 浦上
Satoshi Ando
諭 安藤
Koji Sugiyama
幸慈 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005301395A priority Critical patent/JP2007106338A/en
Publication of JP2007106338A publication Critical patent/JP2007106338A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately estimate the vehicle body speed of a vehicle without deciding whether or not a wheel is put in a slip state, and without selecting any arithmetic procedure based on the decision result. <P>SOLUTION: Driving/braking torque Ti of each wheel is calculated, and the wheel speed ωi of each wheel is detected, and the estimated wheel speed ωhi of each wheel and estimated longitudinal acceleration Gxwhi of each wheel, that is, the longitudinal acceleration of the vehicle body at the position of each wheel is calculated according to a wheel model (52) on the basis of the driving/braking torque Ti of each wheel, and the integrated value of the mean values of the longitudinal acceleration Gxwhi is calculated as the variation of the estimated vehicle body speed, and the sum of the previous value of the estimated vehicle body speed Vh and the variation of the estimated body speed is calculated as an estimated vehicle body speed Vh, and feedback based on deviation ωi-ωhi between the wheel speed and estimated wheel speed of each wheel is carried out. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、車輌の車体速度推定装置に係り、更に詳細には各車輪の制駆動トルクに基づいて車体速度を推定する車体速度推定装置に係る。   The present invention relates to a vehicle body speed estimation device, and more particularly to a vehicle body speed estimation device that estimates a vehicle body speed based on braking / driving torque of each wheel.

自動車等の四輪駆動車の車体速度推定装置の一つとして、例えば下記の特許文献1に記載されている如く、四輪の何れかが空転状態にあるか否かに応じて車体速度の演算方法を変更する車体速度推定装置が従来より知られている。
特開平11−189150号公報
As one of body speed estimation devices for four-wheel drive vehicles such as automobiles, for example, as described in Patent Document 1 below, the calculation of the body speed is performed depending on whether any of the four wheels is idling. 2. Description of the Related Art A vehicle speed estimation device that changes a method has been conventionally known.
JP 11-189150 A

上述の如き従来の四輪駆動車の車体速度推定装置に於いては、四輪の何れかが空転状態(スリップ状態)にあるか否かに応じて車体速度の演算方法が変更されるので、四輪の何れかが空転状態にあるか否かが考慮されない場合に比して車体速度を正確に推定することができるが、何れかの車輪が空転状態にあるか否かによって車体速度の演算要領が異なるため、演算制御が複雑になるという問題がある。また正確な車体速度が求められなければ車輪が空転状態にあるか否かを正確に判定することができないため、車体速度を正確に演算することができないという問題がある。   In the vehicle body speed estimation device of the conventional four-wheel drive vehicle as described above, the calculation method of the vehicle body speed is changed depending on whether any of the four wheels is idling (slip state). The vehicle speed can be estimated more accurately than when it is not considered whether any of the four wheels is idling. However, the calculation of the car speed depends on whether any of the wheels is idling. Since the procedure is different, there is a problem that arithmetic control becomes complicated. Further, there is a problem that the vehicle body speed cannot be accurately calculated because it is impossible to accurately determine whether or not the wheel is idling unless an accurate vehicle body speed is obtained.

本発明は、何れかの車輪が空転状態にあるか否かに応じて車体速度の演算方法が変更されるよう構成された従来の四輪駆動車の車体速度推定方法に於ける上述の如き問題に鑑みてなされたものであり、本発明の主要な課題は、各車輪の制駆動トルクに基づいて車輌モデルにより各車輪の推定前後加速度を演算し、各車輪の推定前後加速度に基づいて車体速度を推定することにより、或いは各車輪の制駆動トルクに基づいて車輌モデルにより車輌の推定前後加速度を演算し、車輌の推定前後加速度に基づいて車体速度を推定することにより、車輪が空転状態にあるか否かの判定及びその判定結果に基づく演算要領の選択を要することなく、車輌の車体速度を正確に推定することである。   The present invention has the above-described problems in the vehicle body speed estimation method for a conventional four-wheel drive vehicle configured such that the vehicle body speed calculation method is changed depending on whether any of the wheels is idling. The main object of the present invention is to calculate the estimated longitudinal acceleration of each wheel by a vehicle model based on the braking / driving torque of each wheel, and to calculate the vehicle body speed based on the estimated longitudinal acceleration of each wheel. Or the vehicle's estimated longitudinal acceleration is calculated by the vehicle model based on the braking / driving torque of each wheel, and the vehicle body speed is estimated based on the estimated longitudinal acceleration of the vehicle. It is to accurately estimate the vehicle body speed without requiring the determination of whether or not and the selection of the calculation procedure based on the determination result.

上述の主要な課題は、本発明によれば、各車輪の制駆動トルクを求める手段と、各車輪の車輪速度を検出する車輪速度検出手段と、各車輪の制駆動トルクを入力とし各車輪の推定車輪速度を出力として予め設定された車輌モデルにより各車輪の制駆動トルクに基づいて各車輪の推定車輪速度を演算する推定車輪速度演算手段と、各車輪の制駆動トルクに基づいて各車輪の第一の推定前後加速度を演算し、前記各車輪の推定車輪速度及び前記車輪速度検出手段により検出された各車輪の車輪速度に基づいて各車輪の第二の推定前後加速度を演算し、前記各車輪の第一の推定前後加速度及び前記各車輪の第二の推定前後加速度に基づいて各車輪の推定前後加速度を演算する推定前後加速度演算手段と、前記各車輪の推定前後加速度に基づいて推定車体速度を演算する手段とを有することを特徴とする車輌の車体速度推定装置(請求項1の構成)、又は各車輪の制駆動トルクを求める手段と、車輌の前後加速度を検出する前後加速度検出手段と、各車輪の制駆動トルクを入力とし車輌の推定前後加速度を出力として予め設定された車輌モデルにより各車輪の制駆動トルクに基づいて車輌の推定前後加速度を演算する推定前後加速度演算手段と、前記車輌の推定前後加速度に基づいて推定車体速度を演算する手段とを有し、前記推定前後加速度演算手段は各車輪の制駆動トルクに基づいて車輌の第一の推定前後加速度を演算し、前記車輌の推定前後加速度及び前記前後加速度検出手段により検出された車輌の前後加速度に基づいて車輌の第二の推定前後加速度を演算し、前記車輌の第一の推定前後加速度及び前記車輌の第二の推定前後加速度に基づいて前記車輌の推定前後加速度を演算することを特徴とする車輌の車体速度推定装置(請求項3の構成)によって達成される。   According to the present invention, the main problems described above are the means for obtaining the braking / driving torque of each wheel, the wheel speed detecting means for detecting the wheel speed of each wheel, and the braking / driving torque of each wheel as inputs. Estimated wheel speed calculation means for calculating the estimated wheel speed of each wheel based on the braking / driving torque of each wheel using a preset vehicle model with the estimated wheel speed as an output, and based on the braking / driving torque of each wheel, A first estimated longitudinal acceleration is calculated, a second estimated longitudinal acceleration of each wheel is calculated based on the estimated wheel speed of each wheel and the wheel speed of each wheel detected by the wheel speed detecting means, Estimated longitudinal acceleration calculation means for computing the estimated longitudinal acceleration of each wheel based on the first estimated longitudinal acceleration of the wheel and the second estimated longitudinal acceleration of each wheel, and estimation based on the estimated longitudinal acceleration of each wheel A vehicle body speed estimation device (structure of claim 1) characterized by having a body speed calculating means, a means for determining braking / driving torque of each wheel, and longitudinal acceleration detection for detecting longitudinal acceleration of the vehicle And an estimated longitudinal acceleration calculating means for calculating the estimated longitudinal acceleration of the vehicle based on the braking / driving torque of each wheel by a preset vehicle model using the braking / driving torque of each wheel as an input and the estimated longitudinal acceleration of the vehicle as an output. Means for calculating an estimated vehicle body speed based on the estimated longitudinal acceleration of the vehicle, the estimated longitudinal acceleration calculating means calculates a first estimated longitudinal acceleration of the vehicle based on braking / driving torque of each wheel, A second estimated longitudinal acceleration of the vehicle is calculated based on the estimated longitudinal acceleration of the vehicle and the longitudinal acceleration of the vehicle detected by the longitudinal acceleration detecting means, and the first estimation of the vehicle is performed. It is achieved by the vehicle speed estimation device of the vehicle, characterized in that for calculating the estimated longitudinal acceleration of the vehicle based on the second estimated longitudinal acceleration of the longitudinal acceleration and the vehicle (the third aspect).

