JP4700817B2 - Seismic control frame - Google Patents

Seismic control frame Download PDF

Info

Publication number
JP4700817B2
JP4700817B2 JP2001026928A JP2001026928A JP4700817B2 JP 4700817 B2 JP4700817 B2 JP 4700817B2 JP 2001026928 A JP2001026928 A JP 2001026928A JP 2001026928 A JP2001026928 A JP 2001026928A JP 4700817 B2 JP4700817 B2 JP 4700817B2
Authority
JP
Japan
Prior art keywords
rigid
vibration
control frame
rigidity
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001026928A
Other languages
Japanese (ja)
Other versions
JP2002227449A (en
Inventor
雅史 山本
元 谷口
義英 内山
昌宏 菅田
毅 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18891666&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP4700817(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2001026928A priority Critical patent/JP4700817B2/en
Publication of JP2002227449A publication Critical patent/JP2002227449A/en
Application granted granted Critical
Publication of JP4700817B2 publication Critical patent/JP4700817B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、地震時や強風時における構造物の振動応答の低減を図った制震架構の技術分野に属する。
【0002】
【従来の技術】
地震時や強風時における構造物の振動応答の低減を図る手段として、従来、オイルダンパー、粘弾性ダンパー、鋼材系のダンパー、摩擦ダンパー等、種々の減衰装置が開発され実用に供されている。そして、前記のような減衰装置(以下、単にダンパーと言う場合がある。)を取り付けて構造物の振動応答を低減する制震架構も種々知られている。但し、同じ容量の減衰装置を設置しても、設置した場所の力学性状ないし条件によっては、減衰装置が架構若しくは構造物に与える制震効果(揺れを小さく抑制する減衰効果)が異なることは、既に当業者に良く知られている。一般的に、減衰装置に加えられる変形量と力が大きい場所に設置するのが、減衰装置の効率の良い使い方と配置であると理解されている。例えば、
【0003】
A.特開2000−27294号公報に開示された制震架構は、柱梁接合部を通常の剛接合よりも低剛性のピン接合に近い半剛接合(セミリジッド)として、地震時等の水平力の大半を減衰装置へ集中させ、減衰装置による減衰作用(地震エネルギーの吸収作用)の効率化が図られている。
【0004】
B.特開平11−50688号公報に開示された制振架構は、振動性状が異なる2種の構造物(例えば建物の水平断面の中心部に位置するコア部と、その外周部に位置する居住部のような一般架構部)とをエキスパンションジョイントと減衰装置で連結した、いわゆる連結制震の架構である。
【0005】
【発明が解決しようとする課題】
上記Aの制震架構の場合、構造物における主架構の一つの架構面(柔構面)において減衰装置が効率的に働くように工夫したものであり、構造物全体の振動特性を考慮した発明ではない。したがって、構造物全体としては振動特性を更に最適化する工夫の余地がある。
【0006】
一方、上記Bの制振建物は、構造物全体の振動特性を考慮した発明と認められるが、架構の剛性や質量、配置に制約が多く、この発明を実施可能な建物は限られている。
【0007】
ところで、一般的に構造物にとって捻れ振動は望ましくないものであり、構造設計者は、捻れ振動が発生しないように構造物の質量及び剛性の平衡度を考慮した設計を行うよう努力している。しかし、構造物に捻れ振動が起こらない場合、構造物の各層に発生する変形量は、層毎に場所に拘らず一定であり、減衰装置の配置に関してある程度以上の最適化を図ることができないという問題を包んでいる。
【0008】
本発明の目的は、一般的に構造物にとって捻れ振動は望ましくないという一般常識を覆して、逆転の発想として、敢えて捻れ振動が発生するような架構形式に設計した上で、減衰装置の作用効果を最適化して、結果的に構造物の捻れ振動が発生しないように改良工夫した制震架構を提供することである。
【0009】
本発明の次の目的は、構造物が水平方向に加振されたときに、同構造物が捻れ振動を起こすことにより、減衰装置を設置した特定の架構面に変形を集中させ、減衰装置の作用効果を最大限度に発揮させるように工夫した制震架構を提供することである。
【0010】
上述の課題を解決するための手段として、請求項1に記載した発明に係る制震架構は、
減衰装置を取り付けて構造物の振動応答を低減する制震架構であって、
構造物の架構は、水平方向の加振に対して捻れ振動を発生するように構面の剛性又は構造物の質量の平衡を崩して剛心と重心が偏心するように設計されており、
重心よりも剛心に近い側の構面を剛構面とし、該剛構面に対面して配置され、該剛構面よりも剛心からの距離が遠い側の構面を柔構面とし、前記柔構面に前記剛構面よりも減衰装置が集中的に設置されていることを特徴とする。
【0011】
請求項2記載の発明は、請求項1に記載した制震架構において、前記構造物の質量が均質で、前記構造物の外周の構面にのみ剛性要素が有る場合に、対面する剛構面と柔構面との剛性比が2:1となるように設計されていることを特徴とする。
【0012】
【発明の実施形態】
以下、図示した本発明の実施形態を説明する。
【0013】
図1は、請求項1記載の発明に係る制震架構の第1の実施形態を示している。これは説明を簡単にするために、2構面をもつ構造物1に関して、1方向(振動方向=Y方向)にのみ本発明を適用した場合の実施形態である。即ち、制震を考慮する方向(振動方向)は、図1中に指示したY方向(1方向)のみである。X方向の両端に位置する2構面のうち、一つの構面は、重心よりも剛心に近い側の比較的剛な構面(以下、これを剛構面Aという。)であり、図1の場合はブレース2を採用して剛性を高めた構成を示している。他の一つの構面は該剛構面Aに対面して配置され、該剛構面Aよりも剛心からの距離が遠い側の比較的柔らかい構面(以下、これを柔構面Bという。)であり、図1の場合はブレースの無いフレーム構造とされている。
【0014】
構造物1の質量の分布に偏りがない場合、図1の剛構面Aと柔構面Bとの剛性比は2:1程度が目安とされる。このような構造物1を振動方向(Y方向)へ加振した場合を、平面的に見ると、図2a、b、cのような捻れ振動を発生し、捻れの中心から遠い柔構面Bの振動が、剛構面Aよりも大きくなる。
【0015】
そこで前記の柔構面Bへ集中的に減衰装置(ダンパー)3を設置することにより、同柔構面Bの振動が比較的大きい性質を利用して減衰装置3を効果的に活用する、というのが本発明の要点である。図1及び図2cはブレース型のダンパー3の適用を模式化して示している。
【0016】
勿論、本発明の実施は、図1のように2構面、1方向への振動のみする架構への適用に限らない。剛心位置が上述した2構面の場合の目安である剛性比2:1の場合(図11aを参照)と同じ位置(剛構面A側から柔構面B側に向かって建物幅の1/3の位置=図11bを参照)となるように各構面の剛性を設計すれば良いのである。但し、前記した剛性比の目安の位置は、構造物1の質量の分布に偏りがないことを前提条件とした場合の値である。質量に偏りがある場合には、同程度の偏心(重心と剛心のズレ)を生ずるように各構面の設計を行えば良い。例えば重心位置が剛構面側に向かって建物幅の2/3の位置にある場合、剛構面と柔構面の剛性は同程度(1:1)であっても良い。
【0017】
要するに、敢えて2方向に適用する必要はないが、2方向に適用する場合は、各方向別に同様の設計を行えば良く、そうすると全く同様に本発明を実施できるのである。
【0018】
図3と図5には、本発明の第2、第3の実施形態を示している。これらの実施形態は、本発明を水平2方向に捻れ振動する架構に適用した場合の実施例であり、長辺方向(X方向)の両端部に剛構面Aと柔構面Bがある構成が図1の例と共通する。もっとも、ブレース2やダンパー3は構造物1の全層に設置しているが、この限りではない。主要な層にのみ設置して実施することもできる。図3において特徴的な構成は、長辺方向の両構面(図3の正面側と背面側に相当)に剛性の差を付与する手段として、正面側の柱の一部を間柱4として柔構面に設計し、この柔構面にダンパー5を取り付けている構成法は図1の実施例と同じである。図3の構造物1が短辺方向(Y方向)に振動する場合の様子を図4aに示し、長辺方向に振動する場合の様子を図4bに示す。
