JP4698861B2 - Carbon fiber precursor acrylic fiber, method for producing the same, and oil composition - Google Patents

Carbon fiber precursor acrylic fiber, method for producing the same, and oil composition Download PDF

Info

Publication number
JP4698861B2
JP4698861B2 JP2001068908A JP2001068908A JP4698861B2 JP 4698861 B2 JP4698861 B2 JP 4698861B2 JP 2001068908 A JP2001068908 A JP 2001068908A JP 2001068908 A JP2001068908 A JP 2001068908A JP 4698861 B2 JP4698861 B2 JP 4698861B2
Authority
JP
Japan
Prior art keywords
carbon fiber
mass
formula
oil composition
amino
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001068908A
Other languages
Japanese (ja)
Other versions
JP2002266239A (en
Inventor
興造 三瀬
孝浩 奥屋
義隆 景山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2001068908A priority Critical patent/JP4698861B2/en
Publication of JP2002266239A publication Critical patent/JP2002266239A/en
Application granted granted Critical
Publication of JP4698861B2 publication Critical patent/JP4698861B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、炭素繊維前駆体アクリル繊維を耐炎化繊維に転換する耐炎化工程において単繊維間融着が発生することを防止するために用いられる油剤組成物に関し、また、品質および物性の優れた炭素繊維を製造するのに好適で、炭素繊維の製造に際して工程通過性が改善された炭素繊維前駆体アクリル繊維とその製造方法に関する。
【0002】
【従来の技術】
従来、アクリル繊維は炭素繊維の製造の前駆体として広く利用されている。アクリル繊維を200〜400℃の酸化性雰囲気中で加熱処理する事により耐炎化繊維に転換し、引き続いて少なくとも1000℃の不活性雰囲気中で炭素化する方法が炭素繊維の製造法として一般的である。このようにして得られた炭素繊維は、優れた物性により繊維強化樹脂複合材料の好適な強化繊維として広く利用されている。
【0003】
一方、上記の炭素繊維の製造方法において、炭素繊維前駆体アクリル繊維を耐炎化繊維に転換する耐炎化工程において単繊維間融着が発生し、焼成が不均一になり、毛羽や束切れといった障害が発生する。この融着を回避するためには、耐炎化前の炭素繊維前駆体アクリル繊維に付与する油剤の選択が重要である事が知られており、多くの油剤が検討されている。
【0004】
例えば、高い耐熱性を有し、融着を効果的に抑えることから、シリコーン油剤は炭素繊維前駆体用油剤としてよく使用されている(例えば、特開平5−140821号公報)。しかし、シリコーン油剤を使用すると、耐炎化及び炭素化工程においてシリコーン由来の酸化珪素等が発生し、焼成炉壁や排ガス処理ラインに付着・堆積して操業性の低下をもたらす。又、シリコーン由来の酸化珪素等が焼成工程のガイド・ローラ類に付着して工程通過性を低下させる場合や、工程糸に付着して炭素繊維品質を低下させる場合がある。
【0005】
これに対して、アミノ変性シリコーン等を配合しない炭素繊維前駆体油剤は、焼成時にシリコーン由来の酸化珪素等の発生がない点、原料が安価な点などから有利であるが、シリコーン系油剤ほどの耐熱性がないため、焼成時の融着が問題となり、炭素繊維の性能も劣るため、炭素繊維前駆体の製造に使用される機会は限定される。シリコーン系油剤の耐熱性を利用しつつ、酸化珪素等の飛散を減らす方法は、アミノ変性シリコーンを主成分とする油剤の付着量を減らす、油剤中のアミノ変性シリコーンの配合比を下げる、等の方法があるが、融着の発生や紡糸工程での集束性悪化など、工程通過性にも炭素繊維性能にも問題があった。この他に、例えば、特開昭58−137508号公報では、水膨潤状態のアクリル系繊維に非イオン活性剤および/又はカチオン活性剤を付与し、乾燥緻密化処理の後にシリコーン化合物(あるいは非イオン活性剤等との混合物)を付与することで炭素繊維前駆体の製糸工程や高温焼成処理における接着を抑制し、高強度のアクリル系炭素繊維が製造できることが述べられている。この方法でも、シリコーン由来の酸化珪素等の飛散を抑制する事は可能である。しかし、この方法では、炭素繊維前駆体の接着を抑制するには未だ不十分であり、炭素繊維前駆体の接着に起因する炭素繊維性能の低下は避けられなかった。
【0006】
【発明が解決しようとする課題】
本発明は、上記従来技術の問題点を解決し、炭素繊維前駆体アクリル繊維の製糸工程、炭素繊維前駆体アクリル繊維を耐炎化する耐炎化工程における繊維間の接着を抑え、従って、毛羽や束切れあるいは不均一焼成を防ぐことができ、かつ、耐炎化および炭素化工程における酸化珪素等の発生を抑え、従って、操業性や工程通過性および炭素繊維品質の低下を防ぐことができる油剤、また炭素繊維前駆体アクリル繊維とその製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、炭素繊維前駆体アクリル繊維の油剤付与を複数回に分けて行うこと、特には、糸条の乾燥緻密化前は非シリコーン系油剤を付与(第1段階)し、捲き取り前あるいは焼成前ではシリコーン系油剤を付与(第2段階)する2段階付与について鋭意検討し、紡糸工程通過性、焼成安定性、炭素繊維性能、コスト等の面から、第1段階では僅かにアミノ変性シリコーンを添加した低シリコーン油剤を付与し、第2段階ではアミノ変性シリコーンを主成分とするシリコーン系油剤を付与することで焼成でのシリカ等の飛散量を低減しつつシリコーン系油剤のみで処理した炭素繊維前駆体アクリル繊維に匹敵する炭素繊維性能が発現することを見出し、本発明を完成させた。
【0008】
発明は、式(1)
【0009】
【化4】