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1の構成に於いて、前記推定車体速度を演算する手段は前記各車輪の第一の推定前後加速度及び前記各車輪の第二の推定前後加速度の和を前記各車輪の推定前後加速度として演算し、前記各車輪の推定前後加速度の平均値を車輌の推定前後加速度として演算し、前記車輌の推定前後加速度に基づいて推定車体速度を演算するよう構成される(請求項2の構成)。   According to the present invention, in order to effectively achieve the above main problem, in the configuration of claim 1, the means for calculating the estimated vehicle body speed includes the first estimated longitudinal acceleration and the The sum of the second estimated longitudinal acceleration of each wheel is calculated as the estimated longitudinal acceleration of each wheel, the average value of the estimated longitudinal acceleration of each wheel is calculated as the estimated longitudinal acceleration of the vehicle, and the estimated longitudinal acceleration of the vehicle is calculated. The estimated vehicle body speed is calculated on the basis of (the configuration of claim 2).

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1乃至3の構成に於いて、車輌は四輪の各々に相互に独立に制駆動トルクを付与する制駆動トルク付与手段を備えた四輪駆動車であるよう構成される(請求項4の構成)。   According to the present invention, in order to effectively achieve the main problems described above, the vehicle according to any one of claims 1 to 3, wherein the vehicle applies braking / driving torque to each of the four wheels independently of each other. It is comprised so that it may be a four-wheel drive vehicle provided with the drive torque provision means (structure of Claim 4).

上記請求項1の構成によれば、各車輪の制駆動トルクを入力とし各車輪の推定車輪速度を出力として予め設定された車輌モデルにより各車輪の制駆動トルクに基づいて各車輪の推定車輪速度が演算され、各車輪の制駆動トルクに基づいて各車輪の第一の推定前後加速度が演算され、各車輪の推定車輪速度及び車輪速度検出手段により検出された各車輪の車輪速度に基づいて各車輪の第二の推定前後加速度が演算され、各車輪の第一の推定前後加速度及び各車輪の第二の推定前後加速度に基づいて各車輪の推定前後加速度が演算され、各車輪の推定前後加速度に基づいて推定車体速度が演算されるので、後に詳細に説明する如く車輪が空転状態にあるか否かの判定及びその判定結果に基づく演算要領の選択を要することなく、車輌の車体速度を正確に推定することができる。   According to the configuration of claim 1, the estimated wheel speed of each wheel is set based on the braking / driving torque of each wheel based on the braking / driving torque of each wheel based on the preset vehicle model using the braking / driving torque of each wheel as an input and the estimated wheel speed of each wheel as an output. Is calculated, the first estimated longitudinal acceleration of each wheel is calculated based on the braking / driving torque of each wheel, and each wheel is detected based on the estimated wheel speed of each wheel and the wheel speed of each wheel detected by the wheel speed detecting means. A second estimated longitudinal acceleration of the wheel is calculated, and an estimated longitudinal acceleration of each wheel is calculated based on the first estimated longitudinal acceleration of each wheel and the second estimated longitudinal acceleration of each wheel, and the estimated longitudinal acceleration of each wheel. Therefore, the vehicle body speed of the vehicle can be calculated without the need to determine whether or not the wheel is idling and to select a calculation procedure based on the determination result, as will be described in detail later. It is possible to estimate the probability.

また上記請求項2の構成によれば、各車輪の第一の推定前後加速度及び各車輪の第二の推定前後加速度の和が各車輪の推定前後加速度として演算され、各車輪の推定前後加速度の平均値が車輌の推定前後加速度として演算され、車輌の推定前後加速度に基づいて推定車体速度が演算されるので、後に詳細に説明する如く車輌の推定前後加速度を正確に演算し、これにより推定車体速度を正確に演算することができる。   According to the configuration of claim 2, the sum of the first estimated longitudinal acceleration of each wheel and the second estimated longitudinal acceleration of each wheel is calculated as the estimated longitudinal acceleration of each wheel, and the estimated longitudinal acceleration of each wheel is calculated. Since the average value is calculated as the estimated longitudinal acceleration of the vehicle, and the estimated vehicle speed is calculated based on the estimated longitudinal acceleration of the vehicle, the estimated longitudinal acceleration of the vehicle is accurately calculated as described in detail later. Speed can be calculated accurately.

また上記請求項3の構成によれば、各車輪の制駆動トルクを入力とし車輌の推定前後加速度を出力として予め設定された車輌モデルにより各車輪の制駆動トルクに基づいて車輌の推定前後加速度が演算され、車輌の推定前後加速度に基づいて推定車体速度が演算されるが、各車輪の制駆動トルクに基づいて車輌の第一の推定前後加速度が演算され、車輌の推定前後加速度及び前後加速度検出手段により検出された車輌の前後加速度に基づいて車輌の第二の推定前後加速度が演算され、車輌の第一の推定前後加速度及び車輌の第二の推定前後加速度に基づいて車輌の推定前後加速度が演算されるので、後に詳細に説明する如く車輪が空転状態にあるか否かの判定及びその判定結果に基づく演算要領の選択を要することなく、車輌の車体速度を正確に推定することができる。   According to the third aspect of the present invention, the estimated longitudinal acceleration of the vehicle is determined based on the braking / driving torque of each wheel by a preset vehicle model using the braking / driving torque of each wheel as an input and the estimated longitudinal acceleration of the vehicle as an output. The calculated vehicle body speed is calculated based on the estimated longitudinal acceleration of the vehicle, but the first estimated longitudinal acceleration of the vehicle is calculated based on the braking / driving torque of each wheel to detect the estimated longitudinal acceleration and longitudinal acceleration of the vehicle. The second estimated longitudinal acceleration of the vehicle is calculated based on the longitudinal acceleration of the vehicle detected by the means, and the estimated longitudinal acceleration of the vehicle is calculated based on the first estimated longitudinal acceleration of the vehicle and the second estimated longitudinal acceleration of the vehicle. As described later in detail, the vehicle body speed of the vehicle is corrected without requiring determination of whether or not the wheel is in an idle state and selection of a calculation procedure based on the determination result. It can be estimated to.

また上記請求項4の構成によれば、車輌は四輪の各々に相互に独立に制駆動トルクを付与する制駆動トルク付与手段を備えた四輪駆動車であるので、四輪駆動車の車体速度を正確に推定することができる。   According to the fourth aspect of the present invention, the vehicle is a four-wheel drive vehicle including braking / driving torque applying means for applying braking / driving torque to each of the four wheels independently of each other. The speed can be estimated accurately.

〔課題解決手段の好ましい態様〕
一般に、車輪の慣性質量をJとし、車輪の車輪速度をωとし、車輪の制駆動トルクをTとし、路面の摩擦係数をμとし、車輪の接地荷重をWとし、車輪の回転半径をRとし、ωドットを車輪速度ωの微分値とすると、車輪の回転系の運動方程式は下記の式1により表わされる。

Figure 2007106338
[Preferred embodiment of problem solving means]
In general, the inertial mass of the wheel is J, the wheel speed of the wheel is ω, the braking / driving torque of the wheel is T, the friction coefficient of the road surface is μ, the ground contact load of the wheel is W, and the rotation radius of the wheel is R. , Ω dot is a differential value of the wheel speed ω, the equation of motion of the wheel rotation system is expressed by the following equation 1.
Figure 2007106338

μドット、即ち路面の摩擦係数μの微分値は0であると仮定し、車輪の車輪速度ω及び路面の摩擦係数μを状態変数として状態方程式を立てると以下の式2の通りになる。

Figure 2007106338
Assuming that the differential value of the μ dot, that is, the friction coefficient μ of the road surface is 0, and formulating the state equation with the wheel speed ω of the wheel and the friction coefficient μ of the road surface as state variables, the following equation 2 is obtained.
Figure 2007106338

路面の摩擦係数μを車輪の前後加速度Gxに置き換え、車輪の推定車輪速度ωh及び車輪の推定前後加速度Gxwhの行列を下記の式3の通りXhとし、システム行列及び制御ベクトルをそれぞれ下記の式4及び5の通りA及びBとすると、上記式2は下記の式6の通りになる。

