JP3949777B2 - Carbon fiber precursor acrylic fiber - Google Patents

Carbon fiber precursor acrylic fiber Download PDF

Info

Publication number
JP3949777B2
JP3949777B2 JP16390197A JP16390197A JP3949777B2 JP 3949777 B2 JP3949777 B2 JP 3949777B2 JP 16390197 A JP16390197 A JP 16390197A JP 16390197 A JP16390197 A JP 16390197A JP 3949777 B2 JP3949777 B2 JP 3949777B2
Authority
JP
Japan
Prior art keywords
group
fiber
weight
precursor acrylic
acrylic fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16390197A
Other languages
Japanese (ja)
Other versions
JPH1112855A (en
Inventor
知之 小谷
義隆 景山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP16390197A priority Critical patent/JP3949777B2/en
Publication of JPH1112855A publication Critical patent/JPH1112855A/en
Application granted granted Critical
Publication of JP3949777B2 publication Critical patent/JP3949777B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Inorganic Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、品質及び物性の優れた炭素繊維を製造するのに好適で、炭素繊維の製造に際して工程通過性が改善された、炭素繊維前駆体アクリル繊維に関する。
【0002】
【従来の技術】
従来、アクリル繊維は炭素繊維の製造の前駆体として広く利用されている。アクリル繊維を200〜400℃の酸化性雰囲気中で加熱処理することにより耐炎化繊維に転換し、引き続いて少なくとも1000℃の不活性雰囲気中で炭素化する方法が炭素繊維の製造方法として一般的である。このようにして得られた炭素繊維は、優れた物性により繊維強化樹脂複合材料等の好適な強化繊維として広く利用されている。
【0003】
一方、上記の炭素繊維の製造方法において、炭素繊維前駆体アクリル繊維を耐炎化繊維に転換する耐炎化工程において単繊維間融着が発生し、焼成が不均一になったり、毛羽や糸切れといった障害が発生する。この融着を回避するためには、耐炎化前の炭素繊維前駆体アクリル繊維に付与する油剤の選択が重要であることが知られており、多くの油剤が検討されてきている。
【0004】
例えば高い耐熱性を有し、融着を効果的に抑えることからシリコーン系油剤は、炭素繊維前駆体用油剤としてよく使用されている(例えば、特開平5−140821号公報)。
【0005】
しかしながら炭素繊維前駆体アクリル繊維用の油剤には、耐炎化工程においてばかりでなく、該炭素繊維前駆体アクリル繊維自身に融着がなく、実質的に毛羽を発生させないことが必要となる。すなわち、炭素繊維前駆体アクリル繊維の紡糸工程においては紡糸ノズルから吐出された糸条を凝固浴中で凝固させ、水洗、もしくは、延伸−水洗した水膨潤状態の脆弱な繊維を乾燥、加熱して緻密化する乾燥工程において、単繊維間相互の融着を防止して、均一で緻密な繊維構造を形成せしめ、工程通過性の良好な繊維を与える性能が要求される。しかしながら公知のシリコーン系油剤は加熱処理時にゲル化しやすく、前記乾燥工程において、ゲル化したシリコーン系油剤が、毛羽、糸切れを誘発することがあった。したがって、炭素繊維前駆体アクリル繊維用油剤としては、耐熱性が高く、ゲル化しにくいことが必要である。
【0006】
また、耐炎化工程ではシリコーン系油剤の分解物である酸化珪素等が発生し、耐炎化炉壁や排ガス処理ラインに堆積し操業性の低下をもたらすため、耐炎化工程でのシリコーン系油剤分解物量が少ないことも要求されている。
【0007】
しかし、以上のような性能をすべて満足する炭素繊維前駆体アクリル繊維については、これまでに報告されていない。
【0008】
【発明が解決しようとする課題】
本発明の目的は、炭素繊維前駆体アクリル繊維として単糸間融着がなく、毛羽が実質的に存在せず、耐炎化工程での前駆体繊維の毛羽、糸切れ及び単糸間融着を効果的に抑え、耐炎化工程でのシリコーン分解物の飛散低減により耐炎化工程での工程通過性が著しく改善される、炭素繊維前駆体アクリル繊維を提供することにある。
【0009】
【課題を解決するための手段】
本発明者らは、特定のアミノ変性シリコーンに酸化防止剤及び特定の界面活性剤を添加し、これをアクリル繊維に特定量付与せしめることにより、アミノ変性シリコーン混合物のゲル化温度が格段に向上し、炭素繊維前駆体アクリル繊維として単糸間融着がなく、毛羽が実質的に存在せず、耐炎化工程での前駆体繊維の毛羽、糸切れ及び単糸間融着を効果的に抑え、耐炎化工程でのシリコーン分解物の飛散低減により耐炎化工程での工程通過性が著しく改善されることを見出し、本発明を完成した。
すなわち、本発明の要旨は、下記(A)〜(C)成分よりなる混合物を繊維重量に対して0.1〜3重量%付与した炭素繊維前駆体アクリル繊維にある。
(A)下記一般式(1)で示されるアミノ変性シリコーン、
【0010】
【化5】