【0019】
図5に示す制震架構の実施形態は、短辺方向に3構面A、B、Cがあり、中間の構面Cを図中左方(剛構面A寄り)に寄せることにより、いわゆる剛心位置が左方に位置し、捻れを生ずること、及び振動の様子は図4a、bと同じになる。図5の場合、長辺方向の両構面(正面側と背面側)に剛性の差を付与する手段として、柱梁の接合部6(丸印の箇所)を半剛接合(もしくはピン接合)として柔構面に設計している。そして、ブレース形式のダンパー7を取り付けている点は図1の基本構成と同じである。通常、耐震架構面は剛接合(と見なせる方法による半剛接合を含む)とされるが、前記のように半剛接合で良い場合には接合のコストダウンを図れるメリットが大きい。
【0020】
次に、図6に示す制震架構の実施形態は、構造物1の質量に偏りを付与して捻り振動を生じさせる実施例を示す。図6の場合は、図中左側部分Dのみ高さを大きくしてあり、重心位置が左方へ偏っている。その結果、図7に示すような捻り振動を生じる。振幅が大きい柔構面B(捻れの中心から遠い側の構面)にブレース型のダンパー3が設置されていることも図1の例と同じである。
【0021】
なお、剛構面Aと柔構面Bの設計は、部材断面の調整によって剛性に差を付与する手法で実現することも可能であるし、構造形式の違いにより剛性に差異を生じさせることも可能である。たとえば「剛構面を剛接合のラーメン構造、柔構面を半剛接合のラーメン構造」としたり、「剛構面をブレース構造、柔構面をブレースの無い剛接合のラーメン構造」とする場合のほか、「RC構造で剛構面側に壁を設ける」等々の設計で対処することができる。
【0022】
また、ダンパー3、7の構造形式と種類に関しては、オイルダンパー、粘弾性ダンパー、鋼材系のダンパー、摩擦ダンパー等々を適宜に使用することができる。特に、鋼材系のダンパーや摩擦ダンパーは、降伏(又は滑り)の前と後とでは特性が変わるため、例えば降伏前の剛構面と柔構面の剛性比を同じ1:1にして、降伏後に剛性が2:1になるように設計すれば、小地震時には捻れること無く振動し、大地震時には捻れて制震効果を発揮する制震架構として実施することができる。
【0023】
次に、本発明の作用効果を示すために、1質点の構造物を対象にパラメータスタディを行った結果を説明する。
【0024】
先ず構造物のモデルとして、図8に示す1質点2構面の建物を考える。階層の水平剛性を一定とし、図8に示す剛構面Aの剛性と、柔構面Bの剛性との比をr:1−r、及びパラメータrを用いて定義する。図8の架構におけるそれぞれの構面に付加ダンパーをq:1−qの割合で配置し、その伝達特性(各振動数における入力加速度に対する応答加速度の比)を調べた。付加ダンパーの総減衰係数は、r=0.5におけるモデルの固有振動数が1となるよう基準化している。パラメータr、qの各値に対する伝達関数の最大値を図9にプロットする。捻れ振動の場合は、質点の場所によって応答が異なる為、最大値としては両端の応答値の大きい方の値を示している。
【0025】
図9によれば、伝達関数の最大値を最も小さくするのは、r=0.7、q=0の場合であることが分かる。即ち、剛構面剛性:柔構面剛性=0.7:0.3≒2:1とし、ダンパーを全て柔構面側に取り付けるのが最適であることがわかる。このとき伝達関数の最大値は75%程度に低減される。
【0026】
前記の伝達関数を、r=0.5、q=0.5の場合(剛性及び減衰をバランス良く配置する従来の設計法)と比較して、図10に示す。
【0027】
従来の設計法による場合は、捻れを生じないように設計するので、解析上、質点の場所による応答の違いはない。一方、本発明による設計法による場合は、質点の場所による応答の違いがあるので、図中には「柔構面」と「剛構面」及び構造物の「中心」の3箇所の応答値をそれぞれ示しているように、架構に生ずる捻れの如何により応答の差が出る。「柔構面」の応答値が最も大きくなるが、それでも従来の設計法における応答値よりは小さくなり、構造物の「中心」位置や「剛構面」の位置では更に応答が小さくなっていることがわかる。
【0028】
このように構造物を敢えて捻れるように設計した上で、ダンパーを集中的に配置することにより、同じダンパー数量でも、応答を小さくすること、即ちダンパーを効率的に活用していることがわかる。
【0029】
【発明の効果】
請求項1、2に記載した発明は、構造物にとって望ましくないという一般常識を覆して、逆転の発想として、敢えて捻れ振動が発生するような架構形式に設計した上で、減衰装置の作用効果を最適化したので、結果的に捻れ振動を含めた構造物の振動が小さくなる制震架構を提供する。
【0030】
本発明はまた、構造物が水平方向に加振されたときに、同構造物が捻れ振動を起こすことにより、減衰装置を設置した特定の架構面に変形を集中させ、減衰装置の作用効果を最大限度に発揮させる制震架構を提供する。
【図面の簡単な説明】
【図1】請求項1、2記載の発明に係る制震架構の第1の実施形態をスケルトンで示した斜視図である。
【図2】a、b、cは図1の構造物の振動状態を示した平面図と立面図である。
【図3】本発明に係る制震架構の第2の実施形態をスケルトンで示した斜視図である。
【図4】a、bは図3の構造物の振動状態を示した平面図である。
【図5】本発明に係る制震架構の第3の実施形態をスケルトンで示した斜視図である。
【図6】本発明に係る制震架構の第4の実施形態をスケルトンで示した斜視図である。
【図7】図6の構造物の振動状態を示した平面図である。
【図8】1質点2構面の建物モデル図である。
【図9】伝達関数の最大値を示す図である。
【図10】aは従来の設計法、bは本発明の設計法による伝達関数の比較図である。
【図11】a、bは剛心位置についての説明図である。
【符号の説明】
A 剛構面
B 柔構面
3、7 減衰装置(ダンパー)
[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to the technical field of a seismic control frame designed to reduce the vibration response of a structure during an earthquake or a strong wind.
[0002]
[Prior art]
Various damping devices such as oil dampers, viscoelastic dampers, steel dampers and friction dampers have been developed and put into practical use as means for reducing the vibration response of structures during earthquakes and strong winds. Various types of vibration control frames are also known in which a damping device as described above (hereinafter sometimes simply referred to as a damper) is attached to reduce the vibration response of the structure. However, even if an attenuation device of the same capacity is installed, the damping effect (attenuation effect that suppresses the shaking) that the attenuation device gives to the frame or structure depends on the mechanical properties or conditions of the installation location. It is already well known to those skilled in the art. In general, it is understood that the installation and installation of a damping device in a place where the amount of deformation and force applied to the damping device are large is an efficient use and arrangement of the damping device. For example,
[0003]
A. The seismic control frame disclosed in Japanese Patent Application Laid-Open No. 2000-27294 is a semi-rigid joint that is close to a pin joint with a lower rigidity than a normal rigid joint. Are concentrated on the damping device to improve the efficiency of the damping action (seismic energy absorption action).
[0004]
B. The vibration control frame disclosed in Japanese Patent Application Laid-Open No. 11-50688 has two types of structures having different vibration properties (for example, a core portion located in the center of a horizontal section of a building and a living portion located on the outer periphery thereof). This is a so-called coupled vibration control structure in which a general frame part) is connected to an expansion joint and a damping device.
[0005]
[Problems to be solved by the invention]
In the case of the above-mentioned seismic control frame A, the invention is devised so that the damping device works efficiently on one frame surface (flexible surface) of the main frame in the structure, and the invention considering the vibration characteristics of the entire structure is not. Accordingly, there is room for further optimization of the vibration characteristics of the entire structure.
[0006]
On the other hand, the above-mentioned vibration-damping building B is recognized as an invention in consideration of the vibration characteristics of the entire structure, but there are many restrictions on the rigidity, mass, and arrangement of the frame, and the buildings that can implement this invention are limited.
[0007]
By the way, in general, torsional vibration is undesirable for a structure, and structural designers strive to design in consideration of the balance of mass and rigidity of the structure so that torsional vibration does not occur. However, if no torsional vibration occurs in the structure, the amount of deformation generated in each layer of the structure is constant regardless of the location for each layer, and it is not possible to optimize the arrangement of the damping device to a certain extent. Enveloping the problem.
[0008]
The object of the present invention is to reverse the common sense that torsional vibration is generally undesirable for a structure, and as a concept of reverse rotation, it is designed in a frame type that intentionally generates torsional vibration. Is to provide a seismic control frame that has been improved so that torsional vibration of the structure does not occur as a result.
[0009]
The next object of the present invention is to cause the structure to twist and vibrate when the structure is vibrated in the horizontal direction, thereby concentrating the deformation on the specific frame surface where the attenuation device is installed. The aim is to provide a seismic control frame that is devised to maximize its effects.
[0010]
As a means for solving the above-mentioned problem, a seismic control frame according to the invention described in claim 1 is:
It is a seismic control frame that attaches a damping device to reduce the vibration response of the structure,
The frame of the structure is designed so that the stiffness and the center of gravity are decentered by breaking the balance of the rigidity of the structure or the mass of the structure so as to generate a torsional vibration in response to horizontal excitation.
The construction surface closer to the center of gravity than the center of gravity is defined as a rigid construction surface, and is disposed facing the rigid construction surface, and the construction surface on the side farther from the stiffness than the rigid construction surface is defined as a flexible surface. The damping device is characterized in that damping devices are more concentratedly installed on the flexible surface than on the rigid surface .
[0011]
The invention according to claim 2 is the seismic control frame according to claim 1, wherein the mass of the structure is uniform and the rigid element faces only when there is a rigid element only on the outer circumference of the structure. It is characterized by being designed so that the rigidity ratio between the soft surface and the flexible surface is 2: 1.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, illustrated embodiments of the present invention will be described.
[0013]
FIG. 1 shows a first embodiment of a vibration control frame according to the first aspect of the present invention. This is an embodiment in which the present invention is applied only in one direction (vibration direction = Y direction) for the structure 1 having two planes for the sake of simplicity. That is, the direction (vibration direction) in which damping is considered is only the Y direction (one direction) indicated in FIG. Of the two planes located at both ends in the X direction, one plane is a relatively rigid plane closer to the center of gravity than the center of gravity (hereinafter referred to as rigid plane A). In the case of 1, the brace 2 is used to increase the rigidity. The other structural surface is arranged to face the rigid structural surface A, and is a relatively soft structural surface on the side farther from the rigid center than the rigid structural surface A (hereinafter referred to as a flexible structural surface B). In the case of FIG. 1, the frame structure has no brace.
[0014]
When there is no bias in the mass distribution of the structure 1, the rigidity ratio between the rigid surface A and the flexible surface B in FIG. When the structure 1 is vibrated in the vibration direction (Y direction), when viewed in plan, the torsional vibration as shown in FIGS. 2a, 2b, and 2c occurs, and the flexible surface B is far from the center of the twist. Is larger than the rigid structural surface A.
[0015]
Therefore, by installing the damping device (damper) 3 intensively on the flexible surface B, it is said that the damping device 3 is effectively utilized by utilizing the property that the vibration of the flexible surface B is relatively large. This is the gist of the present invention. 1 and 2c schematically show the application of the brace-type damper 3. FIG.
[0016]
Of course, the implementation of the present invention is not limited to application to a frame that only vibrates in two planes and one direction as shown in FIG. The same position as the case of the rigidity ratio of 2: 1 (see FIG. 11a), which is a guideline in the case of the two structural surfaces described above (see FIG. 11a), the building width of 1 from the rigid structural surface A side toward the flexible structural surface B side. It is only necessary to design the rigidity of each structural surface so that the position of / 3 = see FIG. 11b). However, the reference position of the stiffness ratio described above is a value when it is assumed that there is no bias in the mass distribution of the structure 1. When there is a bias in mass, each structural surface may be designed so as to produce the same degree of eccentricity (deviation of the center of gravity and stiffness). For example, when the position of the center of gravity is at a position 2/3 of the building width toward the rigid structure surface, the rigidity of the rigid structure surface and the flexible surface may be approximately the same (1: 1).
[0017]
In short, it is not necessary to apply in two directions. However, in the case of applying in two directions, the same design may be performed for each direction, and the present invention can be implemented in exactly the same manner.
[0018]
3 and 5 show the second and third embodiments of the present invention. These embodiments are examples when the present invention is applied to a frame that twists and vibrates in two horizontal directions, and has a rigid surface A and a flexible surface B at both ends in the long side direction (X direction). Is common to the example of FIG. However, the brace 2 and the damper 3 are installed in all layers of the structure 1, but this is not the case. It can also be implemented only in the main layer. The characteristic configuration in FIG. 3 is that as a means for giving a difference in rigidity between both long side surfaces (corresponding to the front side and the back side in FIG. The construction method of designing the construction surface and attaching the damper 5 to the flexible construction surface is the same as the embodiment of FIG. FIG. 4a shows a state where the structure 1 of FIG. 3 vibrates in the short side direction (Y direction), and FIG. 4b shows a case where the structure 1 vibrates in the long side direction.
[0019]
The embodiment of the seismic control frame shown in FIG. 5 has three structural surfaces A, B, and C in the short side direction, and the intermediate structural surface C is moved to the left (close to the rigid structural surface A) in the figure, so-called The rigid center position is on the left side, and twisting and vibration are the same as in FIGS. 4a and 4b. In the case of FIG. 5, as a means for giving a difference in rigidity between both long-side structural surfaces (front side and back side), the column beam joint 6 (circled portion) is semi-rigidly joined (or pin joined). Designed as a soft surface. And the point which has attached the brace-type damper 7 is the same as the basic composition of FIG. Normally, the seismic frame is rigidly joined (including semi-rigid joints that can be regarded as a method), but if semi-rigid joints are sufficient as described above, there is a great merit in reducing the cost of joining.
[0020]
Next, the embodiment of the seismic control frame shown in FIG. 6 shows an example in which the mass of the structure 1 is biased to generate torsional vibration. In the case of FIG. 6, the height is increased only in the left portion D in the figure, and the position of the center of gravity is biased to the left. As a result, a torsional vibration as shown in FIG. 7 is generated. The brace-type damper 3 is also installed on the flexible surface B having a large amplitude (the surface far from the twist center) as in the example of FIG.
[0021]
In addition, the design of the rigid surface A and the flexible surface B can be realized by a method of giving a difference in rigidity by adjusting the cross section of the member, or a difference in rigidity can be caused by a difference in structure type. Is possible. For example, when the rigid surface is a rigidly bonded ramen structure, the flexible surface is a semi-rigidly bonded ramen structure, or the rigid surface is a brace structure and the flexible surface is a rigidly bonded ramen structure without braces. In addition to this, it is possible to cope with such a design as “providing a wall on the rigid structure side with an RC structure”.
[0022]
Further, regarding the structure type and type of the dampers 3 and 7, oil dampers, viscoelastic dampers, steel dampers, friction dampers, and the like can be used as appropriate. In particular, since steel dampers and friction dampers have different characteristics before and after yielding (or slipping), for example, the rigidity ratio between the rigid and flexible surfaces before yielding is set to the same 1: 1, yielding. If it is designed to have a rigidity of 2: 1 later, it can be implemented as a seismic control frame that vibrates without twisting during a small earthquake and twists during a large earthquake to exert a damping effect.
[0023]
Next, in order to show the effect of this invention, the result of having performed the parameter study on the structure of one mass point is demonstrated.
[0024]
First, as a structure model, consider a one-mass-point two-component building shown in FIG. The horizontal rigidity of the hierarchy is constant, and the ratio between the rigidity of the rigid structural surface A and the rigidity of the flexible structural surface B shown in FIG. 8 is defined using r: 1-r and the parameter r. Additional dampers were arranged at a ratio of q: 1-q on each frame in the frame of FIG. 8, and the transmission characteristics (ratio of response acceleration to input acceleration at each frequency) were examined. The total damping coefficient of the additional damper is normalized so that the natural frequency of the model is 1 at r = 0.5. The maximum value of the transfer function for each value of the parameters r and q is plotted in FIG. In the case of torsional vibration, since the response differs depending on the location of the mass point, the maximum value is the larger of the response values at both ends.
[0025]
According to FIG. 9, it can be seen that the maximum value of the transfer function is minimized when r = 0.7 and q = 0. That is, Tsuyoshi Plane rigidity: stiffness of soft Plane = 0.7: 0.3 ≒ 2: 1 and then, it can be seen that all the dampers is best to attach the soft Plane side. At this time, the maximum value of the transfer function is reduced to about 75%.
[0026]
The transfer function is shown in FIG. 10 in comparison with the case of r = 0.5 and q = 0.5 (conventional design method in which rigidity and damping are arranged in a balanced manner).
[0027]
In the case of the conventional design method, since it is designed so as not to cause twisting, there is no difference in response depending on the location of the mass point in the analysis. On the other hand, in the case of the design method according to the present invention, since there is a difference in response depending on the location of the mass point, the response values at three locations of “soft surface” and “rigid surface” and “center” of the structure are shown As shown in the figure, there is a difference in response depending on the twist generated in the frame. The response value of the “flexible surface” is the largest, but it is still smaller than the response value in the conventional design method, and the response is further reduced at the “center” position and “rigid surface” position of the structure I understand that.
[0028]
It can be seen that by designing the structure so that it can be twisted and arranging the dampers in a concentrated manner, even with the same amount of dampers, the response is reduced, that is, the dampers are used efficiently. .
[0029]
【The invention's effect】
The invention described in claims 1 and 2 overturns the common sense that it is not desirable for a structure, and as a concept of reversal, after deliberately designing a frame type that generates torsional vibrations, the effects of the damping device are As a result of the optimization, a seismic control frame in which vibration of the structure including torsional vibration is reduced is provided.
[0030]
In the present invention, when the structure is vibrated in the horizontal direction, the structure causes torsional vibration, so that the deformation is concentrated on a specific frame surface on which the attenuation device is installed, and the effect of the attenuation device is reduced. We will provide a seismic control frame that can be used to the maximum extent possible.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a first embodiment of a seismic control frame according to the inventions of claims 1 and 2 in a skeleton.
2A, 2B, and 2C are a plan view and an elevation view showing a vibration state of the structure shown in FIG.
FIG. 3 is a perspective view showing a second embodiment of the vibration control frame according to the present invention by a skeleton.
4 is a plan view showing a vibration state of the structure of FIG. 3; FIG.
FIG. 5 is a perspective view showing a third embodiment of the vibration control frame according to the present invention by using a skeleton.
FIG. 6 is a perspective view showing a fourth embodiment of the vibration control frame according to the present invention by using a skeleton.
7 is a plan view showing a vibration state of the structure of FIG. 6. FIG.
FIG. 8 is a building model diagram of 1 mass point and 2 surfaces.
FIG. 9 is a diagram illustrating a maximum value of a transfer function.
10A is a comparative diagram of transfer functions according to a conventional design method, and FIG. 10B is a comparison diagram of transfer functions according to the design method of the present invention.
FIGS. 11A and 11B are explanatory diagrams of a rigid center position. FIGS.
[Explanation of symbols]
A Rigid construction surface B Flexible construction surface 3, 7 Damping device (damper)

Claims (2)

減衰装置を取り付けて構造物の振動応答を低減する制震架構であって、
構造物の架構は、水平方向の加振に対して捻れ振動を発生するように構面の剛性又は構造物の質量の平衡を崩して剛心と重心が偏心するように設計されており、
重心よりも剛心に近い側の構面を剛構面とし、該剛構面に対面して配置され、該剛構面よりも剛心からの距離が遠い側の構面を柔構面とし、前記柔構面に前記剛構面よりも減衰装置が集中的に設置されていることを特徴とする、制震架構。
It is a seismic control frame that attaches a damping device to reduce the vibration response of the structure,
The frame of the structure is designed so that the stiffness and the center of gravity are decentered by breaking the balance of the rigidity of the structure or the mass of the structure so as to generate a torsional vibration in response to horizontal excitation.
The construction surface closer to the center of gravity than the center of gravity is defined as a rigid construction surface, and is disposed facing the rigid construction surface, and the construction surface on the side farther from the stiffness than the rigid construction surface is defined as a flexible surface. The damping frame is characterized in that damping devices are more concentratedly installed on the flexible surface than on the rigid surface .
前記構造物の質量が均質で、前記構造物の外周の構面にのみ剛性要素が有る場合に、対面する剛構面と柔構面との剛性比が2:1となるように設計されていることを特徴とする、請求項1に記載した制震架構。 When the mass of the structure is uniform and there is a rigid element only on the outer peripheral surface of the structure , the rigidity ratio between the rigid surface and the flexible surface facing each other is designed to be 2: 1. The seismic control frame according to claim 1, wherein:
JP2001026928A 2001-02-02 2001-02-02 Seismic control frame Expired - Fee Related JP4700817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001026928A JP4700817B2 (en) 2001-02-02 2001-02-02 Seismic control frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001026928A JP4700817B2 (en) 2001-02-02 2001-02-02 Seismic control frame

Publications (2)

Publication Number Publication Date
JP2002227449A JP2002227449A (en) 2002-08-14
JP4700817B2 true JP4700817B2 (en) 2011-06-15

Family

ID=18891666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001026928A Expired - Fee Related JP4700817B2 (en) 2001-02-02 2001-02-02 Seismic control frame

Country Status (1)

Country Link
JP (1) JP4700817B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5060842B2 (en) * 2007-06-25 2012-10-31 株式会社竹中工務店 Damping structure
JP5750000B2 (en) * 2011-07-28 2015-07-15 鹿島建設株式会社 Seismic control frame
JP6016359B2 (en) * 2011-12-27 2016-10-26 五洋建設株式会社 Method of constructing seismic control building structure and seismic control member therefor
JP6636747B2 (en) * 2015-08-20 2020-01-29 株式会社竹中工務店 Building damping structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09324833A (en) * 1996-06-03 1997-12-16 Fujikura Ltd Torsion control device for structure with base isolation device
JPH10317709A (en) * 1997-05-19 1998-12-02 Kajima Corp Damping structure
JP2000179180A (en) * 1998-12-17 2000-06-27 Mitsui Constr Co Ltd Apartment house

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0988182A (en) * 1995-09-26 1997-03-31 Ohbayashi Corp Twisting deformation preventive structure of building having open ceiling

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09324833A (en) * 1996-06-03 1997-12-16 Fujikura Ltd Torsion control device for structure with base isolation device
JPH10317709A (en) * 1997-05-19 1998-12-02 Kajima Corp Damping structure
JP2000179180A (en) * 1998-12-17 2000-06-27 Mitsui Constr Co Ltd Apartment house

Also Published As

Publication number Publication date
JP2002227449A (en) 2002-08-14

Similar Documents

Publication Publication Date Title
JP5763788B2 (en) Displacement amplification type vibration control system and its construction method
Filiatrault Analytical predictions of the seismic response of friction damped timber shear walls
JP4700817B2 (en) Seismic control frame
JP3828695B2 (en) Seismic control wall of a three-story house
JPH11153194A (en) Vibration damping member with integrated elasto-plastic and visco-elastic damper
JPH09242387A (en) Damping structure
JPH03122376A (en) Dynamic vibration absorber using curtain wall
JP4176917B2 (en) building
JP2004019271A (en) Vibration-damping structural member
JP4724921B2 (en) Damping wall structure
JP3960898B2 (en) Spatial structures and dome roofs
JPH09324557A (en) Vibration-control structure of building
JP3610004B2 (en) Building damping device
JPH11125027A (en) Hybrid damping device
JPH10317715A (en) Seismic isolation mechanism
JPH1018418A (en) Damping structure of building
JP4368504B2 (en) Vibration control device for column beam frame
JP3916213B2 (en) Damping method and device using rocking curtain wall
Miura et al. Design and simulation of double-mass dynamic vibration absorber with residual vibration mode
JP3494310B2 (en) Building damping structure
JP2004197402A (en) Damping structure building
JPH09228472A (en) Vibration control brace structure
JP2023146735A (en) Damping structure of building frame
JP2884966B2 (en) Damping device
JP2000129956A (en) Vibration control structure of building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

LAPS Cancellation because of no payment of annual fees