Figure 2007106338
The friction coefficient μ of the road surface is replaced with the longitudinal acceleration Gx of the wheel, the matrix of the estimated wheel speed ωh of the wheel and the estimated longitudinal acceleration Gxwh of the wheel is Xh as shown in the following equation 3, and the system matrix and the control vector are respectively expressed by the following equations 4 And 5 as A and B, Equation 2 above becomes Equation 6 below.
Figure 2007106338

ここで車輪の車輪速度ωと車輪の推定車輪速度ωhとの偏差に基づくフィードバック系を構成すると、Gをフィードバックゲインとし、C=[1 0]として、上記式6は下記の式7の通りになる。

Figure 2007106338
Here, when a feedback system based on the deviation between the wheel speed ω of the wheel and the estimated wheel speed ωh of the wheel is configured, G is a feedback gain, C = [10], and the above equation 6 is expressed by the following equation 7. Become.
Figure 2007106338

XhとXとの偏差を下記の式8の通りεとすると、偏差εの微分値εドットは下記の式9により表わされる。

Figure 2007106338
When the deviation between Xh and X is ε as shown in the following equation 8, the differential value ε dot of the deviation ε is expressed by the following equation 9.
Figure 2007106338

時間の経過と共に偏差εの大きさが小さくなり最終的に0になるためには、偏差εの係数(A−GC)の固有値が負であればよいので、係数(A−GC)の固有値が負になるようフィードバックゲインGを決定すればよい。従ってラプラス演算子をsとして下記の式10及び11の通りとし、Iを単位行列として下記の式10をフィードバックゲインベクトルGについて解けばよい。

Figure 2007106338
In order for the magnitude of the deviation ε to decrease and eventually become 0 with the passage of time, the eigenvalue of the coefficient (A-GC) of the deviation ε only needs to be negative. What is necessary is just to determine the feedback gain G so that it may become negative. Therefore, the Laplace operator is set as s as shown in the following formulas 10 and 11, and the following formula 10 is solved for the feedback gain vector G with I as the unit matrix.
Figure 2007106338

上記式10及び11より、下記の式12が成立し、よって下記の式13が成立する。

Figure 2007106338
From the above equations 10 and 11, the following equation 12 is established, and thus the following equation 13 is established.
Figure 2007106338

上記式13より、下記の式14及び15が成立し、λ1及びλ2(何れも負の値)を適合定数として例えば実験等により設定すればよい。

Figure 2007106338
From the above equation 13, the following equations 14 and 15 hold, and λ 1 and λ 2 (both negative values) may be set as compatible constants, for example, by experiments.
Figure 2007106338

従って本発明の一つの好ましい態様によれば、上記請求項1又は2の構成に於いて、左前輪、右前輪、左後輪、右後輪の識別記号をi(i=fl、fr、rl、rr)とし、Xh、A、Bをそれぞれ上記式3乃至5に対応する下記の式16乃至18とし、フィードバックゲインGを下記の式19の通りとし、前回値及び今回値のサフィックスをそれぞれn及びn-1として、上記式7に対応する下記の式20に従ってXhドット(n)が演算され、Xhドット(n)が積分されることにより、各車輪の推定車輪速度ωhi及び各車輪の推定前後加速度Gxwhiが演算されるよう構成される(好ましい態様1)。

Figure 2007106338
Therefore, according to one preferred aspect of the present invention, in the configuration of claim 1 or 2, the identification symbols of the left front wheel, the right front wheel, the left rear wheel, and the right rear wheel are i (i = fl, fr, rl). Rr), Xh, A, and B are the following equations 16 to 18 corresponding to the above equations 3 to 5, respectively, the feedback gain G is as the following equation 19, and the suffixes of the previous and current values are n And n−1, Xh dot (n) is calculated in accordance with the following equation 20 corresponding to the above equation 7, and Xh dot (n) is integrated, so that the estimated wheel speed ωhi of each wheel and the estimation of each wheel are calculated. The longitudinal acceleration Gxwhi is configured to be calculated (preferred aspect 1).
Figure 2007106338

本発明の他の一つの好ましい態様によれば、上記請求項2の構成に於いて、推定車体速度を演算する手段は所定の時間毎に各車輪の推定前後加速度の平均値を車輌の推定前後加速度として演算し、車輌の推定前後加速度の積分値を推定車体速度の変化量として演算し、前回演算された推定車体速度と推定車体速度の変化量との和として推定車体速度を演算するよう構成される(好ましい態様2)。   According to another preferred aspect of the present invention, in the configuration of claim 2, the means for calculating the estimated vehicle speed calculates the average value of the estimated longitudinal acceleration of each wheel at a predetermined time interval before and after the estimation of the vehicle. Calculated as acceleration, integrated value of estimated longitudinal acceleration of vehicle is calculated as change in estimated vehicle speed, and estimated vehicle speed is calculated as the sum of previously calculated estimated vehicle speed and estimated vehicle speed change (Preferred embodiment 2).

本発明の他の一つの好ましい態様によれば、上記好ましい態様2の構成に於いて、推定車体速度を演算する手段は所定の時間毎に各車輪の推定前後加速度Gxwhi(i=fl、fr、rl、rr)を演算し、前回演算された推定車体速度をVhn-1として、下記の式21に従って推定車体速度Vhnを演算するよう構成される(好ましい態様3)。
Vhn=Vhn-1+∫(Gxwhfl+Gxwhfr+Gxwhrl+Gxwhrr)dt/4 ……(21)
According to another preferred aspect of the present invention, in the configuration of the preferred aspect 2, the means for calculating the estimated vehicle body speed is an estimated longitudinal acceleration Gxwhi (i = fl, fr, rl, rr) is calculated, and the estimated vehicle speed Vh n is calculated according to the following equation 21 with the previously calculated estimated vehicle speed Vh n-1 (preferred aspect 3).
Vh n = Vh n-1 + ∫ (Gxwhfl + Gxwhfr + Gxwhrl + Gxwhrr) dt / 4 (21)

また一般に、前輪及び後輪の慣性質量をそれぞれIf及びIrとし、前輪及び後輪の制駆動トルクをそれぞれTf及びTrとし、前輪及び後輪の回転半径をそれぞれRf及びRrとし、車体の質量をMとし、車体速度をVとすると、前輪及び後輪の回転系を考慮した場合の車輌の前後方向の運動方程式は下記の式22により表わされ、よって下記の式23が成立する。

Figure 2007106338
In general, the inertial masses of the front and rear wheels are If and Ir, the braking / driving torques of the front and rear wheels are Tf and Tr, the rotational radii of the front and rear wheels are Rf and Rr, respectively, and the mass of the vehicle body is Assuming M and the vehicle body speed as V, the equation of motion in the front-rear direction of the vehicle when the rotation system of the front wheels and the rear wheels is taken into consideration is expressed by the following expression 22, and the following expression 23 is established.
Figure 2007106338

式23より制御ベクトルBを下記の式24の通りとし、車輌の前後加速度Gxhと車輌の推定前後加速度Gxhとの偏差に基づくフィードバック系を構成すると、Gをフィードバックゲインとして、上記式23は下記の式25の通りになる。

Figure 2007106338
From equation 23, the control vector B is as shown in equation 24 below, and when a feedback system based on the deviation between the vehicle longitudinal acceleration Gxh and the vehicle estimated longitudinal acceleration Gxh is constructed, Equation 25 is obtained.
Figure 2007106338

上記式25より、下記の式26に従って推定車体速度Vhを演算することができることが解る。

Figure 2007106338
From the above equation 25, it is understood that the estimated vehicle body speed Vh can be calculated according to the following equation 26.
Figure 2007106338

尚、車輌の推定前後加速度Gxhの即応性を高くするためには、フィードバックゲインG(>0)を大きくすればよいが、その場合にはセンサのノイズ等の高次の誤差成分も大きくなるため、推定車体速度Vhに誤差が積み重なる虞れが高くなる。従って予め実験を行い、対地車体速度計の検出値に対し推定車体速度Vhが適正な値になるようフィードバックゲインGが設定されることが好ましい。   In order to increase the responsiveness of the estimated longitudinal acceleration Gxh of the vehicle, the feedback gain G (> 0) may be increased. In this case, higher order error components such as sensor noise also increase. There is a high risk that errors will accumulate in the estimated vehicle speed Vh. Therefore, it is preferable to perform an experiment in advance and set the feedback gain G so that the estimated vehicle body speed Vh becomes an appropriate value with respect to the detected value of the ground vehicle body speed meter.

