JP2004143644A - Method for producing acrylic fiber for carbon fiber precursor - Google Patents

Method for producing acrylic fiber for carbon fiber precursor Download PDF

Info

Publication number
JP2004143644A
JP2004143644A JP2002312490A JP2002312490A JP2004143644A JP 2004143644 A JP2004143644 A JP 2004143644A JP 2002312490 A JP2002312490 A JP 2002312490A JP 2002312490 A JP2002312490 A JP 2002312490A JP 2004143644 A JP2004143644 A JP 2004143644A
Authority
JP
Japan
Prior art keywords
mass
acrylic fiber
oil agent
precursor
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002312490A
Other languages
Japanese (ja)
Inventor
Kozo Mise
三瀬 興造
Takahiro Okuya
奥屋 孝浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2002312490A priority Critical patent/JP2004143644A/en
Publication of JP2004143644A publication Critical patent/JP2004143644A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oil composition effective for suppressing the adhesion of single fibers in a fiber-making process of a precursor and the fusion of the single fibers in a flame-resisting process, capable of preventing the fluffing, bundle breakage and non-uniform baking, and giving a carbon fiber having excellent performance such as strand strength. <P>SOLUTION: An oil composition composed of 85-99.5mass% aromatic ester of formula (I) (refer to specification) and 0.5-15mass% antioxidant is applied to a water-swollen acrylic fiber or an acrylic fiber, the product is densified by drying or dried and a silicone-based oil composition of formula (II) or (III) (refer to specification) is applied to the product to obtain the acrylic fiber for a carbon fiber precursor. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の詳細な技術分野】
本発明は、炭素繊維前駆体アクリル繊維(以下、プレカーサーという。)を耐炎化繊維に転換する耐炎化工程で単繊維間に融着が発生することを防止するために用いられる油剤組成物とその付与方法を改良することにより、品質・性能の優れた炭素繊維を製造するのに好適で、工程通過性が改善されたプレカーサーを得ることのできるプレカーサーの製造方法に関する。
【0002】
【従来の技術】
プレカーサーを200〜400℃の酸化性雰囲気中で加熱処理して耐炎化繊維に転換し、続いて不活性雰囲気中少なくとも1000℃で処理して炭素化を行うことが炭素繊維の製造法として一般的である。炭素繊維は、優れた性能により繊維強化樹脂複合材料の強化繊維として広く利用されている。
【0003】
一方、上記の炭素繊維の製造方法において、特に耐炎化工程で単繊維間に融着が発生し、炭素化時に焼成が不均一になり、毛羽や束切れといった障害が発生することが知られている。この融着を回避するために、プレカーサーに付与する油剤の選択が重要であることが知られており、多種の油剤が検討されている。
【0004】
例えば、アミノ変性シリコーン、エポキシ変性シリコーン、ポリエーテル変性シリコーン等を配合したシリコーン系油剤は、高い耐熱性を有し、プレカーサー単繊維間の融着を効果的に抑えることから炭素繊維前駆体用油剤としてよく使用されている(特許文献1参照)。
【0005】
しかし、シリコーン系油剤を使用すると、耐炎化および炭素化工程において、シリコーン系油剤由来の酸化珪素等が発生する。焼成炉壁や排ガス処理ラインに付着、堆積した酸化珪素等は、操業性の低下させ、焼成工程のガイド・ローラ類に付着した酸化珪素等は工程通過性を低下し、工程糸に付着した酸化珪素等は炭素繊維品質を低下させる場合があった。
【0006】
これに対して、シリコーン系油剤を配合しない非シリコーン系油剤は、焼成時に酸化珪素等が発生せず、原料が安価なので有利であるが、シリコーン系油剤ほどの耐熱性がなく、焼成時には消失してしまうため、焼成時にプレカーサー単繊維間の融着の発生が防げなかった。
【0007】
シリコーン系油剤の耐熱性を利用しつつ、酸化珪素等の飛散を減らす方法としては、(1)シリコーン系油剤を主成分とする油剤の付着量を減らす、(2)油剤中のシリコーン系油剤の配合比を下げるなどの方法があるが、いずれの方法でも単繊維間の融着の発生や紡糸工程での集束性悪化など、工程通過性・炭素繊維性能とも悪化する傾向がみられた。
【0008】
この他に、水膨潤状態のアクリル系繊維に非イオン活性剤および/又はカチオン活性剤を付与し、乾燥緻密化処理の後にシリコーン化合物(あるいは非イオン活性剤等との混合物)を付与することでプレカーサーの製糸工程や高温焼成処理における融着を抑制し、非シリコーン系油剤のみを付与する場合に比べて単繊維強度の高いアクリル系炭素繊維が製造できることが提案されている(特許文献2参照)。
【0009】
この方法でも、シリコーン系油剤由来の酸化珪素等の発生を抑制することは確かに可能であった。しかし、この方法でも、水膨潤状態のアクリル系繊維にシリコーン系油剤を付与した場合に比べてプレカーサーの単繊維間の融着はまだ多く、炭素繊維性能の低下は避けられなかった。
【0010】
【特許文献1】
特開平5−140821号公報
【特許文献1】
特開昭59−127508号公報
【0011】
【発明が解決しようとする課題】
本発明は、上記従来技術の問題点を解決し、プレカーサーの製糸工程、炭素繊維前駆体アクリル繊維を耐炎化する耐炎化工程における繊維間の接着や由着を抑え、不均一焼成を防ぐことにより毛羽や束切れを防ぎ、さらに、耐炎化および炭素化工程における酸化珪素等の発生を抑えて、操業性や工程通過性およびストランド強度など炭素繊維品質の低下を防ぐことができるプレカーサーを得ることができるプレカーサーの製造方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
即ち、本発明の要旨とするところは、水膨潤状態のアクリル繊維またはアクリル繊維に、式(I)で示される芳香族エステル85〜99.5質量%と酸化防止剤0.5〜15質量%とからなる油剤組成物を付与し、乾燥緻密化または乾燥した後、式(II)または式(III)で示されるシリコーン系油剤組成物を付与する炭素繊維前駆体アクリル繊維の製造方法にある(第1発明)。
【0013】
そして、第2の要旨は、水膨潤状態のアクリル繊維またはアクリル繊維に、式(I)で示される芳香族エステル85〜99.5質量%と酸化防止剤0.5〜15質量%とからなる油剤組成物を250℃で2時間加熱後の残渣率が1質量%以下のノニオン系界面活性剤で乳化した油剤組成物を付与し、乾燥緻密化または乾燥した後、式(II)または式(III)で示されるシリコーン系油剤組成物を付与する炭素繊維前駆体アクリル繊維の製造方法。にある(第2の発明)。
【0014】
【化4】

Figure 2004143644
【0015】
【化5】
Figure 2004143644
【0016】
【化6】
Figure 2004143644
【0017】
【発明の実施の形態】
以下に本発明を詳細に説明する。
(プレカーサー)
本発明において、油剤組成物を付与する対象となるのは、公知の水膨潤状態にあるアクリル系繊維であればよい。その組成は特に限定されるものではないが、アクリロニトリル単位95質量%以上とアクリロニトリルと共重合可能なビニル系単量体単位5質量%以下とからなるアクリロニトリル系重合体を紡糸して得られるアクリル繊維が好ましい。さらにこの共重合可能なビニル系単量体としては、アクリル酸、メタクリル酸、イタコン酸、これらのアルカリ金属塩、これらのアンモニウム塩およびアクリルアミド等の単量体群から選ばれる1種以上の単量体が耐炎化反応を促進する上で好ましい。このようなアクリル繊維からなる繊維束の製造方法も特に限定されるものではなく、公知の湿式、乾式および乾湿式の各紡糸方式が採用できる。
