JP2004143645A - Oil composition for acrylic fiber for carbon fiber precursor and acrylic fiber for carbon fiber precursor - Google Patents

Oil composition for acrylic fiber for carbon fiber precursor and acrylic fiber for carbon fiber precursor Download PDF

Info

Publication number
JP2004143645A
JP2004143645A JP2002312491A JP2002312491A JP2004143645A JP 2004143645 A JP2004143645 A JP 2004143645A JP 2002312491 A JP2002312491 A JP 2002312491A JP 2002312491 A JP2002312491 A JP 2002312491A JP 2004143645 A JP2004143645 A JP 2004143645A
Authority
JP
Japan
Prior art keywords
carbon fiber
precursor
fiber
mass
acrylic fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002312491A
Other languages
Japanese (ja)
Inventor
Kozo Mise
三瀬 興造
Takahiro Okuya
奥屋 孝浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2002312491A priority Critical patent/JP2004143645A/en
Publication of JP2004143645A publication Critical patent/JP2004143645A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oil composition effective for suppressing the adhesion of single fibers in a fiber-making process of a precursor and the fusion of the single fibers in a flame-resisting process, capable of preventing the fluffing, bundle breakage and non-uniform baking, and giving a carbon fiber having excellent performance such as strand strength. <P>SOLUTION: The oil composition for an acrylic fiber for a carbon fiber precursor is composed of 85-99.5mass% specific aromatic ester and 0.5-15mass% antioxidant. The oil composition for an acrylic fiber for a carbon fiber precursor is composed of 90-65mass% oil composition described above and 10-35mass% nonionic surfactant having a residue ratio of ≤1mass% after heating at 250°C for 2 hours. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、炭素繊維前駆体アクリル繊維(以下、単にプレカーサーという。)が耐炎化工程において、その単繊維間で融着が発生することを防止するために用いられる炭素繊維前駆体アクリル繊維用油剤組成物(以下、単に油剤組成物という。)に関する。
そして、品質および物性の優れた炭素繊維を製造するのに好適で、炭素繊維の製造に際して工程通過性が改善されたプレカーサーに関する。
【0002】
【従来の技術】
プレカーサーを200〜400℃の酸化性雰囲気中で加熱処理することにより耐炎化繊維に転換し、引き続いて少なくとも1000℃の不活性雰囲気中で炭素化する方法が炭素繊維の製造法として一般的である。このようにして得られた炭素繊維は、優れた物性により繊維強化樹脂複合材料の好適な強化繊維として広く利用されている。
【0003】
一方、上記の炭素繊維の製造方法、特に耐炎化工程において、プレカーサーの単繊維間で融着が発生して焼成が不均一になり、毛羽や束切れといった障害が発生することが知られている。この融着を回避するためには、耐炎化前の炭素繊維前駆体アクリル繊維に付与する油剤組成物の選択が重要であることが知られており、多くの油剤組成物が検討されている。
【0004】
例えば、アミノ変性シリコーン、エポキシ変性シリコーン、ポリエーテル変性シリコーン等を配合したシリコーン系油剤は、高い耐熱性を有し、融着を効果的に抑えることから、油剤組成物としてよく使用されている。
しかし、シリコーン系油剤を使用すると、耐炎化及び炭素化工程においてシリコーン由来の酸化珪素等が発生する。焼成炉壁や排ガス処理ラインに付着・堆積した酸化珪素等は操業性の低下をもたらし、焼成工程のガイド・ローラ類に付着した酸化珪素等は工程通過性を低下させる。また、酸化珪素等が工程糸に付着した場合は、炭素繊維の品質を低下させる。
【0005】
これに対して、アミノ変性シリコーン等を配合しない非シリコーン系の油剤組成物は古くから様々なものが提案されている。例えば、ポリブテン(特許文献1参照)、ポリオキシエチレン高級脂肪族アルキルエーテルと酸化防止剤の配合品(特許文献2参照)、ネオペンチルアルコール誘導体(特許文献3参照)、アルキル又はアルケニルチオ脂肪酸エステル(特許文献4参照)、高分子アミド化合物(特許文献5参照)、脂肪酸エステルのアンモニウム塩(特許文献6参照)、フッ素系界面活性剤(特許文献7参照)、芳香族複合エステルとアミド化合物(特許文献8参照)などがある。
【0006】
【特許文献1】
特開昭54−73999号公報
【特許文献2】
特開昭58−120819号公報
【特許文献3】
特開昭62−231078号公報
【特許文献4】
特開昭58−214581号公報
【特許文献5】
特開平8−260254号公報
【特許文献6】
特開昭57−112410号公報
【特許文献7】
特開昭59−228069号公報
【特許文献8】
特開平9−78340号公報
【0007】
非シリコーン系油剤は、焼成時に酸化珪素等の発生がないことや原料が安価なことなど有利な点もあるが、シリコーン系油剤に比べて熱安定性が劣るものが多く、焼成工程での融着による毛羽・束切れトラブルの原因になると共に、ストランド強度など炭素繊維の性能もシリコーン系油剤を使用した場合に比べて劣るため、プレカーサーに使用される機会は一部の品種に限られていた。
【0008】
【発明が解決しようとする課題】
本発明は、上記従来技術の問題点を解決し、プレカーサーの製糸工程における単繊維間の接着および耐炎化工程における単繊維間の融着を抑え、毛羽や束切れや不均一焼成を防ぐことができ、ストランド強度などの性能が優れた炭素繊維の製造を可能にする油剤組成物を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者らは、油剤組成物の熱安定性とプレカーサーの製糸工程における単繊維間の接着および耐炎化工程における単繊維間の融着挙動との関係について、詳細に検討した結果、油剤を水エマルションにすることなく、水膨潤状態にあるアクリル繊維または乾燥緻密化後のアクリル繊維に付与する場合は、
1)油剤の耐熱成分として特定の芳香族エステルを使用すると共に酸化防止剤を特定の比率で配合すること、
が重要であり、油剤を水エマルションにして、水膨潤状態にあるアクリル繊維または乾燥緻密化後のアクリル繊維に付与する場合は、(1)に加えて、
2)耐熱主剤である芳香族エステルと酸化防止剤の混合物を水系エマルションの状態で繊維に付与するために配合する乳化剤として、特定の熱分解特性を有するノニオン系界面活性剤を特定の混合比率で使用すること
が、プレカーサーの製糸工程における単繊維間の接着および耐炎化工程における単繊維間の融着を大幅に低減することに有効であり、焼成時の工程安定性が向上すると共に、ストランド強度などの炭素繊維性能がシリコーン油剤を使用した場合に近いものが得られることを見出し、本発明を完成した。
【0010】
すなわち本発明の第1の要旨は、下式(I)で示される芳香族エステル85〜99.5質量%と酸化防止剤0.5〜15質量%とからなる炭素繊維前駆体アクリル繊維用油剤組成物である(第1発明)。
【0011】
【化2】

Figure 2004143645
【0012】
そして、第2の要旨は、前記油剤組成物90〜65質量%と、250℃で2時間加熱後の残渣率が1質量%以下のノニオン系界面活性剤10〜35質量%とからなる炭素繊維前駆体アクリル繊維用油剤組成物である(第2発明)。
【0013】
さらに、第3の要旨は、炭素繊維前駆体アクリル繊維に前記油剤組成物を0.1〜1質量%付与した炭素繊維前駆体アクリル繊維である。
【0014】
【発明の実施の形態】
以下に本発明を詳細に説明する。
(プレカーサー)
本発明において、油剤組成物を付与する前のプレカーサーには、公知のアクリル繊維を用いることができ、その組成は特に限定されるものではないが、アクリロニトリル単位95質量%以上とアクリロニトリルと共重合可能なビニル系単量体単位5質量%以下とからなるアクリロニトリル系重合体を紡糸して得られるアクリル繊維が好ましい。さらにこの共重合可能なビニル系単量体としては、アクリル酸、メタクリル酸、イタコン酸、これらのアルカリ金属塩、これらのアンモニウム塩およびアクリルアミド等の単量体群から選ばれる1種以上の単量体が耐炎化反応を促進する上で好ましい。このようなアクリル繊維からなる繊維束の製造方法も特に限定されるものではなく、公知の湿式、乾式および乾湿式の各紡糸方式が採用できる。
【0015】
(芳香族エステル)
本発明における式(I)で示される芳香族エステルは、ビスフェノールAのエチレンオキシドおよび/またはプロピレンオキシド付加物の両末端高級脂肪酸エステル化物である。エステル結合によりRまたはRを形成するカルボン酸としては、具体的にはラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸等の高級脂肪酸から選ばれることが好ましい。
【0016】
【化3】
Figure 2004143645
【0017】
エチレンオキシドおよび/またはプロピレンオキシドの付加モル数m、nは、1〜5が好ましい。この範囲を超える付加モル数になると、式(I)の化合物の長所である耐熱性が損なわれる傾向にある。
【0018】
また、式(I)で示される芳香族エステルの油剤組成物中の含有量は85〜99.5質量%の範囲内にするのがよい。85質量%より少ないと炭素繊維の性能が低下する傾向があり、99.5質量%を超えると炭素繊維前駆体の製糸工程での接着や高温焼成処理における融着を抑制する効果が不十分で、工程通過性の悪化や、炭素繊維ストランド強度などの性能の低下が起こる可能性がある。
【0019】
式(I)で示される芳香族エステルは、従来炭素繊維前駆体製造用の油剤として使用されたことがない。その理由は、単独で使用すると焼成時の工程トラブルを引き起こして炭素繊維強度低下が避けられないためであった。本発明の様に特定の芳香族エステルに酸化防止剤を併用すること、繊維付与を水系エマルションの形で行う場合さらに特定の熱分解特性を有するノニオン系界面活性剤を特定の質量比で混合することで製糸工程での接着や高温焼成処理における融着を大幅に低減することができ、焼成時の工程安定性が向上すると共に、ストランド強度などの炭素繊維性能がシリコーン系油剤を使用した場合に近いものが得られる。
【0020】
(酸化防止剤)
本発明において、酸化防止剤としては、ペンタエリスリチル−テトラキス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール−ビス〔3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート〕、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、1,3,5−トリス(4−t−ブチル−3−ヒドロキシ−2,6−ジメチルベンジル)イソシアヌル酸、2,2−チオ−ジエチレンビス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕、4,4’−ブチリデンビス(3−メチル−6−t−ブチルフェニル−ジトリデシルホスファイト)などが好ましく用いられる。これらは単独でも組み合わせて用いてもよい。また、油剤組成物における酸化防止剤の含有量は0.5〜15質量%の範囲内にする。0.5質量%より少ないと耐熱性効果が十分でなく、15質量%を超えて添加しても耐熱性の向上効果は変わらず、酸化防止剤が加熱残渣として耐炎化糸や炭素化糸に残存することや、この油剤を水に分散する場合にはエマルションの安定性が低下する。
本発明(第1発明)の油剤は、水エマルションにすることなく、水膨潤状態のアクリル繊維または乾燥緻密化後のアクリル繊維に付与する。
【0021】
(ノニオン系界面活性剤)
本発明において、油剤を水エマルションとして使用する場合は、特定のノニオン系界面活性剤を使用する。それはノニオン系界面活性剤が焼成工程において加熱残渣として耐炎化糸や炭素化糸に残存することは好ましくないので、空気中250℃で2時間加熱後の残渣率が1%質量以下のものを使用する必要があるからである。残渣率が0.5%質量以下であることが好ましい。好適な例としてはポリオキシアルキレングリコール脂肪酸エステル、脂肪族アルコールのアルキレンオキシド付加物、アルキル置換フェノールのアルキレンオキシド付加物などが挙げられ、疎水部のアルキル鎖は直鎖状でも分岐していてもよい。このノニオン系界面活性剤のHLBは6〜16であることが望ましい。また、これらのこの様なノニオン系界面活性剤の親水部のオキシアルキレン単位繰返数、オキシアルキレン単位の種類やオキシアルキレン単位の繰り返しの形態は、油剤の水分散物が安定なエマルションとなるように適宜選択することができる。
【0022】
本発明(第2発明)において、芳香族エステルと酸化防止剤とからなる油剤組成物とノニオン系界面活性剤との混合比は、質量比90:10〜65:35の範囲とする。ノニオン系界面活性剤の比率が少ないとエマルションの安定性が低下して繊維への付着斑(ムラ)が生じ、また、多いとストランド強度などの炭素繊維の性能が低下する。