Figure 0003949777
【0011】
(式中、Rは同一又は異種の炭素数1〜20のアルキル基又は炭素数6〜20のアリール基、Xは一般式−Q−(NH−Q′)p−NH2で表され、Q及びQ′は同一又は異種の炭素数1〜10の2価の炭化水素基であり、YはX、R、炭素数1〜5のアルコキシ基又は水酸基のいずれかであり、pは0、1又は2のいずれかである。又10≦m≦10000、0≦n≦100である。)
(B)酸化防止剤 (A)成分の0.01〜20重量%
(C)HLB6〜16の非イオン性界面活性剤(A)成分の5〜100重量%
【0012】
ここで、上記(C)成分としてはポリオキシエチレンアルキルエーテル及び/又はポリオキシエチレンアルキルフェニルエーテルが好適なものとして挙げられる。
【0013】
又、上記(B)成分としては芳香族アミノ基含有オルガノポリシロキサンが好適なものとして挙げられ、下記一般式(2)で示される芳香族アミノ基含有オルガノポリシロキサンがさらに好適なものとして挙げられる。
【0014】
【化6】
Figure 0003949777
【0015】
(式中、R′は同一又は異種の炭素数1〜20のアルキル基又は炭素数6〜20のアリール基であり、ZはR′、−O−Ph−NH−Ph、−O−Ph−NH−Ph−NH−Ph、下記式(3)及び(4)で示される化合物から選択される1価の芳香族アミノ基のいずれかである。さらに、q、rは1≦q≦50、0≦r≦10であるが、分子中に少なくとも1個以上の芳香族アミノ基を有する必要があることからr=0の場合に式中のZの少なくとも一方は上記の1価の芳香族アミノ基である。)
【0016】
【化7】
Figure 0003949777
【0017】
【化8】
Figure 0003949777
【0018】
【発明の実施の形態】
以下に本発明を詳細に説明する。
本発明の炭素繊維前駆体アクリル繊維に用いるアクリル繊維としては、公知のアクリル繊維を例示することができ、その組成は特に限定されるものではないが、アクリロニトリル単位95重量%以上とアクリロニトリルと共重合可能なビニル系単量体単位5重量%以下からなるアクリロニトリル系重合体を紡糸して得られるアクリル繊維が好ましい。さらにこの共重合可能なビニル系単量体として耐炎化反応を促進作用を有するアクリル酸、メタクリル酸、イタコン酸、又は、これらのアルカリ金属塩もしくはアンモニウム塩及びアクリルアミド等の単量体群から選ばれる1種以上の単量体であることが耐炎化反応を促進する上で好ましい。このような繊維束の製造方法も特に限定されるものではなく、公知の湿式、乾式及び乾湿式の各紡糸方法が採用される。
【0019】
本発明における(A)成分として用いられる一般式(1)で示されるアミノ変成シリコーンにおいて式中のRは同一又は異種の炭素数1〜20のアルキル基又は炭素数6〜20のアリール基であり、具体的にはメチル基、エチル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、テトラデシル基、オクタデシル基、フェニル基、トリル基、ナフチル基等あるいはこれらの炭素原子に結合した水素原子の一部又は全部をハロゲン原子、水酸基などで置換した1価の炭化水素基などが挙げられる。これらのうちメチル基が好ましいものである。次に、Xは一般式−Q−(NH−Q′)p−NH2で表されるアミノ基であり、Q及びQ′は同一又は異種の炭素数1〜10の2価の炭化水素基であり、具体的にはメチレン基、ジメチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基及びこれらの炭素原子の一部を酸素原子、硫黄原子のような他の原子で置換したもの、これらの炭素原子の有する水素原子の一部又は全部をハロゲン原子、水酸基などで置換したもの等が挙げられる。これらのうち、ジメチレン基又はトリメチレン基が好ましい。Yは前出のX、R、炭素数1〜5のアルコキシ基又は水酸基のいずれかであり、炭素数1〜5のアルコキシ基としては、メトキシ基、エトキシ基、ブトキシ基、プロポキシ基等が挙げられる。pは0、1又は2のいずれかである。製造面からpとしては0又は1が好ましい。又、10≦m≦10000、0≦n≦100であり、好ましくは50≦m≦1000、0≦n≦10である。
【0020】
このようなアミノ変性シリコーンの具体例としては、下記式(5)〜(15)で示される化合物を挙げることができるが、本発明はこれらに限定されるものではない。
【0021】
【化9】
Figure 0003949777
【0022】
【化10】
Figure 0003949777
【0023】
【化11】
Figure 0003949777
【0024】
【化12】
Figure 0003949777
【0025】
【化13】
Figure 0003949777
【0026】
【化14】
Figure 0003949777
【0027】
【化15】
Figure 0003949777
【0028】
【化16】
Figure 0003949777
【0029】
【化17】
Figure 0003949777
【0030】
【化18】
Figure 0003949777
【0031】
【化19】
Figure 0003949777
【0032】
次に本発明における(B)成分の酸化防止剤はアミノ基の熱酸化性の劣化を抑制する為に使用するものであり、下記式(16)、(17)などで示されるヒンダードフェノール類、PhNHPhNHPh,PhNHPh,下記式(18)及び(19)などで示される芳香族アミン類、ヒンダードフェノール基含有オルガノポリシロキサン、芳香族アミノ基含有オルガノポリシロキサンなどが挙げられるが、特に好ましいものは一般式(2)で示される芳香族アミノ基含有オルガノポリシロキサンである。なお、上記Phはフェニル基を示す。
【0033】
【化20】
Figure 0003949777
【0034】
【化21】
Figure 0003949777
【0035】
【化22】
Figure 0003949777
【0036】
【化23】
Figure 0003949777
【0037】
本発明における(B)成分の添加量としては(A)成分のアミノ変性シリコーンの0.01〜20重量%である。0.01重量%未満では耐熱性の向上効果が弱く、20重量%を超えて添加しても耐熱性の向上効果は変わらず、かえってシリコーンエマルジョンの安定性が悪くなるため0.01〜20重量%が好ましく、より好ましくは、0.1〜4重量%である。
【0038】
次に本発明における(C)成分のHLB6〜16の非イオン性界面活性剤は、(A)、(B)両成分を水中で乳化分散させるための界面活性剤であるが、このHLBが16を超えると得られるシリコーンエマルジョンの耐熱性が不十分なものとなるし、HLBが6未満であるとシリコーンエマルジョンの乳化安定性が悪くなるため、HLBは6〜16であることが好ましく、より好ましくは10〜14である。
【0039】
本発明における(C)成分の非イオン性界面活性剤の具体例としては、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルエーテル、ソルビタン脂肪酸エステル等が挙げられる。中でもポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルエーテルが好ましい。この添加量は(A)成分のアミノ変性シリコーンの5〜100重量%である。5重量%未満ではアミノ変性シリコーンの乳化安定性が悪くなり、100重量%を超えるとアミノ変性シリコーンの特性を阻害するおそれがあるから5〜100重量%であることが好ましく、より好ましくは10〜50重量%である。
【0040】
なお、これらの成分からなるシリコーンエマルジョン組成物にその特性向上のために各種添加剤として帯電防止剤、浸透剤、増粘剤、消泡剤、防腐剤などを適宜配合することは差し支えない。
【0041】
上記(A)〜(C)成分よりなる耐熱性アミノ変性シリコーン混合物炭素繊維前駆体用油剤の付与量は繊維に対し0.1〜3重量%、好ましくは0.3〜1.5重量%の範囲がよく、0.1重量%未満の付与量では、本発明の目的である耐炎化工程での前駆体繊維の毛羽、糸切れ及び単繊維間融着を抑制できないし、3重量%を超える付与量では、耐炎化工程でのシリコーン系油剤分解物の発生量が多くなって好ましくない。
【0042】
【実施例】
以下に本発明を実施例によりさらに具体的に説明するが、本発明の炭素繊維前駆体用油剤はこれらによって限定されるものではない。
【0043】
なお、油剤のゲル化度、重量保持率、融着数、耐炎化工程前工程通過性、シリコーン系油剤分解物飛散状況及びストランド強度は以下の方法により評価した。
【0044】
[耐熱性の測定、評価方法(ゲル化度)]
アルミシャーレ(直径60mm、深さ10mm)に油剤エマルジョン2.0gを精秤し、105℃で1時間予備乾燥後、150℃で24時間加熱した後の残分についてクロロホルムへの不溶分含有率をゲル化度として算出し、耐熱性を評価した。ゲル化度が小さいほど、耐熱性に優れていて、油剤エマルジョン付着後の乾燥工程での工程通過性が良いこと、つまり、ゲル化したシリコーン系油剤により誘発される毛羽、糸切れが少ないを意味する。
【0045】
[分解飛散挙動の測定、評価方法(重量保持率)]
アルミシャーレ(直径60mm、深さ10mm)に油剤エマルジョン2.0gを精秤し、105℃で1時間予備乾燥後、250℃で1時間加熱した後の残分について重量保持率を算出し、分散飛散挙動を評価した。重量保持率が大きいほど、分解飛散しにくく、耐炎化工程でのシリコーン系油剤分散物量の少ないことを意味する。
【0046】
[単繊維間融着の測定、評価方法(融着数)]
炭素繊維トウを3mm長に切断し、アセトン中に分散し、マグネティックスターラーを用い10分間撹拌した後の全単繊維数と融着数を計数し、繊維100本当たりの融着数を算出した。
○:融着数(個/100本)≦1
×:1<融着数(個/100本)
【0047】
[耐炎化工程前工程通過性]
炭素繊維前駆体アクリル繊維を用いて、1週間連続サンプリングした時の耐炎化工程前、炭素繊維前駆体アクリル繊維の段階でのロール等への巻き付き回数により、炭素繊維前駆体アクリル繊維の段階での毛羽、糸切れの量を評価した。
○:巻き付け回数(回/1日)≦1
△:1<巻き付き回数(回/1日)≦10
×:10<巻き付き回数(回/1日)
【0048】
[シリコーン系油剤分解物飛散状況]
炭素繊維を1週間連続サンプリングした時の耐炎化炉の掃除頻度により、耐炎化炉内のシリコーン系油剤分解物量を評価した。
○:掃除回数(回/1週間)≦1
×:<巻き付き回数(回/1週間)
【0049】
[炭素繊維物性の測定、評価方法(ストランド強度)]
JIS−R−7601に規定されているエポキシ樹脂含浸ストランド法に準じて測定した値である。(なお、測定回数は10回であり、物性値はその平均を以て示した。)
【0050】
(調整例1)
下式(20)で示されるアミノ変性シリコーン3kg、
【0051】
【化24】
Figure 0003949777
【0052】
酸化防止剤として下式(21)で示される芳香族アミノ基含有オルガノポリシロキサン10g、
【0053】
【化25】
Figure 0003949777
【0054】
乳化剤としてポリオキシエチレンラウリルエーテル[EO:5モル、HLB:10.8]600g、水16.4gの混合物をホモミキサーで乳化し、さらに高圧ホモジナイザーで、300kg/cm2で2次乳化を行ない油剤エマルジョンを得た。
この油剤の耐熱性及び分解飛散挙動を測定し、結果を表1に示した。
【0055】
(調整例2)
調整例1で使用した式(20)で示されるアミノ変性シリコーン3kg、乳化剤としてポリオキシエチレンラウリルエーテル[EO:5モル、HLB:10.8]600g、水16.4gの混合物を調整例1と同様の方法でホモミキサーで乳化し、さらに高圧ホモジナイザーで2次乳化を行ない油剤エマルジョンを得た。
この油剤の耐熱性及び分解飛散挙動を測定し、結果を表1に示した。
【0056】
(調整例3)
下記式(22)で示されるアミノ変性シリコーン3kg、
【0057】
【化26】
Figure 0003949777
【0058】
乳化剤としてポリオキシエチレンラウリルエーテル[EO:5モル、HLB:10.8]600g、水16.4gの混合物を調整例1と同様にしてホモミキサーで乳化し、さらに高圧ホモジナイザーで2次乳化を行ない油剤エマルジョンを得た。
この油剤の耐熱性及び分解飛散挙動を測定し、結果を表1に示した。
【0059】
(実施例1)
アクリロニトリル共重合体(アクリロニトリル単位/メタクリル酸単位/アクリルアミド単位=97.1/0.9/2.0(重量%))をジメチルアセトアミドに溶解し、重合体濃度21重量%、60℃における粘度が500ポイズの紡糸原液を調製し、35℃の69重量%ジメチルアセトアミド水溶液を満たした凝固浴中に孔径0.15mmφ、孔数1500の紡糸口金を通じて一旦空気中に吐出させ約5mm空間を通過させたのち、凝固糸とした。凝固糸は水洗槽中で脱溶媒するとともに3.5倍に延伸して水膨潤状態のアクリル繊維とした。
【0060】
この水膨潤状態にあるアクリル繊維を調整例1で調整した油剤エマルジョンを満たした油浴に導き、エマルジョンを付与した後、表面温度130℃の加熱ロールで乾燥緻密化、さらに表面温度170℃の加熱ロール間で2.0倍延伸を施し前駆体アクリル繊維を得た。この前駆体アクリル繊維は、単糸繊度1.1デニール、引張り強度7g/デニール、伸度12.5%で油剤の繊維への付与量は1.0重量%であった。なお、油剤の繊維への付与量は、単位時間当たりに一定量の油剤を油浴に加え、充分に長時間運転し平衡に達した後のアクリル繊維を前駆体繊維としたので、その一定量を付与量とした。
【0061】
この前駆体アクリル繊維を230〜270℃の温度勾配を有する耐炎化炉に60分かけて通し、さらに窒素雰囲気中で300〜1300℃の温度勾配を有する炭素化炉で焼成して炭素繊維とした。ここで得られた炭素繊維の融着数及びストランド強度、耐炎化工程前工程通過性、耐炎化工程でのシリコーン分解物飛散状況を表2に示した。
【0062】
(比較例1)
調整例1で調整した油剤エマルジョンの代わりに調整例2で調整した油剤エマルジョンを用いるほかは、実施例1と同様に操作して前駆体アクリル繊維を得た。この前駆体アクリル繊維は、単糸繊度1.1デニール、引張り強度6.8g/デニール、伸度11.8%で油剤の繊維への付与量は1.0重量%であった。
【0063】
この前駆体アクリル繊維を実施例1と同様の操作で焼成して炭素繊維とした。得られた炭素繊維の融着数及びストランド強度、耐炎化工程前工程通過性、耐炎化工程でのシリコーン分解物飛散状況を表2に示した。
【0064】
(比較例2)
調整例1で調整した油剤エマルジョンの代わりに調整例3で調整した油剤エマルジョンを用いるほかは、実施例1と同様に操作して前駆体アクリル繊維を得た。この前駆体アクリル繊維は、単糸繊度1.1デニール、引張り強度6.7g/デニール、伸度11.5%で油剤の繊維への付与量は1.0重量%であった。
【0065】
この前駆体アクリル繊維を実施例1と同様の操作で焼成して炭素繊維とした。得られた炭素繊維の融着数及びストランド強度、耐炎化工程前工程通過性、耐炎化工程でのシリコーン分解物飛散状況を表2に示した。
【0066】
(実施例2)
実施例1と同じ紡糸原液を調製し、35℃の69重量%ジメチルアセトアミド水溶液を満たした凝固浴中に孔径0.075mmφ、孔数12000の紡糸口金より、ドラフト比0.8で吐出し凝固糸とした。凝固糸は水洗槽中で脱溶媒するとともに5倍に延伸して水膨潤状態のアクリル繊維とした。
【0067】
この水膨潤状態にあるアクリル繊維を調整例1で調整したエマルジョンを満たした油浴に導き、エマルジョンを付与した後、表面温度130℃の加熱ロールで乾燥緻密化、さらに表面温度170℃の加熱ロール間で1.7倍延伸を施し前駆体アクリル繊維を得た。この前駆体アクリル繊維は、単糸繊度1.1デニール、引張り強度7g/デニール、伸度10.5%で油剤の繊維への付与量は1.0重量%であった。
【0068】
この前駆体アクリル繊維を実施例1と同様の操作で焼成して炭素繊維とした。得られた炭素繊維の融着数及びストランド強度、耐炎化工程前工程通過性、耐炎化工程でのシリコーン分解物飛散状況を表2に示した。
【0069】
(比較例3)
水膨潤状態にあるアクリル繊維のエマルジョンを満たした油浴への浸漬時間をかえるほかは実施例2と同様に操作し前駆体アクリル繊維を得た。この前駆体アクリル繊維は、単糸繊度1.1デニール、引張り強度6.7g/デニール、伸度9.8%で油剤の繊維への付与量は0.09重量%であった。
【0070】
この前駆体アクリル繊維を実施例1と同様の操作で焼成して炭素繊維とした。得られた炭素繊維の融着数及びストランド強度、耐炎化工程前工程通過性、耐炎化工程でのシリコーン分解物飛散状況を表2に示した。
【0071】
【表1】
Figure 0003949777
【0072】
【表2】
Figure 0003949777
【0073】
【発明の効果】
本発明による炭素繊維前駆体アクリル繊維は、単糸間融着がなく、毛羽が実質的に存在せず、耐炎化工程での前駆体繊維の毛羽、糸切れ及び単糸間融着を効果的に抑え、耐炎化工程でのシリコーン分解物の飛散低減により耐炎化工程での工程通過性が著しく改善されたものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a carbon fiber precursor acrylic fiber that is suitable for producing carbon fibers having excellent quality and physical properties, and has improved process passability in the production of carbon fibers.
[0002]
[Prior art]
Conventionally, acrylic fibers have been widely used as precursors for the production of carbon fibers. A general method for producing carbon fibers is to convert acrylic fibers to flame-resistant fibers by heat treatment in an oxidizing atmosphere at 200 to 400 ° C., followed by carbonization in an inert atmosphere at least 1000 ° C. is there. The carbon fiber thus obtained is widely used as a suitable reinforcing fiber such as a fiber reinforced resin composite material due to its excellent physical properties.
[0003]
On the other hand, in the above-described carbon fiber production method, fusion between single fibers occurs in the flameproofing step of converting the carbon fiber precursor acrylic fiber to flameproofed fiber, and the firing becomes uneven, such as fluff and yarn breakage. A failure occurs. In order to avoid this fusion, it is known that selection of an oil agent to be imparted to the carbon fiber precursor acrylic fiber before flame resistance is important, and many oil agents have been studied.
[0004]
For example, since it has high heat resistance and effectively suppresses fusion, a silicone-based oil agent is often used as an oil agent for a carbon fiber precursor (for example, Japanese Patent Application Laid-Open No. 5-140821).
[0005]
However, it is necessary for the oil agent for the carbon fiber precursor acrylic fiber not to be fused in the carbon fiber precursor acrylic fiber itself and not to generate fuzz substantially in the flameproofing process. That is, in the spinning process of the carbon fiber precursor acrylic fiber, the yarn discharged from the spinning nozzle is solidified in a coagulation bath, and the water-swelled fragile fiber that has been washed or stretched and washed with water is dried and heated. In the drying step for densification, the ability to prevent the mutual fusion between single fibers to form a uniform and dense fiber structure and to provide fibers having good process passability is required. However, known silicone-based oils are easily gelled during heat treatment, and in the drying step, the gelled silicone-based oil may induce fluff and thread breakage. Therefore, it is necessary for the carbon fiber precursor acrylic fiber oil agent to have high heat resistance and be difficult to gel.
[0006]
In addition, silicon oxide, which is a decomposition product of silicone oil, is generated in the flameproofing process and accumulates on the flameproof furnace wall and exhaust gas treatment line, resulting in a decrease in operability. There is also a demand for less.
[0007]
However, no carbon fiber precursor acrylic fiber satisfying all the above performances has been reported so far.
[0008]
[Problems to be solved by the invention]
The object of the present invention is that the carbon fiber precursor acrylic fiber has no inter-single yarn fusion, is substantially free of fluff, and prevents fluff, yarn breakage and inter-single yarn fusion of the precursor fiber in the flameproofing process. An object of the present invention is to provide a carbon fiber precursor acrylic fiber which is effectively suppressed and the process passability in the flameproofing process is remarkably improved by reducing the scattering of the silicone decomposition product in the flameproofing process.
[0009]
[Means for Solving the Problems]
The inventors have added an antioxidant and a specific surfactant to a specific amino-modified silicone and imparted a specific amount thereof to the acrylic fiber, thereby significantly improving the gelation temperature of the amino-modified silicone mixture. As a carbon fiber precursor acrylic fiber, there is no fusion between single yarns, there is substantially no fluff, effectively suppressing the fluff, yarn breakage and fusion between single yarns of the precursor fiber in the flameproofing process, The present inventors have found that the process passability in the flameproofing process is remarkably improved by reducing the scattering of the silicone degradation product in the flameproofing process.
That is, the gist of the present invention resides in a carbon fiber precursor acrylic fiber provided with 0.1 to 3% by weight of a mixture comprising the following components (A) to (C) with respect to the fiber weight.
(A) an amino-modified silicone represented by the following general formula (1),
[0010]
[Chemical formula 5]
Figure 0003949777
[0011]
(Wherein, R is the same or different alkyl or aryl group having 6 to 20 carbon atoms having 1 to 20 carbon atoms, X is represented by the general formula -Q- (NH-Q ') p -NH 2, Q And Q ′ are the same or different divalent hydrocarbon groups having 1 to 10 carbon atoms, Y is X, R, an alkoxy group having 1 to 5 carbon atoms or a hydroxyl group, and p is 0, 1 Or 2 or 10 ≦ m ≦ 10000, 0 ≦ n ≦ 100.)
(B) Antioxidant (A) 0.01 to 20% by weight of component
(C) 5 to 100% by weight of HLB 6-16 nonionic surfactant (A) component
[0012]
Here, as said (C) component, polyoxyethylene alkyl ether and / or polyoxyethylene alkylphenyl ether are mentioned as a suitable thing.
[0013]
Moreover, as said (B) component, an aromatic amino group containing organopolysiloxane is mentioned as a suitable thing, The aromatic amino group containing organopolysiloxane shown by following General formula (2) is mentioned as a more suitable thing. .
[0014]
[Chemical 6]
Figure 0003949777
[0015]
Wherein R ′ is the same or different alkyl group having 1 to 20 carbon atoms or aryl group having 6 to 20 carbon atoms, and Z is R ′, —O—Ph—NH—Ph, —O—Ph— NH-Ph-NH-Ph, and a monovalent aromatic amino group selected from the compounds represented by the following formulas (3) and (4): q and r are 1 ≦ q ≦ 50, Although 0 ≦ r ≦ 10, it is necessary to have at least one aromatic amino group in the molecule, so that when r = 0, at least one of Z in the formula is the above monovalent aromatic amino group Group.)
[0016]
[Chemical 7]
Figure 0003949777
[0017]
[Chemical 8]
Figure 0003949777
[0018]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
As the acrylic fiber used for the carbon fiber precursor acrylic fiber of the present invention, a known acrylic fiber can be exemplified, and the composition thereof is not particularly limited, but 95% by weight or more of acrylonitrile unit and copolymerized with acrylonitrile. An acrylic fiber obtained by spinning an acrylonitrile-based polymer composed of 5% by weight or less of a possible vinyl-based monomer unit is preferable. Further, the copolymerizable vinyl-based monomer is selected from acrylic acid, methacrylic acid, itaconic acid, or an alkali metal salt or ammonium salt thereof, and a monomer group such as acrylamide, which have an action of promoting a flameproofing reaction. One or more types of monomers are preferable for promoting the flameproofing reaction. The method for producing such a fiber bundle is not particularly limited, and known wet, dry, and dry and wet spinning methods are employed.
[0019]
In the amino-modified silicone represented by the general formula (1) used as the component (A) in the present invention, R in the formula is the same or different alkyl group having 1 to 20 carbon atoms or aryl group having 6 to 20 carbon atoms. Specifically, methyl group, ethyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, tetradecyl group, octadecyl group, phenyl group, tolyl group, naphthyl group, etc. And monovalent hydrocarbon groups in which some or all of the hydrogen atoms bonded to the carbon atoms are substituted with halogen atoms, hydroxyl groups, and the like. Of these, a methyl group is preferred. X is an amino group represented by the general formula —Q— (NH—Q ′) p —NH 2 , and Q and Q ′ are the same or different divalent hydrocarbon groups having 1 to 10 carbon atoms. Specifically, methylene group, dimethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, heptamethylene group, octamethylene group, nonamethylene group, decamethylene group and a part of these carbon atoms Examples include those substituted with other atoms such as oxygen and sulfur atoms, and those obtained by substituting part or all of the hydrogen atoms of these carbon atoms with halogen atoms, hydroxyl groups, and the like. Of these, a dimethylene group or a trimethylene group is preferred. Y is any of the above-mentioned X and R, an alkoxy group having 1 to 5 carbon atoms or a hydroxyl group. Examples of the alkoxy group having 1 to 5 carbon atoms include a methoxy group, an ethoxy group, a butoxy group, and a propoxy group. It is done. p is either 0, 1 or 2. From the viewpoint of production, 0 or 1 is preferable as p. Further, 10 ≦ m ≦ 10000 and 0 ≦ n ≦ 100, preferably 50 ≦ m ≦ 1000 and 0 ≦ n ≦ 10.
[0020]
Specific examples of such amino-modified silicones include compounds represented by the following formulas (5) to (15), but the present invention is not limited to these.
[0021]
[Chemical 9]
Figure 0003949777
[0022]
[Chemical Formula 10]
Figure 0003949777
[0023]
Embedded image
Figure 0003949777
[0024]
Embedded image
Figure 0003949777
[0025]
Embedded image
Figure 0003949777
[0026]
Embedded image
Figure 0003949777
[0027]
Embedded image
Figure 0003949777
[0028]
Embedded image
Figure 0003949777
[0029]
Embedded image
Figure 0003949777
[0030]
Embedded image
Figure 0003949777
[0031]
Embedded image
Figure 0003949777
[0032]
Next, the antioxidant of the component (B) in the present invention is used for suppressing the deterioration of the thermal oxidation property of the amino group, and hindered phenols represented by the following formulas (16), (17), etc. , PhNHPhNHPh, PhNHPh, aromatic amines represented by the following formulas (18) and (19), hindered phenol group-containing organopolysiloxanes, aromatic amino group-containing organopolysiloxanes, and the like are particularly preferable. An aromatic amino group-containing organopolysiloxane represented by the general formula (2). The above Ph represents a phenyl group.
[0033]
Embedded image
Figure 0003949777
[0034]
Embedded image
Figure 0003949777
[0035]
Embedded image
Figure 0003949777
[0036]
Embedded image
Figure 0003949777
[0037]
The addition amount of the component (B) in the present invention is 0.01 to 20% by weight of the amino-modified silicone of the component (A). If it is less than 0.01% by weight, the effect of improving the heat resistance is weak, and even if it is added in excess of 20% by weight, the effect of improving the heat resistance is not changed. On the contrary, the stability of the silicone emulsion is deteriorated. % Is preferable, and 0.1 to 4% by weight is more preferable.
[0038]
Next, the nonionic surfactants HLB6 to 16 as the component (C) in the present invention are surfactants for emulsifying and dispersing both the components (A) and (B) in water. If it exceeds 1, the heat resistance of the resulting silicone emulsion will be insufficient, and if the HLB is less than 6, the emulsion stability of the silicone emulsion will deteriorate, so the HLB is preferably 6 to 16, more preferably Is 10-14.
[0039]