従って本発明の他の一つの好ましい態様によれば、上記請求項3の構成に於いて、Bを上記式24により表される制御ベクトルとし、Gを上述の如く設定されたフィードバックゲインとし、前回値及び今回値のサフィックスをそれぞれn及びn-1として、推定車体速度を演算する手段は上記式26に対応する下記の式27に従って推定車体速度Vhnを演算するよう構成される(好ましい態様4)。

Figure 2007106338
Therefore, according to another preferred aspect of the present invention, in the configuration of claim 3, B is a control vector represented by the above equation 24, G is a feedback gain set as described above, and The unit for calculating the estimated vehicle speed is set to calculate the estimated vehicle speed Vh n according to the following equation 27 corresponding to the above-described equation 26 (preferred aspect 4). ).
Figure 2007106338

以下に添付の図を参照しつつ、本発明を幾つかの好ましい実施例について詳細に説明する。   The present invention will now be described in detail with reference to a few preferred embodiments with reference to the accompanying drawings.

図1はインホイールモータ式の四輪駆動車に適用された本発明による車輌の車体速度推定装置の実施例1を示す概略構成図である。   FIG. 1 is a schematic configuration diagram showing a first embodiment of a vehicle body speed estimating device according to the present invention applied to an in-wheel motor type four-wheel drive vehicle.

図1に於いて、10FL及び10FRはそれぞれ操舵輪である左右の前輪を示し、10RL及び10RRはそれぞれ非操舵輪である左右の後輪を示している。左右の前輪10FL及び10FRにはそれぞれインホイールモータである電動機12FL及び12FRが組み込まれており、左右の前輪10FL及び10FRは電動機12FL及び12FRにより直接駆動される。電動機12FL及び12FRは制動時にはそれぞれ左右前輪の回生発電機としても機能し、左右の前輪10FL及び10FRに直接回生制動力を付与するようになっていてよい。   In FIG. 1, 10FL and 10FR respectively indicate left and right front wheels that are steering wheels, and 10RL and 10RR respectively indicate left and right rear wheels that are non-steering wheels. Electric motors 12FL and 12FR, which are in-wheel motors, are incorporated in the left and right front wheels 10FL and 10FR, respectively, and the left and right front wheels 10FL and 10FR are directly driven by the electric motors 12FL and 12FR. The motors 12FL and 12FR also function as regenerative generators for the left and right front wheels during braking, respectively, and may apply regenerative braking force directly to the left and right front wheels 10FL and 10FR.

同様に、左右の後輪10RL及び10RRにはそれぞれインホイールモータである電動機12RL及び12RRが組み込まれており、左右の前輪10RL及び10RRは電動機12RL及び12RRにより直接駆動される。電動機12RL及び12RRも制動時にはそれぞれ左右後輪の発電機としても機能し、左右の後輪10RL及び10RRに直接回生制動力を付与するようになっていてよい。   Similarly, electric motors 12RL and 12RR which are in-wheel motors are incorporated in the left and right rear wheels 10RL and 10RR, respectively, and the left and right front wheels 10RL and 10RR are directly driven by the electric motors 12RL and 12RR. The motors 12RL and 12RR also function as left and right rear wheel generators during braking, respectively, and may apply regenerative braking force directly to the left and right rear wheels 10RL and 10RR.

電動機12FL〜12RRの駆動力はアクセル開度センサ14により検出される図1には示されていないアクセルペダルの踏み込み量としてのアクセル開度φに基づき駆動力制御用電子制御装置16により制御される。尚電動機12FL〜12RRの回生制動力も駆動力制御用電子制御装置16により制御されてよい。   The driving force of the electric motors 12FL to 12RR is controlled by the driving force control electronic control device 16 based on the accelerator opening φ as the accelerator pedal depression amount not shown in FIG. . The regenerative braking force of the electric motors 12FL to 12RR may also be controlled by the driving force control electronic control device 16.

尚図1には詳細に示されていないが、駆動力制御用電子制御装置16はマイクロコンピュータと駆動回路とよりなり、マイクロコンピュータは例えばCPUと、ROMと、RAMと、入出力ポート装置とを有し、これらが双方向性のコモンバスにより互いに接続された一般的な構成のものであってよい。   Although not shown in detail in FIG. 1, the driving force control electronic control device 16 includes a microcomputer and a drive circuit. The microcomputer includes, for example, a CPU, a ROM, a RAM, and an input / output port device. And may have a general configuration in which they are connected to each other by a bidirectional common bus.

左右の前輪10FL、10FR及び左右の後輪10RL、10RRの摩擦制動力は摩擦制動装置18の油圧回路20により対応するホイールシリンダ22FL、22FR、22RL、22RRの制動圧が制御されることによって制御される。図には示されていないが、油圧回路20はリザーバ、オイルポンプ、種々の弁装置等を含み、各ホイールシリンダの制動圧力は通常時には運転者によるブレーキペダル24の踏み込み量及びブレーキペダル24の踏み込みに応じて駆動されるマスタシリンダ26の圧力に応じて制御され、また必要に応じてオイルポンプや種々の弁装置が制動力制御用電子制御装置28によって制御されることにより、運転者によるブレーキペダル24の踏み込み量に関係なく制御される。   The friction braking force of the left and right front wheels 10FL, 10FR and the left and right rear wheels 10RL, 10RR is controlled by controlling the braking pressure of the corresponding wheel cylinders 22FL, 22FR, 22RL, 22RR by the hydraulic circuit 20 of the friction braking device 18. The Although not shown in the drawing, the hydraulic circuit 20 includes a reservoir, an oil pump, various valve devices, etc., and the braking pressure of each wheel cylinder is normally determined by the amount of depression of the brake pedal 24 and depression of the brake pedal 24 by the driver. The brake pedal is controlled by the driver by controlling the oil pump and various valve devices by the electronic control device 28 for controlling the braking force as necessary. Control is performed regardless of the amount of depression of 24.

尚図1には詳細に示されていないが、制動力制御用電子制御装置28もマイクロコンピュータと駆動回路とよりなり、マイクロコンピュータは例えばCPUと、ROMと、RAMと、入出力ポート装置とを有し、これらが双方向性のコモンバスにより互いに接続された一般的な構成のものであってよい。   Although not shown in detail in FIG. 1, the electronic control device 28 for controlling the braking force also includes a microcomputer and a drive circuit. The microcomputer includes, for example, a CPU, a ROM, a RAM, and an input / output port device. And may have a general configuration in which they are connected to each other by a bidirectional common bus.

駆動力制御用電子制御装置16にはアクセル開度センサ14よりのアクセル開度φを示す信号に加えて、車輪速度センサ30iより各車輪の車輪速度ωi(i=fl、fr、rl、rr)を示す信号、ヨーレートセンサの如き他のセンサ34より車輌のヨーレートγの如き車輌の種々の状態量が入力される。また制動力制御用電子制御装置28には圧力センサ36よりマスタシリンダ圧力Pmを示す信号、圧力センサ38FL〜38RRより対応する車輪の制動圧(ホイールシリンダ圧力)Pbi(i=fl、fr、rl、rr)を示す信号が入力される。駆動力制御用電子制御装置16及び制動力制御用電子制御装置28は必要に応じて相互に信号の授受を行う。   In addition to the signal indicating the accelerator opening φ from the accelerator opening sensor 14, the driving force control electronic control device 16 receives the wheel speed ωi (i = fl, fr, rl, rr) of each wheel from the wheel speed sensor 30 i. , Various state quantities of the vehicle such as the yaw rate γ of the vehicle are input from another sensor 34 such as a yaw rate sensor. Also, the braking force control electronic control unit 28 has a signal indicating the master cylinder pressure Pm from the pressure sensor 36, and a corresponding wheel braking pressure (wheel cylinder pressure) Pbi (i = fl, fr, rl,) from the pressure sensors 38FL to 38RR. rr) is input. The driving force control electronic control device 16 and the braking force control electronic control device 28 exchange signals with each other as necessary.