Figure 0004698861
【0010】
(式(1)において、R1およびR2はそれぞれ独立して炭素数7〜21のアルキル基、A1OおよびA2Oはそれぞれ独立してエチレンオキシド残基またはプロピレンオキシド残基であり、mおよびnはそれぞれ独立して1〜5の整数を表す)で示されるビスフェノールAのエチレンオキシドおよび/またはプロピレンオキシド付加物の両末端高級脂肪酸エステル化物を80〜95質量%、
式(2)
【0011】
【化5】
Figure 0004698861
【0012】
(式(2)において、jは10〜10000の整数、kは1〜100の整数を表す)
で示されるアミノ変性シリコーンを1.0〜15.0質量%、および
酸化防止剤を0.5〜10.0質量%含有する油剤組成物(以後、油剤組成物(1)と記す)を用いる
【0013】
本発明は、上記油剤組成物と250℃で2時間加熱後の残渣率が1.0質量%以下のノニオン系界面活性剤とを含み、該油剤組成物と該ノニオン系界面活性剤の質量比が85:15〜65:35であることを特徴とする炭素繊維前駆体アクリル繊維製造用油剤組成物(以後、油剤組成物(2)と記す)である。
【0014】
本発明は油剤処理された炭素繊維前駆体アクリル繊維を含む。すなわち本発明は、上記油剤組成物(2)が0.1〜1.0質量%付着したことを特徴とする炭素繊維前駆体アクリル繊維である。
【0015】
また本発明は、水膨潤状態にあるアクリル系繊維に、上記油剤組成物(2)を0.1〜1.0質量%付与し(第一の油剤付与という)、乾燥緻密化した後、さらに
式(2)
【0016】
【化6】
Figure 0004698861
【0017】
(式(2)において、jは10〜10000の整数、kは1〜100の整数を表す)
で示されるアミノ変性シリコーンまたは該アミノ変性シリコーンを含有する油剤組成物を付与する(第二の油剤付与という)ことを特徴とする炭素繊維前駆体アクリル繊維の製造方法である。
【0018】
本発明の炭素繊維前駆体アクリル繊維の製造方法においては、第一の油剤付与における油剤組成物の付与量と、第二の油剤付与におけるアミノ変成シリコーンまたは該アミノ変性シリコーンを含有する油剤組成物の付与量との合計が、0.3〜2.0質量%であることが好ましい。
【0019】
【発明の実施の形態】
以下に本発明を詳細に説明する。
【0020】
本発明において、油剤付与前の炭素繊維前駆体用のアクリル繊維には公知のアクリル繊維を用いることができ、その組成は特に限定されるものではないが、アクリロニトリル単位95質量%以上とアクリロニトリルと共重合可能なビニル系単量体単位5質量%以下とからなるアクリロニトリル系重合体を紡糸して得られるアクリル繊維が好ましい。さらにこの共重合可能なビニル系単量体としては、アクリル酸、メタクリル酸、イタコン酸、又は、これらのアルカリ金属塩もしくはアンモニウム塩およびアクリルアミド等の単量体群から選ばれる1種以上の単量体が耐炎化反応を促進する上で好ましい。このようなアクリル繊維からなる繊維束の製造方法も特に限定されるものではなく、公知の湿式、乾式および乾湿式の各紡糸方式が採用できる。
【0021】
本発明における式(1)で示されるビスフェノールAのエチレンオキシドおよび/またはプロピレンオキシド付加物の両末端高級脂肪酸エステル化物において、式中のR1およびR2はそれぞれ独立して炭素数7〜21のアルキル基であり、R1またはR2を形成するカルボン酸としては、具体的にはラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸等の高級脂肪酸から選ばれることが好ましい。
【0022】
【化7】
Figure 0004698861
【0023】
エチレンオキシドおよび/またはプロピレンオキシドの付加モル数m、nは、1〜5が好ましい。この範囲を超える付加モル数になると、式(1)の化合物の長所である耐熱性が損なわれる場合がある。また本発明の油剤組成物における式(1)の化合物の含有量は80〜95質量%の範囲内にするのがよい。80質量%より少ないと炭素繊維の性能が低下する傾向があり、また、95質量%より多いと炭素繊維前駆体の製糸工程や高温焼成処理における接着を抑制する効果が不十分で、工程通過性や炭素繊維の性能が低下する可能性があるため好ましくない。
【0024】
式(2)で示されるアミノ変性シリコーンにおいて、10≦j≦10000、1≦k≦100であり、好ましくは50≦j≦1000、1≦k≦10である。j、kがこの範囲を外れると、炭素繊維の性能発現性や耐熱性が低下するため好ましくない。
【0025】
【化8】
Figure 0004698861
【0026】
また前記油剤組成物における式(2)の化合物の含有量は1.0〜15.0質量%の範囲内にするのがよい。1.0質量%より少ないと炭素繊維の性能が低下する傾向があり、15.0質量%より多くても耐熱性の向上効果は変わらず、繊維束の集束性が悪化するため好ましくない。また、アミノ変性シリコーン含有量を増やすことは、焼成での酸化珪素等の発生の抑制という本発明の目的にも反する。
【0027】
本発明において、酸化防止剤としては、ペンタエリスリチル‐テトラキス〔3‐(3,5‐ジ‐t‐ブチル‐4‐ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール‐ビス〔3‐(3‐t‐ブチル‐5‐メチル‐4‐ヒドロキシフェニル)プロピオネート〕、オクタデシル‐3‐(3,5‐ジ‐t‐ブチル‐4‐ヒドロキシフェニル)プロピオネート、1,3,5‐トリス(4‐t‐ブチル‐3‐ヒドロキシ‐2,6‐ジメチルベンジル)イソシアヌル酸、2,2‐チオ‐ジエチレンビス〔3‐(3,5‐ジ‐t‐ブチル‐4‐ヒドロキシフェニル)プロピオネート〕、4,4’‐ブチリデンビス(3‐メチル‐6‐t‐ブチルフェニル‐ジトリデシルホスファイト)などが好ましく用いられ、これらは単独でも組み合わせでも良い。また前記油剤組成物における酸化防止剤の含有量は0.5〜10.0質量%の範囲内にするのがよい。0.5質量%より少ないと耐熱性効果が十分でなく、10.0質量%を超えて添加しても耐熱性の向上効果は変わらず、酸化防止剤が加熱残渣として耐炎化糸や炭素化糸に残存する事や、この油剤を水に分散した場合にエマルションの安定性が低下する事があるため、好ましくない。
【0028】
本発明の炭素繊維前駆体アクリル繊維は、式(1)で示されるビスフェノールA誘導体、式(2)で示されるアミノ変性シリコーン及び酸化防止剤を含む混合物にノニオン系界面活性剤を混合して水中に分散したエマルションの状態で付与することできる。
【0029】
本発明において使用するノニオン系界面活性剤には、特に制限はないが、好適な例としてはポリオキシアルキレングリコール脂肪酸エステル、脂肪族アルコールのアルキレンオキシド付加物、アルキル置換フェノールのアルキレンオキシド付加物などが挙げられ、疎水部のアルキル鎖は直鎖状でも分岐していてもよい。このノニオン系界面活性剤のHLBは6〜16であることが望ましい。また、これらのノニオン系界面活性剤が焼成工程において加熱残渣として耐炎化糸や炭素化糸に残存することは好ましくないので、空気中250℃で2時間加熱後の残渣率が1.0%以下であることが好ましく、0.5%以下であることが更に好ましい。この様なノニオン系界面活性剤の親水部のオキシアルキレン単位の繰り返し数、オキシアルキレン単位の種類やオキシアルキレン単位の繰り返しの形態は、油剤の水分散物が安定なエマルションとなるように適宜選択することができる。
【0030】
前記油剤組成物と上記ノニオン系界面活性剤との混合比は、質量比85:15〜65:35の範囲とすることが好ましい。ノニオン系界面活性剤の比率が15質量%より少ないとエマルションの安定性が低下して繊維への付着斑(ムラ)が生じる傾向があり、また、35質量%より多いと炭素繊維の性能が低下する傾向がある。
【0031】
本発明の油剤組成物の調製方法としては、公知の各種油剤調製法が適用でき、式(1)で示されるビスフェノールA誘導体、式(2)で示されるアミノ変性シリコーン、及び酸化防止剤を混合し、この混合物をノニオン系界面活性剤を混合した水に分散することできる。また、式(1)で示されるビスフェノールA誘導体、式(2)で示されるアミノ変性シリコーン、酸化防止剤に更にノニオン系界面活性剤を混合し、これを水中に分散することもできる。
【0032】
例えば式(1)で示されるビスフェノールA誘導体に攪拌しながら酸化防止剤を必要に応じて加熱しつつ添加し、この混合物に乳化剤(ノニオン系界面活性剤)と式(2)で示されるアミノ変性シリコーンを添加攪拌したものを水中に分散させる事で油剤組成物の水系エマルションが得られる。
【0033】
各成分の混合または水中分散は、プロペラ攪拌、ホモミキサー、ホモジナイザー等を使って行うことができる。また、ビスフェノールA誘導体とアミノ変性シリコーンを別々に乳化して、繊維付着前に混合することも可能である。
【0034】
なお、これらの成分からなる油剤組成物には、その特性向上のために帯電防止剤、浸透剤、消泡剤、防腐剤などを適宜配合することは差し支えない。
【0035】
本発明の油剤組成物をアクリル系繊維に付着するに際しては、水系エマルションとしてローラー給油、浸漬法など公知の方法で付着させる。なお、油剤組成物をエマルションとせずに直接アクリル系繊維に付着させることもできるが、その場合は繊維束が乾燥していることが必要である。
【0036】
上記成分からなる油剤組成物の付与量は、繊維の乾燥質量に対し0.1〜2.0質量%、好ましくは0.2〜1.0質量%の範囲がよく、0.1%未満の付与量では本発明の目的である耐炎化工程での毛羽・束切れ及び単繊維間接着を抑制できず、2.0%を超える付与量では、耐炎化工程での熱劣化物が多くなり好ましくない。
【0037】
本発明の炭素繊維前駆体アクリル繊維は、乾燥緻密化前の水膨潤状態のアクリル繊維に上述のビスフェノールA誘導体を主成分とする油剤組成物を水分散物として付与し、乾燥緻密化した後、第二の油剤付与をする工程を経て製造される。第二の油剤付与工程では、式(2)
【0038】
【化9】
Figure 0004698861
【0039】
(式(2)において、jは10〜10000の整数、kは1〜100の整数を表す)
で示されるアミノ変性シリコーンまたは該アミノ変性シリコーンを含有する油剤組成物を付与する。
【0040】
第二の油剤付与に際しては、上記アミノ変性シリコーンを直接付与することも、前記油剤組成物に使用できるノニオン系界面活性剤で上記アミノ変性シリコーンを水中に分散したものを付与液とすることもできる。第二の油剤付与にアミノ変性シリコーンとノニオン系界面活性剤とを使用する場合、アミノ変性シリコーンの比率はアミノ変性シリコーンとノニオン系界面活性剤の合計量に対して70質量%以上であることが望ましい。なお、第二の油剤付与で付与する油剤組成物についても、その特性向上のために帯電防止剤、浸透剤、消泡剤、防腐剤などを適宜配合することは差し支えない。第二の油剤付与は、乾燥緻密化の直後から焼成の直前までの間に行うことができ、前記アミノ変性シリコーンまたはアミノ変性シリコーンを含む油剤組成物を、ローラー給油、浸漬法など公知の方法で付与することができる。
【0041】
第二の油剤付与における油剤の付着量は、第一段階での油剤付着量が適正であれば、できるだけ少量を均一に付着させるのが好ましい。付着量が多くなっても付着斑(ムラ)等による工程トラブルが起きなければ問題ないが、アミノ変性シリコーンが多く付着することになり、焼成での酸化珪素等の発生の抑制という本発明の目的に反する。第一および第二の油剤付与において付与する油剤の合計の付着量は、油剤付着前の繊維の乾燥質量に対し0.3〜2.0質量%が望ましい。
【0042】
【実施例】
以下に本発明を実施例によりさらに具体的に説明するが、本発明の炭素繊維前駆体用油剤はこれらによって限定されるものではない。なお、実施例9は参考用である。ノニオン系界面活性剤加熱残渣、単繊維間融着数、耐炎化工程前工程通過性、シリコーン系油剤分解物飛散量及び炭素繊維ストランド強度は以下の方法により評価した。
【0043】
[ノニオン系界面活性剤加熱残渣]
アルミシャーレ(直径60mm、深さ10mm)にノニオン系界面活性剤2.0gを精秤し、空気中250℃で2時間加熱した後の残分について残渣率を算出した。加熱残渣率が大きいほど、ノニオン系界面活性剤の熱劣化物が耐炎化糸や炭素化糸に残存する可能性が大きい事を意味する。
【0044】
[単繊維間融着数(融着数)]
炭素化糸のトウを3mm長に切断し、アセトン中に分散させ、マグネティックスターラーを用い10分間攪拌した後の全単繊維数と融着数を計数し、繊維100本当たりの融着数を算出した。評価基準は下記の通りである。
○:融着数(個/100本)≦1
×:融着数(個/100本)>1
[耐炎化工程前工程通過性(工程通過性)]
炭素繊維前駆体のアクリル繊維を用いて、1週間連続して炭素繊維を製造した時の耐炎化工程前、炭素繊維前駆体アクリル繊維の段階でのロール等への巻き付き回数により、前駆体アクリル繊維の段階での毛羽、糸切れの量を評価した。評価基準は下記の通りである。
○:巻き付き回数(回/1日)≦1
△:1<巻き付き回数(回/1日)≦10
×:巻き付き回数(回/1日)>10
[シリコーン系油剤分解物飛散量(シリカ飛散)]
炭素繊維を1週間連続して製造した時の耐炎化炉の掃除頻度により、耐炎化炉内のシリコーン系油剤分解物量を表した。掃除は、耐炎化炉のエアー循環ラインのシリカ捕捉用フィルターが詰まって、循環ポンプの圧損が大きくなった段階で焼成を中断して行った。シリカ飛散の評価基準は下記の通りである。
○:掃除回数(回/1週間)≦1
×:掃除回数(回/1週間)>1
[炭素繊維ストランド強度(CF強度)]
JIS−R−7601に規定されているエポキシ樹脂含浸ストランド法に準じて測定した値である。(なお、測定回数は10回であり、物性値はその平均値を以て示した。)
(実施例1〜9)
油剤エマルション調製は以下の方法で行った。
【0045】
式(1)で示されるビスフェノールAのエチレンオキシドおよび/またはプロピレンオキシド付加物の両末端高級脂肪酸エステル化物(表1の成分A)と式(2)で示されるアミノ変性シリコーン(成分B)、酸化防止剤(成分C)、ノニオン乳化剤(成分D)を表1に示す比率(質量%)で混合したものにイオン交換水を加え(成分A〜Dの合計濃度を25質量%に調整)、ホモミキサーで乳化し、さらに高圧ホモジナイザーで、30MPaで二次乳化をおこない油剤エマルションを得た。
【0046】
なお、表1の油剤組成は、成分A、B、Cの合計が100となるように示した。また、「D質量比」は、成分A〜Dの合計量に対する成分Dの比率を質量%で表したものである。
【0047】
【表1】
Figure 0004698861
【0048】
【表2】
Figure 0004698861
【0049】
表中の成分A〜Dにおける(1)〜(15)は、次の物質を表す。
(1)ビスフェノールAのエチレンオキシド2モル付加物のジラウリルエステル。m=1,n=1
(2)ビスフェノールAのエチレンオキシド4モル付加物のジラウリルエステル。m=2,n=2
(3)ビスフェノールAのエチレンオキシド2モル・プロピレンオキシド2モル付加物のジラウリルエステル。m=2,n=2
(4)ビスフェノールAのエチレンオキシド12モル付加物のジラウリルエステル。m=7,n=6
(5)アミノ変性シリコーン(j=60,k=1)
(6)アミノ変性シリコーン(j=300,k=8)
(7)アミノ変性シリコーン(j=2000,k=150)
(8)ペンタエリスリチル‐テトラキス〔3‐(3,5‐ジ‐t‐ブチル‐4‐ヒドロキシフェニル)プロピオネート〕
(9)トリエチレングリコール‐ビス〔3‐(3‐t‐ブチル‐5‐メチル‐4‐ヒドロキシフェニル)プロピオネート〕
(10)1,3,5‐トリス(4‐t‐ブチル‐3‐ヒドロキシ‐2,6‐ジメチルベンジル)イソシアヌル酸
(11)ポリオキシエチレンラウリルエーテル[EO(エチレンオキサイド):10モル,HLB:14.0]
加熱残渣(250℃、2時間加熱後の質量)0.4質量%
(12)ポリオキシエチレンラウリルエーテル[EO:5モル,HLB:10.8]
加熱残渣(250℃、2時間加熱後の質量)0.6質量%
(13)ポリオキシエチレントリデシルエーテル[EO:10モル,HLB:13.7]
加熱残渣(250℃、2時間加熱後の質量)0.7質量%
(14)ヤシ脂肪酸還元アルコールエチレンオキシド付加物[EO:9モル,HLB:13.1]
加熱残渣(250℃、2時間加熱後の質量)5.0質量%
(15)ポリオキシエチレン硬化ヒマシ油[EO:10モル,HLB:12.5]
加熱残渣(250℃、2時間加熱後の質量)15質量%
アクリロニトリル共重合体(アクリロニトリル単位/メタクリル酸単位/アクリルアミド単位の質量比97.1/0.9/2.0)をジメチルアセトアミドに溶解し、重合体濃度21質量%、60℃における粘度が500ポイズの紡糸原液を調製し、35℃の69質量%ジメチルアセトアミド水溶液を満たした凝固浴中に孔径(直径)0.75mm、孔数12000の紡糸口金より吐出し凝固糸とした。凝固糸は水洗槽中で脱溶媒するとともに5倍に延伸して水膨潤状態のアクリル繊維とした。
【0050】
(第一の油剤付与)