Specific examples of the nonionic surfactant of component (C) in the present invention include polyoxyethylene alkylphenyl ether, polyoxyethylene alkyl ether, sorbitan fatty acid ester and the like. Of these, polyoxyethylene alkylphenyl ether and polyoxyethylene alkyl ether are preferable. This addition amount is 5 to 100% by weight of the amino-modified silicone as the component (A). If it is less than 5% by weight, the emulsification stability of the amino-modified silicone is deteriorated, and if it exceeds 100% by weight, the properties of the amino-modified silicone may be impaired, so that it is preferably 5 to 100% by weight, more preferably 10 to 10% by weight. 50% by weight.
[0040]
In addition, an antistatic agent, a penetrating agent, a thickening agent, an antifoaming agent, an antiseptic and the like may be appropriately blended as various additives in the silicone emulsion composition composed of these components in order to improve the characteristics.
[0041]
The amount of the heat-resistant amino-modified silicone mixture oil for carbon fiber precursor comprising the components (A) to (C) is 0.1 to 3% by weight, preferably 0.3 to 1.5% by weight, based on the fiber. The range is good, and if the applied amount is less than 0.1% by weight, the fluff, yarn breakage and fusion between single fibers in the flameproofing process which is the object of the present invention cannot be suppressed, and the applied amount exceeds 3% by weight. In the application amount, the generation amount of the silicone-based oil agent decomposition product in the flameproofing process increases, which is not preferable.
[0042]
【Example】
The present invention will be described more specifically with reference to the following examples. However, the oil agent for carbon fiber precursor of the present invention is not limited thereto.
[0043]
The gelation degree, weight retention rate, number of fusions, flameproofing process pre-process passability, silicone oil decomposition product scattering state and strand strength of the oil were evaluated by the following methods.
[0044]
[Measurement and evaluation method of heat resistance (degree of gelation)]
An oil petri dish (diameter 60 mm, depth 10 mm) is precisely weighed with 2.0 g of oil emulsion, pre-dried at 105 ° C. for 1 hour, and heated at 150 ° C. for 24 hours to determine the insoluble content in chloroform. The degree of gelation was calculated and the heat resistance was evaluated. The smaller the degree of gelation, the better the heat resistance and the better the process passability in the drying process after attaching the oil emulsion, which means less fuzz and thread breakage induced by the gelled silicone oil. To do.
[0045]
[Measurement and evaluation method of decomposition and scattering behavior (weight retention)]
An oil petri dish (2.0 g in diameter: 60 mm, depth: 10 mm) is precisely weighed in 2.0 g of oil emulsion, pre-dried at 105 ° C. for 1 hour, and then heated at 250 ° C. for 1 hour to calculate the weight retention and disperse. The scattering behavior was evaluated. As the weight retention rate is larger, it means that decomposition and scattering are less likely to occur, and the amount of the silicone-based oil dispersion in the flameproofing process is smaller.
[0046]
[Measurement and evaluation method for fusion between single fibers (number of fusions)]
The carbon fiber tow was cut into 3 mm lengths, dispersed in acetone, and after stirring for 10 minutes using a magnetic stirrer, the total number of single fibers and the number of fusions were counted, and the number of fusions per 100 fibers was calculated.
○: Number of fusions (pieces / 100 pieces) ≦ 1
×: 1 <number of fusions (pieces / 100 pieces)
[0047]
[Passability before the flameproofing process]
Using the carbon fiber precursor acrylic fiber before the flameproofing process when sampling continuously for one week, depending on the number of windings on the roll etc. at the stage of the carbon fiber precursor acrylic fiber, at the stage of the carbon fiber precursor acrylic fiber The amount of fluff and yarn breakage was evaluated.
○: Number of windings (times / day) ≦ 1
Δ: 1 <number of windings (times / day) ≦ 10
×: 10 <number of windings (times / day)
[0048]
[Situation of silicone oil decomposition products]
The amount of the silicone-based oil decomposition product in the flameproofing furnace was evaluated based on the frequency of cleaning of the flameproofing furnace when carbon fibers were sampled continuously for one week.
○: Number of cleanings (times / week) ≤ 1
×: <Number of windings (times / week)
[0049]
[Measurement and evaluation method of carbon fiber properties (strand strength)]
It is the value measured according to the epoxy resin impregnation strand method prescribed | regulated to JIS-R-7601. (The number of measurements was 10 times, and the physical property values are shown as the average.)
[0050]
(Adjustment example 1)
3 kg of amino-modified silicone represented by the following formula (20),
[0051]
Embedded image
Figure 0003949777
[0052]
10 g of an aromatic amino group-containing organopolysiloxane represented by the following formula (21) as an antioxidant:
[0053]
Embedded image
Figure 0003949777
[0054]
A mixture of 600 g of polyoxyethylene lauryl ether [EO: 5 mol, HLB: 10.8] as an emulsifier and 16.4 g of water is emulsified with a homomixer, and then secondary emulsified at 300 kg / cm 2 with a high-pressure homogenizer. An emulsion was obtained.
The heat resistance and decomposition and scattering behavior of this oil were measured, and the results are shown in Table 1.
[0055]
(Adjustment example 2)
A mixture of 3 kg of amino-modified silicone represented by the formula (20) used in Preparation Example 1, 600 g of polyoxyethylene lauryl ether [EO: 5 mol, HLB: 10.8] as an emulsifier, and 16.4 g of water is used as Preparation Example 1 In the same manner, the mixture was emulsified with a homomixer and further subjected to secondary emulsification with a high-pressure homogenizer to obtain an oil emulsion.
The heat resistance and decomposition and scattering behavior of this oil were measured, and the results are shown in Table 1.
[0056]
(Adjustment Example 3)
3 kg of amino-modified silicone represented by the following formula (22),
[0057]
Embedded image
Figure 0003949777
[0058]
A mixture of polyoxyethylene lauryl ether [EO: 5 mol, HLB: 10.8] and 16.4 g of water as an emulsifier was emulsified with a homomixer in the same manner as in Preparation Example 1, and then secondary emulsification was performed with a high-pressure homogenizer. An oil emulsion was obtained.
The heat resistance and decomposition and scattering behavior of this oil were measured, and the results are shown in Table 1.
[0059]
Example 1
An acrylonitrile copolymer (acrylonitrile unit / methacrylic acid unit / acrylamide unit = 97.1 / 0.9 / 2.0 (wt%)) is dissolved in dimethylacetamide, the polymer concentration is 21 wt%, and the viscosity at 60 ° C. A 500 poise spinning stock solution was prepared and discharged into the air once through a spinneret having a pore diameter of 0.15 mmφ and a number of holes of 1500 in a coagulation bath filled with a 69% by weight dimethylacetamide aqueous solution at 35 ° C. and allowed to pass through a space of about 5 mm. Later, the coagulated yarn was obtained. The coagulated yarn was desolvated in a water washing tank and stretched 3.5 times to obtain a water-swelled acrylic fiber.
[0060]
The acrylic fiber in the water-swelled state is introduced into an oil bath filled with the oil emulsion prepared in Preparation Example 1, and after the emulsion is applied, it is dried and densified with a heating roll having a surface temperature of 130 ° C., and further heated at a surface temperature of 170 ° C. The precursor acrylic fiber was obtained by stretching 2.0 times between rolls. This precursor acrylic fiber had a single yarn fineness of 1.1 denier, a tensile strength of 7 g / denier, an elongation of 12.5%, and the amount of oil applied to the fiber was 1.0% by weight. It should be noted that the amount of oil applied to the fiber is a constant amount because the acrylic fiber after reaching a balance after adding a certain amount of oil per unit time to the oil bath and operating for a sufficiently long time is used as the precursor fiber. Was defined as the applied amount.
[0061]
This precursor acrylic fiber was passed through a flameproofing furnace having a temperature gradient of 230 to 270 ° C. over 60 minutes, and further baked in a carbonization furnace having a temperature gradient of 300 to 1300 ° C. in a nitrogen atmosphere to obtain carbon fibers. . Table 2 shows the number of fusions and strand strength of the carbon fibers obtained here, the passability before the flameproofing process, and the state of silicone degradation product scattering in the flameproofing process.
[0062]
(Comparative Example 1)
A precursor acrylic fiber was obtained in the same manner as in Example 1 except that the oil emulsion prepared in Preparation Example 2 was used instead of the oil emulsion prepared in Preparation Example 1. This precursor acrylic fiber had a single yarn fineness of 1.1 denier, a tensile strength of 6.8 g / denier, an elongation of 11.8%, and the amount of oil applied to the fiber was 1.0% by weight.
[0063]
This precursor acrylic fiber was fired in the same manner as in Example 1 to obtain carbon fiber. Table 2 shows the number of fusions and strand strength of the obtained carbon fibers, the passability of the pre-flame-proofing process, and the state of silicone degradation product scattering in the flame-proofing process.
[0064]
(Comparative Example 2)
A precursor acrylic fiber was obtained in the same manner as in Example 1 except that the oil emulsion prepared in Preparation Example 3 was used instead of the oil emulsion prepared in Preparation Example 1. This precursor acrylic fiber had a single yarn fineness of 1.1 denier, a tensile strength of 6.7 g / denier, an elongation of 11.5%, and the amount of oil applied to the fiber was 1.0% by weight.
[0065]
This precursor acrylic fiber was fired in the same manner as in Example 1 to obtain carbon fiber. Table 2 shows the number of fusions and strand strength of the obtained carbon fibers, the passability of the pre-flame-proofing process, and the state of silicone degradation product scattering in the flame-proofing process.
[0066]
(Example 2)
The same spinning dope as in Example 1 was prepared, and discharged into a coagulation bath filled with a 69% by weight dimethylacetamide aqueous solution at 35 ° C. from a spinneret having a hole diameter of 0.075 mmφ and a number of holes of 12,000 at a draft ratio of 0.8. It was. The coagulated yarn was desolvated in a washing tank and stretched 5 times to obtain a water-swelled acrylic fiber.
[0067]
The acrylic fiber in the water-swelled state is introduced into an oil bath filled with the emulsion prepared in Preparation Example 1, and after the emulsion is applied, it is dried and densified with a heating roll having a surface temperature of 130 ° C., and further a heating roll having a surface temperature of 170 ° C. The precursor acrylic fiber was obtained by stretching 1.7 times between them. This precursor acrylic fiber had a single yarn fineness of 1.1 denier, a tensile strength of 7 g / denier, an elongation of 10.5%, and the amount of oil applied to the fiber was 1.0% by weight.
[0068]
This precursor acrylic fiber was fired in the same manner as in Example 1 to obtain carbon fiber. Table 2 shows the number of fusions and strand strength of the obtained carbon fibers, the passability of the pre-flame-proofing process, and the state of silicone degradation product scattering in the flame-proofing process.
[0069]
(Comparative Example 3)
A precursor acrylic fiber was obtained in the same manner as in Example 2 except that the immersion time in an oil bath filled with an emulsion of acrylic fiber in a water-swollen state was changed. This precursor acrylic fiber had a single yarn fineness of 1.1 denier, a tensile strength of 6.7 g / denier, an elongation of 9.8%, and the amount of oil applied to the fiber was 0.09% by weight.
[0070]
This precursor acrylic fiber was fired in the same manner as in Example 1 to obtain carbon fiber. Table 2 shows the number of fusions and strand strength of the obtained carbon fibers, the passability of the pre-flame-proofing process, and the state of silicone degradation product scattering in the flame-proofing process.
[0071]
[Table 1]
Figure 0003949777
[0072]
[Table 2]
Figure 0003949777
[0073]
【The invention's effect】
The carbon fiber precursor acrylic fiber according to the present invention has no fusion between single yarns and substantially no fluff, and effectively prevents fluff, yarn breakage and fusion between single yarns in the flameproofing process. The process passability in the flameproofing process is remarkably improved by reducing the scattering of the silicone degradation product in the flameproofing process.

Claims (4)

下記(A)〜(C)成分よりなる混合物を繊維重量に対して0.1〜3重量%付与した炭素繊維前駆体アクリル繊維。
(A)下記一般式(1)で示されるアミノ変性シリコーン、
Figure 0003949777
(式中、Rは同一又は異種の炭素数1〜20のアルキル基又は炭素数6〜20のアリール基、Xは一般式−Q−(NH−Q′)p−NH2で表され、Q及びQ′は同一又は異種の炭素数1〜10の2価の炭化水素基であり、YはX、R、炭素数1〜5のアルコキシ基又は水酸基のいずれかであり、pは0、1又は2のいずれかである。又10≦m≦10000、0≦n≦100である。)
(B)酸化防止剤 (A)成分の0.01〜20重量%
(C)HLB6〜16の非イオン性界面活性剤 (A)成分の5〜100重量%
Carbon fiber precursor acrylic fiber provided with 0.1 to 3% by weight of a mixture comprising the following components (A) to (C) based on the fiber weight.
(A) an amino-modified silicone represented by the following general formula (1),
Figure 0003949777
(Wherein, R is the same or different alkyl or aryl group having 6 to 20 carbon atoms having 1 to 20 carbon atoms, X is represented by the general formula -Q- (NH-Q ') p -NH 2, Q And Q ′ are the same or different divalent hydrocarbon groups having 1 to 10 carbon atoms, Y is X, R, an alkoxy group having 1 to 5 carbon atoms or a hydroxyl group, and p is 0, 1 Or 2 or 10 ≦ m ≦ 10000, 0 ≦ n ≦ 100.)
(B) Antioxidant (A) 0.01 to 20% by weight of component
(C) Nonionic surfactant of HLB 6-16 (A) 5 to 100% by weight of component
(C)成分がポリオキシエチレンアルキルエーテル及び/又はポリオキシエチレンアルキルフェニルエーテルである請求項1記載の炭素繊維前駆体アクリル繊維。The carbon fiber precursor acrylic fiber according to claim 1, wherein the component (C) is polyoxyethylene alkyl ether and / or polyoxyethylene alkyl phenyl ether. (B)成分が芳香族アミノ基含有オルガノポリシロキサンであることを特徴とする請求項1又は2記載の炭素繊維前駆体アクリル繊維。The carbon fiber precursor acrylic fiber according to claim 1 or 2, wherein the component (B) is an aromatic amino group-containing organopolysiloxane. (B)成分が下記一般式(2)で示される芳香族アミノ基含有オルガノポリシロキサンであることを特徴とする請求項1又は2記載の炭素繊維前駆体アクリル繊維。
Figure 0003949777
(式中R′は同一又は異種の炭素数1〜20のアルキル基又は炭素数6〜20のアリール基であり、ZはR′、−O−Ph−NH−Ph、−O−Ph−NH−Ph−NH−Ph、下記式(3)及び(4)で示される化合物から選択される1価の芳香族アミノ基のいずれかである。さらに、q、rは1≦q≦50、0≦r≦10であるが、分子中に少なくとも1個以上の芳香族アミノ基を有する必要があることからr=0の場合に式中のZの少なくとも一方は上記の1価の芳香族アミノ基である。なお、上記Phはフェニル基を示す。)
Figure 0003949777
Figure 0003949777
The carbon fiber precursor acrylic fiber according to claim 1 or 2, wherein the component (B) is an aromatic amino group-containing organopolysiloxane represented by the following general formula (2).
Figure 0003949777
Wherein R ′ is the same or different alkyl group having 1 to 20 carbon atoms or aryl group having 6 to 20 carbon atoms, and Z is R ′, —O—Ph—NH—Ph, —O—Ph—NH. -Ph-NH-Ph, a monovalent aromatic amino group selected from the compounds represented by the following formulas (3) and (4), and q and r are 1 ≦ q ≦ 50, 0 ≦ r ≦ 10, but since it is necessary to have at least one aromatic amino group in the molecule, when r = 0, at least one of Z in the formula is the above monovalent aromatic amino group The above Ph represents a phenyl group.)
Figure 0003949777
Figure 0003949777
JP16390197A 1997-06-20 1997-06-20 Carbon fiber precursor acrylic fiber Expired - Lifetime JP3949777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16390197A JP3949777B2 (en) 1997-06-20 1997-06-20 Carbon fiber precursor acrylic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16390197A JP3949777B2 (en) 1997-06-20 1997-06-20 Carbon fiber precursor acrylic fiber

Publications (2)

Publication Number Publication Date
JPH1112855A JPH1112855A (en) 1999-01-19
JP3949777B2 true JP3949777B2 (en) 2007-07-25

Family

ID=15782986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16390197A Expired - Lifetime JP3949777B2 (en) 1997-06-20 1997-06-20 Carbon fiber precursor acrylic fiber

Country Status (1)

Country Link
JP (1) JP3949777B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3835639B2 (en) * 1997-06-20 2006-10-18 信越化学工業株式会社 Heat resistant amino-modified silicone emulsion composition
JP4456253B2 (en) * 2000-10-16 2010-04-28 竹本油脂株式会社 Synthetic fiber treatment agent for carbon fiber production and method for treating synthetic fiber for carbon fiber production
MX2010005126A (en) 2007-11-07 2010-05-27 Mitsubishi Rayon Co Oil agent composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle, and method for producing the same.
JP5960943B2 (en) * 2009-11-16 2016-08-02 三菱レイヨン株式会社 Oil agent composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle and method for producing the same, and method for producing carbon fiber bundle
KR101154059B1 (en) * 2009-12-31 2012-06-11 주식회사 효성 Carbon fiber reinforced plastic containing carbon fiber prepared by using silicon oil solution
CN104812948B (en) 2012-11-22 2017-09-26 三菱化学株式会社 The manufacture method of carbon fiber bundle
JP6150334B2 (en) * 2013-06-18 2017-06-21 国立大学法人 東京大学 Carbon fiber precursor fiber and carbon fiber

Also Published As

Publication number Publication date
JPH1112855A (en) 1999-01-19

Similar Documents

Publication Publication Date Title
JP4801546B2 (en) Oil agent for carbon fiber precursor acrylic fiber
JP4856724B2 (en) Oil agent composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle, and method for producing the same
JP4616934B1 (en) Acrylic fiber oil for carbon fiber production, acrylic fiber for carbon fiber production, and method for producing carbon fiber
JP3945549B2 (en) Oil for carbon fiber precursor
CN110670350B (en) Silicone oil-free agent for carbon fiber precursor
JP3949777B2 (en) Carbon fiber precursor acrylic fiber
JP4698861B2 (en) Carbon fiber precursor acrylic fiber, method for producing the same, and oil composition
JP2012102429A (en) Oil agent for acrylic fiber for producing carbon fiber, acrylic fiber for producing carbon fiber and method for producing carbon fiber
JP2005089884A (en) Method for producing carbon fiber precursor acrylic fiber bundle
JPH0978340A (en) Acrylic fiber of carbon fiber precursor
JPH0340152B2 (en)
JP4311246B2 (en) Synthetic fiber treatment oil
JP3514780B2 (en) Method for producing carbon fiber
JP2008202208A (en) Precursor fiber for carbon fiber, carbon fiber and method for producing thereof
JP2004169198A (en) Precursor fiber strand for carbon fiber and method for producing the same
JP2003201346A (en) Silicone lubricant, acrylic fiber as carbon fiber precursor, and method for manufacturing carbon fiber
JP3479576B2 (en) Carbon fiber precursor acrylic fiber
JPH04214415A (en) Carbon fiber precursor treating composition and treating method
JP2002371476A (en) Silicone oil solution for carbon fiber and method for producing carbon fiber
JP2004149937A (en) Precursor fiber strand for carbon fiber and method for producing the same
JP2596092B2 (en) Manufacturing method of raw yarn for carbon fiber
JP2004143645A (en) Oil composition for acrylic fiber for carbon fiber precursor and acrylic fiber for carbon fiber precursor
JP2006188795A (en) Silicone oil solution for carbon fiber precursor fiber, carbon fiber precursor fiber, flameproof fiber, carbon fiber and method for producing the same
JP2004143644A (en) Method for producing acrylic fiber for carbon fiber precursor
CN116103790B (en) Heat-resistant and high-compatibility carbon fiber precursor oiling agent and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term