駆動力制御用電子制御装置16は、運転者の加減速操作量であるアクセル開度φ及びマスタシリンダ圧力Pmに基づき駆動トルクを正の値とし制動トルクを負の値として車輌の目標制駆動トルクTvtを演算すると共に、目標制駆動トルクTvtに基づいて所定の配分比に従って各車輪の目標制駆動トルクTti(i=fl、fr、rl、rr)を演算し、各車輪の制駆動トルクTi(i=fl、fr、rl、rr)がそれぞれ対応する目標制駆動トルクTtiになるよう電動機12FL〜12RRを制御し、或いは制動力制御用電子制御装置28に対し指令信号を出力し、制動力制御用電子制御装置28は油圧回路20を制御する。   The electronic control unit 16 for controlling the driving force controls the target braking / driving torque of the vehicle by setting the driving torque to a positive value and the braking torque to a negative value based on the accelerator opening φ and the master cylinder pressure Pm that are the acceleration / deceleration operation amount of the driver. Tvt is calculated, and the target braking / driving torque Tti (i = fl, fr, rl, rr) of each wheel is calculated according to a predetermined distribution ratio based on the target braking / driving torque Tvt, and the braking / driving torque Ti ( i = fl, fr, rl, rr) controls the motors 12FL to 12RR so that the respective target braking / driving torques Tti correspond to each other, or outputs a command signal to the braking force control electronic control device 28 to control the braking force. The electronic control device 28 controls the hydraulic circuit 20.

図2は実施例1に於けるシグナルフローを示しており、図2に於いて50は実際の車輌を示し、52は各車輪の前後加速度を推定するための車輌モデルを示している。図2に示されている如く、車輌50の各車輪に制駆動トルクTiが付与されることにより各車輪の車輪速度ωiが変化する。   FIG. 2 shows a signal flow in the first embodiment. In FIG. 2, 50 shows an actual vehicle, and 52 shows a vehicle model for estimating the longitudinal acceleration of each wheel. As shown in FIG. 2, the wheel speed ωi of each wheel is changed by applying braking / driving torque Ti to each wheel of the vehicle 50.

車輌モデル52の乗算器54には目標制駆動トルクTtiに等しい値として各車輪の制駆動トルクTiが入力され、乗算器54は上記式18にて表される制御ベクトルBと各車輪の制駆動トルクTiとの積を加算器56へ出力する。各車輪の車輪速度ωiは加算器58のプラスの入力端子に入力され、加算器58のマイナスの入力端子には乗算器60より出力される各車輪の推定車輪速度ωhiが入力される。加算器58の出力、即ち車輪速度の偏差ωi−ωhiは乗算器62へ入力され、加算器58は車輪速度の偏差ωi−ωhiと上記式19にて表されるフィードバックゲインGとの積を加算器56へ出力する。尚上記式14及び15のλ1及びλ2(何れも負の値)が実験により適宜に設定されることにより、フィードバックゲインGは上記式9に於ける偏差εの係数(A−GC)の固有値が負になるよう設定されている。   The multiplier 54 of the vehicle model 52 receives the braking / driving torque Ti of each wheel as a value equal to the target braking / driving torque Tti, and the multiplier 54 controls the control vector B expressed by the above equation 18 and the braking / driving of each wheel. The product of the torque Ti is output to the adder 56. The wheel speed ωi of each wheel is input to the positive input terminal of the adder 58, and the estimated wheel speed ωhi of each wheel output from the multiplier 60 is input to the negative input terminal of the adder 58. The output of the adder 58, that is, the wheel speed deviation ωi−ωhi is input to the multiplier 62, and the adder 58 adds the product of the wheel speed deviation ωi−ωhi and the feedback gain G expressed by the above equation 19. To the device 56. Note that, by appropriately setting λ1 and λ2 (both negative values) in the above formulas 14 and 15, the feedback gain G has an eigenvalue of the coefficient of deviation ε (A−GC) in the above formula 9. It is set to be negative.

加算器56の出力は上記式16にて表されるXhの微分値、即ちXhドットであり、積分器64へ入力される。積分器64の出力、即ち上記式16にて表されるXhは乗算器60及び66へ入力される。乗算器60はXhに行列[1 0]を乗算することにより各車輪の推定車輪速度ωhiを出力し、乗算器66はXhに行列[0 1]を乗算することにより各車輪の推定前後加速度Gxwhi(i=fl、fr、rl、rr)を出力する。   The output of the adder 56 is a differential value of Xh expressed by the above equation 16, that is, an Xh dot, and is input to the integrator 64. The output of the integrator 64, that is, Xh expressed by the above equation 16 is input to the multipliers 60 and 66. A multiplier 60 multiplies Xh by a matrix [1 0] to output an estimated wheel speed ωhi of each wheel, and a multiplier 66 multiplies Xh by a matrix [0 1] to thereby estimate an estimated longitudinal acceleration Gxwhi of each wheel. (I = fl, fr, rl, rr) is output.

また積分器64の出力、即ち上記式16にて表されるXhは乗算器68へ入力され、乗算器68は上記式17にて表されるシステム行列AとXhとの積を加算器56へ出力する。従って加算器56は「制御ベクトルBと各車輪の制駆動トルクTiとの積」と、「車輪速度の偏差ωi−ωhiとフィードバックゲインGとの積」と、「システム行列AとXhとの積」との和をXhの微分値として演算する。   The output of the integrator 64, that is, Xh expressed by the above equation 16 is input to the multiplier 68. The multiplier 68 supplies the product of the system matrix A and Xh expressed by the above equation 17 to the adder 56. Output. Therefore, the adder 56 "the product of the control vector B and the braking / driving torque Ti of each wheel", "the product of the wheel speed deviation ωi-ωhi and the feedback gain G", and "the product of the system matrix A and Xh". Is calculated as a differential value of Xh.

従ってこの実施例1に於いては、フローチャートとしては図示されていないが、各車輪の制駆動トルクTiに基づいて上記式20に従ってXhドット(n)が演算され、Xhドット(n)が積分されることにより、各車輪の推定車輪速度ωhi及び各車輪の推定前後加速度Gxwhiが演算され、推定車体速度Vhの前回値をVhn-1として上記式21に従って推定車体速度Vhnが演算される。尚推定車体速度の演算制御の開始時には推定車体速度の前回値Vhn-1は0に設定される。 Accordingly, in the first embodiment, although not shown in the flowchart, Xh dot (n) is calculated according to the above equation 20 based on the braking / driving torque Ti of each wheel, and Xh dot (n) is integrated. the Rukoto estimated wheel speed ωhi and the estimated longitudinal acceleration Gxwhi of each wheel of each wheel is calculated, the estimated vehicle speed Vh n according to the above equation 21 is calculated the previous value of the estimated vehicle speed Vh as Vh n-1. Note that the previous value Vh n−1 of the estimated vehicle speed is set to 0 at the start of the calculation control of the estimated vehicle speed.

かくして実施例1によれば、各車輪の制駆動トルクTiに基づいて各車輪の推定前後加速度Gxwhi、即ち各車輪の位置に於ける車体の推定前後加速度が演算され、それらの和の積分値を推定車体速度の変化量として推定車体速度Vhが演算されるので、車輪が空転状態にあるか否かの判定及びその判定結果に基づく演算要領の選択を要することなく、車輌の車体速度を正確に推定することができる。   Thus, according to the first embodiment, the estimated longitudinal acceleration Gxwhi of each wheel, that is, the estimated longitudinal acceleration of the vehicle body at each wheel position, is calculated based on the braking / driving torque Ti of each wheel, and the integrated value of these sums is calculated. Since the estimated vehicle speed Vh is calculated as the amount of change in the estimated vehicle speed, it is possible to accurately determine the vehicle body speed of the vehicle without having to determine whether or not the wheel is idling and to select a calculation procedure based on the determination result. Can be estimated.

特に車輌モデルにより演算される各車輪の車輪速度と実際の車輌の各車輪の車輪速度との間にはモデル化誤差の如き誤差や路面の摩擦係数の不確かさの如き不確かさ存在するが、図示の実施例1によれば、各車輪の路面の摩擦係数という不確かさがオブザーバーにより推定され、推定された各車輪の路面の摩擦係数が各車輪の推定前後加速度に置き換えられ、それらの平均値が車体の推定前後加速度とされるので、この点からも車輌の車体速度を正確に推定することができる。   In particular, there are uncertainties such as modeling errors and uncertainties in the friction coefficient of the road surface between the wheel speeds of each wheel calculated by the vehicle model and the wheel speeds of each wheel of the actual vehicle. According to the first embodiment, the uncertainty of the friction coefficient of the road surface of each wheel is estimated by the observer, the estimated friction coefficient of the road surface of each wheel is replaced with the estimated longitudinal acceleration of each wheel, and the average value thereof is Since the estimated longitudinal acceleration of the vehicle body is used, the vehicle body speed of the vehicle can be accurately estimated from this point.

また図示の実施例1によれば、各車輪の車輪速度と推定車輪速度との偏差ωi−ωhiに基づくフィードバックが行われるので、モデル化誤差に起因する車体速度の推定誤差を確実に低減することができる。   Further, according to the illustrated embodiment 1, since feedback is performed based on the deviation ωi−ωhi between the wheel speed of each wheel and the estimated wheel speed, the estimation error of the vehicle body speed due to the modeling error can be reliably reduced. Can do.

また前後加速度センサにより検出される車輌の前後加速度に基づいて車輌の車体速度が推定される場合には、坂道走行時に於ける坂道勾配に応じた車輌の前後加速度の補正や前後加速度センサの零点ドリフトの補正が必要であり、また積分により検出誤差が蓄積されるという問題があるが、図示の実施例1によれば、坂道走行時に於ける坂道勾配に応じた車輌の前後加速度の補正や前後加速度センサの零点ドリフトの補正は不要であり、また検出誤差の蓄積の問題は生じない。   When the vehicle body speed is estimated based on the longitudinal acceleration of the vehicle detected by the longitudinal acceleration sensor, the longitudinal acceleration of the vehicle is corrected according to the slope of the vehicle when traveling on a slope, or the zero point drift of the longitudinal acceleration sensor is detected. However, according to Example 1 shown in the drawing, the vehicle longitudinal acceleration correction and the longitudinal acceleration of the vehicle according to the slope of the hill during running on the slope are problematic. It is not necessary to correct the sensor zero drift, and there is no problem of accumulation of detection errors.

図3はインホイールモータ式の四輪駆動車に適用された本発明による車輌の車体速度推定装置の実施例2を示す概略構成図、図4は実施例2に於けるシグナルフローを示す図である。尚図3及び図4に於いて、それぞれ図1及び図2に示された部材と同一の部材にはこれらの図に於いて付された符号と同一の符号が付されている。   FIG. 3 is a schematic diagram showing a second embodiment of a vehicle body speed estimation device according to the present invention applied to an in-wheel motor type four-wheel drive vehicle, and FIG. 4 is a diagram showing a signal flow in the second embodiment. is there. In FIGS. 3 and 4, the same members as those shown in FIGS. 1 and 2 are denoted by the same reference numerals as those in FIGS.

この実施例2に於いては、駆動力制御用電子制御装置16にはアクセル開度センサ14よりのアクセル開度φを示す信号に加えて、前後加速度センサ32より車輌の前後加速度Gxを示す信号、ヨーレートセンサの如き他のセンサ34より車輌のヨーレートγの如き車輌の種々の状態量が入力される。また駆動力制御用電子制御装置16は、各車輪の制駆動トルクTiに基づいて左右前輪の制駆動トルクTfl及びTfrの和として前輪の制駆動トルクTfを演算すると共に、左右後輪の制駆動トルクTrl及びTrrの和として後輪の制駆動トルクTrを演算する。   In the second embodiment, the driving force control electronic control device 16 has a signal indicating the longitudinal acceleration Gx of the vehicle from the longitudinal acceleration sensor 32 in addition to the signal indicating the accelerator opening φ from the accelerator opening sensor 14. Various state quantities of the vehicle such as the yaw rate γ of the vehicle are input from another sensor 34 such as a yaw rate sensor. The electronic control unit 16 for driving force control calculates the braking / driving torque Tf of the front wheels as the sum of the braking / driving torques Tfl and Tfr of the left and right front wheels based on the braking / driving torque Ti of each wheel, and also controls the braking / driving of the left and right rear wheels. The braking / driving torque Tr of the rear wheels is calculated as the sum of the torques Trl and Trr.

実施例2に於けるシグナルフローを示す図4に於いて、50は実際の車輌を示し、72は車輌の前後加速度を推定するための車輌モデルを示している。図4に示されている如く、車輌50の前輪及び後輪にそれぞれ制駆動トルクTf及びTrが付与されることにより車輌の前後加速度Gxが変化する。   In FIG. 4 showing a signal flow in the second embodiment, 50 indicates an actual vehicle, and 72 indicates a vehicle model for estimating the longitudinal acceleration of the vehicle. As shown in FIG. 4, the longitudinal acceleration Gx of the vehicle is changed by applying braking / driving torques Tf and Tr to the front and rear wheels of the vehicle 50, respectively.

車輌モデル72の乗算器74には前輪の制駆動トルクTf及び後輪の制駆動トルクTrが入力され、乗算器74は上記式24にて表される制御ベクトルBと前輪の制駆動トルクTf及び後輪の制駆動トルクTrとの積を加算器76へ出力する。車輌の前後加速度Gxは加算器78のプラスの入力端子に入力され、加算器78のマイナスの入力端子には加算器76より出力される車輌の推定前後加速度Gxhが入力される。加算器78の出力、即ち車輌の前後加速度の偏差Gx−Gxhは積分器80へ入力され、積分器80は偏差Gx−Gxhの積分値を乗算器82へ出力する。   The multiplier 74 of the vehicle model 72 receives the braking / driving torque Tf of the front wheels and the braking / driving torque Tr of the rear wheels, and the multiplier 74 uses the control vector B expressed by the above equation 24 and the braking / driving torque Tf of the front wheels. The product of the rear wheel braking / driving torque Tr is output to the adder 76. The longitudinal acceleration Gx of the vehicle is input to the plus input terminal of the adder 78, and the estimated longitudinal acceleration Gxh of the vehicle output from the adder 76 is inputted to the minus input terminal of the adder 78. The output of the adder 78, that is, the deviation Gx−Gxh of the longitudinal acceleration of the vehicle is input to the integrator 80, and the integrator 80 outputs the integrated value of the deviation Gx−Gxh to the multiplier 82.

乗算器82は車輌の前後加速度の偏差Gx−Gxhの積分値とフィードバックゲインGとの積を加算器76へ出力する。加算器76の出力は車輌の推定前後加速度Gxhであり、積分器74へ入力される。積分器74は車輌の推定前後加速度Gxhを積分することにより車輌の推定車体速度Vhを出力する。尚フィードバックゲインGは実験により対地車体速度計の検出値に対し推定車体速度Vhが適正な値になるよう設定されている。   The multiplier 82 outputs the product of the integrated value of the deviation Gx−Gxh of the longitudinal acceleration of the vehicle and the feedback gain G to the adder 76. The output of the adder 76 is the estimated longitudinal acceleration Gxh of the vehicle and is input to the integrator 74. The integrator 74 outputs an estimated vehicle body speed Vh of the vehicle by integrating the estimated longitudinal acceleration Gxh of the vehicle. The feedback gain G is set so that the estimated vehicle speed Vh is an appropriate value with respect to the detected value of the ground vehicle speedometer by experiment.

従ってこの実施例2に於いては、フローチャートとしては図示されていないが、前輪の制駆動トルクTf、後輪の制駆動トルクTr、車輌の前後加速度Gxの前回値Gxn-1、車輌の推定前後加速度Gxhの前回値Gxhn-1に基づいて上記式27に従って推定車体速度Vhnが演算される。尚推定車体速度の演算制御の開始時には車輌の前後加速度Gxの前回値Gxn-1及び車輌の推定前後加速度Gxhの前回値Gxhn-1はそれぞれ0に設定される。 Therefore, in the second embodiment, although not shown in the flowchart, the front wheel braking / driving torque Tf, the rear wheel braking / driving torque Tr, the previous value Gx n-1 of the longitudinal acceleration Gx of the vehicle, and the estimation of the vehicle Based on the previous value Gxh n−1 of the longitudinal acceleration Gxh, the estimated vehicle speed Vh n is calculated according to the above equation 27. At the start of the calculation control of the estimated vehicle body speed, the previous value Gxn -1 of the vehicle longitudinal acceleration Gx and the previous value Gxhn -1 of the estimated vehicle longitudinal acceleration Gxh are set to 0, respectively.