【0018】
本発明においては、まず非シリコーン系油剤(以下、前油剤という)を
イ)水エマルションとせず、アクリル繊維に付与(第1発明)、または、
ロ)特定のノニオン系界面活性剤で水エマルションとして、アクリル繊維に付与(第2発明)し、
その後、シリコーン系油剤(以下、後油剤という)を付与する。
【0019】
(芳香族エステル)
本発明における式(I)で示される芳香族エステルは、ビスフェノールAのエチレンオキシドおよび/またはプロピレンオキシド付加物の両末端高級脂肪酸エステル化物である。エステル結合によりRまたはRを形成するカルボン酸としては、具体的にはラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸等の高級脂肪酸から選ばれることが好ましい。
【0020】
【化7】
Figure 2004143644
【0021】
エチレンオキシドおよび/またはプロピレンオキシドの付加モル数m、nは、1〜5が好ましい。この範囲を超える付加モル数になると、式(I)の化合物の長所である耐熱性が損なわれる傾向にある。
【0022】
また、式(I)で示される芳香族エステルの油剤組成物中の含有量は85〜99.5質量%の範囲内にするのがよい。85質量%より少ないと炭素繊維の性能が低下する傾向があり、99.5質量%を超えると炭素繊維前駆体の製糸工程での接着や高温焼成処理における融着を抑制する効果が不十分で、工程通過性の悪化や、炭素繊維ストランド強度などの性能の低下が起こる可能性がある。
【0023】
式(I)で示される芳香族エステルは、従来炭素繊維前駆体製造用の油剤として使用されたことがない。その理由は、単独で使用すると焼成時の工程トラブルを引き起こして炭素繊維強度低下が避けられないためであった。本発明の様に特定の芳香族エステルに酸化防止剤を併用すること、繊維付与を水系エマルションの形で行う場合さらに特定の熱分解特性を有するノニオン系界面活性剤を特定の質量比で混合することで製糸工程での接着や高温焼成処理における融着を大幅に低減することができ、焼成時の工程安定性が向上すると共に、ストランド強度などの炭素繊維性能がシリコーン系油剤を使用した場合に近いものが得られる。
【0024】
(酸化防止剤)
本発明において、酸化防止剤としては、ペンタエリスリチル−テトラキス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール−ビス〔3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート〕、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、1,3,5−トリス(4−t−ブチル−3−ヒドロキシ−2,6−ジメチルベンジル)イソシアヌル酸、2,2−チオ−ジエチレンビス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕、4,4’−ブチリデンビス(3−メチル−6−t−ブチルフェニル−ジトリデシルホスファイト)などが好ましく用いられる。これらは単独でも組み合わせて用いてもよい。また、油剤組成物における酸化防止剤の含有量は0.5〜15質量%の範囲内にする。0.5質量%より少ないと耐熱性効果が十分でなく、15質量%を超えて添加しても耐熱性の向上効果は変わらず、酸化防止剤が加熱残渣として耐炎化糸や炭素化糸に残存することや、この油剤を水に分散する場合にエマルションの安定性が低下する。
【0025】
本発明における式(I)で示されるビスフェノールAのエチレンオキシドおよび/またはプロピレンオキシド付加物の両末端高級脂肪酸エステル化物において、式中のRおよびRはそれぞれ独立して炭素数7〜21のアルキル基であり、RまたはRを形成するカルボン酸としては、具体的にはラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸等の高級脂肪酸から選ばれることが好ましい。
【0026】
(ノニオン系界面活性剤)
本発明において、前油剤を水エマルションとして使用する場合は、特定のノニオン系界面活性剤を使用する。それはノニオン系界面活性剤が焼成工程において加熱残渣として耐炎化糸や炭素化糸に残存することは好ましくないので、空気中250℃で2時間加熱後の残渣率が1%質量以下のものを使用する必要があるからである。残渣率が0.5%質量以下であることが好ましい。好適な例としてはポリオキシアルキレングリコール脂肪酸エステル、脂肪族アルコールのアルキレンオキシド付加物、アルキル置換フェノールのアルキレンオキシド付加物などが挙げられ、疎水部のアルキル鎖は直鎖状でも分岐していてもよい。このノニオン系界面活性剤のHLBは6〜16であることが望ましい。また、これらのこの様なノニオン系界面活性剤の親水部のオキシアルキレン単位繰返数、オキシアルキレン単位の種類やオキシアルキレン単位の繰り返しの形態は、油剤の水分散物が安定なエマルションとなるように適宜選択することができる。
【0027】
芳香族エステルと酸化防止剤とからなる油剤組成物とノニオン系界面活性剤との混合比は、質量比90:10〜65:35の範囲とする。ノニオン系界面活性剤の比率が少ないとエマルションの安定性が低下して繊維への付着斑(ムラ)が生じ、また、多いとストランド強度などの炭素繊維の性能が低下する。
【0028】
(油剤組成物の作製方法)
芳香族エステルを攪拌しながら酸化防止剤を必要に応じて加熱しつつ添加して調整する。また、第2発明のように上記油剤組成物をエマルションとする場合は、式(I)で示される芳香族エステルを攪拌しながら酸化防止剤を必要に応じて加熱しつつ添加して、さらにノニオン系界面活性剤を添加・攪拌し、水中に分散させることで油剤組成物の水系エマルションが得られる。
【0029】
各成分の混合または水中分散は、プロペラ攪拌、ホモミキサー、ホモジナイザー等を使って行なうことができる。なお、これらの成分からなる油剤組成物には、その特性向上のために帯電防止剤、浸透剤、消泡剤、防腐剤などを適宜配合することは差し支えない。
【0030】
(プレカーサーへの前油剤の付与方法)
本発明において前油剤は公知の方法でアクリル繊維に付与することができる。本発明の油剤組成物をアクリル系繊維に付着するに際しては、水系エマルションとしてローラー給油、浸漬法など公知の方法で付着させる。なお、油剤組成物をエマルションとせずに直接アクリル繊維に付着させることもできるが、その場合は繊維束が乾燥していることが必要である。本発明では、水膨潤状態にあるアクリル繊維に前油剤を付与し、乾燥緻密化した後、後述するシリコーン系油剤を付与するのが好ましい。この乾燥緻密化は、公知の条件で行なえばよく、特に限定しない。
前油剤の付与量は乾燥後のプレカーサーに対して0.1〜1質量%、好ましくは0.2〜1質量%の範囲がよく、0.1%未満の付与量では本発明の目的である耐炎化工程での毛羽・束切れ及び単繊維間接着を抑制できず、1%を超える付与量では、耐炎化工程での熱劣化物が多くなり好ましくない。
【0031】
(シリコーン系油剤)
本発明では、前油剤を付与した後、好ましくは水膨潤状態のアクリル繊維に前油剤を付与し乾燥緻密化後のアクリル繊維に、式(II)または式(III)で示されるシリコーン系油剤組成物を付与する。
式(II)のアミノ変性部においてkは1〜10の整数、Lは1〜10の整数、pは0〜5の整数、R〜Rは水素原子または炭素数1〜5のアルキル基であることがプレカーサーに対する親和性ならびに耐熱性において好ましく、アミノプロピル基 −CNH(式(2)のアミノ変性部においてk=3、p=0、R、Rは水素原子)または、N−(2−アミノエチル)アミノプロピル基 −CNHCHCHNH (式(2)のアミノ変性部においてk=3、L=2、p=1であり、R、R、Rは水素原子)であることが特に好ましい。
【0032】
また、式(II)におけるiは10〜10000の整数、jは1〜100の整数を表し、好ましくは50≦i≦1000、1≦j≦10である。 i、jがこの範囲を外れると、炭素繊維の性能発現性や耐熱性が低下する。i<10の場合、耐熱性が低く単糸間の融着を防止することができない。また、i>10000の場合、水中への分散や、溶解性の優れた溶媒を見出すことが困難となり、糸の表面に均一に付与することができなくなる。j=0の場合、十分な耐熱性が発現せず、単糸間の融着を効果的に防止することができない。また、j>100の場合、油剤そのものの耐熱性が低下して、やはり単糸間の融着を防止できない。
【0033】
【式8】
Figure 2004143644
【式9】
Figure 2004143644
【0034】
本発明における式(III)で示されるアミノ変性シリコーンにおいて、Yは、アミノプロピル基 −CNH、N−(2−アミノエチル)アミノプロピル基 −CNHCHCHNH などであり、式(III)のYで示されるアミノ変性部においてqは1〜10の整数、rは1〜10の整数、sは0〜5の整数、R〜Rは水素原子または炭素数1〜5のアルキル基であることがアクリル系炭素繊維前駆体に対する親和性ならびに耐熱性において好ましく、アミノプロピル基 −CNH(式(3)のYにおいてq=3、s=0、R、Rは水素原子)または、N−(2−アミノエチル)アミノプロピル基 −CNHCHCHNH (式(3)のYにおいてq=3、r=2、s=1であり、R、R、Rは水素原子)であることが特に好ましい。
【0035】
式(III)におけるtは10〜10000の整数であり、好ましくは50≦t≦1000である。tがこの範囲を外れると、炭素繊維の性能発現性や耐熱性が低下する。
【0036】
(プレカーサーへの後油剤の付与方法)
後油剤付与に際しては、上記シリコーン系油剤を直接付与することも、前記油剤組成物に使用できるノニオン系界面活性剤でシリコーン系油剤を水中に分散したのち付与することもできる。