この水膨潤状態にあるアクリル繊維を、表1で示した油剤組成物の水分散液を満たした油浴に導き、油剤組成物を付着させた後、表面温度130℃の加熱ロールで乾燥緻密化し、さらに表面温度170℃の加熱ロール間で1.7倍延伸を施し前駆体アクリル繊維を得た。
【0051】
この前駆体アクリル繊維は、単糸繊度1.2dtex、引張り強度7g/dtex、伸度10.5%で油剤の繊維への付着量は0.8質量%であった。 なお、(実施例9)は、ビスフェノールAのエチレンオキシド付加物の両末端高級脂肪酸エステル化物とアミノ変性シリコーン及び、酸化防止剤を表1の比率(質量%)で混合したものであり、水に分散せず加温して、上記の油剤組成物の水分散液と同様に付着処理した。
【0052】
(第二の油剤付与)
アミノ変性シリコーン(式(2)においてj=300、k=8)が85質量%と、ポリオキシエチレンラウリルエーテル(EO:10モル)が15質量%とからなる混合物を前記第一の油剤付与と同様の方法で乳化し、1.0質量%の水分散液としたものを調製し、これを満たした浴に、前記第一の油剤付与および乾燥緻密化を終えたアクリル繊維を導き、第二の油剤付与を行い、続いて表面温度130℃の加熱ロールで乾燥処理して本発明の炭素繊維前駆体アクリル繊維を得た。 第一段階、第二段階の油剤組成物の繊維への合計付着量は1.1質量%であった。
【0053】
この炭素繊維前駆体アクリル繊維を、230〜270℃の温度勾配を有する耐炎化炉に60分かけて通し、さらに窒素雰囲気中で300〜1300℃の温度勾配を有する炭素化炉で焼成して炭素繊維とした。
【0054】
ここで得られた炭素化糸の融着数及び炭素繊維ストランド強度、耐炎化工程前工程通過性、耐炎化工程でのシリコーン分解物飛散量の評価(炉の掃除回数により評価)を表1に示した。
【0055】
(比較例1〜12)
本発明の比較例として、第一の油剤付与に用いる油剤組成物を表1に示した成分とした以外は実施例1と同様に炭素繊維を製造し、評価した。表1に結果を示すように、炭素化糸融着数、工程通過性、CF強度のいずれか(あるいは全ての項目)が実施例より劣る結果となった。また、工程通過性不良となった例については、シリカ飛散に関する評価は行っていない。第一の油剤付与における1段目油剤のアミノ変性シリコーン比率を増やした場合(比較例5)は、融着数、CF強度は実施例と同等であるが、シリカ飛散が多くなり、耐炎化炉の掃除頻度が増大した。
【0056】
【発明の効果】
本発明の炭素繊維前駆体用油剤組成物は耐熱性が良好なため、この油剤組成物あるいはそのエマルションが付与された炭素繊維前駆体アクリル繊維は、炭素繊維前駆体の段階で単糸間接着がなく、毛羽が実質的に存在せず、この炭素繊維前駆体アクリル繊維を用いて炭素繊維を製造すると、耐炎化工程での前駆体繊維の毛羽、糸切れ及び単糸間融着が効果的に抑えられ、品質および物性の優れた炭素繊維を製造することができる。また、耐炎化工程および炭素化工程でのシリコーン分解物の飛散量が少ないため、耐炎化工程および炭素化工程での操業性、工程通過性が著しく改善される。またこのように優れた炭素繊維前駆体アクリル繊維を好適に製造できる製造方法が提供された。[0001]
[Industrial application fields]
The present invention relates to an oil agent composition used for preventing the occurrence of fusion between single fibers in a flameproofing process in which a carbon fiber precursor acrylic fiber is converted to a flameproofed fiber, and has excellent quality and physical properties. The present invention relates to a carbon fiber precursor acrylic fiber that is suitable for producing carbon fiber and has improved process passability in the production of carbon fiber, and a method for producing the same.
[0002]
[Prior art]
Conventionally, acrylic fibers have been widely used as precursors for the production of carbon fibers. A common method for producing carbon fibers is to convert acrylic fibers to flame-resistant fibers by heat treatment in an oxidizing atmosphere at 200 to 400 ° C., followed by carbonization in an inert atmosphere at least 1000 ° C. is there. The carbon fibers thus obtained are widely used as suitable reinforcing fibers for fiber-reinforced resin composite materials due to their excellent physical properties.
[0003]
On the other hand, in the above-described carbon fiber production method, inter-fiber fusion occurs in the flameproofing step of converting the carbon fiber precursor acrylic fiber to flameproofing fiber, firing becomes uneven, and obstacles such as fluff and bundle breakage Will occur. In order to avoid this fusion, it is known that it is important to select an oil agent to be applied to the carbon fiber precursor acrylic fiber before flame resistance, and many oil agents have been studied.
[0004]
For example, silicone oil is often used as an oil for carbon fiber precursors because it has high heat resistance and effectively suppresses fusion (for example, Japanese Patent Laid-Open No. 5-140821). However, when a silicone oil is used, silicon-derived silicon oxide or the like is generated in the flame resistance and carbonization processes, and adheres to and accumulates on the firing furnace wall and the exhaust gas treatment line, resulting in a decrease in operability. Further, silicon-derived silicon oxide or the like may adhere to the guide rollers in the firing process and reduce process passability, or may adhere to the process yarn and reduce the carbon fiber quality.
[0005]
In contrast, a carbon fiber precursor oil that does not contain amino-modified silicone or the like is advantageous in that it does not generate silicon oxide derived from silicone at the time of firing, and the raw material is inexpensive. Since there is no heat resistance, fusion during firing becomes a problem, and the performance of the carbon fiber is inferior, so the opportunities for use in the production of the carbon fiber precursor are limited. The method of reducing the scattering of silicon oxide and the like while utilizing the heat resistance of the silicone-based oil agent is to reduce the adhesion amount of the oil agent mainly composed of amino-modified silicone, to reduce the compounding ratio of amino-modified silicone in the oil agent, etc. Although there is a method, there have been problems in both process passability and carbon fiber performance, such as occurrence of fusion and deterioration of convergence in the spinning process. In addition, for example, in Japanese Patent Application Laid-Open No. 58-137508, a nonionic active agent and / or a cationic active agent is imparted to a water-swelled acrylic fiber, and a silicone compound (or nonionic) is applied after the drying densification treatment. It is stated that by applying a mixture with an activator or the like, it is possible to suppress the adhesion in the spinning process of the carbon fiber precursor and the high-temperature firing treatment, and to produce high-strength acrylic carbon fibers. Even with this method, scattering of silicon-derived silicon oxide and the like can be suppressed. However, this method is still insufficient for suppressing the adhesion of the carbon fiber precursor, and the deterioration of the carbon fiber performance due to the adhesion of the carbon fiber precursor is inevitable.
[0006]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems of the prior art, suppresses the adhesion between fibers in the process of producing the carbon fiber precursor acrylic fiber and the flame resistance process of making the carbon fiber precursor acrylic fiber flame resistant. An oil agent that can prevent cutting or non-uniform firing and suppress the generation of silicon oxide or the like in the flame resistance and carbonization processes, and thus prevent deterioration of operability, process passability, and carbon fiber quality, and It aims at providing a carbon fiber precursor acrylic fiber and its manufacturing method.
[0007]
[Means for Solving the Problems]
The present inventors apply the oil agent of the carbon fiber precursor acrylic fiber in a plurality of times, in particular, before applying the non-silicone oil agent (first step) before drying and densification of the yarn, Prior to firing or before firing, a two-step application of applying a silicone-based oil agent (second stage) has been intensively studied. From the viewpoint of spinning process passability, firing stability, carbon fiber performance, cost, etc., the first stage is slightly amino. Low silicone oil added with modified silicone is applied, and in the second stage, silicone oil containing amino-modified silicone as the main component is applied to reduce the amount of silica, etc. during firing, and only treated with silicone oil. The present invention was completed by finding that carbon fiber performance comparable to the carbon fiber precursor acrylic fiber developed was exhibited.
[0008]
In the present invention , the formula (1)
[0009]
[Formula 4]
Figure 0004698861
[0010]
(In the formula (1), R 1 and R 2 are each independently an alkyl group having 7 to 21 carbon atoms, A 1 O and A 2 O are each independently an ethylene oxide residue or a propylene oxide residue, m And n each independently represents an integer of 1 to 5) 80 to 95% by mass of a both-end higher fatty acid ester of bisphenol A ethylene oxide and / or propylene oxide adduct,
Formula (2)
[0011]
[Chemical formula 5]
Figure 0004698861
[0012]
(In Formula (2), j represents an integer of 10 to 10000, and k represents an integer of 1 to 100)
In 1.0 to 15.0% by weight of amino-modified silicone represented, and antioxidant oil composition you content 0.5 to 10.0 wt% (hereinafter referred to as oil agent composition (1)) Is used .
[0013]
The present invention includes the oil composition and a nonionic surfactant having a residue ratio of 1.0% by mass or less after heating at 250 ° C. for 2 hours, and the mass ratio of the oil composition to the nonionic surfactant Is an oil agent composition for producing a carbon fiber precursor acrylic fiber (hereinafter referred to as an oil agent composition (2)).
[0014]
The present invention includes an oil-treated carbon fiber precursor acrylic fiber. That is, the present invention comprises an upper Symbol oil agent composition (2) is a carbon fiber precursor acrylic fiber characterized by adhering 0.1 to 1.0 wt%.
[0015]
In the present invention, 0.1 to 1.0% by mass of the oil agent composition (2) is added to the acrylic fiber in a water-swollen state (referred to as first oil agent application), and after drying and densification, Formula (2)
[0016]
[Chemical 6]
Figure 0004698861
[0017]
(In Formula (2), j represents an integer of 10 to 10000, and k represents an integer of 1 to 100)
Or an oil agent composition containing the amino-modified silicone (referred to as second oil agent application).
[0018]
In the method for producing the carbon fiber precursor acrylic fiber of the present invention, the amount of the oil agent composition applied in the first oil agent application, the amino-modified silicone in the second oil agent application, or the oil agent composition containing the amino-modified silicone in the second oil agent application. The total amount with the applied amount is preferably 0.3 to 2.0% by mass.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
[0020]
In the present invention, a known acrylic fiber can be used as the acrylic fiber for the carbon fiber precursor before application of the oil agent, and the composition thereof is not particularly limited, but 95% by mass or more of the acrylonitrile unit and the acrylonitrile. An acrylic fiber obtained by spinning an acrylonitrile polymer comprising 5% by mass or less of a polymerizable vinyl monomer unit is preferred. Further, the copolymerizable vinyl-based monomer includes acrylic acid, methacrylic acid, itaconic acid, or one or more monomers selected from the group of monomers such as alkali metal salts or ammonium salts thereof and acrylamide. The body is preferred for promoting the flameproofing reaction. The method for producing such a fiber bundle made of acrylic fibers is not particularly limited, and any of known wet, dry and dry and wet spinning methods can be employed.
[0021]
In the present invention, both terminal higher fatty acid ester products of ethylene oxide and / or propylene oxide adducts of bisphenol A represented by the formula (1) in the formula, R 1 and R 2 are each independently alkyl having 7 to 21 carbon atoms. Specifically, the carboxylic acid which is a group and forms R 1 or R 2 is preferably selected from higher fatty acids such as lauric acid, myristic acid, palmitic acid and stearic acid.
[0022]
[Chemical 7]
Figure 0004698861
[0023]
As for the addition mole number m and n of ethylene oxide and / or propylene oxide, 1-5 are preferable. If the number of moles added exceeds this range, the heat resistance, which is an advantage of the compound of formula (1), may be impaired. In addition, the content of the compound of formula (1) in the oil agent composition of the present invention is preferably in the range of 80 to 95% by mass. If the amount is less than 80% by mass, the performance of the carbon fiber tends to be deteriorated. If the amount is more than 95% by mass, the effect of suppressing the adhesion in the spinning process and high-temperature firing process of the carbon fiber precursor is insufficient, and the process passability And the performance of the carbon fiber may be deteriorated.
[0024]
In the amino-modified silicone represented by the formula (2), 10 ≦ j ≦ 10000, 1 ≦ k ≦ 100, preferably 50 ≦ j ≦ 1000, 1 ≦ k ≦ 10. If j and k are out of this range, the carbon fiber performance and heat resistance are lowered, which is not preferable.
[0025]
[Chemical 8]
Figure 0004698861
[0026]
The content of the compound of formula (2) in the oil composition is preferably in the range of 1.0 to 15.0% by mass. If the amount is less than 1.0% by mass, the performance of the carbon fiber tends to be reduced. If the amount is more than 15.0% by mass, the effect of improving the heat resistance is not changed, and the convergence of the fiber bundle is deteriorated. Further, increasing the amino-modified silicone content is also contrary to the object of the present invention, that is, suppressing the generation of silicon oxide and the like during firing.
[0027]
In the present invention, as the antioxidant, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], triethylene glycol-bis [3- (3-t- Butyl-5-methyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 1,3,5-tris (4-t-butyl- 3-hydroxy-2,6-dimethylbenzyl) isocyanuric acid, 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 4,4'-butylidenebis (3-methyl-6-tert-butylphenyl-ditridecyl phosphite) and the like are preferably used, and these may be used alone or in combination. good. Moreover, it is good to make content of the antioxidant in the said oil agent composition into the range of 0.5-10.0 mass%. If the amount is less than 0.5% by mass, the heat resistance effect is not sufficient, and even if added in excess of 10.0% by mass, the effect of improving the heat resistance is not changed. It is not preferable because it remains in the yarn or the stability of the emulsion may be lowered when this oil is dispersed in water.
[0028]
Carbon fiber precursor acrylic fiber of the present invention, mixing the nonionic surfactant bisphenol A derivative represented by the formula (1), the amino-modified silicone and antioxidants represented by the formula (2) in including mixed compound it can be imparted in the form of an emulsion dispersed in water and.
[0029]
The nonionic surfactant used in the present invention is not particularly limited, and preferred examples include polyoxyalkylene glycol fatty acid esters, alkylene oxide adducts of aliphatic alcohols, and alkylene oxide adducts of alkyl-substituted phenols. For example, the alkyl chain in the hydrophobic part may be linear or branched. The nonionic surfactant preferably has an HLB of 6 to 16. Further, since it is not preferable that these nonionic surfactants remain in the flame-resistant yarn or carbonized yarn as a heating residue in the firing step, the residue ratio after heating at 250 ° C. in air for 2 hours is 1.0% or less. It is preferable that it is 0.5% or less. The number of repeating oxyalkylene units in the hydrophilic part of such a nonionic surfactant, the type of oxyalkylene units, and the form of repeating oxyalkylene units are appropriately selected so that the aqueous dispersion of the oil becomes a stable emulsion. be able to.
[0030]
The mixing ratio of the oil composition and the nonionic surfactant is preferably in the range of a mass ratio of 85:15 to 65:35. When the ratio of the nonionic surfactant is less than 15% by mass, the stability of the emulsion tends to be lowered and uneven adhesion to the fiber tends to occur, and when it exceeds 35% by mass, the performance of the carbon fiber is degraded. Tend to.