かくして実施例2によれば、前輪の制駆動トルクTf及び後輪の制駆動トルクTrに基づいて車輌の推定前後加速度Gxhが演算され、その積分値として推定車体速度Vhが演算されるので、上述の実施例1の場合と同様、車輪が空転状態にあるか否かの判定及びその判定結果に基づく演算要領の選択を要することなく、車輌の車体速度を正確に推定することができる。   Thus, according to the second embodiment, the estimated longitudinal acceleration Gxh of the vehicle is calculated based on the braking / driving torque Tf of the front wheels and the braking / driving torque Tr of the rear wheels, and the estimated vehicle speed Vh is calculated as an integral value thereof. As in the case of the first embodiment, the vehicle body speed of the vehicle can be accurately estimated without determining whether or not the wheel is idling and selecting the calculation procedure based on the determination result.

また図示の実施例2によれば、車輌の前後加速度Gxと推定前後加速度Gxhとの偏差Gx−Gxhに基づくフィードバックが行われるので、モデル化誤差に起因する車体速度の推定誤差を確実に低減することができる。   Further, according to the illustrated embodiment 2, feedback based on the deviation Gx−Gxh between the longitudinal acceleration Gx of the vehicle and the estimated longitudinal acceleration Gxh is performed, so that the estimation error of the vehicle speed due to the modeling error is reliably reduced. be able to.

尚実施例2に於いては、坂道走行時に於ける坂道勾配に応じた車輌の前後加速度の補正や前後加速度センサの零点ドリフトの補正が行われてよく、その場合には偏差Gx−Gxhに基づくフィードバックを一層正確に行うことができ、これにより車体速度の推定を更に一層正確に行うことができる。   In the second embodiment, correction of the longitudinal acceleration of the vehicle and correction of the zero point drift of the longitudinal acceleration sensor may be performed according to the slope of the slope when traveling on a slope, and in this case, based on the deviation Gx-Gxh. The feedback can be performed more accurately, whereby the vehicle body speed can be estimated more accurately.

以上に於いては本発明を特定の実施例について詳細に説明したが、本発明は上述の実施例に限定されるものではなく、本発明の範囲内にて他の種々の実施例が可能であることは当業者にとって明らかであろう。   Although the present invention has been described in detail with reference to specific embodiments, the present invention is not limited to the above-described embodiments, and various other embodiments are possible within the scope of the present invention. It will be apparent to those skilled in the art.

例えば上述の実施例1に於いては、各車輪の制駆動トルクTiが駆動トルクであるか制動トルクであるかに関係なく車体速度が推定され、上述の実施例2に於いては、前輪の制駆動トルクTf及び後輪の制駆動トルクTrが駆動トルクであるか制動トルクであるかに関係なく車体速度が推定されるようになっているが、車輌の目標制駆動トルクTvtが駆動トルクである場合にのみ又は制動トルクである場合にのみ車体速度が推定されるよう修正されてもよい。   For example, in the first embodiment, the vehicle body speed is estimated regardless of whether the braking / driving torque Ti of each wheel is a driving torque or a braking torque. In the second embodiment, the front wheel The vehicle body speed is estimated regardless of whether the braking / driving torque Tf and the braking / driving torque Tr of the rear wheels are the driving torque or the braking torque, but the target braking / driving torque Tvt of the vehicle is the driving torque. It may be modified so that the vehicle body speed is estimated only in some cases or only in the case of braking torque.

また上述の実施例1及び2に於いては、車輌はインホイールモータ式の四輪駆動車であるが、本発明が適用される車輌はインホイールモータ式の四輪駆動車以外の四輪駆動車であってもよく、その場合駆動装置は電動機以外の駆動装置であってよく、更に本発明が適用される車輌は前輪駆動車や後輪駆動車であってもよい。   In the first and second embodiments described above, the vehicle is an in-wheel motor type four-wheel drive vehicle, but the vehicle to which the present invention is applied is a four-wheel drive vehicle other than the in-wheel motor type four-wheel drive vehicle. In this case, the drive device may be a drive device other than an electric motor, and the vehicle to which the present invention is applied may be a front wheel drive vehicle or a rear wheel drive vehicle.

ホイールインモータ式の四輪駆動車に適用された本発明による車輌の車体速度推定装置の実施例1を示す概略構成図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic configuration diagram showing a first embodiment of a vehicle body speed estimation device according to the present invention applied to a wheel-in-motor four-wheel drive vehicle. 実施例1に於けるシグナルフローを示す図である。FIG. 3 is a diagram showing a signal flow in Example 1. ホイールインモータ式の四輪駆動車に適用された本発明による車輌の車体速度推定装置の実施例2を示す概略構成図である。It is a schematic block diagram which shows Example 2 of the vehicle body speed estimation apparatus of the vehicle by this invention applied to the wheel-in-motor type four-wheel drive vehicle. 実施例2に於けるシグナルフローを示す図である。FIG. 6 is a diagram showing a signal flow in Example 2.

符号の説明Explanation of symbols

12FL〜12RR 電動機
14 アクセル開度センサ
16 駆動力制御用電子制御装置
18 摩擦制動装置
24 ブレーキペダル
28 制動力制御用電子制御装置
30 車輪速度センサ
32 前後加速度センサ
34 他のセンサ
36、38FL〜38RR 圧力センサ
12FL to 12RR Electric motor 14 Accelerator opening sensor 16 Electronic control device for driving force control 18 Friction braking device 24 Brake pedal 28 Electronic control device for braking force control 30 Wheel speed sensor 32 Longitudinal acceleration sensor 34 Other sensors 36, 38FL to 38RR Pressure Sensor

Claims (4)

各車輪の制駆動トルクを求める手段と、各車輪の車輪速度を検出する車輪速度検出手段と、各車輪の制駆動トルクを入力とし各車輪の推定車輪速度を出力として予め設定された車輌モデルにより各車輪の制駆動トルクに基づいて各車輪の推定車輪速度を演算する推定車輪速度演算手段と、各車輪の制駆動トルクに基づいて各車輪の第一の推定前後加速度を演算し、前記各車輪の推定車輪速度及び前記車輪速度検出手段により検出された各車輪の車輪速度に基づいて各車輪の第二の推定前後加速度を演算し、前記各車輪の第一の推定前後加速度及び前記各車輪の第二の推定前後加速度に基づいて各車輪の推定前後加速度を演算する推定前後加速度演算手段と、前記各車輪の推定前後加速度に基づいて推定車体速度を演算する手段とを有することを特徴とする車輌の車体速度推定装置。   By means of a vehicle model set in advance as a means for determining the braking / driving torque of each wheel, a wheel speed detecting means for detecting the wheel speed of each wheel, and an estimated wheel speed of each wheel as an output by inputting the braking / driving torque of each wheel. Estimated wheel speed calculating means for calculating an estimated wheel speed of each wheel based on the braking / driving torque of each wheel; calculating a first estimated longitudinal acceleration of each wheel based on the braking / driving torque of each wheel; The second estimated longitudinal acceleration of each wheel is calculated based on the estimated wheel speed of each wheel and the wheel speed of each wheel detected by the wheel speed detecting means, and the first estimated longitudinal acceleration of each wheel and each wheel are calculated. An estimated longitudinal acceleration calculating means for calculating an estimated longitudinal acceleration of each wheel based on the second estimated longitudinal acceleration; and a means for calculating an estimated vehicle body speed based on the estimated longitudinal acceleration of each wheel. Vehicle speed estimating apparatus of a vehicle according to claim. 前記推定車体速度を演算する手段は前記各車輪の第一の推定前後加速度及び前記各車輪の第二の推定前後加速度の和を前記各車輪の推定前後加速度として演算し、前記各車輪の推定前後加速度の平均値を車輌の推定前後加速度として演算し、前記車輌の推定前後加速度に基づいて推定車体速度を演算することを特徴とする請求項1に記載の車輌の車体速度推定装置。   The means for calculating the estimated vehicle body speed calculates the sum of the first estimated longitudinal acceleration of each wheel and the second estimated longitudinal acceleration of each wheel as the estimated longitudinal acceleration of each wheel, and 2. The vehicle body speed estimation device according to claim 1, wherein an average acceleration value is calculated as an estimated longitudinal acceleration of the vehicle, and an estimated vehicle body speed is calculated based on the estimated longitudinal acceleration of the vehicle. 各車輪の制駆動トルクを求める手段と、車輌の前後加速度を検出する前後加速度検出手段と、各車輪の制駆動トルクを入力とし車輌の推定前後加速度を出力として予め設定された車輌モデルにより各車輪の制駆動トルクに基づいて車輌の推定前後加速度を演算する推定前後加速度演算手段と、前記車輌の推定前後加速度に基づいて推定車体速度を演算する手段とを有し、前記推定前後加速度演算手段は各車輪の制駆動トルクに基づいて車輌の第一の推定前後加速度を演算し、前記車輌の推定前後加速度及び前記前後加速度検出手段により検出された車輌の前後加速度に基づいて車輌の第二の推定前後加速度を演算し、前記車輌の第一の推定前後加速度及び前記車輌の第二の推定前後加速度に基づいて前記車輌の推定前後加速度を演算することを特徴とする車輌の車体速度推定装置。   Each wheel according to a vehicle model set in advance by means for obtaining braking / driving torque of each wheel, longitudinal acceleration detecting means for detecting longitudinal acceleration of the vehicle, and input of braking / driving torque of each wheel and output of estimated longitudinal acceleration of the vehicle. An estimated longitudinal acceleration calculating means for calculating an estimated longitudinal acceleration of the vehicle based on the braking / driving torque of the vehicle, and a means for calculating an estimated vehicle body speed based on the estimated longitudinal acceleration of the vehicle, wherein the estimated longitudinal acceleration calculating means comprises: A first estimated longitudinal acceleration of the vehicle is calculated based on the braking / driving torque of each wheel, and a second estimated vehicle is calculated based on the estimated longitudinal acceleration of the vehicle and the longitudinal acceleration of the vehicle detected by the longitudinal acceleration detecting means. Calculating a longitudinal acceleration, and calculating an estimated longitudinal acceleration of the vehicle based on a first estimated longitudinal acceleration of the vehicle and a second estimated longitudinal acceleration of the vehicle. Vehicle speed estimating apparatus of a vehicle according to claim. 車輌は四輪の各々に相互に独立に制駆動トルクを付与する制駆動トルク付与手段を備えた四輪駆動車であることを特徴とする請求項1乃至3に記載の車輌の車体速度推定装置。   4. The vehicle body speed estimation device according to claim 1, wherein the vehicle is a four-wheel drive vehicle provided with braking / driving torque applying means for applying braking / driving torque to each of the four wheels independently of each other. .
JP2005301395A 2005-10-17 2005-10-17 Vehicle body speed estimating device for vehicle Pending JP2007106338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005301395A JP2007106338A (en) 2005-10-17 2005-10-17 Vehicle body speed estimating device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005301395A JP2007106338A (en) 2005-10-17 2005-10-17 Vehicle body speed estimating device for vehicle

Publications (1)

Publication Number Publication Date
JP2007106338A true JP2007106338A (en) 2007-04-26

Family

ID=38032537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005301395A Pending JP2007106338A (en) 2005-10-17 2005-10-17 Vehicle body speed estimating device for vehicle

Country Status (1)

Country Link
JP (1) JP2007106338A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041624A1 (en) * 2006-10-04 2008-04-10 Toyota Jidosha Kabushiki Kaisha Vehicle and method of controlling the same
JP2010012945A (en) * 2008-07-03 2010-01-21 Toyota Motor Corp Stop determination device
JP2010051160A (en) * 2008-08-25 2010-03-04 Yokohama National Univ Slip ratio estimator and method thereof, and slip ratio controller and method thereof
JP2018523450A (en) * 2015-05-29 2018-08-16 セブコン リミテッド Method and apparatus
CN109515445A (en) * 2018-11-23 2019-03-26 安徽猎豹汽车有限公司 It is a kind of for taking turns the longitudinal vehicle speed estimation method and its device of independent drive vehicles entirely
US20220314992A1 (en) * 2019-12-24 2022-10-06 Panasonic Intellectual Property Management Co., Ltd. Vehicle control device, vehicle and vehicle control method
CN116039648A (en) * 2023-04-03 2023-05-02 成都赛力斯科技有限公司 Gradient calculation method and device based on weight and vehicle
WO2023181807A1 (en) * 2022-03-23 2023-09-28 三菱自動車工業株式会社 Vehicle control device
WO2023232015A1 (en) * 2022-05-31 2023-12-07 中国第一汽车股份有限公司 Vehicle speed estimation method and apparatus, and vehicle control unit and medium

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041624A1 (en) * 2006-10-04 2008-04-10 Toyota Jidosha Kabushiki Kaisha Vehicle and method of controlling the same
US7957881B2 (en) 2006-10-04 2011-06-07 Toyota Jidosha Kabushiki Kaisha Vehicle and method of controlling driving force for the vehicle based on detected slip of the drive wheel
JP2010012945A (en) * 2008-07-03 2010-01-21 Toyota Motor Corp Stop determination device
JP2010051160A (en) * 2008-08-25 2010-03-04 Yokohama National Univ Slip ratio estimator and method thereof, and slip ratio controller and method thereof
JP2018523450A (en) * 2015-05-29 2018-08-16 セブコン リミテッド Method and apparatus
US11059372B2 (en) 2015-05-29 2021-07-13 Sevcon Limited Traction control method and apparatus
CN109515445A (en) * 2018-11-23 2019-03-26 安徽猎豹汽车有限公司 It is a kind of for taking turns the longitudinal vehicle speed estimation method and its device of independent drive vehicles entirely
US20220314992A1 (en) * 2019-12-24 2022-10-06 Panasonic Intellectual Property Management Co., Ltd. Vehicle control device, vehicle and vehicle control method
WO2023181807A1 (en) * 2022-03-23 2023-09-28 三菱自動車工業株式会社 Vehicle control device
WO2023232015A1 (en) * 2022-05-31 2023-12-07 中国第一汽车股份有限公司 Vehicle speed estimation method and apparatus, and vehicle control unit and medium
CN116039648A (en) * 2023-04-03 2023-05-02 成都赛力斯科技有限公司 Gradient calculation method and device based on weight and vehicle

Similar Documents

Publication Publication Date Title
JP4926715B2 (en) Method and apparatus for assisting a vehicle operator in stabilizing a vehicle
JP4029856B2 (en) Vehicle behavior control device
US6473682B2 (en) Apparatus and method for estimating maximum road friction coefficient
JP2007106338A (en) Vehicle body speed estimating device for vehicle
EP1627790A1 (en) Estimating method for road friction coefficient and vehicle slip angle estimating method
EP1521146A2 (en) Integrated control apparatus for vehicle
EP1876077A1 (en) Braking-driving force control device of vehicle
JP3946294B2 (en) Braking force control device
WO2010116542A1 (en) Weight-related physical quantity estimating system and control device for vehicles
JP4182014B2 (en) Vehicle steering control device
JP3610738B2 (en) Vehicle behavior control device with wheel slip control device
JP2006034012A (en) Method for operating slip ratio of wheel and method for controlling brake power of wheel
US20050205339A1 (en) Steering control apparatus for a vehicle
JP5958643B2 (en) Calculation method of vehicle reference motion state quantity
JP4950052B2 (en) Method and apparatus for controlling the lock level of an electronically controllable differential lock mechanism
JP4501343B2 (en) Braking force control device for vehicle
JP2000190832A (en) Motion control device for vehicle
JP5636825B2 (en) Vehicle weight estimation device
GB2435102A (en) Friction estimation for vehicle control systems
JP2000292316A (en) Estimation arithmetic device of center-of-gravity height of vehicle
JP3039071B2 (en) Vehicle turning limit judgment device
JP4158539B2 (en) Vehicle wheel state estimation device
KR100721046B1 (en) Electronic stability system for vehicle
JP4284210B2 (en) Vehicle steering control device
JP2002173012A (en) Behavior control device for vehicle