後者の場合、シリコーン系油剤の比率は、シリコーン系油剤とノニオン系界面活性剤の合計量に対して70質量%以上であることが望ましい。なお、後油剤でも、その特性向上のために帯電防止剤、浸透剤、消泡剤、防腐剤などを適宜配合することは差し支えない。後油剤の付与は、乾燥緻密化の直後から焼成の直前までの間に行うことができ、油剤の付与は、ローラー給油、浸漬法など公知の方法で行なうことができる。
【0037】
後油剤の付着量は、前油剤付着量が適正であれば、できるだけ少量を均一に付着させるのが好ましい。付着量が多くなっても付着斑(ムラ)等による工程トラブルが起きなければ問題ないが、アミノ変性シリコーンが多く付着することになり、焼成での酸化珪素等の発生の抑制という本発明の目的に反する。前・後油剤の合計の付着量は、油剤付着前の繊維の乾燥質量に対し0.3〜2質量%が望ましい。
【0038】
【実施例】
以下に本発明を実施例によりさらに具体的に説明する。なお、ノニオン系界面活性剤加熱残渣、単繊維間融着数、耐炎化工程前工程通過性、シリコーン系油剤分解物飛散量及び炭素繊維ストランド強度は以下の方法により評価した。
【0039】
[ノニオン系界面活性剤加熱残渣]
アルミシャーレ(直径60mm、深さ10mm)にノニオン系界面活性剤2gを精秤し、空気中250℃で2時間加熱した後の残分について残渣率を算出した。加熱残渣率が大きいほど、ノニオン系界面活性剤の熱劣化物が耐炎化糸や炭素化糸に残存する可能性が大きい事を意味する。
【0040】
[単繊維間融着数(融着数)]
炭素化糸のトウを3mm長に切断し、アセトン中に分散させ、マグネティックスターラーを用い10分間攪拌した後の全単繊維数と融着数を計数し、繊維100本当たりの融着数を算出した。評価基準は下記の通りである。
○:融着数(個/100本)≦1
×:融着数(個/100本)>1
【0041】
[耐炎化工程前工程通過性(工程通過性)]
炭素繊維前駆体のアクリル繊維を用いて、1週間連続して炭素繊維を製造した時の耐炎化工程前、炭素繊維前駆体アクリル繊維の段階でのロール等への巻き付き回数により、前駆体アクリル繊維の段階での毛羽、糸切れの量を評価した。評価基準は下記の通りである。
○:巻き付き回数(回/1日)≦1
△:1<巻き付き回数(回/1日)≦10
×:巻き付き回数(回/1日)>10
【0042】
[シリコーン系油剤分解物飛散量(シリカ飛散)]
炭素繊維を1週間連続して製造した時の耐炎化炉の掃除頻度により、耐炎化炉内のシリコーン系油剤分解物量を表した。掃除は、耐炎化炉のエアー循環ラインのシリカ捕捉用フィルターが詰まって、循環ポンプの圧損が大きくなった段階で焼成を中断して行った。シリカ飛散の評価基準は下記の通りである。
○:掃除回数(回/1週間)≦1
×:掃除回数(回/1週間)>1
【0043】
[炭素繊維ストランド強度(CF強度)]
JIS R 7601に規定されているエポキシ樹脂含浸ストランド法に準じて測定した値である。(なお、測定回数は10回であり、物性値はその平均値を以て示した。)
【0044】
実施例中の(1)〜(16)は、次の物質を表す。
(1)ビスフェノールAのエチレンオキシド2モル付加物のジラウリルエステル(m=n=1)
(2)ビスフェノールAのエチレンオキシド4モル付加物のジラウリルエステル(m=n=2)
(3)ビスフェノールAのエチレンオキシド2モル・プロピレンオキシド2モル付加物のジラウリルエステル(m=n=2)
(4)ビスフェノールAのエチレンオキシド12モル付加物のジラウリルエステル(m=n=6)
(5)ペンタエリスリチル−テトラキス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕
(6)トリエチレングリコール−ビス〔3―(3―t―ブチル―5−メチル−4−ヒドロキシフェニル)プロピオネ−ト〕
(7)1,3,5−トリス(4−t−ブチル−3−ヒドロキシ−2,6−ジメチルベンジル)イソシアヌル酸
(8)ポリオキシエチレンラウリルエーテル[EO(エチレンオキサイド):10モル,HLB:14] 加熱残渣(250℃、2時間加熱後の質量)0.4質量%
(9)ポリオキシエチレンラウリルエーテル[EO:5モル、HLB:10.8]
加熱残渣(250℃、2時間加熱後の質量)0.6質量%
(10)ポリオキシエチレントリデシルエーテル[EO:10モル、HLB:13.7] 加熱残渣(250℃、2時間加熱後の質量)0.7質量%
(11)ヤシ脂肪酸還元アルコールエチレンオキシド付加物[EO:9モル,HLB:13.1]加熱残渣(250℃、2時間加熱後の質量)5.0質量%
(12)ポリオキシエチレン硬化ヒマシ油[EO:10モル,HLB:12.5]加熱残渣(250℃、2時間加熱後の質量)15質量%
(13)アミノ変性シリコーン[式(II)においてk=3、L=2、p=1であり、R、R、Rは水素原子であり、i=60、j=1]
(14)アミノ変性シリコーン[式(II)においてk=3、L=2、p=1であり、R、R、Rは水素原子であり、i=300、j=8]
(15)アミノ変性シリコーン[式(III)のYにおいてq=3、s=0、R、Rは水素原子であり、t=60]
(16)アミノ変性シリコーン [式(2)においてk=3、L=2、p=1であり、R、R、Rは水素原子であり、i=2000,j=150]
【0045】
(実施例1):第1発明の実施例
芳香族エステルとして、化合物(1)、酸化防止剤として、化合物(5)を用い、表中の組成比で混合したものを40℃に加温して前油剤組成物を用意した。また、シリコーン系化合物(13)85質量%とポリオキシエチレンラウリルエーテル(EO:10モル)15質量%とからなる混合物を、ホモミキサーで乳化し、さらに高圧ホモジナイザーを用いて30MPaで二次乳化を行なって油剤濃度1質量%のエマルションを調整した(後油剤)。
【0046】
アクリロニトリル共重合体(アクリロニトリル単位/メタクリル酸単位/アクリルアミド単位の質量比97.1/0.9/2)をジメチルアセトアミドに溶解し、重合体濃度21質量%、60℃における粘度が500ポイズの紡糸原液を調製し、35℃の69質量%ジメチルアセトアミド水溶液を満たした凝固浴中に孔径(直径)0.75μm、孔数12000の紡糸口金より吐出し凝固糸とした。凝固糸は水洗槽中で脱溶媒するとともに5倍に延伸して水膨潤状態のアクリル繊維とした。この水膨潤状態にあるアクリル繊維を表面温度130℃の加熱ロールで乾燥緻密化したのち、40℃に加温した前油剤を直接付与した。さらに表面温度170℃の加熱ロール間で1.7倍延伸を施し、プレカーサーを得た。プレカーサーへの付着量は0.7質量%であった。
【0047】
得られたプレカーサーを後油剤を満たした浴に導き、油剤を付与した後、続いて表面温度130℃の加熱ロールで乾燥処理してプレカーサーを得た。油剤組成物の繊維への合計付着量は1.1質量%であった。
このプレカーサーを230〜270℃の温度勾配を有する耐炎化炉に60分かけて通し、さらに窒素雰囲気中で300〜1300℃の温度勾配を有する炭素化炉で焼成して炭素繊維とした。評価結果を表に示した。
【0048】
(実施例2〜10、比較例1〜8)第2発明の実施例と比較例
芳香族エステル、酸化防止剤およびノニオン系界面活性剤として、表に示した化合物を用い、表中の組成比で混合したものにイオン交換水を加え、ホモミキサーで乳化し、さらに高圧ホモジナイザーを用いて30MPaで二次乳化を行なって油剤濃度1質量%のエマルションを調整し、前油剤組成物を用意した。
また、シリコーン系化合物表として表に示した化合物をそれぞれ用い、シリコーン系化合物85質量%とポリオキシエチレンラウリルエーテル(EO:10モル)15質量%とからなる混合物を、ホモミキサーで乳化し、さらに高圧ホモジナイザーを用いて30MPaで二次乳化を行なって油剤濃度1質量%のエマルションを調整した(後油剤)。
【0049】
アクリロニトリル共重合体(アクリロニトリル単位/メタクリル酸単位/アクリルアミド単位の質量比97.1/0.9/2)をジメチルアセトアミドに溶解し、重合体濃度21質量%、60℃における粘度が500ポイズの紡糸原液を調製し、35℃の69質量%ジメチルアセトアミド水溶液を満たした凝固浴中に孔径(直径)0.75μm、孔数12000の紡糸口金より吐出し凝固糸とした。凝固糸は水洗槽中で脱溶媒するとともに5倍に延伸して水膨潤状態のアクリル繊維とした。この水膨潤状態にあるアクリル繊維を、前油剤を満たした浴に導き、前油剤を付与した。さらに表面温度170℃の加熱ロール間で1.7倍延伸を施し、プレカーサーを得た。
得られたプレカーサーを、後油剤を満たした浴に導き、後油剤を付与した後、続いて表面温度130℃の加熱ロールで乾燥処理してプレカーサーを得た。
このプレカーサーを230〜270℃の温度勾配を有する耐炎化炉に60分かけて通し、さらに窒素雰囲気中で300〜1300℃の温度勾配を有する炭素化炉で焼成して炭素繊維とした。評価結果を表に示した。
【0050】
(実施例11)
芳香族エステル、酸化防止剤およびノニオン系界面活性剤として、表に示した化合物を用い、表中の組成比で混合したものにイオン交換水を加え、ホモミキサーで乳化し、さらに高圧ホモジナイザーを用いて30MPaで二次乳化を行なって油剤濃度1質量%のエマルションを調整し、前油剤組成物を用意した。
また、後油剤としてはシリコーン系化合物として表に示した化合物をそのまま用いた。
【0051】
アクリロニトリル共重合体(アクリロニトリル単位/メタクリル酸単位/アクリルアミド単位の質量比97.1/0.9/2)をジメチルアセトアミドに溶解し、重合体濃度21質量%、60℃における粘度が500ポイズの紡糸原液を調製し、35℃の69質量%ジメチルアセトアミド水溶液を満たした凝固浴中に孔径(直径)0.75μm、孔数12000の紡糸口金より吐出し凝固糸とした。凝固糸は水洗槽中で脱溶媒するとともに5倍に延伸して水膨潤状態のアクリル繊維とした。この水膨潤状態にあるアクリル繊維を前油剤を満たした浴に導き付与した。さらに表面温度170℃の加熱ロール間で1.7倍延伸を施し、プレカーサーを得た。
得られたプレカーサーを、後油剤を満たした浴に導き、油剤を付与した後、続いて表面温度130℃の加熱ロールで乾燥処理してプレカーサーを得た。
このプレカーサーを230〜270℃の温度勾配を有する耐炎化炉に60分かけて通し、さらに窒素雰囲気中で300〜1300℃の温度勾配を有する炭素化炉で焼成して炭素繊維とした。評価結果を表に示した。
【0052】
【表1】
Figure 2004143644
【0053】
【発明の効果】
本発明のプレカーサーの製造方法により得られたプレカーサーは、耐炎化工程で単糸間の融着がなく、毛羽が実質的に存在せず、このプレカーサーを用いて炭素繊維を製造すると、耐炎化工程での前駆体繊維の毛羽、糸切れ及び単糸間融着が効果的に抑えられ、品質および物性の優れた炭素繊維を得ることができる。
また、シリコーン系油剤を使用した場合に耐炎化工程および炭素化工程で発生する酸化珪素等の発生・飛散がないため、耐炎化工程および炭素化工程での操業性、工程通過性が著しく改善される。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an oil agent composition used for preventing the occurrence of fusion between single fibers in a flame-proofing step of converting carbon fiber precursor acrylic fiber (hereinafter, referred to as a precursor) into a flame-resistant fiber, and an oil composition therefor. The present invention relates to a method for producing a precursor, which is suitable for producing carbon fibers having excellent quality and performance by improving the method of application, and which can obtain a precursor with improved processability.
[0002]
[Prior art]
It is a general method for producing carbon fibers that the precursor is heat-treated in an oxidizing atmosphere at 200 to 400 ° C. to convert it into oxidized fiber and then carbonized by being treated at least 1000 ° C. in an inert atmosphere. It is. Carbon fiber is widely used as a reinforcing fiber of a fiber-reinforced resin composite material due to its excellent performance.
[0003]
On the other hand, in the above carbon fiber manufacturing method, it is known that fusion occurs between the single fibers particularly in the flame-proofing step, firing becomes uneven during carbonization, and troubles such as fluff and breakage of bundles occur. I have. It is known that in order to avoid this fusion, it is important to select an oil agent to be applied to the precursor, and various oil agents have been studied.
[0004]
For example, silicone oils containing amino-modified silicones, epoxy-modified silicones, polyether-modified silicones, etc. have high heat resistance and effectively suppress fusion between precursor single fibers. (See Patent Document 1).
[0005]
However, when a silicone-based oil is used, silicon oxide and the like derived from the silicone-based oil are generated in the flame resistance and carbonization steps. Silicon oxides and the like adhering and depositing on the firing furnace walls and exhaust gas treatment lines reduce operability, and silicon oxides and the like adhering to the guide rollers during the firing process lower the processability and cause oxidation on the process yarn. Silicon and the like sometimes reduced the quality of carbon fiber.
[0006]
In contrast, non-silicone oils that do not contain silicone oils are advantageous because they do not generate silicon oxide or the like during firing and are inexpensive in raw materials, but do not have the heat resistance of silicone oils and disappear during firing. Therefore, it was not possible to prevent the occurrence of fusion between the precursor single fibers during firing.
[0007]
Methods for reducing the scattering of silicon oxide and the like while utilizing the heat resistance of the silicone oil agent include (1) reducing the amount of the oil agent containing the silicone oil agent as a main component, and (2) reducing the amount of the silicone oil agent in the oil agent. Although there are methods such as lowering the blending ratio, any of the methods tended to deteriorate both process passability and carbon fiber performance, such as generation of fusion between single fibers and deterioration of bunching property in the spinning process.
[0008]
In addition, by applying a nonionic surfactant and / or a cationic surfactant to the acrylic fiber in a water-swelled state, and applying a silicone compound (or a mixture with a nonionic surfactant or the like) after the dry densification treatment. It has been proposed that an acrylic carbon fiber having a higher single fiber strength can be produced by suppressing fusion in a precursor spinning process or a high-temperature baking treatment, as compared with a case where only a non-silicone oil agent is applied (see Patent Document 2). .
[0009]
Even with this method, it was certainly possible to suppress the generation of silicon oxide and the like derived from the silicone oil. However, even in this method, the fusion between the single fibers of the precursor is still large as compared with the case where the silicone oil is applied to the acrylic fiber in a water-swelled state, and a decrease in carbon fiber performance was inevitable.
[0010]
[Patent Document 1]
JP-A-5-140821
[Patent Document 1]
JP-A-59-127508
[0011]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems of the prior art, and suppresses the adhesion and non-adhesion between the fibers in the fiber-forming process of the precursor, the flame-proofing process of flame-proofing the carbon fiber precursor acrylic fiber, thereby preventing uneven firing. It is possible to obtain a precursor that can prevent fluff and bundle breakage, further suppress the generation of silicon oxide and the like in the flameproofing and carbonization process, and prevent the deterioration of carbon fiber quality such as operability, processability and strand strength. It is an object of the present invention to provide a method for manufacturing a precursor that can be used.
[0012]
[Means for Solving the Problems]
That is, the gist of the present invention is that water-swelled acrylic fiber or acrylic fiber contains 85 to 99.5% by mass of an aromatic ester represented by the formula (I) and 0.5 to 15% by mass of an antioxidant. And then drying and densifying or drying, and then applying a silicone-based oil composition represented by the formula (II) or (III). 1st invention).
[0013]
The second gist is composed of 85 to 99.5% by mass of an aromatic ester represented by the formula (I) and 0.5 to 15% by mass of an antioxidant in a water-swelled acrylic fiber or acrylic fiber. After heating the oil agent composition at 250 ° C. for 2 hours, the oil agent composition emulsified with a nonionic surfactant having a residue ratio of 1% by mass or less is applied, dried and densified or dried, and then the formula (II) or the formula (II) A method for producing a carbon fiber precursor acrylic fiber provided with the silicone oil composition represented by III). (Second invention).
[0014]
Embedded image
Figure 2004143644
[0015]
Embedded image
Figure 2004143644
[0016]
Embedded image
Figure 2004143644
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
(Precursor)
In the present invention, the object to which the oil agent composition is applied may be any known acrylic fiber in a water-swelled state. Although the composition is not particularly limited, an acrylic fiber obtained by spinning an acrylonitrile-based polymer composed of 95% by mass or more of acrylonitrile units and 5% by mass or less of vinyl monomer units copolymerizable with acrylonitrile. Is preferred. Further, as the copolymerizable vinyl monomer, at least one monomer selected from the group consisting of acrylic acid, methacrylic acid, itaconic acid, alkali metal salts thereof, ammonium salts thereof and acrylamide. The body is preferred in promoting the anti-oxidation reaction. The method for producing the fiber bundle made of such acrylic fibers is not particularly limited, either, and a known wet, dry or dry-wet spinning method can be adopted.
[0018]
In the present invention, first, a non-silicone oil agent (hereinafter referred to as a pre-oil agent) is used.
B) Acrylic fiber is added to the acrylic fiber without using a water emulsion (first invention), or
B) A water emulsion with a specific nonionic surfactant is applied to acrylic fibers (second invention),
Thereafter, a silicone oil (hereinafter referred to as a post oil) is applied.
[0019]
(Aromatic ester)
The aromatic ester represented by the formula (I) in the present invention is a higher fatty acid ester of bisphenol A at both ends of an ethylene oxide and / or propylene oxide adduct. By the ester bond, R 1 Or R 2 Is preferably selected from higher fatty acids such as lauric acid, myristic acid, palmitic acid and stearic acid.
[0020]
Embedded image
Figure 2004143644
[0021]
The number of added moles m and n of ethylene oxide and / or propylene oxide is preferably from 1 to 5. If the number of moles exceeds this range, the heat resistance, which is an advantage of the compound of the formula (I), tends to be impaired.
[0022]
The content of the aromatic ester represented by the formula (I) in the oil composition is preferably in the range of 85 to 99.5% by mass. If the amount is less than 85% by mass, the performance of the carbon fiber tends to decrease. If the amount exceeds 99.5% by mass, the effect of suppressing the adhesion of the carbon fiber precursor in the spinning step and the fusion in the high-temperature firing treatment is insufficient. In addition, there is a possibility that the process passability may deteriorate or the performance such as carbon fiber strand strength may decrease.
[0023]
The aromatic ester represented by the formula (I) has never been used as an oil agent for producing a carbon fiber precursor. The reason for this is that when used alone, a process trouble during firing is caused, and a reduction in carbon fiber strength cannot be avoided. When an antioxidant is used in combination with a specific aromatic ester as in the present invention, when a fiber is provided in the form of an aqueous emulsion, a nonionic surfactant having a specific thermal decomposition property is further mixed at a specific mass ratio. This greatly reduces the adhesion in the yarn-making process and the fusion in the high-temperature baking process, improves the process stability during baking and improves the carbon fiber performance such as strand strength when using silicone oil. You can get something close.
[0024]
(Antioxidant)
In the present invention, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], triethylene glycol-bis [3- (3-t- Butyl-5-methyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 1,3,5-tris (4-t-butyl- 3-hydroxy-2,6-dimethylbenzyl) isocyanuric acid, 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 4,4′-butylidenebis (3-methyl-6-t-butylphenyl-ditridecyl phosphite) and the like are preferably used. These may be used alone or in combination. Further, the content of the antioxidant in the oil agent composition is set in a range of 0.5 to 15% by mass. If the amount is less than 0.5% by mass, the heat resistance effect is not sufficient, and if it exceeds 15% by mass, the effect of improving the heat resistance does not change, and the antioxidant is used as a heating residue in the flame-resistant yarn or carbonized yarn. Emulsion stability is reduced when it remains or when this oil agent is dispersed in water.
[0025]
In the esterified ester of higher fatty acid at both terminals of the ethylene oxide and / or propylene oxide adduct of bisphenol A represented by the formula (I) in the present invention, R in the formula 1 And R 2 Each independently represents an alkyl group having 7 to 21 carbon atoms; 1 Or R 2 Is preferably selected from higher fatty acids such as lauric acid, myristic acid, palmitic acid and stearic acid.
[0026]
(Nonionic surfactant)
In the present invention, when the pre-oiling agent is used as a water emulsion, a specific nonionic surfactant is used. Since it is not preferable that the nonionic surfactant remains as a heating residue in the oxidized yarn or the carbonized yarn in the baking step, a residue having a residue ratio of 1% by mass or less after heating at 250 ° C. for 2 hours in the air is used. It is necessary to do it. It is preferable that the residue ratio is 0.5% by mass or less. Preferable examples include polyoxyalkylene glycol fatty acid esters, alkylene oxide adducts of aliphatic alcohols, alkylene oxide adducts of alkyl-substituted phenols, and the like, and the alkyl chain of the hydrophobic portion may be linear or branched. . The nonionic surfactant preferably has an HLB of 6 to 16. Further, the oxyalkylene unit repetition number of the hydrophilic portion of such a nonionic surfactant, the type of the oxyalkylene unit and the form of the repetition of the oxyalkylene unit are such that the aqueous dispersion of the oil agent becomes a stable emulsion. Can be appropriately selected.
[0027]
The mixing ratio of the oil composition comprising the aromatic ester and the antioxidant to the nonionic surfactant is in the range of 90:10 to 65:35 by mass. When the proportion of the nonionic surfactant is small, the stability of the emulsion is reduced, and unevenness (unevenness) is caused to adhere to the fiber. When the proportion is large, the performance of the carbon fiber such as strand strength is reduced.
[0028]
(Preparation method of oil composition)
The antioxidant is added while heating the aromatic ester as needed while stirring, and adjusted. When the oil agent composition is an emulsion as in the second invention, an antioxidant is added while heating the aromatic ester represented by the formula (I) while stirring, if necessary, and then the nonionic is added. An aqueous emulsion of the oil composition is obtained by adding, stirring and dispersing the surfactant in water.
[0029]
Mixing or dispersion of each component in water can be performed using a propeller stirrer, a homomixer, a homogenizer, or the like. In addition, an antistatic agent, a penetrant, an antifoaming agent, a preservative, and the like may be appropriately added to the oil agent composition comprising these components in order to improve the properties.
[0030]
(How to apply the pre-oil agent to the precursor)
In the present invention, the pre-oiling agent can be applied to the acrylic fiber by a known method. When attaching the oil agent composition of the present invention to the acrylic fiber, the oil agent composition is applied as a water-based emulsion by a known method such as roller oiling and dipping. In addition, the oil agent composition can be directly attached to the acrylic fiber without forming an emulsion, but in this case, the fiber bundle needs to be dried. In the present invention, it is preferable to apply a pre-oiling agent to the acrylic fiber in a water-swelled state, dry-densify the acrylic fiber, and then apply a silicone-based oil agent described later. This dry densification may be performed under known conditions, and is not particularly limited.
The applied amount of the pre-oiling agent is in the range of 0.1 to 1% by mass, preferably 0.2 to 1% by mass based on the precursor after drying, and the applied amount of less than 0.1% is the object of the present invention. Unable to suppress fluff / bundle breakage and adhesion between single fibers in the flame-proofing step. If the applied amount exceeds 1%, heat-degraded products in the flame-proofing step increase, which is not preferable.
[0031]
(Silicone oil)
In the present invention, the silicone oil composition represented by the formula (II) or (III) is preferably added to the acrylic fiber in a water-swelled state after application of the pre-oil agent and to the dried and densified acrylic fiber. Give things.
In the amino-modified part of the formula (II), k is an integer of 1 to 10, L is an integer of 1 to 10, p is an integer of 0 to 5, R is 3 ~ R 5 Is preferably a hydrogen atom or an alkyl group having 1 to 5 carbon atoms in terms of affinity for a precursor and heat resistance. 3 H 6 NH 2 (K = 3, p = 0, R in the amino-modified part of the formula (2) 4 , R 5 Is a hydrogen atom) or N- (2-aminoethyl) aminopropyl group -C 3 H 6 NHCH 2 CH 2 NH 2 (K = 3, L = 2, p = 1 in the amino-modified part of the formula (2), and R 3 , R 4 , R 5 Is particularly preferably a hydrogen atom.
[0032]
In the formula (II), i represents an integer of 10 to 10000, and j represents an integer of 1 to 100, preferably 50 ≦ i ≦ 1000 and 1 ≦ j ≦ 10. When i and j are out of this range, the performance manifestation and heat resistance of the carbon fiber decrease. When i <10, the heat resistance is so low that fusion between the single yarns cannot be prevented. Also, when i> 10000, it becomes difficult to disperse in water and find a solvent having excellent solubility, and it becomes impossible to uniformly apply the solvent to the surface of the yarn. When j = 0, sufficient heat resistance is not exhibited, and fusion between the single yarns cannot be effectively prevented. When j> 100, the heat resistance of the oil agent itself is reduced, so that the fusion between the single yarns cannot be prevented.
[0033]
(Equation 8)
Figure 2004143644
[Equation 9]
Figure 2004143644
[0034]
In the amino-modified silicone represented by the formula (III) in the present invention, Y represents an aminopropyl group -C 3 H 6 NH 2 , N- (2-aminoethyl) aminopropyl group -C 3 H 6 NHCH 2 CH 2 NH 2 In the amino-modified moiety represented by Y in the formula (III), q is an integer of 1 to 10, r is an integer of 1 to 10, s is an integer of 0 to 5, R 3 ~ R 5 Is preferably a hydrogen atom or an alkyl group having 1 to 5 carbon atoms in terms of affinity for the acrylic carbon fiber precursor and heat resistance, and an aminopropyl group -C 3 H 6 NH 2 (In Y of the formula (3), q = 3, s = 0, R 7 , R 8 Is a hydrogen atom) or N- (2-aminoethyl) aminopropyl group -C 3 H 6 NHCH 2 CH 2 NH 2 (In Y of the formula (3), q = 3, r = 2, s = 1, and R 6 , R 7 , R 8 Is particularly preferably a hydrogen atom.
[0035]
T in the formula (III) is an integer of 10 to 10000, preferably 50 ≦ t ≦ 1000. When t is out of this range, the performance development and heat resistance of the carbon fiber are reduced.
[0036]
(Method of applying post-oil agent to precursor)
When applying the post-oil agent, the above-mentioned silicone oil agent can be directly applied, or can be applied after dispersing the silicone oil agent in water with a nonionic surfactant which can be used in the oil agent composition.
In the latter case, the ratio of the silicone oil agent is desirably 70% by mass or more based on the total amount of the silicone oil agent and the nonionic surfactant. It should be noted that, even in the post-oil agent, an antistatic agent, a penetrant, an antifoaming agent, a preservative, and the like may be appropriately compounded to improve the properties thereof. The application of the oil agent can be performed immediately after the drying and densification and immediately before the baking, and the application of the oil agent can be performed by a known method such as roller oiling and dipping.
[0037]
It is preferable that a small amount of the rear oil agent is uniformly applied as long as the front oil agent adhesion amount is appropriate. Even if the amount of adhesion is large, there is no problem as long as no process troubles due to adhesion spots (unevenness) occur, but the amino-modified silicone adheres much, and the object of the present invention is to suppress the generation of silicon oxide and the like during firing. Contrary to The total amount of the oil before and after the oil agent is desirably 0.3 to 2% by mass based on the dry weight of the fiber before the oil agent adheres.
[0038]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. In addition, the nonionic surfactant heating residue, the number of fusions between single fibers, the processability before the oxidization process, the amount of scattered silicone oil decomposition products, and the strength of carbon fiber strands were evaluated by the following methods.
[0039]
[Nonionic surfactant heating residue]
2 g of a nonionic surfactant was precisely weighed in an aluminum Petri dish (diameter 60 mm, depth 10 mm), and the residue ratio was calculated for the residue after heating in air at 250 ° C. for 2 hours. The higher the heating residue ratio, the greater the possibility that the thermally degraded nonionic surfactant remains on the flame-resistant yarn or carbonized yarn.
[0040]
[Number of fusion between single fibers (number of fusion)]
The tow of the carbonized yarn was cut into a length of 3 mm, dispersed in acetone, and stirred for 10 minutes using a magnetic stirrer. The number of all single fibers and the number of fusions were counted, and the number of fusions per 100 fibers was calculated. did. The evaluation criteria are as follows.
:: Number of fusions (pieces / 100 pieces) ≦ 1
×: Number of fusions (pieces / 100 pieces)> 1
[0041]
[Processability before the oxidization process (processability)]
By using the acrylic fiber of the carbon fiber precursor, the number of windings of the carbon fiber precursor acrylic fiber on a roll or the like at the stage of the carbon fiber precursor acrylic fiber before the flameproofing step when the carbon fiber is continuously manufactured for one week, The amount of fluff and thread breakage at the stage was evaluated. The evaluation criteria are as follows.
:: Number of windings (times / day) ≤ 1
Δ: 1 <number of windings (times / day) ≦ 10
×: Number of windings (times / day)> 10
[0042]
[Scattered amount of silicone oil decomposition products (silica scattering)]
The cleaning frequency of the oxidization furnace when carbon fibers were continuously manufactured for one week indicated the amount of the silicone oil agent decomposition product in the oxidization furnace. Cleaning was performed by interrupting the firing when the filter for trapping silica in the air circulation line of the oxidation furnace became clogged and the pressure loss of the circulation pump became large. The evaluation criteria for silica scattering are as follows.
○: Number of cleanings (times / week) ≤ 1
×: Number of cleaning times (times / week)> 1
[0043]
[Strand strength of carbon fiber (CF strength)]
It is a value measured according to the epoxy resin-impregnated strand method specified in JIS R 7601. (Note that the number of measurements was 10 times, and the physical properties were indicated by their average values.)
[0044]
(1) to (16) in the examples represent the following substances.
(1) Dilauryl ester of ethylene oxide 2 mol adduct of bisphenol A (m = n = 1)
(2) Dilauryl ester of ethylene oxide 4 mol adduct of bisphenol A (m = n = 2)
(3) Dilauryl ester of bisphenol A adduct of ethylene oxide 2 mol and propylene oxide 2 mol (m = n = 2)
(4) Dilauryl ester of ethylene oxide 12 mol adduct of bisphenol A (m = n = 6)
(5) Pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate]
(6) Triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate]
(7) 1,3,5-tris (4-t-butyl-3-hydroxy-2,6-dimethylbenzyl) isocyanuric acid
(8) Polyoxyethylene lauryl ether [EO (ethylene oxide): 10 mol, HLB: 14] Heating residue (mass after heating at 250 ° C. for 2 hours) 0.4 mass%
(9) Polyoxyethylene lauryl ether [EO: 5 mol, HLB: 10.8]
Heating residue (250 ° C, mass after heating for 2 hours) 0.6% by mass
(10) Polyoxyethylene tridecyl ether [EO: 10 mol, HLB: 13.7] 0.7 mass% of heating residue (mass after heating at 250 ° C. for 2 hours)
(11) Coconut fatty acid reduced alcohol ethylene oxide adduct [EO: 9 mol, HLB: 13.1] heating residue (mass after heating at 250 ° C. for 2 hours) 5.0 mass%
(12) Polyoxyethylene hydrogenated castor oil [EO: 10 mol, HLB: 12.5] heating residue (mass after heating at 250 ° C. for 2 hours) 15% by mass
(13) Amino-modified silicone [In formula (II), k = 3, L = 2, p = 1, and R 3 , R 4 , R 5 Is a hydrogen atom, i = 60, j = 1]
(14) Amino-modified silicone [In the formula (II), k = 3, L = 2, p = 1, and R 3 , R 4 , R 5 Is a hydrogen atom, i = 300, j = 8]
(15) Amino-modified silicone [q in Y of the formula (III), s = 0, R 7 , R 8 Is a hydrogen atom, t = 60]
(16) Amino-modified silicone [In the formula (2), k = 3, L = 2, p = 1, and R 3 , R 4 , R 5 Is a hydrogen atom, i = 2000, j = 150]
[0045]
(Example 1): Example of the first invention
Using the compound (1) as an aromatic ester and the compound (5) as an antioxidant, a mixture obtained by mixing at the composition ratios shown in the table was heated to 40 ° C. to prepare a pre-oil composition. Also, a mixture of 85% by mass of the silicone compound (13) and 15% by mass of polyoxyethylene lauryl ether (EO: 10 mol) was emulsified with a homomixer, and further subjected to secondary emulsification at 30 MPa using a high-pressure homogenizer. Then, an emulsion having an oil concentration of 1% by mass was prepared (post-oil).
[0046]
An acrylonitrile copolymer (mass ratio of acrylonitrile unit / methacrylic acid unit / acrylamide unit: 97.1 / 0.9 / 2) is dissolved in dimethylacetamide, and spinning at a polymer concentration of 21% by mass and a viscosity of 500 poise at 60 ° C. A stock solution was prepared and discharged from a spinneret having a pore size (diameter) of 0.75 μm and 12,000 holes into a coagulation bath filled with a 69% by mass aqueous dimethylacetamide solution at 35 ° C. to form a coagulated yarn. The coagulated yarn was desolvated in a washing tank and stretched 5 times to obtain a water-swelled acrylic fiber. The water-swelled acrylic fiber was dried and densified with a heating roll having a surface temperature of 130 ° C., and then a pre-oiling agent heated to 40 ° C. was directly applied. Further, the film was stretched 1.7 times between heated rolls having a surface temperature of 170 ° C. to obtain a precursor. The amount of adhesion to the precursor was 0.7% by mass.
[0047]
The obtained precursor was guided to a bath filled with an oil agent after the oil agent was applied, and then dried with a heating roll having a surface temperature of 130 ° C. to obtain a precursor. The total amount of the oil agent composition attached to the fibers was 1.1% by mass.
The precursor was passed through a stabilization furnace having a temperature gradient of 230 to 270 ° C. over 60 minutes, and further fired in a carbonization furnace having a temperature gradient of 300 to 1300 ° C. in a nitrogen atmosphere to obtain carbon fibers. The evaluation results are shown in the table.
[0048]
(Examples 2 to 10, Comparative Examples 1 to 8) Examples and Comparative Examples of the Second Invention
As the aromatic ester, antioxidant and nonionic surfactant, the compounds shown in the table were used, ion-exchanged water was added to the mixture at the composition ratio in the table, emulsified with a homomixer, and further used with a high-pressure homogenizer. By performing secondary emulsification at 30 MPa, an emulsion having an oil agent concentration of 1% by mass was prepared, and a pre-oil agent composition was prepared.
Further, a mixture composed of 85% by mass of the silicone-based compound and 15% by mass of polyoxyethylene lauryl ether (EO: 10 mol) was emulsified with a homomixer using the compounds shown in the table as the silicone-based compound, respectively. Secondary emulsification was performed at 30 MPa using a high-pressure homogenizer to prepare an emulsion having an oil concentration of 1% by mass (post-oil).
[0049]
An acrylonitrile copolymer (mass ratio of acrylonitrile unit / methacrylic acid unit / acrylamide unit: 97.1 / 0.9 / 2) is dissolved in dimethylacetamide, and spinning at a polymer concentration of 21% by mass and a viscosity of 500 poise at 60 ° C. A stock solution was prepared and discharged from a spinneret having a pore size (diameter) of 0.75 μm and 12,000 holes into a coagulation bath filled with a 69% by mass aqueous dimethylacetamide solution at 35 ° C. to form a coagulated yarn. The coagulated yarn was desolvated in a washing tank and stretched 5 times to obtain a water-swelled acrylic fiber. The acrylic fiber in the water-swelled state was led to a bath filled with the pre-oil agent, and the pre-oil agent was applied. Further, the film was stretched 1.7 times between heated rolls having a surface temperature of 170 ° C. to obtain a precursor.
The obtained precursor was guided to a bath filled with a post-oil agent, and after applying the post-oil agent, the precursor was dried by a heating roll having a surface temperature of 130 ° C. to obtain a precursor.
The precursor was passed through a stabilization furnace having a temperature gradient of 230 to 270 ° C. over 60 minutes, and further fired in a carbonization furnace having a temperature gradient of 300 to 1300 ° C. in a nitrogen atmosphere to obtain carbon fibers. The evaluation results are shown in the table.
[0050]
(Example 11)
As the aromatic ester, antioxidant and nonionic surfactant, the compounds shown in the table were used, ion-exchanged water was added to the mixture at the composition ratio in the table, emulsified with a homomixer, and further used with a high-pressure homogenizer. By performing secondary emulsification at 30 MPa, an emulsion having an oil agent concentration of 1% by mass was prepared, and a pre-oil agent composition was prepared.
Further, as the post-oil agent, the compounds shown in the table as silicone compounds were used as they were.
[0051]
An acrylonitrile copolymer (mass ratio of acrylonitrile unit / methacrylic acid unit / acrylamide unit: 97.1 / 0.9 / 2) is dissolved in dimethylacetamide, and spinning at a polymer concentration of 21% by mass and a viscosity of 500 poise at 60 ° C. A stock solution was prepared and discharged from a spinneret having a pore size (diameter) of 0.75 μm and 12,000 holes into a coagulation bath filled with a 69% by mass aqueous dimethylacetamide solution at 35 ° C. to form a coagulated yarn. The coagulated yarn was desolvated in a washing tank and stretched 5 times to obtain a water-swelled acrylic fiber. The water-swelled acrylic fiber was guided to a bath filled with a pre-oil agent and applied. Further, the film was stretched 1.7 times between heated rolls having a surface temperature of 170 ° C. to obtain a precursor.
The obtained precursor was guided to a bath filled with an oil agent, and after applying the oil agent, the precursor was dried with a heating roll having a surface temperature of 130 ° C. to obtain a precursor.
The precursor was passed through a stabilization furnace having a temperature gradient of 230 to 270 ° C. over 60 minutes, and further fired in a carbonization furnace having a temperature gradient of 300 to 1300 ° C. in a nitrogen atmosphere to obtain carbon fibers. The evaluation results are shown in the table.
[0052]
[Table 1]
Figure 2004143644
[0053]
【The invention's effect】
The precursor obtained by the precursor manufacturing method of the present invention has no fusing between the single yarns in the flame-proofing step, has substantially no fluff, and when carbon fibers are produced using this precursor, the flame-proofing step is performed. The fluff, yarn breakage and fusion between single yarns of the precursor fiber in the above are effectively suppressed, and a carbon fiber excellent in quality and physical properties can be obtained.
In addition, when a silicone-based oil is used, there is no generation or scattering of silicon oxide and the like generated in the flame-proofing step and the carbonization step, so that the operability and process passability in the flame-proofing step and the carbonization step are significantly improved. You.

Claims (4)

水膨潤状態のアクリル繊維またはアクリル繊維に、式(I)で示される芳香族エステル85〜99.5質量%と酸化防止剤0.5〜15質量%とからなる油剤組成物を付与し、乾燥緻密化または乾燥した後、式(II)または式(III)で示されるシリコーン系油剤組成物を付与する炭素繊維前駆体アクリル繊維の製造方法。An oil agent composition comprising 85 to 99.5% by mass of an aromatic ester represented by the formula (I) and 0.5 to 15% by mass of an antioxidant is applied to the water-swelled acrylic fiber or acrylic fiber, and dried. A method for producing a carbon fiber precursor acrylic fiber which, after densification or drying, provides a silicone-based oil composition represented by the formula (II) or (III). 水膨潤状態のアクリル繊維またはアクリル繊維に、式(I)で示される芳香族エステル85〜99.5質量%と酸化防止剤0.5〜15質量%とからなる油剤組成物を250℃で2時間加熱後の残渣率が1質量%以下のノニオン系界面活性剤で乳化した油剤組成物を付与し、乾燥緻密化または乾燥した後、式(II)または式(III)で示されるシリコーン系油剤組成物を付与する炭素繊維前駆体アクリル繊維の製造方法。An oil agent composition comprising 85 to 99.5% by mass of an aromatic ester represented by the formula (I) and 0.5 to 15% by mass of an antioxidant is added to water-swelled acrylic fiber or acrylic fiber at 250 ° C. An oil agent composition emulsified with a nonionic surfactant having a residue ratio of 1% by mass or less after heating for 1 hour is applied, dried and densified or dried, and then a silicone oil agent represented by the formula (II) or (III) A method for producing a carbon fiber precursor acrylic fiber to which a composition is applied. 式(I)で示される芳香族エステルと酸化防止剤とからなる油剤組成物と250℃で2時間加熱後の残渣率が1質量%以下のノニオン系界面活性剤との質量比が90:10〜65:35である、請求項2記載の炭素繊維前駆体アクリル繊維の製造方法。The mass ratio of the oil composition comprising the aromatic ester represented by the formula (I) and the antioxidant to the nonionic surfactant having a residue ratio of 1% by mass or less after heating at 250 ° C. for 2 hours is 90:10. The method for producing a carbon fiber precursor acrylic fiber according to claim 2, wherein the ratio is ~ 65: 35. 式(I)〜(III)で示される油剤組成物の合計付与量が、乾燥後の炭素繊維前駆体アクリル繊維に対して、0.3〜2質量%である、請求項1〜3のいずれか一項記載の炭素繊維前駆体アクリル繊維の製造方法。
Figure 2004143644
Figure 2004143644
Figure 2004143644
The total amount of the oil agent compositions represented by the formulas (I) to (III) is 0.3 to 2% by mass based on the dried carbon fiber precursor acrylic fiber. A method for producing a carbon fiber precursor acrylic fiber according to any one of the preceding claims.
Figure 2004143644
Figure 2004143644
Figure 2004143644
JP2002312490A 2002-10-28 2002-10-28 Method for producing acrylic fiber for carbon fiber precursor Pending JP2004143644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002312490A JP2004143644A (en) 2002-10-28 2002-10-28 Method for producing acrylic fiber for carbon fiber precursor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002312490A JP2004143644A (en) 2002-10-28 2002-10-28 Method for producing acrylic fiber for carbon fiber precursor

Publications (1)

Publication Number Publication Date
JP2004143644A true JP2004143644A (en) 2004-05-20

Family

ID=32457371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002312490A Pending JP2004143644A (en) 2002-10-28 2002-10-28 Method for producing acrylic fiber for carbon fiber precursor

Country Status (1)

Country Link
JP (1) JP2004143644A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048288A1 (en) * 2022-09-01 2024-03-07 Dic株式会社 Negative electrode active material precursor, negative electrode active material, secondary battery, and method for producing negative electrode active material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048288A1 (en) * 2022-09-01 2024-03-07 Dic株式会社 Negative electrode active material precursor, negative electrode active material, secondary battery, and method for producing negative electrode active material

Similar Documents

Publication Publication Date Title
JP4801546B2 (en) Oil agent for carbon fiber precursor acrylic fiber
KR101210081B1 (en) Oil agent composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle, and method for producing the same
JP6577307B2 (en) Oil agent for carbon fiber precursor acrylic fiber, oil agent composition for carbon fiber precursor acrylic fiber, and oil agent treatment liquid for carbon fiber precursor acrylic fiber
CN107075789B (en) Oil agent for carbon fiber precursor acrylic fiber, composition and treatment liquid thereof, and carbon fiber precursor acrylic fiber bundle
JPS6047382B2 (en) Raw material oil for carbon fiber production
JP4698861B2 (en) Carbon fiber precursor acrylic fiber, method for producing the same, and oil composition
JP3945549B2 (en) Oil for carbon fiber precursor
JP2005089884A (en) Method for producing carbon fiber precursor acrylic fiber bundle
JP5731908B2 (en) Oil agent for carbon fiber precursor acrylic fiber, oil agent composition for carbon fiber precursor acrylic fiber, and oil agent treatment liquid for carbon fiber precursor acrylic fiber
JP2004211240A (en) Carbon fiber, acrylonitrile-based precursor fiber for the same, and method for producing the carbon fiber and the precursor fiber
JPH0978340A (en) Acrylic fiber of carbon fiber precursor
JP6575251B2 (en) Carbon fiber precursor acrylic fiber bundle
JP3949777B2 (en) Carbon fiber precursor acrylic fiber
JP2018159138A (en) Oil solution composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle, carbon fiber, and method for producing carbon fiber precursor acrylic fiber bundle and carbon fiber
JP6973837B1 (en) Treatment agent for carbon fiber precursor and carbon fiber precursor
JP2021050428A (en) Carbon fiber precursor fiber bundle and method for producing carbon fiber bundle
JP2004143645A (en) Oil composition for acrylic fiber for carbon fiber precursor and acrylic fiber for carbon fiber precursor
JP2004143644A (en) Method for producing acrylic fiber for carbon fiber precursor
JP3479576B2 (en) Carbon fiber precursor acrylic fiber
JPH0340152B2 (en)
JP4942502B2 (en) Method for producing flame-resistant fiber bundle
JP2004169198A (en) Precursor fiber strand for carbon fiber and method for producing the same
JP5831129B2 (en) Carbon fiber precursor acrylic fiber bundle
JP2003201346A (en) Silicone lubricant, acrylic fiber as carbon fiber precursor, and method for manufacturing carbon fiber
JP2005089883A (en) Method for producing carbon fiber precursor acrylic fiber bundle