【0023】
(油剤組成物の作製方法)
式(I)で示される芳香族エステルを攪拌しながら酸化防止剤を必要に応じて加熱しつつ添加し、さらにノニオン系界面活性剤を添加・攪拌し、水中に分散させることで油剤組成物の水系エマルションが得られる。
【0024】
各成分の混合または水中分散は、プロペラ攪拌、ホモミキサー、ホモジナイザー等を使って行うことができる。なお、これらの成分からなる油剤組成物には、その特性向上のために帯電防止剤、浸透剤、消泡剤、防腐剤などを適宜配合することは差し支えない。
【0025】
(プレカーサーへの油剤組成物の付与方法)
本発明のプレカーサーは、前記油剤組成物を公知の方法で付与することで製造することができる。第1発明の油剤組成物にノニオン系界面活性剤を添加した、第2発明の油剤組成物の場合、水中に分散したエマルションの状態で付与することもできる。
【0026】
本発明の油剤組成物をアクリル系繊維に付着するに際しては、水系エマルションとしてローラー給油、浸漬法など公知の方法で付着させる。なお、油剤組成物をエマルションとせずに直接アクリル系繊維に付着させることもできるが、その場合は繊維束が乾燥していることが必要である。
【0027】
プレカーサーに対する油剤組成物の付与量は、繊維の乾燥質量に対し、0.1〜1質量%、好ましくは0.2〜1質量%の範囲がよく、0.1質量%未満の付与量では本発明の目的である耐炎化工程での毛羽・束切れ及び単繊維間接着を抑制できず、1質量%を超える付与量では、耐炎化工程での熱劣化物が多くなる。
【0028】
【実施例】
以下に本発明を実施例によりさらに具体的に説明する。なお、ノニオン系界面活性剤加熱残渣、単繊維間融着数、耐炎化工程前工程通過性および炭素繊維ストランド強度は以下の方法により評価した。
【0029】
[ノニオン系界面活性剤加熱残渣]
アルミシャーレ(直径60mm、深さ10mm)にノニオン系界面活性剤2.0gを精秤し、熱風乾燥機中で空気中250℃で2時間加熱した後の残分について残渣率を算出した。加熱残渣率が大きいほど、ノニオン系界面活性剤の熱劣化物が耐炎化糸や炭素化糸に残存する可能性が大きいことを意味する。
【0030】
[単繊維間融着数(融着数)]
炭素繊維トウを3mm長に切断し、アセトン中に分散させ、マグネティックスターラーを用い10分間攪拌した後の全単繊維数と融着数を計数し、繊維100本当たりの融着数を算出した。評価基準は下記の通りである。
○:融着数(個/100本)≦1
×:融着数(個/100本)>1
【0031】
[耐炎化工程前工程通過性(工程通過性)]
1週間連続して炭素繊維を製造した時の耐炎化工程直前のロールへのプレカーサーの巻き付き回数により、プレカーサーの毛羽、糸切れの量を評価した。評価基準は下記の通りである。
○:巻き付き回数(回/1日)≦1
△:1<巻き付き回数(回/1日)≦10
×:巻き付き回数(回/1日)>10
【0032】
[炭素繊維ストランド強度(CF強度)]
JIS R 7601に規定されているエポキシ樹脂含浸ストランド法に準じて測定した値である。(なお、測定回数は10回であり、物性値はその平均値を以て示した。)
【0033】
実施例中の(1)〜(16)は、次の物質を表す。
(1)ビスフェノールAのエチレンオキシド2モル付加物のジラウリルエステル。m=n=1
(2)ビスフェノールAのエチレンオキシド4モル付加物のジラウリルエステル。m=n=2
(3)ビスフェノールAのエチレンオキシド2モル・プロピレンオキシド2モル付加物のジラウリルエステル。m=n=2
(4)ビスフェノールAのエチレンオキシド12モル付加物のジラウリルエステル。m=n=6
(5)ペンタエリスリチル−テトラキス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕
(6)トリエチレングリコール−ビス〔3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート〕
(7)1,3,5−トリス(4−t−ブチル−3−ヒドロキシ−2,6−ジメチルベンジル)イソシアヌル酸
(8)ポリオキシエチレンラウリルエーテル[EO(エチレンオキシド):10モル,HLB:14]、加熱残渣(250℃、2時間加熱後の質量)0.4質量%
(9)ポリオキシエチレンラウリルエーテル[EO:5モル,HLB:10.8]、加熱残渣(250℃、2時間加熱後の質量)0.6質量%
(10)ポリオキシエチレントリデシルエーテル[EO:10モル,HLB:13.7]、加熱残渣(250℃、2時間加熱後の質量)0.7質量%
(11)ヤシ脂肪酸還元アルコールエチレンオキシド付加物[EO:9モル,HLB:13.1]、加熱残渣(250℃、2時間加熱後の質量)5質量%
(12)ポリオキシエチレン硬化ヒマシ油[EO:10モル,HLB:12.5]、加熱残渣(250℃、2時間加熱後の質量)15質量%
(8)〜(12)はいずれもノニオン系界面活性剤である。
【0034】
(実施例1):第1発明の実施例
芳香族エステルとして、化合物(1)、酸化防止剤として、化合物(5)を用い、表中の組成比で混合したものを40℃に加温して油剤組成物を用意した。
【0035】
アクリロニトリル共重合体(アクリロニトリル単位/メタクリル酸単位/アクリルアミド単位の質量比97.1/0.9/2)をジメチルアセトアミドに溶解し、重合体濃度21質量%、60℃における粘度が500ポイズの紡糸原液を調製し、35℃の69質量%ジメチルアセトアミド水溶液を満たした凝固浴中に孔径(直径)0.75μm、孔数12000の紡糸口金より吐出し凝固糸とした。凝固糸は水洗槽中で脱溶媒するとともに5倍に延伸して水膨潤状態のアクリル繊維とした。この水膨潤状態にあるアクリル繊維を表面温度130℃の加熱ロールで乾燥緻密化したのち、40℃に加温した油剤を直接付与した。さらに表面温度170℃の加熱ロール間で1.7倍延伸を施し、プレカーサーを得た。プレカーサーへの付着量は0.7質量%であった。
【0036】
このプレカーサーを230〜270℃の温度勾配を有する耐炎化炉に60分かけて通し、さらに窒素雰囲気中で300〜1300℃の温度勾配を有する炭素化炉で焼成して炭素繊維とした。評価結果を表に示した。
【0037】
(実施例2〜8、比較例1〜7):第2発明の実施例
表に示した組成比の混合物の合計濃度が25質量%になるようにをイオン交換水を加えたのち、ホモミキサーで乳化し、さらに高圧ホモジナイザーで、30MPaで二次乳化をおこない油剤エマルションを得た。
アクリロニトリル共重合体(アクリロニトリル単位/メタクリル酸単位/アクリルアミド単位の質量比97.1/0.9/2.0)をジメチルアセトアミドに溶解し、重合体濃度21質量%、60℃における粘度が500ポイズの紡糸原液を調製し、35℃の69質量%ジメチルアセトアミド水溶液を満たした凝固浴中に孔径(直径)75μm、孔数12000の紡糸口金より吐出し凝固糸とした。凝固糸は水洗槽中で脱溶媒するとともに5倍に延伸して水膨潤状態のアクリル繊維とした。
【0038】
この水膨潤状態にあるアクリル繊維を、表1で示した組成の油剤組成物の水エマルションを満たした油浴に導き、油剤組成物を付着させた後、表面温度130℃の加熱ロールで乾燥緻密化し、さらに表面温度170℃の加熱ロール間で1.7倍延伸を施しプレカーサーを得た。
このプレカーサーを、230〜270℃の温度勾配を有する耐炎化炉に60分かけて通し、さらに窒素雰囲気中で300〜1300℃の温度勾配を有する炭素化炉で焼成して炭素繊維とした。
プレカーサーの単糸繊度、引張り強度、伸度、炭素繊維の融着数、炭素繊維ストランド強度および耐炎化工程前工程通過性を表に示した。
【0039】
【表1】
Figure 2004143645
【0040】
【発明の効果】
本発明の油剤組成物は耐熱性が良好なため、この油剤組成物あるいはそのエマルションを付与されたプレカーサーは、炭素繊維前駆体の段階で単糸間接着がなく、毛羽が実質的に存在せず、このプレカーサーを用いて炭素繊維を製造すると、耐炎化工程での前駆体繊維の毛羽、糸切れ及び単糸間融着が効果的に抑えられ、品質および物性の優れた炭素繊維を製造することができる。
また、シリコーン系油剤を使用した場合に耐炎化工程および炭素化工程で発生するシリコーン分解物の飛散がないため、耐炎化工程および炭素化工程での操業性、工程通過性が著しく改善される。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides an oil agent for a carbon fiber precursor acrylic fiber used to prevent a carbon fiber precursor acrylic fiber (hereinafter simply referred to as a precursor) from fusing between its single fibers in a flame-proofing step. A composition (hereinafter, simply referred to as an oil composition).
Further, the present invention relates to a precursor which is suitable for producing carbon fibers having excellent quality and physical properties and has improved processability in producing carbon fibers.
[0002]
[Prior art]
A common method for producing carbon fibers is to convert the precursor into oxidized fiber by heat treatment in an oxidizing atmosphere at 200 to 400 ° C., and subsequently to carbonize in an inert atmosphere at least 1000 ° C. . The carbon fiber thus obtained is widely used as a suitable reinforcing fiber of a fiber-reinforced resin composite material due to its excellent physical properties.
[0003]
On the other hand, it is known that, in the above-described method for producing carbon fibers, particularly in the flame-proofing step, fusion occurs between the single fibers of the precursor, resulting in non-uniform firing, and problems such as fluff and breakage of bundles. . In order to avoid this fusion, it is known that it is important to select an oil agent composition to be applied to the carbon fiber precursor acrylic fiber before flame resistance, and many oil agent compositions have been studied.
[0004]
For example, silicone oils containing amino-modified silicones, epoxy-modified silicones, polyether-modified silicones, etc., are often used as oil compositions because they have high heat resistance and effectively suppress fusion.
However, when a silicone oil agent is used, silicon oxide and the like derived from silicone are generated in the flame resistance and carbonization steps. Silicon oxide and the like adhering to and depositing on the firing furnace wall and the exhaust gas treatment line cause a decrease in operability, and silicon oxide and the like adhering to guide rollers and the like in the firing step lower the process passability. Further, when silicon oxide or the like adheres to the process yarn, the quality of the carbon fiber is reduced.
[0005]
On the other hand, various types of non-silicone oil compositions containing no amino-modified silicone have been proposed for a long time. For example, polybutene (see Patent Document 1), a blend of a polyoxyethylene higher aliphatic alkyl ether and an antioxidant (see Patent Document 2), a neopentyl alcohol derivative (see Patent Document 3), an alkyl or alkenyl thiofatty acid ester (see Patent Document 3) Patent Document 4), high-molecular amide compound (see Patent Document 5), ammonium salt of fatty acid ester (see Patent Document 6), fluorine-based surfactant (see Patent Document 7), aromatic compound ester and amide compound (see Patent Document 7) Reference 8).
[0006]
[Patent Document 1]
JP-A-54-73999 [Patent Document 2]
JP-A-58-120819 [Patent Document 3]
JP-A-62-231078 [Patent Document 4]
JP-A-58-214581 [Patent Document 5]
JP-A-8-260254 [Patent Document 6]
Japanese Patent Application Laid-Open No. 57-112410 [Patent Document 7]
JP-A-59-228069 [Patent Document 8]
JP-A-9-78340
Non-silicone oils have advantages such as the absence of silicon oxide and the like during firing, and the raw materials are inexpensive. The cause of fluff and bundle breakage due to wearing, and the performance of carbon fiber such as strand strength is inferior to those using silicone oil, so the opportunity to use it as a precursor was limited to some varieties .
[0008]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems of the prior art, suppresses the adhesion between single fibers in the process of forming a precursor and the fusion between single fibers in the flame-proofing process, and prevents fluff, breakage of bundles and uneven firing. It is an object of the present invention to provide an oil agent composition which can produce carbon fibers having excellent performance such as strand strength.
[0009]
[Means for Solving the Problems]
The present inventors have studied in detail the relationship between the thermal stability of the oil agent composition and the adhesion between the single fibers in the precursor spinning process and the fusion behavior between the single fibers in the flameproofing process. Without giving an emulsion, when applying to acrylic fibers in a water-swelled state or acrylic fibers after dry densification,
1) using a specific aromatic ester as a heat-resistant component of an oil agent and compounding an antioxidant in a specific ratio;
Is important, and when the oil agent is made into a water emulsion and applied to the acrylic fiber in a water-swelled state or the acrylic fiber after dry densification, in addition to (1),
2) A nonionic surfactant having a specific thermal decomposition property is mixed at a specific mixing ratio as an emulsifier to be added to impart a mixture of an aromatic ester which is a heat-resistant main agent and an antioxidant to a fiber in the form of an aqueous emulsion. The use is effective in greatly reducing the adhesion between the single fibers in the precursor spinning process and the fusion between the single fibers in the flame-proofing process, improving the process stability during firing and improving the strand strength. It has been found that carbon fiber performances such as those obtained by using a silicone oil can be obtained, and the present invention has been completed.
[0010]
That is, a first gist of the present invention is an oil agent for a carbon fiber precursor acrylic fiber comprising 85 to 99.5% by mass of an aromatic ester represented by the following formula (I) and 0.5 to 15% by mass of an antioxidant. A composition (first invention).
[0011]
Embedded image
Figure 2004143645
[0012]
The second gist is a carbon fiber comprising 90 to 65% by mass of the oil agent composition and 10 to 35% by mass of a nonionic surfactant having a residue ratio of 1% by mass or less after heating at 250 ° C. for 2 hours. It is an oil agent composition for a precursor acrylic fiber (second invention).
[0013]
Further, a third gist is a carbon fiber precursor acrylic fiber obtained by providing the oil agent composition to a carbon fiber precursor acrylic fiber at 0.1 to 1% by mass.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
(Precursor)
In the present invention, a known acrylic fiber can be used as a precursor before the oil agent composition is applied, and the composition is not particularly limited, but the acrylonitrile unit can be copolymerized with 95% by mass or more of acrylonitrile and acrylonitrile. An acrylic fiber obtained by spinning an acrylonitrile-based polymer composed of 5% by mass or less of a vinyl-based monomer unit is preferred. Further, as the copolymerizable vinyl monomer, at least one monomer selected from the group consisting of acrylic acid, methacrylic acid, itaconic acid, alkali metal salts thereof, ammonium salts thereof and acrylamide. The body is preferred in promoting the anti-oxidation reaction. The method for producing the fiber bundle made of such acrylic fibers is not particularly limited, either, and a known wet, dry or dry-wet spinning method can be adopted.
[0015]
(Aromatic ester)
The aromatic ester represented by the formula (I) in the present invention is a higher fatty acid ester of bisphenol A at both ends of an ethylene oxide and / or propylene oxide adduct. The carboxylic acid forming R 1 or R 2 through an ester bond is specifically preferably selected from higher fatty acids such as lauric acid, myristic acid, palmitic acid and stearic acid.
[0016]
Embedded image
Figure 2004143645
[0017]
The number of added moles m and n of ethylene oxide and / or propylene oxide is preferably from 1 to 5. If the number of moles exceeds this range, the heat resistance, which is an advantage of the compound of the formula (I), tends to be impaired.
[0018]
The content of the aromatic ester represented by the formula (I) in the oil composition is preferably in the range of 85 to 99.5% by mass. If the amount is less than 85% by mass, the performance of the carbon fiber tends to decrease. If the amount exceeds 99.5% by mass, the effect of suppressing the adhesion of the carbon fiber precursor in the spinning step and the fusion in the high-temperature firing treatment is insufficient. In addition, there is a possibility that the process passability may deteriorate or the performance such as carbon fiber strand strength may decrease.
[0019]
The aromatic ester represented by the formula (I) has never been used as an oil agent for producing a carbon fiber precursor. The reason for this is that when used alone, a process trouble during firing is caused, and a reduction in carbon fiber strength cannot be avoided. When an antioxidant is used in combination with a specific aromatic ester as in the present invention, when a fiber is provided in the form of an aqueous emulsion, a nonionic surfactant having a specific thermal decomposition property is further mixed at a specific mass ratio. This greatly reduces the adhesion in the yarn-making process and the fusion in the high-temperature baking process, improves the process stability during baking and improves the carbon fiber performance such as strand strength when using silicone oil. You can get something close.
[0020]
(Antioxidant)
In the present invention, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], triethylene glycol-bis [3- (3-t- Butyl-5-methyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 1,3,5-tris (4-t-butyl- 3-hydroxy-2,6-dimethylbenzyl) isocyanuric acid, 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 4,4′-butylidenebis (3-methyl-6-t-butylphenyl-ditridecyl phosphite) and the like are preferably used. These may be used alone or in combination. Further, the content of the antioxidant in the oil agent composition is set in a range of 0.5 to 15% by mass. If the amount is less than 0.5% by mass, the heat resistance effect is not sufficient, and if it exceeds 15% by mass, the effect of improving the heat resistance does not change, and the antioxidant is used as a heating residue in the flame-resistant yarn or carbonized yarn. If the oil remains, or if the oil is dispersed in water, the stability of the emulsion decreases.
The oil agent of the present invention (first invention) is applied to an acrylic fiber in a water-swelled state or an acrylic fiber after drying and densification without forming a water emulsion.
[0021]
(Nonionic surfactant)
In the present invention, when an oil agent is used as a water emulsion, a specific nonionic surfactant is used. Since it is not preferable that the nonionic surfactant remains as a heating residue in the oxidized yarn or the carbonized yarn in the baking step, a residue having a residue ratio of 1% by mass or less after heating at 250 ° C. for 2 hours in the air is used. It is necessary to do it. It is preferable that the residue ratio is 0.5% by mass or less. Preferable examples include polyoxyalkylene glycol fatty acid esters, alkylene oxide adducts of aliphatic alcohols, alkylene oxide adducts of alkyl-substituted phenols, and the like, and the alkyl chain of the hydrophobic portion may be linear or branched. . The nonionic surfactant preferably has an HLB of 6 to 16. Further, the oxyalkylene unit repetition number of the hydrophilic portion of such a nonionic surfactant, the type of the oxyalkylene unit and the form of the repetition of the oxyalkylene unit are such that the aqueous dispersion of the oil agent becomes a stable emulsion. Can be appropriately selected.
[0022]
In the present invention (the second invention), the mixing ratio of the oil agent composition comprising the aromatic ester and the antioxidant and the nonionic surfactant is in the range of 90:10 to 65:35 by mass. When the proportion of the nonionic surfactant is small, the stability of the emulsion is reduced, and unevenness (unevenness) is caused to adhere to the fiber. When the proportion is large, the performance of the carbon fiber such as strand strength is reduced.
[0023]
(Preparation method of oil composition)
The antioxidant is added while heating the aromatic ester represented by the formula (I) with stirring, if necessary, and the nonionic surfactant is further added and stirred, and dispersed in water to disperse the oil composition. An aqueous emulsion is obtained.
[0024]
Mixing or dispersion of each component in water can be performed using a propeller stirrer, a homomixer, a homogenizer, or the like. In addition, an antistatic agent, a penetrant, an antifoaming agent, a preservative, and the like may be appropriately added to the oil agent composition comprising these components in order to improve the properties.
[0025]
(Method of Applying Oil Agent Composition to Precursor)
The precursor of the present invention can be produced by applying the oil agent composition by a known method. In the case of the oil agent composition of the second invention in which a nonionic surfactant is added to the oil agent composition of the first invention, it can be applied in the form of an emulsion dispersed in water.
[0026]
When attaching the oil agent composition of the present invention to the acrylic fiber, the oil agent composition is applied as a water-based emulsion by a known method such as roller oiling and dipping. The oil composition can be directly attached to the acrylic fiber without forming an emulsion, but in this case, the fiber bundle needs to be dried.
[0027]
The amount of the oil agent composition applied to the precursor is in the range of 0.1 to 1% by mass, preferably 0.2 to 1% by mass, and preferably less than 0.1% by mass, based on the dry mass of the fiber. It is not possible to suppress fluff / bundle breakage and adhesion between single fibers in the flame-proofing step, which is the object of the present invention. If the applied amount exceeds 1% by mass, thermal degradation products in the flame-proofing step increase.
[0028]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. In addition, the nonionic surfactant heating residue, the number of fusions between single fibers, the processability before the oxidization process, and the carbon fiber strand strength were evaluated by the following methods.
[0029]
[Nonionic surfactant heating residue]
2.0 g of a nonionic surfactant was precisely weighed on an aluminum Petri dish (diameter: 60 mm, depth: 10 mm), and the residue ratio was calculated for the residue after heating at 250 ° C. for 2 hours in air in a hot air dryer. The higher the heating residue ratio, the greater the possibility that the thermally degraded nonionic surfactant remains on the flame-resistant yarn or carbonized yarn.
[0030]
[Number of fusion between single fibers (number of fusion)]
The carbon fiber tow was cut into a length of 3 mm, dispersed in acetone, stirred with a magnetic stirrer for 10 minutes, the total number of single fibers and the number of fusions were counted, and the number of fusions per 100 fibers was calculated. The evaluation criteria are as follows.
:: Number of fusions (pieces / 100 pieces) ≦ 1
×: Number of fusions (pieces / 100 pieces)> 1
[0031]
[Processability before the oxidization process (processability)]
The amount of fluff and thread breakage of the precursor was evaluated by the number of times the precursor was wound around a roll immediately before the oxidization step when carbon fibers were produced continuously for one week. The evaluation criteria are as follows.
:: Number of windings (times / day) ≤ 1
Δ: 1 <number of windings (times / day) ≦ 10
×: Number of windings (times / day)> 10
[0032]
[Strand strength of carbon fiber (CF strength)]
It is a value measured according to the epoxy resin-impregnated strand method specified in JIS R 7601. (Note that the number of measurements was 10 times, and the physical properties were indicated by their average values.)
[0033]
(1) to (16) in the examples represent the following substances.
(1) A dilauryl ester of bisphenol A ethylene oxide 2 mol adduct. m = n = 1
(2) Dilauryl ester of ethylene oxide 4 mol adduct of bisphenol A. m = n = 2
(3) A dilauryl ester of bisphenol A adduct of 2 mol of ethylene oxide and 2 mol of propylene oxide. m = n = 2
(4) Dilauryl ester of ethylene oxide 12 mol adduct of bisphenol A. m = n = 6
(5) Pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate]
(6) Triethylene glycol-bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate]
(7) 1,3,5-tris (4-t-butyl-3-hydroxy-2,6-dimethylbenzyl) isocyanuric acid (8) polyoxyethylene lauryl ether [EO (ethylene oxide): 10 mol, HLB: 14 ], Heating residue (mass after heating at 250 ° C. for 2 hours) 0.4 mass%
(9) Polyoxyethylene lauryl ether [EO: 5 mol, HLB: 10.8], heating residue (mass after heating at 250 ° C. for 2 hours) 0.6% by mass
(10) Polyoxyethylene tridecyl ether [EO: 10 mol, HLB: 13.7], heated residue (mass after heating at 250 ° C. for 2 hours) 0.7% by mass
(11) Coconut fatty acid reduced alcohol ethylene oxide adduct [EO: 9 mol, HLB: 13.1], heating residue (mass after heating at 250 ° C. for 2 hours) 5% by mass
(12) Polyoxyethylene hydrogenated castor oil [EO: 10 mol, HLB: 12.5], heated residue (mass after heating at 250 ° C. for 2 hours) 15% by mass
(8) to (12) are all nonionic surfactants.
[0034]
(Example 1): Example of the first invention Compound (1) was used as an aromatic ester, and compound (5) was used as an antioxidant. Thus, an oil composition was prepared.
[0035]
An acrylonitrile copolymer (mass ratio of acrylonitrile unit / methacrylic acid unit / acrylamide unit: 97.1 / 0.9 / 2) is dissolved in dimethylacetamide, and spinning at a polymer concentration of 21% by mass and a viscosity of 500 poise at 60 ° C. A stock solution was prepared and discharged from a spinneret having a pore size (diameter) of 0.75 μm and 12,000 holes into a coagulation bath filled with a 69% by mass aqueous dimethylacetamide solution at 35 ° C. to form a coagulated yarn. The coagulated yarn was desolvated in a washing tank and stretched 5 times to obtain a water-swelled acrylic fiber. The acrylic fiber in the water-swelled state was dried and densified by a heating roll having a surface temperature of 130 ° C., and an oil agent heated to 40 ° C. was directly applied. Further, the film was stretched 1.7 times between heated rolls having a surface temperature of 170 ° C. to obtain a precursor. The amount of adhesion to the precursor was 0.7% by mass.
[0036]
The precursor was passed through a stabilization furnace having a temperature gradient of 230 to 270 ° C. over 60 minutes, and further fired in a carbonization furnace having a temperature gradient of 300 to 1300 ° C. in a nitrogen atmosphere to obtain carbon fibers. The evaluation results are shown in the table.
[0037]
(Examples 2 to 8 and Comparative Examples 1 to 7): After adding ion-exchanged water so that the total concentration of the mixture having the composition ratio shown in the table of the second invention becomes 25% by mass, a homomixer was used. And secondary emulsification at 30 MPa with a high-pressure homogenizer to obtain an oil emulsion.
An acrylonitrile copolymer (weight ratio of acrylonitrile unit / methacrylic acid unit / acrylamide unit: 97.1 / 0.9 / 2.0) was dissolved in dimethylacetamide, and the polymer concentration was 21% by mass and the viscosity at 60 ° C. was 500 poise. Was prepared and discharged from a spinneret having a pore diameter (diameter) of 75 μm and a number of holes of 12,000 into a coagulation bath filled with a 69% by mass aqueous dimethylacetamide solution at 35 ° C. to form a coagulated yarn. The coagulated yarn was desolvated in a washing tank and stretched 5 times to obtain a water-swelled acrylic fiber.
[0038]
The acrylic fiber in the water-swelled state is led to an oil bath filled with a water emulsion of the oil composition having the composition shown in Table 1, and the oil composition is adhered, and then dried and densified with a heating roll having a surface temperature of 130 ° C. The film was further stretched 1.7 times between heated rolls having a surface temperature of 170 ° C. to obtain a precursor.
The precursor was passed through an oxidizing furnace having a temperature gradient of 230 to 270 ° C. over 60 minutes, and further fired in a carbonizing furnace having a temperature gradient of 300 to 1300 ° C. in a nitrogen atmosphere to obtain carbon fibers.
The table shows the single fiber fineness, tensile strength, elongation, number of fused carbon fibers, strength of carbon fiber strands, and passability of the precursor before the oxidizing step of the precursor.
[0039]
[Table 1]
Figure 2004143645
[0040]
【The invention's effect】
Since the oil agent composition of the present invention has good heat resistance, the oil agent composition or the precursor provided with the emulsion thereof has no adhesion between single yarns at the stage of the carbon fiber precursor, and substantially no fluff is present. When carbon fibers are produced using this precursor, fluff, breakage and fusion between single yarns of the precursor fibers in the flame-proofing step are effectively suppressed, and carbon fibers excellent in quality and physical properties are produced. Can be.
In addition, when a silicone-based oil is used, there is no scattering of silicone decomposed products generated in the flame-proofing step and the carbonization step, so that the operability and process passability in the flame-proofing step and the carbonization step are significantly improved.

Claims (4)

下式(I)で示される芳香族エステル85〜99.5質量%と酸化防止剤0.5〜15質量%とからなる炭素繊維前駆体アクリル繊維用油剤組成物。
Figure 2004143645
An oil agent composition for a carbon fiber precursor acrylic fiber, comprising 85 to 99.5% by mass of an aromatic ester represented by the following formula (I) and 0.5 to 15% by mass of an antioxidant.
Figure 2004143645
請求項1記載の炭素繊維前駆体アクリル繊維製造用油剤組成物90〜65質量%と、250℃で2時間加熱後の残渣率が1質量%以下のノニオン系界面活性剤10〜35質量%とからなる炭素繊維前駆体アクリル繊維用油剤組成物。90 to 65% by mass of the oil agent composition for producing a carbon fiber precursor acrylic fiber according to claim 1, and 10 to 35% by mass of a nonionic surfactant having a residue ratio of 1% by mass or less after heating at 250 ° C for 2 hours. Oil composition for carbon fiber precursor acrylic fiber comprising: 炭素繊維前駆体アクリル繊維に請求項1記載の炭素繊維前駆体アクリル繊維製造用油剤組成物を0.1〜1質量%付与した炭素繊維前駆体アクリル繊維。A carbon fiber precursor acrylic fiber, wherein the carbon fiber precursor acrylic fiber is provided with the oil composition for producing a carbon fiber precursor acrylic fiber according to claim 1 in an amount of 0.1 to 1% by mass. 炭素繊維前駆体アクリル繊維に請求項2記載の炭素繊維前駆体アクリル繊維製造用油剤組成物を0.1〜1質量%付与した炭素繊維前駆体アクリル繊維。A carbon fiber precursor acrylic fiber, wherein the carbon fiber precursor acrylic fiber is provided with the oil composition for producing a carbon fiber precursor acrylic fiber according to claim 2 in an amount of 0.1 to 1% by mass.
JP2002312491A 2002-10-28 2002-10-28 Oil composition for acrylic fiber for carbon fiber precursor and acrylic fiber for carbon fiber precursor Pending JP2004143645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002312491A JP2004143645A (en) 2002-10-28 2002-10-28 Oil composition for acrylic fiber for carbon fiber precursor and acrylic fiber for carbon fiber precursor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002312491A JP2004143645A (en) 2002-10-28 2002-10-28 Oil composition for acrylic fiber for carbon fiber precursor and acrylic fiber for carbon fiber precursor

Publications (1)

Publication Number Publication Date
JP2004143645A true JP2004143645A (en) 2004-05-20

Family

ID=32457372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002312491A Pending JP2004143645A (en) 2002-10-28 2002-10-28 Oil composition for acrylic fiber for carbon fiber precursor and acrylic fiber for carbon fiber precursor

Country Status (1)

Country Link
JP (1) JP2004143645A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112006003335T5 (en) 2005-12-09 2008-09-25 Matsumoto Yushi-Seiyaku Co., Ltd., Yao Equipment for an acrylic fiber to be processed into a carbon fiber, and a process for producing a carbon fiber therefor
JP2018021263A (en) * 2016-08-01 2018-02-08 松本油脂製薬株式会社 Acrylic fiber treatment agent and application thereof
KR101841797B1 (en) 2010-12-13 2018-03-23 도레이 카부시키가이샤 Carbon fiber prepreg, method for producing same and carbon fiber reinforced composite material
CN110670350A (en) * 2019-09-18 2020-01-10 江苏恒神股份有限公司 Silicone oil-free agent for carbon fiber precursor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112006003335T5 (en) 2005-12-09 2008-09-25 Matsumoto Yushi-Seiyaku Co., Ltd., Yao Equipment for an acrylic fiber to be processed into a carbon fiber, and a process for producing a carbon fiber therefor
US8852684B2 (en) 2005-12-09 2014-10-07 Matsumoto Yushi-Seiyaku Co., Ltd. Finish for acrylic fiber processed into carbon fiber, and carbon fiber manufacturing method therewith
KR101841797B1 (en) 2010-12-13 2018-03-23 도레이 카부시키가이샤 Carbon fiber prepreg, method for producing same and carbon fiber reinforced composite material
JP2018021263A (en) * 2016-08-01 2018-02-08 松本油脂製薬株式会社 Acrylic fiber treatment agent and application thereof
CN110670350A (en) * 2019-09-18 2020-01-10 江苏恒神股份有限公司 Silicone oil-free agent for carbon fiber precursor

Similar Documents

Publication Publication Date Title
JP4801546B2 (en) Oil agent for carbon fiber precursor acrylic fiber
JP4856724B2 (en) Oil agent composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle, and method for producing the same
CN107075789B (en) Oil agent for carbon fiber precursor acrylic fiber, composition and treatment liquid thereof, and carbon fiber precursor acrylic fiber bundle
JP6577307B2 (en) Oil agent for carbon fiber precursor acrylic fiber, oil agent composition for carbon fiber precursor acrylic fiber, and oil agent treatment liquid for carbon fiber precursor acrylic fiber
JP3778940B2 (en) Carbon fiber manufacturing method
JP2004211240A (en) Carbon fiber, acrylonitrile-based precursor fiber for the same, and method for producing the carbon fiber and the precursor fiber
JP5731908B2 (en) Oil agent for carbon fiber precursor acrylic fiber, oil agent composition for carbon fiber precursor acrylic fiber, and oil agent treatment liquid for carbon fiber precursor acrylic fiber
JP2005089884A (en) Method for producing carbon fiber precursor acrylic fiber bundle
JP3945549B2 (en) Oil for carbon fiber precursor
JP4698861B2 (en) Carbon fiber precursor acrylic fiber, method for producing the same, and oil composition
JPH0978340A (en) Acrylic fiber of carbon fiber precursor
JP2004143645A (en) Oil composition for acrylic fiber for carbon fiber precursor and acrylic fiber for carbon fiber precursor
JP2004149983A (en) Acrylic fiber for carbon fiber production
JP2016160560A (en) Method for manufacturing carbon fiber bundle
JP4942502B2 (en) Method for producing flame-resistant fiber bundle
JP6575251B2 (en) Carbon fiber precursor acrylic fiber bundle
JP2016199824A (en) Flame resistant fiber bundle, carbon fiber precursor fiber bundle and manufacturing method of carbon fiber consisting of the same
JP3479576B2 (en) Carbon fiber precursor acrylic fiber
JP2004169198A (en) Precursor fiber strand for carbon fiber and method for producing the same
JP2004149937A (en) Precursor fiber strand for carbon fiber and method for producing the same
JP2004143644A (en) Method for producing acrylic fiber for carbon fiber precursor
JPH1112855A (en) Carbon fiber precursor acrylic fiber
JP5831129B2 (en) Carbon fiber precursor acrylic fiber bundle
JP2005089883A (en) Method for producing carbon fiber precursor acrylic fiber bundle
JP2003201346A (en) Silicone lubricant, acrylic fiber as carbon fiber precursor, and method for manufacturing carbon fiber