[0031]
As a method for preparing the oil agent composition of the present invention, various known oil agent preparation methods can be applied, and a bisphenol A derivative represented by formula (1), an amino-modified silicone represented by formula (2), and an antioxidant are mixed. and, it is possible to disperse the mixture of this in water mixed nonionic surface active agents. Further, a nonionic surfactant may be further mixed with the bisphenol A derivative represented by the formula (1), the amino-modified silicone represented by the formula (2), and the antioxidant, and dispersed in water.
[0032]
For example, an antioxidant is added to the bisphenol A derivative represented by the formula (1) while stirring as necessary, and an emulsifier (nonionic surfactant) and an amino modification represented by the formula (2) are added to the mixture. A water-based emulsion of the oil composition can be obtained by dispersing the mixture with addition of silicone in water.
[0033]
Each component can be mixed or dispersed in water using a propeller, a homomixer, a homogenizer or the like. It is also possible to emulsify the bisphenol A derivative and the amino-modified silicone separately and mix them before attaching the fibers.
[0034]
In addition, an antistatic agent, a penetrating agent, an antifoaming agent, an antiseptic and the like may be appropriately blended in the oil agent composition comprising these components in order to improve the characteristics.
[0035]
When attaching the oil composition of the present invention to the acrylic fiber, it is attached as a water-based emulsion by a known method such as roller oiling or dipping. In addition, although an oil agent composition can also be made to adhere directly to acrylic fiber, without making it an emulsion, in that case, the fiber bundle needs to be dried.
[0036]
The amount of the oil composition composed of the above components is 0.1 to 2.0% by mass, preferably 0.2 to 1.0% by mass, and less than 0.1% with respect to the dry mass of the fiber. The application amount cannot suppress fluff, bundle breakage and single fiber adhesion in the flameproofing process, which is the object of the present invention, and an application amount exceeding 2.0% is preferable because the heat deteriorated product in the flameproofing process increases. Absent.
[0037]
After the carbon fiber precursor acrylic fiber of the present invention is applied to the acrylic fiber in a water swollen state before dry densification as an aqueous dispersion with the above-mentioned bisphenol A derivative as a main component, and dried and densified, It is manufactured through a step of applying a second oil agent. In the second oil agent application step, the formula (2)
[0038]
[Chemical 9]
Figure 0004698861
[0039]
(In Formula (2), j represents an integer of 10 to 10000, and k represents an integer of 1 to 100)
Or an oil agent composition containing the amino-modified silicone.
[0040]
When applying the second oil agent, the amino-modified silicone can be directly applied, or a nonionic surfactant that can be used in the oil agent composition and the amino-modified silicone dispersed in water can be used as the application liquid. . When the amino-modified silicone and the nonionic surfactant are used for providing the second oil agent, the ratio of the amino-modified silicone is 70% by mass or more based on the total amount of the amino-modified silicone and the nonionic surfactant. desirable. It should be noted that the oil composition to be imparted by applying the second oil agent may be appropriately mixed with an antistatic agent, a penetrating agent, an antifoaming agent, a preservative, and the like in order to improve its properties. The second oil agent can be applied immediately after dry densification until immediately before firing, and the amino-modified silicone or the oil-containing composition containing the amino-modified silicone can be applied by a known method such as roller oiling or dipping. Can be granted.
[0041]
If the oil agent adhesion amount in the first stage is appropriate, it is preferable that the oil agent adhesion amount in the second oil agent application is as small as possible uniformly. Even if the adhesion amount increases, there is no problem unless a process trouble due to adhesion spots (unevenness) occurs. However, a large amount of amino-modified silicone adheres, and the object of the present invention is to suppress the generation of silicon oxide and the like during firing. Contrary to As for the total adhesion amount of the oil agent provided in 1st and 2nd oil agent provision, 0.3-2.0 mass% is desirable with respect to the dry mass of the fiber before oil agent adhesion.
[0042]
【Example】
The present invention will be described more specifically with reference to the following examples. However, the oil agent for carbon fiber precursor of the present invention is not limited thereto. Note that Example 9 is for reference. Nonionic surfactant heating residue, the number of fusions between single fibers, flameproofing process pre-process passability, amount of silicone oil decomposed material scattered and carbon fiber strand strength were evaluated by the following methods.
[0043]
[Nonionic surfactant heated residue]
A nonionic surfactant (2.0 g) was precisely weighed in an aluminum petri dish (diameter 60 mm, depth 10 mm), and the residue rate was calculated for the residue after heating in air at 250 ° C. for 2 hours. The larger the heating residue rate, the greater the possibility that the nonionic surfactant thermally deteriorated material will remain in the flame-resistant yarn or carbonized yarn.
[0044]
[Number of fusions between single fibers (number of fusions)]
Cut the tow of carbonized yarn to 3 mm length, disperse in acetone, count the total number of single fibers and number of fusions after stirring for 10 minutes using a magnetic stirrer, and calculate the number of fusions per 100 fibers. did. The evaluation criteria are as follows.
○: Number of fusions (pieces / 100 pieces) ≦ 1
×: Number of fusions (pieces / 100 pieces)> 1
[Passability before flameproofing process (process passability)]
Using the acrylic fiber of the carbon fiber precursor, before the flameproofing process when the carbon fiber is produced continuously for one week, depending on the number of windings on the roll or the like at the stage of the carbon fiber precursor acrylic fiber, the precursor acrylic fiber The amount of fluff and yarn breakage at the stage was evaluated. The evaluation criteria are as follows.
○: Number of windings (times / day) ≦ 1
Δ: 1 <number of windings (times / day) ≦ 10
×: Number of windings (times / day)> 10
[Amount of silicone oil decomposed product scattering (silica scattering)]
The amount of decomposition product of the silicone-based oil in the flameproofing furnace was represented by the frequency of cleaning of the flameproofing furnace when carbon fibers were continuously produced for one week. Cleaning was carried out by interrupting firing when the silica trapping filter in the air circulation line of the flameproofing furnace was clogged and the pressure loss of the circulation pump increased. The evaluation criteria for silica scattering are as follows.
○: Number of cleanings (times / week) ≤ 1
×: Number of cleanings (times / week)> 1
[Carbon fiber strand strength (CF strength)]
It is the value measured according to the epoxy resin impregnation strand method prescribed | regulated to JIS-R-7601. (The number of measurements was 10 times, and the physical property values are shown as average values.)
(Examples 1-9)
The oil emulsion was prepared by the following method.
[0045]
Biaxially higher fatty acid esterified product of ethylene oxide and / or propylene oxide adduct of bisphenol A represented by formula (1) (component A in Table 1) and amino-modified silicone represented by formula (2) (component B), antioxidant Ion-exchanged water was added to the mixture of the agent (component C) and the nonionic emulsifier (component D) in the ratio (mass%) shown in Table 1 (the total concentration of ingredients AD was adjusted to 25 mass%), and a homomixer The mixture was further emulsified with a high pressure homogenizer and subjected to secondary emulsification at 30 MPa to obtain an oil emulsion.
[0046]
In addition, the oil agent composition of Table 1 was shown so that the sum total of component A, B, and C might be set to 100. Moreover, "D mass ratio" represents the ratio of the component D with respect to the total amount of the components AD with mass%.
[0047]
[Table 1]
Figure 0004698861
[0048]
[Table 2]
Figure 0004698861
[0049]
(1) to (15) in the components A to D in the table represent the following substances.
(1) Dilauryl ester of bisphenol A ethylene oxide 2-mol adduct. m = 1, n = 1
(2) Dilauryl ester of bisphenol A ethylene oxide 4 mol adduct. m = 2, n = 2
(3) Dilauryl ester of bisphenol A ethylene oxide 2 mol / propylene oxide 2 mol adduct. m = 2, n = 2
(4) Dilauryl ester of 12 mol adduct of bisphenol A with ethylene oxide. m = 7, n = 6
(5) Amino-modified silicone (j = 60, k = 1)
(6) Amino-modified silicone (j = 300, k = 8)
(7) Amino-modified silicone (j = 2000, k = 150)
(8) Pentaerythrityl-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate]
(9) Triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate]
(10) 1,3,5-tris (4-t-butyl-3-hydroxy-2,6-dimethylbenzyl) isocyanuric acid (11) polyoxyethylene lauryl ether [EO (ethylene oxide): 10 mol, HLB: 14.0]
Heat residue (mass after heating at 250 ° C. for 2 hours) 0.4% by mass
(12) Polyoxyethylene lauryl ether [EO: 5 mol, HLB: 10.8]
Heat residue (mass after heating at 250 ° C. for 2 hours) 0.6% by mass
(13) Polyoxyethylene tridecyl ether [EO: 10 mol, HLB: 13.7]
Heating residue (mass after heating at 250 ° C. for 2 hours) 0.7% by mass
(14) Palm fatty acid reduced alcohol ethylene oxide adduct [EO: 9 mol, HLB: 13.1]
Heating residue (mass after heating at 250 ° C. for 2 hours) 5.0% by mass
(15) Polyoxyethylene hydrogenated castor oil [EO: 10 mol, HLB: 12.5]
Heat residue (mass after heating at 250 ° C. for 2 hours) 15% by mass
An acrylonitrile copolymer (acrylonitrile unit / methacrylic acid unit / acrylamide unit mass ratio 97.1 / 0.9 / 2.0) is dissolved in dimethylacetamide, the polymer concentration is 21% by mass, and the viscosity at 60 ° C. is 500 poise. A spinning stock solution was prepared and discharged into a coagulation bath filled with a 69% by mass dimethylacetamide aqueous solution at 35 ° C. from a spinneret having a pore diameter (diameter) of 0.75 mm and a number of holes of 12,000 to obtain coagulated yarn. The coagulated yarn was desolvated in a washing tank and stretched 5 times to obtain a water-swelled acrylic fiber.
[0050]
(Granting first oil)
The acrylic fiber in the water-swelled state is introduced into an oil bath filled with the aqueous dispersion of the oil composition shown in Table 1, and after the oil composition is adhered, it is dried and densified with a heating roll having a surface temperature of 130 ° C. Furthermore, 1.7 times stretching was performed between heating rolls having a surface temperature of 170 ° C. to obtain precursor acrylic fibers.
[0051]
This precursor acrylic fiber had a single yarn fineness of 1.2 dtex, a tensile strength of 7 g / dtex, an elongation of 10.5%, and the amount of oil attached to the fiber was 0.8% by mass. In addition, (Example 9) is a mixture of a higher fatty acid esterified product of both ends of bisphenol A ethylene oxide adduct, an amino-modified silicone, and an antioxidant in a ratio (mass%) shown in Table 1 and dispersed in water. Without heating, an adhesion treatment was performed in the same manner as the aqueous dispersion of the oil composition.
[0052]
(Addition of second oil)
A mixture of 85% by mass of amino-modified silicone (j = 300, k = 8 in formula (2)) and 15% by mass of polyoxyethylene lauryl ether (EO: 10 mol) is applied to the first oil agent. Emulsified in the same manner to prepare a 1.0% by mass aqueous dispersion, and the acrylic oil that has been applied with the first oil and dried and densified is introduced into a bath filled therewith, The carbon fiber precursor acrylic fiber of the present invention was obtained by applying the oil agent, followed by drying with a heating roll having a surface temperature of 130 ° C. The total amount of the oil composition of the first stage and the second stage adhered to the fiber was 1.1% by mass.
[0053]
This carbon fiber precursor acrylic fiber is passed through a flameproof furnace having a temperature gradient of 230 to 270 ° C. over 60 minutes, and further baked in a carbonization furnace having a temperature gradient of 300 to 1300 ° C. in a nitrogen atmosphere. Made of fiber.
[0054]
Table 1 shows the number of fusions of carbonized yarn and carbon fiber strand strength obtained here, evaluation of the flame-proofing process pre-process passability, and the amount of silicone degradation product scattered in the flame-proofing process (evaluated by the number of cleanings of the furnace). Indicated.
[0055]
(Comparative Examples 1-12)
As a comparative example of the present invention, carbon fibers were produced and evaluated in the same manner as in Example 1 except that the oil agent composition used for the first oil agent application was changed to the components shown in Table 1. As shown in Table 1, any of the carbonized yarn fusion number, process passability, and CF strength (or all items) was inferior to the examples. Moreover, about the example which became the process passability defect, the evaluation regarding a silica scattering is not performed. When the ratio of the amino-modified silicone of the first-stage oil agent in the first oil agent application (Comparative Example 5) is increased, the number of fusions and the CF strength are the same as those in the example, but the silica scattering increases, and the flameproofing furnace The frequency of cleaning increased.
[0056]
【The invention's effect】
Since the oil agent composition for carbon fiber precursor of the present invention has good heat resistance, the carbon fiber precursor acrylic fiber to which this oil agent composition or its emulsion is applied has adhesion between single yarns at the stage of the carbon fiber precursor. In addition, when carbon fiber is produced using this carbon fiber precursor acrylic fiber, the fluff of the precursor fiber, yarn breakage, and fusion between single yarns in the flameproofing process are effective. It is possible to produce carbon fibers that are suppressed and have excellent quality and physical properties. Further, since the amount of the silicone degradation product scattered in the flameproofing process and the carbonization process is small, the operability and processability in the flameproofing process and the carbonization process are remarkably improved. Moreover, the manufacturing method which can manufacture suitably the carbon fiber precursor acrylic fiber which was excellent in this way was provided.

Claims (4)

式(1)
Figure 0004698861
(式(1)において、R 1 およびR 2 はそれぞれ独立して炭素数7〜21のアルキル基、A 1 OおよびA 2 Oはそれぞれ独立してエチレンオキシド残基またはプロピレンオキシド残基であり、mおよびnはそれぞれ独立して1〜5の整数を表す)
で示されるビスフェノールAのエチレンオキシドおよび/またはプロピレンオキシド付加物の両末端高級脂肪酸エステル化物を80〜95質量%、
式(2)
Figure 0004698861
(式(2)において、jは10〜10000の整数、kは1〜100の整数を表す)
で示されるアミノ変性シリコーンを1.0〜15.0質量%、および
酸化防止剤を0.5〜10.0質量%含有する油剤組成物と
250℃で2時間加熱後の残渣率が1.0質量%以下のノニオン系界面活性剤とを含み、該油剤組成物と該ノニオン系界面活性剤の質量比が85:15〜65:35であることを特徴とする炭素繊維前駆体アクリル繊維製造用油剤組成物。
Formula (1)
Figure 0004698861
(In the formula (1), R 1 and R 2 are each independently an alkyl group having 7 to 21 carbon atoms, A 1 O and A 2 O are each independently an ethylene oxide residue or a propylene oxide residue, m And n each independently represents an integer of 1 to 5)
80 to 95% by mass of a higher fatty acid ester product of both ends of the bisphenol A ethylene oxide and / or propylene oxide adduct represented by the formula:
Formula (2)
Figure 0004698861
(In Formula (2), j represents an integer of 10 to 10000, and k represents an integer of 1 to 100)
1.0 to 15.0 mass% of the amino-modified silicone represented by
An oil composition containing 0.5 to 10.0% by mass of an antioxidant ;
A nonionic surfactant having a residue rate of 1.0% by mass or less after heating at 250 ° C. for 2 hours, wherein the mass ratio of the oil composition to the nonionic surfactant is 85:15 to 65:35 An oil composition for producing a carbon fiber precursor acrylic fiber, which is characterized in that it exists.
請求項記載の炭素繊維前駆体アクリル繊維製造用油剤組成物が0.1〜1.0質量%付着したことを特徴とする炭素繊維前駆体アクリル繊維。A carbon fiber precursor acrylic fiber comprising 0.1 to 1.0% by mass of the oil composition for producing a carbon fiber precursor acrylic fiber according to claim 1 attached thereto. 水膨潤状態にあるアクリル系繊維に、請求項記載の炭素繊維前駆体アクリル繊維製造用油剤組成物を0.1〜1.0質量%付与し、乾燥緻密化した後、さらに
式(2)
Figure 0004698861
(式(2)において、jは10〜10000の整数、kは1〜100の整数を表す)
で示されるアミノ変性シリコーンまたは該アミノ変性シリコーンを含有する油剤組成物を付与することを特徴とする炭素繊維前駆体アクリル繊維の製造方法。
Acrylic fibers in a water-swollen state after the carbon fiber precursor acrylic fibers for producing oil composition according to claim 1, wherein grant 0.1-1.0 wt%, and dried densified further formula (2)
Figure 0004698861
(In Formula (2), j represents an integer of 10 to 10000, and k represents an integer of 1 to 100)
A process for producing a carbon fiber precursor acrylic fiber, characterized by applying an amino-modified silicone represented by formula (1) or an oil composition containing the amino-modified silicone.
請求項記載の炭素繊維前駆体アクリル繊維製造用油剤組成物の付与量と、前記乾燥緻密化の後に付与する前記アミノ変成シリコーンまたは該アミノ変性シリコーンを含有する油剤組成物の付与量との合計が、0.3〜2.0質量%である請求項記載の方法。The sum of the application amount of the oil composition for producing the carbon fiber precursor acrylic fiber according to claim 1 and the application amount of the amino-modified silicone or the oil composition containing the amino-modified silicone applied after the dry densification. but the method of claim 3, wherein 0.3 to 2.0 wt%.
JP2001068908A 2001-03-12 2001-03-12 Carbon fiber precursor acrylic fiber, method for producing the same, and oil composition Expired - Fee Related JP4698861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001068908A JP4698861B2 (en) 2001-03-12 2001-03-12 Carbon fiber precursor acrylic fiber, method for producing the same, and oil composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001068908A JP4698861B2 (en) 2001-03-12 2001-03-12 Carbon fiber precursor acrylic fiber, method for producing the same, and oil composition

Publications (2)

Publication Number Publication Date
JP2002266239A JP2002266239A (en) 2002-09-18
JP4698861B2 true JP4698861B2 (en) 2011-06-08

Family

ID=18927019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001068908A Expired - Fee Related JP4698861B2 (en) 2001-03-12 2001-03-12 Carbon fiber precursor acrylic fiber, method for producing the same, and oil composition

Country Status (1)

Country Link
JP (1) JP4698861B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4222886B2 (en) * 2003-06-06 2009-02-12 三菱レイヨン株式会社 Oil composition, carbon fiber precursor acrylic fiber and method for producing the same
KR101324045B1 (en) 2005-12-09 2013-11-01 마쓰모토유시세이야쿠 가부시키가이샤 Oil solution for acrylic fiber for use in the manufacture of carbon fiber, and method for manufacture of carbon fiber using the same
JP4801546B2 (en) * 2006-09-11 2011-10-26 三菱レイヨン株式会社 Oil agent for carbon fiber precursor acrylic fiber
JP4942502B2 (en) * 2007-02-01 2012-05-30 三菱レイヨン株式会社 Method for producing flame-resistant fiber bundle
JP5659597B2 (en) * 2009-07-24 2015-01-28 三菱レイヨン株式会社 Oil composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle and method for producing the same
US9752012B2 (en) 2011-03-01 2017-09-05 Mitsubishi Chemical Corporation Carbon-fiber-precursor acrylic fiber bundle with oil composition adhering thereto, process for producing the same, oil composition for carbon-fiber-precursor acrylic fiber, and oil composition dispersion for carbon-fiber-precursor acrylic fiber
KR101953490B1 (en) 2014-09-11 2019-02-28 미쯔비시 케미컬 주식회사 Oil for carbon fiber precursor acrylic fiber, oil composition for carbon fiber precursor acrylic fiber, oil treatment liquid for carbon fiber precursor acrylic fiber, and carbon fiber precursor acrylic fiber bundle
JP6752075B2 (en) * 2016-08-01 2020-09-09 松本油脂製薬株式会社 Acrylic fiber treatment agent and its uses
JP2020059799A (en) * 2018-10-10 2020-04-16 旭化成ワッカーシリコーン株式会社 Silicone oil composition, gelation time control additive, silicone oil and method for designing silicone oil composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047382B2 (en) * 1982-05-26 1985-10-21 東レ株式会社 Raw material oil for carbon fiber production
JPH0978340A (en) * 1995-09-11 1997-03-25 Mitsubishi Rayon Co Ltd Acrylic fiber of carbon fiber precursor
JPH1136135A (en) * 1997-07-14 1999-02-09 Mitsubishi Rayon Co Ltd Acrylonitrile fiber for carbon fiber precursor
JPH11181675A (en) * 1997-12-18 1999-07-06 Takemoto Oil & Fat Co Ltd Synthetic fiber treatment agent for carbon fiber production and treatment of synthetic fiber for carbon fiber production
JP2000199183A (en) * 1999-01-04 2000-07-18 Toho Rayon Co Ltd Acrylonitrile fiber for producing carbon fiber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047382B2 (en) * 1982-05-26 1985-10-21 東レ株式会社 Raw material oil for carbon fiber production
JPH0978340A (en) * 1995-09-11 1997-03-25 Mitsubishi Rayon Co Ltd Acrylic fiber of carbon fiber precursor
JPH1136135A (en) * 1997-07-14 1999-02-09 Mitsubishi Rayon Co Ltd Acrylonitrile fiber for carbon fiber precursor
JPH11181675A (en) * 1997-12-18 1999-07-06 Takemoto Oil & Fat Co Ltd Synthetic fiber treatment agent for carbon fiber production and treatment of synthetic fiber for carbon fiber production
JP2000199183A (en) * 1999-01-04 2000-07-18 Toho Rayon Co Ltd Acrylonitrile fiber for producing carbon fiber

Also Published As

Publication number Publication date
JP2002266239A (en) 2002-09-18

Similar Documents

Publication Publication Date Title
KR101210081B1 (en) Oil agent composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle, and method for producing the same
JP4801546B2 (en) Oil agent for carbon fiber precursor acrylic fiber
KR101653160B1 (en) Oil agent for acrylic fibers for production of carbon fibers, acrylic fibers for production of carbon fibers, and method for producing carbon fibers
JP5309280B1 (en) Acrylic fiber treatment agent for producing carbon fiber, acrylic fiber for producing carbon fiber, and method for producing carbon fiber
KR20080074209A (en) Oil solution for acrylic fiber for use in the manufacture of carbon fiber, and method for manufacture of carbon fiber using the same
JP4698861B2 (en) Carbon fiber precursor acrylic fiber, method for producing the same, and oil composition
JP2005089884A (en) Method for producing carbon fiber precursor acrylic fiber bundle
JP4917991B2 (en) Oil agent composition for carbon fiber precursor acrylic fiber
JP3945549B2 (en) Oil for carbon fiber precursor
JP2004211240A (en) Carbon fiber, acrylonitrile-based precursor fiber for the same, and method for producing the carbon fiber and the precursor fiber
JP5277005B2 (en) Acrylic fiber oil for producing carbon fiber and method for producing carbon fiber using the same
JPH0978340A (en) Acrylic fiber of carbon fiber precursor
JP3949777B2 (en) Carbon fiber precursor acrylic fiber
JPH0340152B2 (en)
JP4942502B2 (en) Method for producing flame-resistant fiber bundle
JP3479576B2 (en) Carbon fiber precursor acrylic fiber
JP2004143645A (en) Oil composition for acrylic fiber for carbon fiber precursor and acrylic fiber for carbon fiber precursor
JP2005089883A (en) Method for producing carbon fiber precursor acrylic fiber bundle
JP7383953B2 (en) Carbon fiber precursor fiber bundle and method for producing carbon fiber bundle
JP2004143644A (en) Method for producing acrylic fiber for carbon fiber precursor
JP5831129B2 (en) Carbon fiber precursor acrylic fiber bundle
JP2003201346A (en) Silicone lubricant, acrylic fiber as carbon fiber precursor, and method for manufacturing carbon fiber
JP4446699B2 (en) Oil composition, carbon fiber precursor acrylic fiber and method for producing the same
JP7342725B2 (en) Method for manufacturing carbon fiber bundles
JP4222886B2 (en) Oil composition, carbon fiber precursor acrylic fiber and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080222

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110302

R151 Written notification of patent or utility model registration

Ref document number: 4698861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees