JP4697837B2 - Solid waste treatment method - Google Patents

Solid waste treatment method Download PDF

Info

Publication number
JP4697837B2
JP4697837B2 JP2001236430A JP2001236430A JP4697837B2 JP 4697837 B2 JP4697837 B2 JP 4697837B2 JP 2001236430 A JP2001236430 A JP 2001236430A JP 2001236430 A JP2001236430 A JP 2001236430A JP 4697837 B2 JP4697837 B2 JP 4697837B2
Authority
JP
Japan
Prior art keywords
solid waste
toxic
examples
dioxins
hydrogen donor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001236430A
Other languages
Japanese (ja)
Other versions
JP2003047945A (en
Inventor
隆 小川
正毅 川島
和夫 細田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyoshi Oil and Fat Co Ltd
Original Assignee
Miyoshi Oil and Fat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyoshi Oil and Fat Co Ltd filed Critical Miyoshi Oil and Fat Co Ltd
Priority to JP2001236430A priority Critical patent/JP4697837B2/en
Publication of JP2003047945A publication Critical patent/JP2003047945A/en
Application granted granted Critical
Publication of JP4697837B2 publication Critical patent/JP4697837B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、焼却灰、煤塵、鉱滓、汚泥、土壌、シュレッダーダスト等の固体状廃棄物中に存在するダイオキシン類等の有害な塩素化物を分解して、固体状廃棄物の無害化を行うことのできる固体状廃棄物の処理方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
近年、ゴミ焼却場等で生じる煤塵、鉱山から排出される鉱滓、廃水処理の際に用いられる活性汚泥、汚染された土壌等の固体状廃棄物中にダイオキシン類等の有害な塩素化物が多量に含有されている場合があり、大きな社会問題となっている。
【0003】
固体状廃棄物中に含まれるダイオキシン類等の塩素化物を除去する方法としては、加熱脱塩素化法、オゾンと紫外線とを併用する方法、高温・高圧下における超臨界水の溶解性と分解特性を利用する方法等が知られている。しかしながら、これらの方法では高温、高圧等の特殊な条件下での処理を必要とするため、処理設備への投資や設備の維持コストがかかるという問題があった。また、廃棄物を溶融する方法、廃棄物を無酸素下で加熱する方法等も知られているが、定置式の大型装置を必要とするため設備コストが高くつくとともに、処理時間が長く、多大な熱エネルギーを必要とするため処理コストも高くつくという問題があった。
【0004】
本発明は上記の点に鑑みなされたもので、固体状廃棄物中に含まれるダイオキシン類等の有害な塩素化物を、確実且つ効率よく無害化処理することのできる固体状廃棄物の処理方法を提供することを目的とする。また、本発明は廃棄物中のダイオキシン類等の有害塩素化物を、確実且つ効率よく無害化処理することができるとともに、固体状廃棄物中に含まれる有害な金属も固定化処理することのできる固体状廃棄物の処理方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
即ち本発明の固体状廃棄物の処理方法は、有害有機塩素化物と有害金属とを含む固体状廃棄物に、マイクロ波を照射しながらメカノケミカル処理を施し、有害有機塩素化物を分解するとともに、有害金属を固定化することを特徴とする。また本発明の固体状廃棄物の処理方法のいまひとつは、有害有機塩素化物と有害金属とを含む固体状廃棄物に、水素供与体の存在下でマイクロ波を照射しながらメカノケミカル処理を施し、有害有機塩素化物を分解するとともに、有害金属を固定化することを特徴とする
【0006】
【発明の実施の形態】
本発明方法において、処理の対象とする固体状廃棄物としては、例えばゴミ焼却場において生成する焼却灰や煤塵、鉱滓、汚泥、土壌、シュレッダーダスト等が挙げられる。
【0007】
メカノケミカル処理は、固体状廃棄物を、粉砕媒体としての鉄、ステンレス、シリカ等の球又は棒等とともに、振動ミル、ボールミル、ジェット粉砕機、ハンマーミル等で処理することにより行われる。本発明方法は、マイクロ波を照射しながらメカノケミカル処理を施すが、メカノケミカル処理の時間は1分〜24時間、特に10分〜5時間が好ましく、温度は10〜300℃、特に10〜100℃が好ましい。
【0008】
本発明方法において、マイクロ波を照射しながらメカノケミカル処理を施すためには、例えばマイクロ波照射装置付き振動ミル等を用いることができる。マイクロ波照射装置付き振動ミルとしては、マイクロ波の出力300W以上、振動数100回/分以上のものが好ましい。
【0009】
本発明方法は、固体状廃棄物に、マイクロ波を照射しながらメカノケミカル処理を施すことにより、固体状廃棄物中に含まれるダイオキシン類等の有害な有機塩素化物を分解でき、また固体状廃棄物中に含まれる有害な金属も固定化することができるが、固体状廃棄物をメカノケミカル処理する際に、固体状廃棄物中に水素供与体が存在していると、固体状廃棄物中の金属をより確実に固定化することができる。
【0010】
上記水素供与体としては、例えば水素、アンモニア、アミン類、無機水素化合物、亜リン酸類、次亜リン酸類、ヒドラジン類、低級酸化物または低級酸化物の塩類、イオウ化合物、低級原子価状態にある金属の塩類、酸化程度の低い有機化合物等が挙げられる。水素供与体は、1種又は同一種類のもの及び/又は異種類のものを2種以上を混合して用いることができるが、
【0011】
水素供与体として水素を用いる場合、ガス状のまま使用することも、水素貯蔵合金に貯蔵された状態で使用することもできる。
【0012】
アミン類としては、例えばモノメチルアミン、ジメチルアミン、モノエチルアミン、ジエチルアミン、モノプロピルアミン、ジプロピルアミン、モノブチルアミン、ジブチルアミン、イソプロピルアミン、ジイソプロピルアミン、ピペリジン、ピペラジン、モルホリン、メチルフェニルアミン、エチルフェニルアミン等のモノアミン、エチレンジアミン、プロピレンジアミン、ブチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、ジプロピレンジアミン、ジブチレントリアミン、トリエチレンテトラミン、トリプロピレンテトラミン、トリブチレンテトラミン、テトラエチレンペンタミン、テトラプロピレンペンタミン、テトラブチレンペンタミン、ペンタエチレンヘキサミン、イミノビスプロピルアミン、モノメチルアミノプロピルアミン、メチルイミノビスプロピルアミン等の脂肪族ポリアミン;1,3-ビス(アミノメチル)シクロヘキサン等のシクロアルカン系ポリアミン;1-アミノエチルピペラジン、ピペラジン等のピペラジン類;ポリエチレンイミン、ポリプロピレンイミン、ポリ−3−メチルプロピルイミン、ポリ−2−エチルプロピルイミン等の環状イミンの重合体;ポリビニルアミン、ポリアリルアミン等の不飽和アミンの重合体等のポリアミンが挙げられる。また、ビニルアミン、アリルアミン等の不飽和アミンと、ジメチルアクリルアミド、スチレン、アクリル酸メチル、メタクリル酸メチル、アクリル酸、メタクリル酸、スチレンスルホン酸等及びその塩類等の、不飽和アミンと共重合可能な不飽和結合を有する他のモノマーとの共重合体も用いることができる。
【0013】
上記アミン類は、ヒドロキシアルキル基、アシル基、アルキル基等をN−置換基として有するものでも良く、アミン類をエピクロルヒドリン、エピブロモヒドリン、エピヨードヒドリン等のエピハロヒドリンで重縮合した重縮合ポリアミン、重縮合ポリエチレンイミンでも良い。N−ヒドロキシアルキル置換基は、アミン類とエポキシアルカンとを反応させることにより導入することができ、N−アシル置換基は、アミン類と、脂肪酸類を反応させることにより導入することができる。またN−アルキル置換基は、アミン類にハロゲン化アルキルを作用させることにより導入することができる。
【0014】
無機水素化合物としては、例えば過酸化水素、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素カルシウム、重炭酸水素ナトリウム、重炭酸水素カリウム、重炭酸水素カルシウム等が挙げられる。亜リン酸類としては、亜リン酸、亜リン酸カリウム、亜リン酸ナトリウム、亜リン酸水素ナトリウム、亜リン酸カルシウム、亜リン酸マグネシウム、亜リン酸水素アンモニウム等が挙げられれ、次亜リン酸類としては、次亜リン酸、次亜リン酸カリウム、次亜リン酸ナトリウム、次亜リン酸カルシウム、ホスフィン等が挙げられる。
【0015】
ヒドラジン類としては、ヒドラジン、二塩酸ヒドラジン、ヒドラジン水環物、塩酸ヒドラジン、硫酸ヒドラジン等が挙げられる。低級酸化物または低級酸化物の塩類としては、一酸化炭素、二酸化イオウ、亜硫酸塩等が、イオウ化合物としては硫化アンモニウム、硫化ナトリウム、ポリ硫化ナトリウム等が、低級原子価状態にある金属の塩類としては、例えば鉄(II)、スズ(II)、チタン(III)等の塩類が、酸化程度の低い有機化合物としては、アルデヒド類、糖類、ギ酸、シュウ酸等が挙げられる。
【0016】
本発明において、上記水素供与体としては、ポリアミン類、ポリエチレンイミン、次亜リン酸、次亜リン酸ナトリウム、次亜リン酸カルシウム、亜リン酸、亜リン酸ナトリウム、亜リン酸カルシウム、ホスフィン、水素、塩酸ヒドラジン、炭酸水素ナトリウム等が好ましい。水素供与体の存在下で、マイクロ波を照射しながら固体状廃棄物をメカノケミカル処理する場合、固体状廃棄物中に水素供与体が0.01〜40重量%含有されていることが好ましい。
【0017】
高濃度のダイオキシン類を含む固体状廃棄物を処理する場合、上記メカノケミカル処理を施す前に、固体状廃棄物に微生物を添加してバイオレメディエーション処理を施しておくことが好ましい。メカノケミカル処理を施す前にバイオレメディエーション処理を施してダイオキシン類の一部を分解しておくと、メカノケミカル処理の負担が軽減化される。
【0018】
バイオレメディエーション処理に用いる微生物としては、例えばバクテリア、嫌気性菌、担子菌等が挙げられる。バイオレメディエーション処理には、廃棄物にこれらの微生物を添加混合した後、廃棄物中の水分含有量を60〜70%程度に調整して放置するか、あるいは廃棄物中の水分含有量を60〜70%程度に調整した後、微生物を添加混合して放置する等の方法が採用される。
【0019】
本発明方法で処理した固体状廃棄物は、必要に応じてセメントで固めた後、埋設、海洋投棄等の最終処分をすることができる。
【0020】
【実施例】
以下、実施例を挙げて本発明を更に詳細に説明する。
【0021】
実施例1〜4
鉛384mg/kg、ダイオキシン類28pg/gの土壌1kgに、表1に示す水素供与体を添加、混練した後(実施例1は水素供与体を添加せず)、マイクロ波発生装置付の振動ミルで、マイクロ波出力500W、振動数300回/分の条件で、マイクロ波を照射しながら30分間メカノケミカル処理を施した。メカノケミカル処理を25℃とで行った場合と、90℃で行った場合について、処理後の土壌中に残存するダイオキシン類濃度および、土壌からの鉛の溶出量を環境庁告示13号試験法に準じて測定した結果を表2に示す。
【0022】
【表1】

Figure 0004697837
【0023】
比較例1
実施例1〜4で用いたと同様の土壌1kgに、表1に示す水素供与体を添加した後、マイクロ波照射もメカノケミカル処理も施さずに、混練機により10分間混練した後、室温下で1時間静置した。処理後の土壌中に残存するダイオキシン類の濃度、鉛溶出濃度を測定した結果を表2にあわせて示す。
【0024】
【表2】
Figure 0004697837
【0025】
実施例5〜8
鉛3975mg/kg、ダイオキシン類5.4ng/gを含む煤塵1kg当たり、表3に示す水素供与体を添加、混練した後(実施例5は水素供与体を添加せず)、実施例1〜4で用いたと同様のマイクロ波発生装置付の振動ミルで、マイクロ波出力1KW、振動数250回/分の条件で、マイクロ波を照射しながら2時間メカノケミカル処理した。メカノケミカル処理を25℃とで行った場合と、90℃で行った場合について、処理後の土壌中に残存するダイオキシン類濃度および、土壌からの鉛の溶出量を環境庁告示13号試験法に準じて測定した結果を表4に示す。
【0026】
【表3】
Figure 0004697837
【0027】
比較例2
実施例4〜8で用いたと同様の煤塵1kg当たりに対し、表3に示す水素今供与体を添加した後、メカノケミカル処理を施さずに、混練機により10分間混練した後、室温下で1時間静置した。処理後の煤塵中に残存するダイオキシン類の濃度、処理後の煤塵からの溶出金属濃度を測定した結果を表4にあわせて示す。
【0028】
【表4】
Figure 0004697837
【0029】
【発明の効果】
以上説明したように本発明方法によれば、有害なダイオキシン類等の塩素化物を含む固体状廃棄物を、従来法に比して安価に且つ確実に無害化処理することができる。またメカノケミカル処理する固体状廃棄物中に水素供与体を含有させておくことにより、固体状廃棄物中に含まれる金属も同時に且つ確実に固定化処理することができる等の効果を奏する。[0001]
BACKGROUND OF THE INVENTION
The present invention is to detoxify solid waste by decomposing harmful chlorinated substances such as dioxins present in solid waste such as incineration ash, dust, mines, sludge, soil, shredder dust, etc. The present invention relates to a method for treating solid waste.
[0002]
[Prior art and problems to be solved by the invention]
In recent years, there are a lot of harmful chlorinated substances such as dioxins in solid waste such as dust generated at garbage incinerators, mines discharged from mines, activated sludge used in wastewater treatment, and contaminated soil. It may be contained, and it becomes a big social problem.
[0003]
Methods for removing chlorinated substances such as dioxins contained in solid waste include thermal dechlorination, combined use of ozone and ultraviolet rays, solubility and decomposition characteristics of supercritical water under high temperature and pressure There are known methods for using. However, since these methods require treatment under special conditions such as high temperature and high pressure, there is a problem that investment in treatment equipment and maintenance cost of the equipment are required. In addition, a method for melting waste and a method for heating waste under anoxic conditions are known. However, since a large stationary device is required, the equipment cost is high and the processing time is long. The processing cost is high because of the need for heat energy.
[0004]
The present invention has been made in view of the above points, and provides a solid waste treatment method capable of reliably and efficiently detoxifying harmful chlorinated substances such as dioxins contained in solid waste. The purpose is to provide. In addition, the present invention can reliably and efficiently detoxify harmful chlorinated substances such as dioxins in waste, and can also immobilize harmful metals contained in solid waste. It aims at providing the processing method of a solid waste.
[0005]
[Means for Solving the Problems]
That method of processing solid wastes of the present invention, the solid wastes containing and the toxic metal toxic organic chlorides, with and facilities to mechanochemical treatment under microwave irradiation, to decompose the toxic organic chlorinated It is characterized by immobilizing harmful metals . The now One method of processing solid wastes of the present invention, the solid wastes containing and the toxic metal toxic organic chlorides, and facilities the mechanochemical treatment under microwave irradiation in the presence of a hydrogen donor It is characterized by decomposing harmful organic chlorinated substances and fixing harmful metals .
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In the method of the present invention, the solid waste to be treated includes, for example, incineration ash, dust, slag, sludge, soil, shredder dust and the like generated in a garbage incineration plant.
[0007]
The mechanochemical treatment is performed by treating the solid waste with a vibration mill, a ball mill, a jet mill, a hammer mill or the like together with a ball or a rod such as iron, stainless steel or silica as a grinding medium. In the method of the present invention, the mechanochemical treatment is performed while irradiating microwaves. The mechanochemical treatment time is preferably 1 minute to 24 hours, particularly 10 minutes to 5 hours, and the temperature is 10 to 300 ° C., particularly 10 to 100 ° C. ° C is preferred.
[0008]
In the method of the present invention, in order to perform the mechanochemical treatment while irradiating microwaves, for example, a vibration mill with a microwave irradiation device or the like can be used. As the vibration mill with a microwave irradiation device, a microwave output of 300 W or more and a vibration frequency of 100 times / minute or more are preferable.
[0009]
The method of the present invention is capable of decomposing harmful organic chlorinated substances such as dioxins contained in the solid waste by subjecting the solid waste to a mechanochemical treatment while irradiating the microwave, and the solid waste. Hazardous metals contained in the waste can also be immobilized, but when a solid waste is mechanochemically treated, if a hydrogen donor is present in the solid waste, It is possible to more reliably fix the metal.
[0010]
Examples of the hydrogen donor include hydrogen, ammonia, amines, inorganic hydrogen compounds, phosphorous acids, hypophosphorous acids, hydrazines, lower oxides or salts of lower oxides, sulfur compounds, and lower valence states. Examples thereof include metal salts and organic compounds having a low degree of oxidation. The hydrogen donor can be used alone or in combination of two or more of the same type and / or different types.
[0011]
When hydrogen is used as a hydrogen donor, it can be used in a gaseous state or in a state stored in a hydrogen storage alloy.
[0012]
Examples of amines include monomethylamine, dimethylamine, monoethylamine, diethylamine, monopropylamine, dipropylamine, monobutylamine, dibutylamine, isopropylamine, diisopropylamine, piperidine, piperazine, morpholine, methylphenylamine, ethylphenylamine. Monoamines such as ethylenediamine, propylenediamine, butylenediamine, hexamethylenediamine, diethylenetriamine, dipropylenediamine, dibutylenetriamine, triethylenetetramine, tripropylenetetramine, tributylenetetramine, tetraethylenepentamine, tetrapropylenepentamine, tetrabutylene Pentamine, pentaethylenehexamine, iminobispropylamine, monomethylamino Aliphatic polyamines such as propylamine and methyliminobispropylamine; cycloalkane polyamines such as 1,3-bis (aminomethyl) cyclohexane; piperazines such as 1-aminoethylpiperazine and piperazine; polyethyleneimine, polypropyleneimine, poly Examples include polymers of cyclic imines such as -3-methylpropylimine and poly-2-ethylpropylimine; and polyamines such as polymers of unsaturated amines such as polyvinylamine and polyallylamine. It is also possible to copolymerize unsaturated amines such as vinylamine and allylamine with unsaturated amines such as dimethylacrylamide, styrene, methyl acrylate, methyl methacrylate, acrylic acid, methacrylic acid, styrene sulfonic acid, and their salts. Copolymers with other monomers having a saturated bond can also be used.
[0013]
The amines may have a hydroxyalkyl group, an acyl group, an alkyl group or the like as an N-substituent, and a polycondensed polyamine obtained by polycondensing an amine with an epihalohydrin such as epichlorohydrin, epibromohydrin, epiiodohydrin, or the like. Polycondensation polyethyleneimine may be used. N-hydroxyalkyl substituents can be introduced by reacting amines with epoxy alkanes, and N-acyl substituents can be introduced by reacting amines with fatty acids. N-alkyl substituents can be introduced by reacting alkyl halides with amines.
[0014]
Examples of the inorganic hydrogen compound include hydrogen peroxide, sodium bicarbonate, potassium bicarbonate, calcium bicarbonate, sodium bicarbonate, potassium bicarbonate, and calcium bicarbonate. Examples of phosphorous acids include phosphorous acid, potassium phosphite, sodium phosphite, sodium hydrogen phosphite, calcium phosphite, magnesium phosphite, ammonium hydrogen phosphite, and the like. , Hypophosphorous acid, potassium hypophosphite, sodium hypophosphite, calcium hypophosphite, phosphine and the like.
[0015]
Examples of hydrazines include hydrazine, hydrazine dihydrochloride, hydrazine hydrate, hydrazine hydrochloride, hydrazine sulfate and the like. Examples of lower oxides or salts of lower oxides include carbon monoxide, sulfur dioxide, and sulfites, and examples of sulfur compounds include ammonium sulfide, sodium sulfide, sodium polysulfide, and the like, as metal salts in a lower valence state. For example, salts of iron (II), tin (II), titanium (III) and the like, and examples of organic compounds having a low degree of oxidation include aldehydes, sugars, formic acid, oxalic acid and the like.
[0016]
In the present invention, the hydrogen donor includes polyamines, polyethyleneimine, hypophosphorous acid, sodium hypophosphite, calcium hypophosphite, phosphorous acid, sodium phosphite, calcium phosphite, phosphine, hydrogen, hydrazine hydrochloride. Sodium bicarbonate and the like are preferable. When the solid waste is mechanochemically treated with microwave irradiation in the presence of a hydrogen donor, the solid waste preferably contains 0.01 to 40% by weight of the hydrogen donor.
[0017]
When processing a solid waste containing a high concentration of dioxins, it is preferable to add a microorganism to the solid waste and subject it to a bioremediation treatment before the mechanochemical treatment. If the bioremediation process is performed before the mechanochemical process, and a part of the dioxins is decomposed, the burden of the mechanochemical process is reduced.
[0018]
Examples of the microorganism used for the bioremediation treatment include bacteria, anaerobic bacteria, basidiomycetes and the like. For bioremediation treatment, after adding and mixing these microorganisms to the waste, the water content in the waste is adjusted to about 60 to 70% and left to stand, or the water content in the waste is set to 60 to 70%. After adjusting to about 70%, a method of adding and mixing microorganisms and allowing to stand is employed.
[0019]
The solid waste treated by the method of the present invention can be solidified with cement as necessary, and then subjected to final disposal such as embedding and ocean dumping.
[0020]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0021]
Examples 1-4
After adding and kneading the hydrogen donor shown in Table 1 to 1 kg of soil of 384 mg / kg of lead and 28 pg / g of dioxins (Example 1 does not add a hydrogen donor), a vibration mill equipped with a microwave generator Then, a mechanochemical treatment was performed for 30 minutes while irradiating microwaves under conditions of a microwave output of 500 W and a vibration frequency of 300 times / minute. For mechanochemical treatment at 25 ° C and at 90 ° C, the concentration of dioxins remaining in the treated soil and the amount of lead elution from the soil are listed in the Environmental Agency Notification No. 13 test method. Table 2 shows the results measured in conformity.
[0022]
[Table 1]
Figure 0004697837
[0023]
Comparative Example 1
After adding the hydrogen donor shown in Table 1 to 1 kg of soil similar to that used in Examples 1 to 4, the mixture was kneaded with a kneader for 10 minutes without being subjected to microwave irradiation or mechanochemical treatment, and then at room temperature. Let stand for 1 hour. The results of measuring the concentration of dioxins remaining in the treated soil and the lead elution concentration are shown in Table 2.
[0024]
[Table 2]
Figure 0004697837
[0025]
Examples 5-8
After adding and kneading the hydrogen donor shown in Table 3 per 1 kg of dust containing 3975 mg / kg of lead and 5.4 ng / g of dioxins (Example 5 does not add a hydrogen donor), Examples 1-4 The mechanochemical treatment was carried out for 2 hours while irradiating with microwaves under the conditions of a microwave output of 1 kW and a vibration frequency of 250 times / min. For mechanochemical treatment at 25 ° C and at 90 ° C, the concentration of dioxins remaining in the treated soil and the amount of lead elution from the soil are listed in the Environmental Agency Notification No. 13 test method. Table 4 shows the results measured in conformity.
[0026]
[Table 3]
Figure 0004697837
[0027]
Comparative Example 2
After adding the hydrogen donor shown in Table 3 to 1 kg of the same dust as used in Examples 4 to 8, kneading was carried out for 10 minutes using a kneader without performing mechanochemical treatment, and 1 at room temperature. Let stand for hours. Table 4 shows the results of measuring the concentration of dioxins remaining in the dust after the treatment and the concentration of the eluted metal from the dust after the treatment.
[0028]
[Table 4]
Figure 0004697837
[0029]
【The invention's effect】
As described above, according to the method of the present invention, solid waste containing chlorinated substances such as harmful dioxins can be detoxified at lower cost and more reliably than conventional methods. In addition, by including a hydrogen donor in the solid waste to be mechanochemically treated, the metal contained in the solid waste can be simultaneously and reliably fixed.

Claims (2)

有害有機塩素化物と有害金属とを含む固体状廃棄物に、マイクロ波を照射しながらメカノケミカル処理を施し、有害有機塩素化物を分解するとともに、有害金属を固定化することを特徴とする固体状廃棄物の処理方法。The solid wastes containing and the toxic metal toxic organic chlorides, and facilities the mechanochemical treatment under microwave irradiation, as well as degrading the toxic organic chlorinated compounds, and wherein the immobilizing toxic metals solid Waste disposal method. 有害有機塩素化物と有害金属とを含む固体状廃棄物に、水素供与体の存在下でマイクロ波を照射しながらメカノケミカル処理を施し、有害有機塩素化物を分解するとともに、有害金属を固定化することを特徴とする固体状廃棄物の処理方法。The solid wastes containing and the toxic metal toxic organic chlorides, and facilities the mechanochemical treatment under microwave irradiation in the presence of a hydrogen donor, as well as degrading the toxic organic chlorinated compounds, immobilize toxic metals A method for treating solid waste, comprising:
JP2001236430A 2001-08-03 2001-08-03 Solid waste treatment method Expired - Fee Related JP4697837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001236430A JP4697837B2 (en) 2001-08-03 2001-08-03 Solid waste treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001236430A JP4697837B2 (en) 2001-08-03 2001-08-03 Solid waste treatment method

Publications (2)

Publication Number Publication Date
JP2003047945A JP2003047945A (en) 2003-02-18
JP4697837B2 true JP4697837B2 (en) 2011-06-08

Family

ID=19067699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001236430A Expired - Fee Related JP4697837B2 (en) 2001-08-03 2001-08-03 Solid waste treatment method

Country Status (1)

Country Link
JP (1) JP4697837B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006026460A (en) * 2004-07-12 2006-02-02 Dowa Mining Co Ltd Method of detoxifying polluted substance
ITBA20130066A1 (en) * 2013-10-03 2015-04-04 Liberti Lorenzo C O T & A Tecn E Amb Srl METHOD TO IMPROVE THE BIO-CHEMICAL-PHYSICAL CHARACTERISTICS AND THE REACTIVITY OF TOXIC MOLECULES IN ORDER TO REDUCE THE HAZARDS OF MAN AND THE ENVIRONMENT.
CN105127178A (en) * 2015-09-01 2015-12-09 宁夏大学 Method for eliminating residual tetracycline in pharmaceutical dregs in physical-chemical oxidation combination manner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08504665A (en) * 1992-12-18 1996-05-21 ジ ユニバシティー オブ ウエスタン オーストラリア How to treat toxic substances
WO1999015239A1 (en) * 1997-09-25 1999-04-01 Volker Birke Method for reductive dehalogenation of halogen-organic substances
JP2000225385A (en) * 1999-02-02 2000-08-15 Dcr Internatl Environmental Services Bv Method for reductive dehalogenation of halogenated hydrocarbon
JP2001047028A (en) * 1999-08-10 2001-02-20 Sumitomo Metal Ind Ltd Method for detoxifying substance contaminated with dioxins
JP2001314871A (en) * 2000-05-12 2001-11-13 Miyoshi Oil & Fat Co Ltd Waste treatment method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04284885A (en) * 1991-03-14 1992-10-09 Mitsui Eng & Shipbuild Co Ltd Retreatment method of refuse incinerated ash
JPH08164376A (en) * 1994-12-13 1996-06-25 Ohbayashi Corp Treating method of contaminated soil and apparatus thereof
JPH11314073A (en) * 1998-05-06 1999-11-16 Hitachi Zosen Corp Process of turning incineration ash harmless

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08504665A (en) * 1992-12-18 1996-05-21 ジ ユニバシティー オブ ウエスタン オーストラリア How to treat toxic substances
WO1999015239A1 (en) * 1997-09-25 1999-04-01 Volker Birke Method for reductive dehalogenation of halogen-organic substances
JP2000225385A (en) * 1999-02-02 2000-08-15 Dcr Internatl Environmental Services Bv Method for reductive dehalogenation of halogenated hydrocarbon
JP2001047028A (en) * 1999-08-10 2001-02-20 Sumitomo Metal Ind Ltd Method for detoxifying substance contaminated with dioxins
JP2001314871A (en) * 2000-05-12 2001-11-13 Miyoshi Oil & Fat Co Ltd Waste treatment method

Also Published As

Publication number Publication date
JP2003047945A (en) 2003-02-18

Similar Documents

Publication Publication Date Title
JPH09234450A (en) Immobilizing method for heavy metal in fly ash
JP4697837B2 (en) Solid waste treatment method
JP4029994B2 (en) Metal scavenger
JP2001314871A (en) Waste treatment method
JP2005169307A (en) Waste treatment method
JP2004008953A (en) Method for detoxifying solid waste
JP2002028605A (en) Treating agent and treating method for solid waste
JP2004025115A (en) Method for insolubilizing heavy metal in treated material of organic halide-polluted body
JP4565529B2 (en) Metal scavenger
JP2000334415A (en) Treatment of molten fly ash
JP4837291B2 (en) Heavy metal immobilizing agent and method for immobilizing heavy metal
JP4119534B2 (en) Metal and dioxin and / or organochlorine compound simultaneous treating agent and processing method
JP2001259601A (en) Non-pollution treatment of hazardous chlorine compound
JPH10151430A (en) Treatment for detoxifying harmful substance contained in ash discharged from incinerator
JP2005131564A (en) Disposal method for solid waste
JP4442890B2 (en) Waste disposal method
JP2001286847A (en) Method of fixing selenium contained in solid waste material
JP2005199221A (en) Detoxicating processing method for sludge or soil
JP4035246B2 (en) Waste disposal method
JP2007209829A (en) Disposal method of solid waste
JP2005144256A (en) Detoxification method of sludge or soil
JP3844308B2 (en) Solid waste treatment agent
JP2001149888A (en) Detoxifying treatment method of incineration ash
JP2000063796A (en) Metal scavenger
JP2005238050A (en) Method for reproducing waste reclamation disposal plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110225

R150 Certificate of patent or registration of utility model

Ref document number: 4697837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees