JP4696891B2 - Electronic component, dielectric ceramic composition and method for producing the same - Google Patents

Electronic component, dielectric ceramic composition and method for producing the same Download PDF

Info

Publication number
JP4696891B2
JP4696891B2 JP2005359424A JP2005359424A JP4696891B2 JP 4696891 B2 JP4696891 B2 JP 4696891B2 JP 2005359424 A JP2005359424 A JP 2005359424A JP 2005359424 A JP2005359424 A JP 2005359424A JP 4696891 B2 JP4696891 B2 JP 4696891B2
Authority
JP
Japan
Prior art keywords
subcomponent
raw material
ceramic composition
mol
dielectric ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005359424A
Other languages
Japanese (ja)
Other versions
JP2007145683A (en
Inventor
みゆき 柳田
治也 原
康夫 渡辺
陽 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2005359424A priority Critical patent/JP4696891B2/en
Publication of JP2007145683A publication Critical patent/JP2007145683A/en
Application granted granted Critical
Publication of JP4696891B2 publication Critical patent/JP4696891B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)

Description

本発明は、たとえば積層セラミックコンデンサなどの電子部品の誘電体層などとして用いられる誘電体磁器組成物およびその製造方法と、この誘電体磁器組成物を誘電体層として有する電子部品に関する。   The present invention relates to a dielectric ceramic composition used as a dielectric layer of an electronic component such as a multilayer ceramic capacitor, a method for manufacturing the same, and an electronic component having the dielectric ceramic composition as a dielectric layer.

電子部品の一例である積層セラミックコンデンサは、たとえば、所定の誘電体磁器組成物からなるセラミックグリーンシートに、所定パターンの内部電極を印刷し、それらを複数枚交互に重ね、その後一体化して得られるグリーンチップを、同時焼成して製造される。積層セラミックコンデンサの内部電極層は、焼成によりセラミック誘電体と一体化されるために、セラミック誘電体と反応しないような材料を選択する必要がある。このため、内部電極層を構成する材料として、従来では白金やパラジウムなどの高価な貴金属を用いることを余儀なくされていた。   A multilayer ceramic capacitor, which is an example of an electronic component, is obtained by, for example, printing internal electrodes having a predetermined pattern on a ceramic green sheet made of a predetermined dielectric ceramic composition, alternately stacking a plurality of them, and then integrating them. The green chip is manufactured by simultaneous firing. Since the internal electrode layer of the multilayer ceramic capacitor is integrated with the ceramic dielectric by firing, it is necessary to select a material that does not react with the ceramic dielectric. For this reason, as a material constituting the internal electrode layer, conventionally, an expensive noble metal such as platinum or palladium has been inevitably used.

しかしながら、近年ではニッケルや銅などの安価な卑金属を用いることができる誘電体磁器組成物が開発され、大幅なコストダウンが実現した。   However, in recent years, dielectric ceramic compositions that can use inexpensive base metals such as nickel and copper have been developed, and a significant cost reduction has been realized.

また、近年、電子回路の高密度化に伴う電子部品の小型化に対する要求は高く、積層セラミックコンデンサの小型化、大容量化が急速に進んでいる。積層セラミックコンデンサを小型、大容量化するためには、一般に誘電体層を薄層化する方法や、誘電体層に含有される誘電体磁器組成物の比誘電率を増加させる方法などがとられている。しかしながら、誘電体層を薄くすると、直流電圧を印加したときに誘電体層にかかる電界が強くなるため、比誘電率の経時変化、すなわち容量の経時変化が著しく大きくなってしまうという問題があった。   In recent years, there has been a high demand for downsizing of electronic components due to higher density of electronic circuits, and downsizing and increase in capacity of multilayer ceramic capacitors are rapidly progressing. In order to increase the size and capacity of a multilayer ceramic capacitor, generally, a method of thinning a dielectric layer or a method of increasing the relative dielectric constant of a dielectric ceramic composition contained in the dielectric layer is taken. ing. However, when the dielectric layer is thinned, the electric field applied to the dielectric layer becomes stronger when a DC voltage is applied, so that the change in relative permittivity with time, that is, the change in capacitance with time, becomes extremely large. .

直流電界下での容量の経時変化を改良するために、誘電体層に含有される誘電体粒子として、小さな平均結晶粒径を有する誘電体粒子を使用する方法が提案されている(たとえば、特許文献1)。この特許文献1には、特定組成を有し、誘電体粒子の平均結晶粒径が0.45μm以下である誘電体磁器組成物が開示されている。しかしながら、この文献記載の誘電体磁器組成物では、比誘電率が低すぎるため、小型化、大容量化に対応することは困難であった。
特開平8−124785号公報
In order to improve the time-dependent change of capacity under a direct current electric field, a method of using dielectric particles having a small average crystal grain size as dielectric particles contained in the dielectric layer has been proposed (for example, patents). Reference 1). This Patent Document 1 discloses a dielectric ceramic composition having a specific composition and having an average crystal grain size of dielectric particles of 0.45 μm or less. However, since the dielectric ceramic composition described in this document has a relative dielectric constant that is too low, it has been difficult to cope with downsizing and large capacity.
JP-A-8-124785

本発明は、このような実状に鑑みてなされ、他の電気特性(たとえば、静電容量の温度特性、絶縁抵抗、絶縁抵抗の加速寿命、誘電損失)を悪化させることなく、比誘電率の向上が可能な誘電体磁器組成物およびその製造方法を提供することを目的とする。また、本発明は、このような誘電体磁器組成物で構成してある誘電体層を有する積層セラミックコンデンサなどの電子部品を提供することも目的とする。   The present invention has been made in view of such circumstances, and improves the relative dielectric constant without deteriorating other electrical characteristics (for example, temperature characteristics of capacitance, insulation resistance, accelerated lifetime of insulation resistance, dielectric loss). It is an object of the present invention to provide a dielectric ceramic composition capable of satisfying the requirements and a manufacturing method thereof. Another object of the present invention is to provide an electronic component such as a multilayer ceramic capacitor having a dielectric layer composed of such a dielectric ceramic composition.

上記目的を達成するために、本発明に係る誘電体磁器組成物の製造方法は、
チタン酸バリウムを含む主成分と、
Rの酸化物(ただし、RはY,La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,YbおよびLuから選択される少なくとも1種)からなる第4副成分とを有する誘電体磁器組成物を製造する方法であって、
前記主成分の原料と、前記誘電体磁器組成物に含有されることとなる前記第4副成分の原料の一部とを予め反応させた反応済み原料を準備する工程と、
前記反応済み原料に、前記誘電体磁器組成物に含有されることとなる残りの前記第4副成分の原料を添加する工程と、を有し、
前記主成分の原料と予め反応させておく前記第4副成分を、前記主成分100モルに対して、R換算で、0.01〜0.2モルとすることを特徴とする。
In order to achieve the above object, a method for producing a dielectric ceramic composition according to the present invention comprises:
A main component comprising barium titanate;
Oxide of R (wherein, R is Y, La, Ce, Pr, Nd, at least one Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, is selected from Yb, and Lu) consisting A method for producing a dielectric ceramic composition having a fourth subcomponent,
Preparing a reacted raw material in which the raw material of the main component and a part of the raw material of the fourth subcomponent to be contained in the dielectric ceramic composition are reacted in advance;
Adding the remaining raw material of the fourth subcomponent to be contained in the dielectric ceramic composition to the reacted raw material,
The fourth subcomponent that is reacted in advance with the raw material of the main component is 0.01 to 0.2 mol in terms of R with respect to 100 mol of the main component .

本発明においては、前記主成分の原料と前記第4副成分の原料の一部とを、予め反応させることにより、少なくとも前記主成分の内部(中心部)に前記第4副成分を存在させることができる。そのため、他の電気特性(たとえば、静電容量の温度特性、絶縁抵抗、絶縁抵抗の加速寿命、誘電損失)を悪化させることなく、比誘電率の向上が可能となる。
In the present invention, by causing the raw material of the main component and a part of the raw material of the fourth subcomponent to react in advance, the fourth subcomponent is present at least inside (center part) of the main component. Can do. Therefore, it is possible to improve the relative dielectric constant without deteriorating other electrical characteristics (for example, temperature characteristics of capacitance, insulation resistance, accelerated lifetime of insulation resistance, dielectric loss).

本発明において、好ましくは、前記主成分の原料と前記第4副成分の原料の一部とを、予め固溶させる。固溶させることにより、前記主成分に前記第4副成分を均一に固溶させることも可能となり、上記の電気特性をさらに向上させることができる。
In the present invention, preferably, the raw material of the main component and a part of the raw material of the fourth subcomponent are dissolved in advance. By solid solution, the fourth subcomponent can be uniformly dissolved in the main component, and the electrical characteristics can be further improved.

本発明において、反応とは、固溶、コーティングなどを含めた概念で用い、主成分の内部(中心部)に第4副成分が存在するような状態を作り出すための方法を含む。   In the present invention, the reaction includes a method for creating a state in which the fourth subcomponent exists in the inside (center portion) of the main component, using concepts including solid solution, coating, and the like.

本発明においては、前記主成分の原料と、予め反応させる前記第4副成分の原料は、前記誘電体磁器組成物に含有されることとなる第4副成分の全部ではなく、一部とする。そして、得られた反応済み原料に、残りの第4副成分の原料を添加して、必要に応じて仮焼きして、その後、焼成することが好ましい。このようにすることにより、本発明の作用効果を高めることができる。
In the present invention, the raw material of the main component and the raw material of the fourth subcomponent to be reacted in advance are not all of the fourth subcomponent to be contained in the dielectric ceramic composition, but a part thereof. . Then, it is preferable that the remaining raw material of the fourth subcomponent is added to the obtained reacted material, calcined as necessary, and then fired. By doing in this way, the effect of this invention can be improved.

本発明においては、最終的に得られる前記誘電体磁器組成物中における前記第4副成分の含有量を、前記主成分100モルに対して、R換算で、好ましくは0.1〜10モル、より好ましくは0.2〜6モルとする。   In the present invention, the content of the fourth subcomponent in the finally obtained dielectric ceramic composition is preferably 0.1 to 10 mol in terms of R with respect to 100 mol of the main component, More preferably 0.2 to 6 mol.

本発明においては、誘電体磁器組成物に含有される第4副成分の含有量を上記範囲とすることにより、静電容量の温度特性を向上させることができる。第4副成分の含有量が少なすぎると、第4副成分の添加効果が得られなくなり、静電容量の温度特性が悪化してしまう傾向にあり、一方、含有量が多すぎると、焼結性が悪化する傾向にある。   In the present invention, the temperature characteristic of the capacitance can be improved by setting the content of the fourth subcomponent contained in the dielectric ceramic composition within the above range. If the content of the fourth subcomponent is too small, the effect of adding the fourth subcomponent cannot be obtained, and the temperature characteristics of the capacitance tend to deteriorate. On the other hand, if the content is too large, the sintering is performed. Sex tends to get worse.

あるいは、本発明において、前記主成分の原料と予め反応させておく前記第4副成分の比率を、R換算で、前記誘電体磁器組成物に最終的に含有されることとなる前記第4副成分の総量100モル%に対して、0〜50モル%(ただし、0および50は含まない)とすることが好ましく、0〜25モル%(ただし、0は含まない)とすることがより好ましい。   Alternatively, in the present invention, the ratio of the fourth subcomponent that is reacted in advance with the raw material of the main component is, in terms of R, finally contained in the dielectric ceramic composition. It is preferably 0 to 50 mol% (however, 0 and 50 are not included), more preferably 0 to 25 mol% (however, 0 is not included) with respect to 100 mol% of the total amount of components. .

前記主成分の原料と、予め反応させる前記第4副成分の原料の量が多すぎると、焼成後に得られる焼結体の結晶粒径が大きくなり過ぎてしまい、温度特性が悪化したり、絶縁抵抗(IR)が低下してしまう傾向にある。   When the amount of the raw material of the main component and the raw material of the fourth subcomponent to be reacted in advance is too large, the crystal grain size of the sintered body obtained after firing becomes too large, and the temperature characteristics are deteriorated or the insulating material is insulated. Resistance (IR) tends to decrease.

本発明において、好ましくは、前記誘電体磁器組成物は、
MgO、CaO、BaOおよびSrOから選択される少なくとも1種を含む第1副成分と、
SiOを主として含有し、MO(ただし、MはMg、Ca、BaおよびSrから選択される少なくとも1種)、LiOおよびBから選択される少なくとも1種を含む第2副成分と、
、MoOおよびWOから選択される少なくとも1種を含む第3副成分と、をさらに含有し、
前記主成分100モルに対する各副成分の比率を、
第1副成分:0.1〜5モル、
第2副成分:0.1〜12モル、
第3副成分:0〜0.3モル(ただし、0は含まない)、
とする。
In the present invention, preferably, the dielectric ceramic composition is
A first subcomponent comprising at least one selected from MgO, CaO, BaO and SrO;
Second subcomponent mainly containing SiO 2 and containing at least one selected from MO (wherein M is at least one selected from Mg, Ca, Ba and Sr), Li 2 O and B 2 O 3 When,
A third subcomponent including at least one selected from V 2 O 5 , MoO 3 and WO 3 ,
The ratio of each subcomponent to 100 moles of the main component,
1st subcomponent: 0.1-5 mol,
Second subcomponent: 0.1-12 mol,
Third subcomponent: 0 to 0.3 mol (excluding 0),
And

本発明において、好ましくは、前記誘電体磁器組成物は、MnOおよびCrから選択される少なくとも1種を含む第5副成分を、さらに含有し、
前記主成分100モルに対する第5副成分の比率を、0.05〜1.0モルとする。
In the present invention, preferably, the dielectric ceramic composition further includes a fifth subcomponent including at least one selected from MnO and Cr 2 O 3 ,
The ratio of the 5th subcomponent with respect to 100 mol of said main components shall be 0.05-1.0 mol.

本発明においては、前記第4副成分とともに、前記第1〜第3副成分(より好ましくは、さらに第5副成分)を含有させることにより、静電容量の温度特性を向上させることができ、特に、EIA規格のX7R特性(−55〜125℃、ΔC=±15%以内)を満足させることができる。なお、前記第1〜第3、第5副成分の添加時期については、特に限定されないが、前記第1〜第3、第5副成分は、前記主成分の原料と前記第4副成分の原料の少なくとも一部とを、予め反応させた後の反応済み原料に添加することが好ましい。   In the present invention, by including the first to third subcomponents (more preferably, the fifth subcomponent) together with the fourth subcomponent, the temperature characteristics of the capacitance can be improved, In particular, the X7R characteristic of the EIA standard (−55 to 125 ° C., ΔC = within ± 15%) can be satisfied. In addition, although it does not specifically limit about the addition time of the said 1st-3rd, 5th subcomponent, The said 1st-3rd, 5th subcomponent is the raw material of the said main component, and the raw material of the said 4th subcomponent. It is preferable to add at least a part of the above to the reacted material after the reaction.

本発明においては、前記主成分の原料として、平均粒径が好ましくは0.05〜0.5μm、より好ましくは0.1〜0.4μmである原料を使用する。平均粒径が上記範囲である主成分の原料を使用することにより、焼結後の誘電体粒子の平均結晶粒径を、好ましくは0.1〜0.3μmと微細化することができるため、比誘電率の経時変化を低減することができる。   In the present invention, a raw material having an average particle size of preferably 0.05 to 0.5 [mu] m, more preferably 0.1 to 0.4 [mu] m is used as the main component. By using the raw material of the main component whose average particle size is in the above range, the average crystal particle size of the sintered dielectric particles can be refined, preferably 0.1 to 0.3 μm, It is possible to reduce the change with time of the relative dielectric constant.

本発明により得られる誘電体磁器組成物は、上記のいずれかに記載の方法で製造される誘電体磁器組成物である。
The dielectric ceramic composition further obtained in the present invention, a dielectric ceramic composition produced by the method according to any one of the above.

本発明により得られる電子部品は、上記記載の誘電体磁器組成物で構成してある誘電体層を有する。電子部品としては、特に限定されないが、積層セラミックコンデンサ、圧電素子、チップインダクタ、チップバリスタ、チップサーミスタ、チップ抵抗、その他の表面実装(SMD)チップ型電子部品が例示される。
Electronic components more obtained in the invention has a dielectric layer composed of a dielectric ceramic composition described above. Although it does not specifically limit as an electronic component, A multilayer ceramic capacitor, a piezoelectric element, a chip inductor, a chip varistor, a chip thermistor, a chip resistor, and other surface mount (SMD) chip type electronic components are illustrated.

本発明によると、前記主成分の原料と、前記第4副成分の原料の一部とを予め反応させるため、他の電気特性(たとえば、静電容量の温度特性、絶縁抵抗、絶縁抵抗の加速寿命、誘電損失)を悪化させることなく、比誘電率の向上が可能な誘電体磁器組成物製造方法を提供することができる。さらに本発明によると、このような誘電体磁器組成物で構成してある誘電体層を有する積層セラミックコンデンサなどの電子部品を提供することもできる。
According to the present invention, since the raw material of the main component and a part of the raw material of the fourth subcomponent are reacted in advance, other electrical characteristics (for example, temperature characteristics of capacitance, insulation resistance, acceleration of insulation resistance) life, dielectric loss) without deteriorating the manufacturing method of the dielectric constant capable dielectric ceramic composition improves the can provide. Furthermore, according to the present invention, it is possible to provide an electronic component such as a multilayer ceramic capacitor having a dielectric layer made of such a dielectric ceramic composition.

以下、本発明を、図面に示す実施形態に基づき説明する。   Hereinafter, the present invention will be described based on embodiments shown in the drawings.

図1は本発明の一実施形態に係る積層セラミックコンデンサの断面図である。
積層セラミックコンデンサ1
FIG. 1 is a cross-sectional view of a multilayer ceramic capacitor according to an embodiment of the present invention.
Multilayer ceramic capacitor 1

図1に示すように、本発明の一実施形態に係る積層セラミックコンデンサ1は、誘電体層2と内部電極層3とが交互に積層された構成のコンデンサ素子本体10を有する。このコンデンサ素子本体10の両端部には、素子本体10の内部で交互に配置された内部電極層3と各々導通する一対の外部電極4が形成してある。コンデンサ素子本体10の形状に特に制限はないが、通常、直方体状とされる。また、その寸法にも特に制限はなく、用途に応じて適当な寸法とすればよい。   As shown in FIG. 1, a multilayer ceramic capacitor 1 according to an embodiment of the present invention includes a capacitor element body 10 having a configuration in which dielectric layers 2 and internal electrode layers 3 are alternately stacked. At both ends of the capacitor element body 10, a pair of external electrodes 4 are formed which are electrically connected to the internal electrode layers 3 arranged alternately in the element body 10. The shape of the capacitor element body 10 is not particularly limited, but is usually a rectangular parallelepiped shape. Moreover, there is no restriction | limiting in particular also in the dimension, What is necessary is just to set it as a suitable dimension according to a use.

内部電極層3は、各端面がコンデンサ素子本体10の対向する2端部の表面に交互に露出するように積層してある。一対の外部電極4は、コンデンサ素子本体10の両端部に形成され、交互に配置された内部電極層3の露出端面に接続されて、コンデンサ回路を構成する。
誘電体層2
The internal electrode layers 3 are laminated so that the end faces are alternately exposed on the surfaces of the two opposite ends of the capacitor element body 10. The pair of external electrodes 4 are formed at both ends of the capacitor element body 10 and are connected to the exposed end surfaces of the alternately arranged internal electrode layers 3 to constitute a capacitor circuit.
Dielectric layer 2

誘電体層2は、誘電体磁器組成物を含有する。   The dielectric layer 2 contains a dielectric ceramic composition.

本実施形態においては、上記誘電体磁器組成物は、組成式BaTiO2+m で表され、前記組成式中のmが0.995≦m≦1.010であり、BaとTiとの比が0.995≦Ba/Ti≦1.010であるチタン酸バリウムを含む主成分と、Rの酸化物(ただし、RはY,La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,YbおよびLuから選択される少なくとも1種)を含む第4副成分と、その他の副成分とを含有する。 In this embodiment, the dielectric ceramic composition is represented by a composition formula Ba m TiO 2 + m , m in the composition formula is 0.995 ≦ m ≦ 1.010, and the ratio of Ba and Ti is A main component containing barium titanate satisfying 0.995 ≦ Ba / Ti ≦ 1.010 and an oxide of R (where R is Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb) , Dy, Ho, Er, Tm, Yb and Lu), and a fourth subcomponent and other subcomponents.

第4副成分は、Rの酸化物を含有する副成分である。Rの酸化物のR元素は、RはY,La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,YbおよびLuから選択される少なくとも1種の元素であり、これらのなかでも、Y,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luが好ましく、さらに好ましくは、Y,Tb,Ybである。   The fourth subcomponent is a subcomponent containing an oxide of R. The R element of the oxide of R is at least one selected from R, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Among these, Y, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu are preferable, and Y, Tb, and Yb are more preferable.

第4副成分は、IR加速寿命特性を向上させる効果がある。第4副成分の含有量は、R換算で0.1〜10モルであることが好ましく、より好ましくは0.2〜6モルである。含有量が少なすぎると、第4副成分の添加効果が得られなくなり、容量温度特性が悪くなってしまう。一方、含有量が多すぎると、焼結性が悪化する傾向にある。なお、後に詳述するように、本実施形態の製造方法においては、上記第4副成分の原料のうち少なくとも一部を、主成分の原料と予め反応させる工程を採用している。   The fourth subcomponent has the effect of improving the IR accelerated life characteristics. The content of the fourth subcomponent is preferably 0.1 to 10 mol in terms of R, more preferably 0.2 to 6 mol. If the content is too small, the effect of adding the fourth subcomponent cannot be obtained, and the capacity-temperature characteristics are deteriorated. On the other hand, if the content is too large, the sinterability tends to deteriorate. As will be described in detail later, the manufacturing method of the present embodiment employs a step of reacting at least a part of the fourth subcomponent raw material with the main component raw material in advance.

本実施形態においては、上記Rの酸化物を含む第4副成分以外の副成分として、以下の第1〜第3、第5副成分を、さらに含有することが好ましい。   In the present embodiment, it is preferable that the following first to third and fifth subcomponents are further contained as subcomponents other than the fourth subcomponent including the R oxide.

すなわち、MgO、CaO、BaOおよびSrOから選択される少なくとも1種を含む第1副成分と、
SiOを主として含有し、MO(ただし、MはMg、Ca、BaおよびSrから選択される少なくとも1種)、LiOおよびBから選択される少なくとも1種を含む第2副成分と、
、MoOおよびWOから選択される少なくとも1種を含む第3副成分と、
MnOおよびCrから選択される少なくとも1種を含む第5副成分と、をさらに含有することが好ましい。
That is, a first subcomponent containing at least one selected from MgO, CaO, BaO and SrO;
Second subcomponent mainly containing SiO 2 and containing at least one selected from MO (wherein M is at least one selected from Mg, Ca, Ba and Sr), Li 2 O and B 2 O 3 When,
A third subcomponent comprising at least one selected from V 2 O 5 , MoO 3 and WO 3 ;
It is preferable to further contain a fifth subcomponent including at least one selected from MnO and Cr 2 O 3 .

前記主成分に対する上記各副成分の比率は、各酸化物換算で、前記主成分100モルに対し、
第1副成分:0.1〜5モル、
第2副成分:0.1〜12モル、
第3副成分:0〜0.3モル(ただし、0は含まない)、
第5副成分:0.05〜1.0モル
であり、好ましくは、
第1副成分:0.2〜4モル、
第2副成分:1〜6モル、
第3副成分:0〜0.25モル(ただし、0は含まない)、
第5副成分:0.05〜0.4モル
である。
The ratio of each subcomponent to the main component is 100 mol of the main component in terms of each oxide.
1st subcomponent: 0.1-5 mol,
Second subcomponent: 0.1-12 mol,
Third subcomponent: 0 to 0.3 mol (excluding 0),
Fifth subcomponent: 0.05 to 1.0 mol, preferably
First subcomponent: 0.2-4 mol,
Second subcomponent: 1 to 6 mol,
Third subcomponent: 0 to 0.25 mol (excluding 0),
5th subcomponent: It is 0.05-0.4 mol.

本実施形態においては、誘電体磁器組成物に、Rの酸化物を含有する第4副成分以外に、上記第1〜第3、第5副成分を含有させることにより、静電容量の温度特性を向上させることができ、好ましくはEIA規格のX7R特性(−55〜125℃、ΔC=±15%以内)を満足させることができる。   In the present embodiment, the dielectric ceramic composition contains the first to third and fifth subcomponents in addition to the fourth subcomponent containing the oxide of R, so that the temperature characteristics of the capacitance can be obtained. Preferably, the X7R characteristic of the EIA standard (−55 to 125 ° C., ΔC = within ± 15%) can be satisfied.

なお、本明細書では、主成分および各副成分を構成する各酸化物を化学量論組成で表しているが、各酸化物の酸化状態は、化学量論組成から外れるものであってもよい。ただし、各副成分の上記比率は、各副成分を構成する酸化物に含有される金属量から上記化学量論組成の酸化物に換算して求める。   Note that, in this specification, each oxide constituting the main component and each subcomponent is represented by a stoichiometric composition, but the oxidation state of each oxide may be out of the stoichiometric composition. . However, the said ratio of each subcomponent is calculated | required by converting into the oxide of the said stoichiometric composition from the metal amount contained in the oxide which comprises each subcomponent.

上記各副成分の含有量の限定理由は以下のとおりである。   The reasons for limiting the contents of the subcomponents are as follows.

第1副成分(MgO、CaO、BaOおよびSrO)の含有量が少なすぎると、容量温度変化率が大きくなってしまう。一方、含有量が多すぎると、焼結性が悪化すると共に、高温負荷寿命が悪化する傾向にある。なお、第1副成分中における各酸化物の構成比率は任意である。   If the content of the first subcomponent (MgO, CaO, BaO, and SrO) is too small, the capacity-temperature change rate becomes large. On the other hand, when there is too much content, while sinterability will deteriorate, it exists in the tendency for a high temperature load life to deteriorate. The composition ratio of each oxide in the first subcomponent is arbitrary.

第2副成分は、主成分としてSiOを含み、かつ、MO(ただし、MはMg、Ca、BaおよびSrから選択される少なくとも1種)、LiOおよびBから選択される少なくとも1種を含む。この第2副成分は、主として焼結助剤として作用する。MO(ただし、MはMg、Ca、BaおよびSrから選択される少なくとも1種)は、第1副成分にも含まれるが、SiOとの複合酸化物とし、組成式MSiO2+x で表される化合物とすることにより、融点を低くすることができる。そして、融点を低くすることができるため、主成分に対する反応性を向上させることができる。なお、上記MOとして、たとえば、BaOおよびCaOを使用した場合には、上記複合酸化物は、組成式(Ba,Ca)SiO2+x で表される化合物とすることが好ましい。組成式(Ba,Ca)SiO2+x におけるxは、好ましくは0.8〜1.2であり、より好ましくは0.9〜1.1である。xが小さすぎると、すなわちSiOが多すぎると、主成分のBaTiO2+m と反応して誘電体特性を悪化させてしまう。一方、xが大きすぎると、融点が高くなって焼結性を悪化させるため、好ましくない。 The second subcomponent contains SiO 2 as a main component and is selected from MO (where M is at least one selected from Mg, Ca, Ba and Sr), Li 2 O and B 2 O 3. Contains at least one. This second subcomponent mainly acts as a sintering aid. MO (where M is at least one selected from Mg, Ca, Ba and Sr) is also included in the first subcomponent, but is a composite oxide with SiO 2 and represented by the composition formula M x SiO 2 + x . The melting point can be lowered by using the compound to be made. And since melting | fusing point can be made low, the reactivity with respect to a main component can be improved. For example, when BaO and CaO are used as the MO, the composite oxide is preferably a compound represented by a composition formula (Ba, Ca) x SiO 2 + x . X in the composition formula (Ba, Ca) x SiO 2 + x is preferably 0.8 to 1.2, and more preferably 0.9 to 1.1. When x is too small, that is, when SiO 2 is too much, it reacts with the main component Ba m TiO 2 + m and deteriorates dielectric properties. On the other hand, if x is too large, the melting point becomes high and the sinterability is deteriorated, which is not preferable.

第3副成分(V、MoOおよびWO)は、キュリー温度以上での容量温度特性を平坦化する効果と、高温負荷寿命を向上させる効果とを示す。第3副成分の含有量が少なすぎると、このような効果が不十分となる。一方、含有量が多すぎると、IRが著しく低下する。なお、第3副成分中における各酸化物の構成比率は任意である。 The third subcomponent (V 2 O 5 , MoO 3 and WO 3 ) exhibits the effect of flattening the capacity-temperature characteristics at the Curie temperature or higher and the effect of improving the high temperature load life. If the content of the third subcomponent is too small, such an effect becomes insufficient. On the other hand, when there is too much content, IR will fall remarkably. The constituent ratio of each oxide in the third subcomponent is arbitrary.

第5副成分(MnOおよびCr)は、キュリー温度を高温側にシフトさせるほか、容量温度特性の平坦化、絶縁抵抗(IR)の向上、破壊電圧の向上、焼成温度を低下させる、などの効果を有する。 The fifth subcomponent (MnO and Cr 2 O 3 ) shifts the Curie temperature to the high temperature side, flattens the capacitance-temperature characteristics, improves the insulation resistance (IR), improves the breakdown voltage, and lowers the firing temperature. It has effects such as.

誘電体磁器組成物に含まれる誘電体粒子の平均結晶粒径は、特に限定されないが、好ましくは0.1〜0.3μmである。平均結晶粒径が、小さすぎると、比誘電率が低くなってしまう傾向にあり、大きすぎると、比誘電率の経時変化が大きくなってしまう傾向にある。誘電体粒子の平均結晶粒径は、たとえば、誘電体粒子のSEM像より、誘電体粒子の形状を球と仮定して平均粒子径を測定するコード法により測定することができる。   The average crystal grain size of the dielectric particles contained in the dielectric ceramic composition is not particularly limited, but is preferably 0.1 to 0.3 μm. If the average crystal grain size is too small, the relative permittivity tends to be low, and if it is too large, the change in relative permittivity with time tends to be large. The average crystal grain size of the dielectric particles can be measured, for example, from a SEM image of the dielectric particles by a code method in which the average particle size is measured assuming that the shape of the dielectric particles is a sphere.

誘電体層2の厚みは、特に限定されないが、一層あたり4.5μm以下であることが好ましく、より好ましくは3.5μm以下、さらに好ましくは3.0μm以下である。厚さの下限は、特に限定されないが、たとえば0.5μm程度である。   The thickness of the dielectric layer 2 is not particularly limited, but is preferably 4.5 μm or less per layer, more preferably 3.5 μm or less, and even more preferably 3.0 μm or less. Although the minimum of thickness is not specifically limited, For example, it is about 0.5 micrometer.

誘電体層2の積層数は、特に限定されないが、20以上であることが好ましく、より好ましくは50以上、特に好ましくは、100以上である。積層数の上限は、特に限定されないが、たとえば2000程度である。
内部電極層3
The number of laminated dielectric layers 2 is not particularly limited, but is preferably 20 or more, more preferably 50 or more, and particularly preferably 100 or more. The upper limit of the number of stacked layers is not particularly limited, but is about 2000, for example.
Internal electrode layer 3

内部電極層3に含有される導電材は特に限定されないが、誘電体層2の構成材料が耐還元性を有するため、比較的安価な卑金属を用いることができる。導電材として用いる卑金属としては、NiまたはNi合金が好ましい。Ni合金としては、Mn,Cr,CoおよびAlから選択される1種以上の元素とNiとの合金が好ましく、合金中のNi含有量は95重量%以上であることが好ましい。なお、NiまたはNi合金中には、P等の各種微量成分が0.1重量%程度以下含まれていてもよい。内部電極層3の厚さは用途等に応じて適宜決定すればよいが、通常、0.1〜3μm、特に0.2〜2.0μm程度であることが好ましい。
外部電極4
The conductive material contained in the internal electrode layer 3 is not particularly limited, but a relatively inexpensive base metal can be used because the constituent material of the dielectric layer 2 has reduction resistance. As the base metal used as the conductive material, Ni or Ni alloy is preferable. The Ni alloy is preferably an alloy of Ni and one or more elements selected from Mn, Cr, Co and Al, and the Ni content in the alloy is preferably 95% by weight or more. In addition, in Ni or Ni alloy, various trace components, such as P, may be contained about 0.1 wt% or less. The thickness of the internal electrode layer 3 may be appropriately determined according to the application and the like, but is usually 0.1 to 3 μm, particularly preferably about 0.2 to 2.0 μm.
External electrode 4

外部電極4に含有される導電材は特に限定されないが、本発明では安価なNi,Cuや、これらの合金を用いることができる。外部電極4の厚さは用途等に応じて適宜決定すればよいが、通常、10〜50μm程度であることが好ましい。
積層セラミックコンデンサの製造方法
The conductive material contained in the external electrode 4 is not particularly limited, but in the present invention, inexpensive Ni, Cu, and alloys thereof can be used. The thickness of the external electrode 4 may be appropriately determined according to the application and the like, but is usually preferably about 10 to 50 μm.
Manufacturing method of multilayer ceramic capacitor

本実施形態の積層セラミックコンデンサは、従来の積層セラミックコンデンサと同様に、ペーストを用いた通常の印刷法やシート法によりグリーンチップを作製し、これを焼成した後、外部電極を印刷または転写して焼成することにより製造される。以下、製造方法について具体的に説明する。   The multilayer ceramic capacitor of this embodiment is similar to the conventional multilayer ceramic capacitor, in which a green chip is produced by a normal printing method or sheet method using a paste, and after firing this, an external electrode is printed or transferred. Manufactured by firing. Hereinafter, the manufacturing method will be specifically described.

まず、誘電体層用ペーストに含まれる誘電体磁器組成物粉末を調製する。   First, a dielectric ceramic composition powder contained in the dielectric layer paste is prepared.

本実施形態においては、上記誘電体磁器組成物粉末の調製は、次のように行う。まず、上記主成分の原料と、上記第4副成分の原料の一部(誘電体磁器組成物に含有されることとなる第4副成分のうち一部に相当する原料)とを、予め反応、好ましくは固溶させ、反応済み原料を得る。次いで、この反応済み原料に、残りの第4副成分の原料(誘電体磁器組成物を構成することとなる第4副成分のうち残りの原料)と、上記第1〜第3、第5副成分の原料とを添加し、必要に応じて仮焼きすることにより、誘電体磁器組成物粉末は調製される。   In the present embodiment, the dielectric ceramic composition powder is prepared as follows. First, the raw material of the main component and a part of the raw material of the fourth subcomponent (a raw material corresponding to a part of the fourth subcomponent to be contained in the dielectric ceramic composition) are reacted in advance. , Preferably in solid solution, to obtain a reacted raw material. Next, the remaining raw material of the fourth subcomponent (the remaining raw material among the fourth subcomponents constituting the dielectric ceramic composition) and the first to third and fifth subcomponents are added to the reacted raw material. The dielectric ceramic composition powder is prepared by adding the component raw materials and calcining as necessary.

上記主成分の原料としては、上述のBaTiO2+m の粉末あるいは、焼成によりBaTiO2+m となる化合物の粉末が使用でき、主成分の原料の平均粒径は、好ましくは0.05〜0.5μm、より好ましくは0.1〜0.4μmである。主成分の原料の平均粒径が大きすぎると、焼結後の誘電体粒子の平均結晶粒径が大きくなりすぎてしまい、温度特性が悪化したり、絶縁抵抗(IR)が低下してしまう傾向にある。一方、平均粒径が小さすぎると、主成分原料へのRの酸化物の固溶が不均一となる傾向にある。なお、本実施形態において、平均粒径は、体積基準累積50%径(D50径)を意味し、レーザー回折法などの光散乱を利用した方法により測定することができる。 As the raw material of the main component, the above Ba m TiO 2 + m powder or a powder of a compound that becomes Ba m TiO 2 + m by firing can be used, and the average particle size of the main component raw material is preferably 0.05 to 0 0.5 μm, more preferably 0.1 to 0.4 μm. If the average particle size of the raw material of the main component is too large, the average crystal particle size of the sintered dielectric particles becomes too large, and the temperature characteristics tend to deteriorate or the insulation resistance (IR) tends to decrease. It is in. On the other hand, if the average particle size is too small, the solid solution of the oxide of R in the main component material tends to be non-uniform. In this embodiment, the average particle diameter means a volume-based cumulative 50% diameter (D50 diameter), and can be measured by a method using light scattering such as a laser diffraction method.

上記主成分の原料と、予め反応させる第4副成分の原料としては、上述のRの酸化物や、焼成によりRの酸化物となる種々の化合物を使用することができる。Rの酸化物や、焼成によりRの酸化物となる化合物としては、平均粒径が0.01〜0.1μm程度の粉末状の原料あるいは、以下に例示するゾル状の原料などが使用できる。   As the raw material of the fourth subcomponent that is reacted in advance with the main component raw material, the above-mentioned oxide of R or various compounds that become an oxide of R upon firing can be used. As an R oxide or a compound that becomes an R oxide by firing, a powdery raw material having an average particle diameter of about 0.01 to 0.1 μm, a sol-like raw material exemplified below, or the like can be used.

ゾル状の原料としては、特に限定されず、たとえば、水酸化物ゾルや酸化物ゾルなどが挙げられる。また、ゾル状の原料のゾル粒径は、通常1〜100nm程度であり、溶媒としては、水、あるいは、メタノールやエタノールなどのアルコール類、キシレンやトルエンなどの芳香族溶媒、メチルエチルケトンなどのケトン類などの有機系溶媒が例示される。   The sol-shaped raw material is not particularly limited, and examples thereof include hydroxide sol and oxide sol. The sol particle size of the sol-like raw material is usually about 1 to 100 nm, and the solvent is water, alcohols such as methanol and ethanol, aromatic solvents such as xylene and toluene, and ketones such as methyl ethyl ketone. Organic solvents such as are exemplified.

上記焼成によりRの酸化物となる化合物としては特に限定されないが、Rのアルコキシド、Rの無機酸塩などが例示される。   Although it does not specifically limit as a compound used as the oxide of R by the said baking, R alkoxide, R inorganic acid salt, etc. are illustrated.

上記Rのアルコキシドとは、アルコールとR元素との化合物であり、具体的には、アルコールの水酸基の水素をR元素で置換した化合物をいう。Rのアルコキシドとしては、特に限定されないが、一般式C2n+1 OR(nは、1〜9の整数)で表される各種化合物が使用でき、たとえば、CHOR、COR、n−COR、i−CORなどが挙げられる。 The R alkoxide is a compound of an alcohol and an R element, and specifically refers to a compound in which hydrogen of the hydroxyl group of the alcohol is substituted with an R element. The alkoxide R, but are not limited to, the general formula C n H 2n + 1 OR ( n is an integer from 1 to 9) various compounds represented by can be used, for example, CH 3 OR, C 2 H 5 OR, n-C 3 H 7 OR, etc. i-C 3 H 7 OR can be mentioned.

また、上記Rの無機酸塩としては、特に限定されないが、たとえば、塩化物、硝酸塩、リン酸塩、硫酸塩などが挙げられる。なお、Rの無機酸塩は、水和した状態のものが多く、通常は、水、あるいは水溶性の有機溶剤などに溶けた状態で使用される。   The inorganic acid salt of R is not particularly limited, and examples thereof include chlorides, nitrates, phosphates and sulfates. The inorganic acid salt of R is often in a hydrated state, and is usually used in a state dissolved in water or a water-soluble organic solvent.

主成分の原料と予め反応させる第4副成分の原料は、前記主成分100モルに対して、R換算で、0〜0.5モル(ただし、0は含まない)とすることが好ましく、より好ましくは0.01〜0.2モルとする。   The raw material of the fourth subcomponent that is reacted in advance with the raw material of the main component is preferably 0 to 0.5 mol (however, 0 is not included) in terms of R with respect to 100 mol of the main component. Preferably it is 0.01-0.2 mol.

あるいは、予め反応させる第4副成分の原料の比率を、R換算で、誘電体磁器組成物に最終的に含有されることとなる第4副成分の総量100モル%に対して、0〜50モル%(ただし、0および50は含まない)とすることが好ましく、より好ましくは0〜25モル%(ただし、0は含まない)、さらに好ましくは0〜15モル%(ただし、0は含まない)とする。   Or the ratio of the raw material of the 4th subcomponent made to react beforehand is 0-50 with respect to 100 mol% of total amounts of the 4th subcomponent which will be finally contained in a dielectric ceramic composition in R conversion. It is preferable to make it mol% (however, 0 and 50 are not included), more preferably 0 to 25 mol% (however, 0 is not included), more preferably 0 to 15 mol% (however, 0 is not included). ).

主成分の原料と予め反応させる第4副成分の原料の量が多すぎると、焼成後に得られる焼結体の結晶粒径が大きくなり過ぎてしまい、温度特性が悪化したり、絶縁抵抗(IR)が低下してしまう傾向にある。   If the amount of the fourth subcomponent raw material to be reacted in advance with the main component raw material is too large, the crystal grain size of the sintered body obtained after firing becomes too large, the temperature characteristics deteriorate, and the insulation resistance (IR ) Tends to decrease.

上記主成分の原料と上記第4副成分の原料の一部とを、予め反応させて反応済み原料を得る方法としては、主成分の原料と第4副成分の原料とを、溶媒などを使用して混合し、溶媒を蒸発させて、仮焼きする方法や、混合溶液に沈殿剤などを加え、第4副成分を主成分上に析出させ、仮焼きする方法などが挙げられる。なお、仮焼きする際の温度は、好ましくは500〜700℃程度である。   As a method of previously reacting the raw material of the main component and a part of the raw material of the fourth subcomponent to obtain a reacted raw material, a solvent or the like is used for the main component raw material and the fourth subcomponent raw material. And mixing, evaporating the solvent and calcining, and adding a precipitant to the mixed solution to precipitate the fourth subcomponent on the main component and calcining. In addition, the temperature at the time of pre-baking becomes like this. Preferably it is about 500-700 degreeC.

次いで、得られた反応済み原料に、残りの第4副成分の原料(誘電体磁器組成物を構成することとなる第4副成分のうち残りの原料)と、上記第1〜第3、第5副成分の原料とを添加して、その後、混合して、必要に応じて仮焼きすることにより、誘電体磁器組成物粉末を得る。残りの第4副成分の原料、第1〜第3、第5副成分の原料としては、上記した酸化物やその混合物、複合酸化物や、焼成により上記した酸化物や複合酸化物となる各種化合物が使用できる。   Next, in the obtained reacted raw material, the remaining fourth subcomponent raw material (remaining raw material among the fourth subcomponents constituting the dielectric ceramic composition), the first to third, 5 Subcomponent raw materials are added, and then mixed and calcined as necessary to obtain a dielectric ceramic composition powder. As the raw material of the remaining fourth subcomponent, the first to third and fifth subcomponents, various oxides and mixtures thereof, composite oxides, and various oxides that become the oxides and composite oxides described above by firing. Compounds can be used.

次いで、得られた誘電体磁器組成物粉末を用いて 誘電体層用ペーストを製造する。誘電体層用ペーストは、誘電体磁器組成物粉末と有機ビヒクルとを混練した有機系の塗料であってもよく、水系の塗料であってもよい。   Next, a dielectric layer paste is manufactured using the obtained dielectric ceramic composition powder. The dielectric layer paste may be an organic paint obtained by kneading a dielectric ceramic composition powder and an organic vehicle, or may be a water-based paint.

有機ビヒクルとは、バインダを有機溶剤中に溶解したものである。有機ビヒクルに用いるバインダは特に限定されず、エチルセルロース、ポリビニルブチラール等の通常の各種バインダから適宜選択すればよい。また、用いる有機溶剤も特に限定されず、印刷法やシート法など、利用する方法に応じて、テルピネオール、ブチルカルビトール、アセトン、トルエン等の各種有機溶剤から適宜選択すればよい。   An organic vehicle is obtained by dissolving a binder in an organic solvent. The binder used for the organic vehicle is not particularly limited, and may be appropriately selected from usual various binders such as ethyl cellulose and polyvinyl butyral. Further, the organic solvent to be used is not particularly limited, and may be appropriately selected from various organic solvents such as terpineol, butyl carbitol, acetone, toluene, and the like, depending on a method to be used such as a printing method or a sheet method.

また、誘電体層用ペーストを水系の塗料とする場合には、水溶性のバインダや分散剤などを水に溶解させた水系ビヒクルと、誘電体原料とを混練すればよい。水系ビヒクルに用いる水溶性バインダは特に限定されず、例えば、ポリビニルアルコール、セルロース、水溶性アクリル樹脂などを用いればよい。   Further, when the dielectric layer paste is used as a water-based paint, a water-based vehicle in which a water-soluble binder or a dispersant is dissolved in water and a dielectric material may be kneaded. The water-soluble binder used for the water-based vehicle is not particularly limited, and for example, polyvinyl alcohol, cellulose, water-soluble acrylic resin, or the like may be used.

内部電極層用ペーストは、上記した各種導電性金属や合金からなる導電材、あるいは焼成後に上記した導電材となる各種酸化物、有機金属化合物、レジネート等と、上記した有機ビヒクルとを混練して調製する。   The internal electrode layer paste is made by kneading the above-mentioned organic vehicle with various conductive metals and alloys as described above, or various oxides, organometallic compounds, resinates, etc. that become the above-mentioned conductive materials after firing. Prepare.

外部電極用ペーストは、上記した内部電極層用ペーストと同様にして調製すればよい。   The external electrode paste may be prepared in the same manner as the internal electrode layer paste described above.

上記した各ペースト中の有機ビヒクルの含有量に特に制限はなく、通常の含有量、たとえば、バインダは1〜5重量%程度、溶剤は10〜50重量%程度とすればよい。また、各ペースト中には、必要に応じて各種分散剤、可塑剤、誘電体、絶縁体等から選択される添加物が含有されていてもよい。これらの総含有量は、10重量%以下とすることが好ましい。   There is no restriction | limiting in particular in content of the organic vehicle in each above-mentioned paste, For example, what is necessary is just about 1-5 weight% of binders, for example, about 10-50 weight% of binders. Each paste may contain additives selected from various dispersants, plasticizers, dielectrics, insulators, and the like as necessary. The total content of these is preferably 10% by weight or less.

印刷法を用いる場合、誘電体層用ペーストおよび内部電極層用ペーストを、PET等の基板上に積層印刷し、所定形状に切断した後、基板から剥離してグリーンチップとする。   When the printing method is used, the dielectric layer paste and the internal electrode layer paste are laminated and printed on a substrate such as PET, cut into a predetermined shape, and then peeled from the substrate to obtain a green chip.

また、シート法を用いる場合、誘電体層用ペーストを用いてグリーンシートを形成し、この上に内部電極層用ペーストを印刷した後、これらを積層してグリーンチップとする。   When the sheet method is used, a dielectric layer paste is used to form a green sheet, the internal electrode layer paste is printed thereon, and these are stacked to form a green chip.

焼成前に、グリーンチップに脱バインダ処理を施す。脱バインダ条件としては、昇温速度を好ましくは5〜300℃/時間、より好ましくは10〜100℃/時間、保持温度を好ましくは180〜400℃、より好ましくは200〜300℃、温度保持時間を好ましくは0.5〜24時間、より好ましくは5〜20時間とする。また、脱バインダ雰囲気は、空気中とすることが好ましい。   Before firing, the green chip is subjected to binder removal processing. As the binder removal conditions, the temperature rising rate is preferably 5 to 300 ° C./hour, more preferably 10 to 100 ° C./hour, the holding temperature is preferably 180 to 400 ° C., more preferably 200 to 300 ° C., and the temperature holding time. Is preferably 0.5 to 24 hours, more preferably 5 to 20 hours. The binder removal atmosphere is preferably in the air.

次いで、脱バインダ処理を施したグリーンチップを焼成する。グリーンチップ焼成時の雰囲気は、内部電極層用ペースト中の導電材の種類に応じて適宜決定されればよいが、導電材としてNiやNi合金等の卑金属を用いる場合、焼成雰囲気中の酸素分圧は、10−9〜10−4Paとすることが好ましい。酸素分圧が上記範囲未満であると、内部電極層の導電材が異常焼結を起こし、途切れてしまうことがある。また、酸素分圧が前記範囲を超えると、内部電極層が酸化する傾向にある。 Next, the green chip subjected to the binder removal process is fired. The atmosphere at the time of green chip firing may be appropriately determined according to the type of conductive material in the internal electrode layer paste, but when a base metal such as Ni or Ni alloy is used as the conductive material, the oxygen content in the firing atmosphere The pressure is preferably 10 −9 to 10 −4 Pa. When the oxygen partial pressure is less than the above range, the conductive material of the internal electrode layer may be abnormally sintered and may be interrupted. Further, when the oxygen partial pressure exceeds the above range, the internal electrode layer tends to be oxidized.

また、焼成時の保持温度は、好ましくは1000〜1400℃、より好ましくは1100〜1350℃である。保持温度が上記範囲未満であると緻密化が不十分となり、前記範囲を超えると、内部電極層の異常焼結による電極の途切れや、内部電極層構成材料の拡散による容量温度特性の悪化、誘電体磁器組成物の還元が生じやすくなる。   Moreover, the holding temperature at the time of baking becomes like this. Preferably it is 1000-1400 degreeC, More preferably, it is 1100-1350 degreeC. If the holding temperature is lower than the above range, the densification becomes insufficient. If the holding temperature is higher than the above range, the electrode is interrupted due to abnormal sintering of the internal electrode layer, the capacity-temperature characteristic is deteriorated due to diffusion of the internal electrode layer constituent material, Reduction of the body porcelain composition is likely to occur.

これ以外の焼成条件としては、昇温速度を好ましくは100〜900℃/時間、より好ましくは200〜900℃/時間、温度保持時間を好ましくは0.5〜8時間、より好ましくは1〜3時間、冷却速度を好ましくは50〜500℃/時間、より好ましくは200〜300℃/時間とする。また、焼成雰囲気は還元性雰囲気とすることが好ましく、雰囲気ガスとしてはたとえば、NとHとの混合ガスを加湿して用いることが好ましい。 As other firing conditions, the rate of temperature rise is preferably 100 to 900 ° C./hour, more preferably 200 to 900 ° C./hour, and the temperature holding time is preferably 0.5 to 8 hours, more preferably 1 to 3 hours. The time and cooling rate are preferably 50 to 500 ° C./hour, more preferably 200 to 300 ° C./hour. Further, the firing atmosphere is preferably a reducing atmosphere, and as the atmosphere gas, for example, a mixed gas of N 2 and H 2 is preferably used by humidification.

還元性雰囲気中で焼成した場合、コンデンサ素子本体にはアニールを施すことが好ましい。アニールは、誘電体層を再酸化するための処理であり、これによりIR寿命を著しく長くすることができるので、信頼性が向上する。   When firing in a reducing atmosphere, it is preferable to anneal the capacitor element body. Annealing is a process for re-oxidizing the dielectric layer, and this can significantly increase the IR lifetime, thereby improving the reliability.

アニール雰囲気中の酸素分圧は、10−3Pa以上、特に10−2〜10Paとすることが好ましい。酸素分圧が前記範囲未満であると誘電体層の再酸化が困難であり、前記範囲を超えると内部電極層が酸化する傾向にある。 The oxygen partial pressure in the annealing atmosphere is preferably 10 −3 Pa or more, particularly preferably 10 −2 to 10 Pa. When the oxygen partial pressure is less than the above range, it is difficult to reoxidize the dielectric layer, and when it exceeds the above range, the internal electrode layer tends to be oxidized.

アニールの際の保持温度は、1200℃以下、特に500〜1200℃とすることが好ましい。保持温度が上記範囲未満であると誘電体層の酸化が不十分となるので、IRが低く、また、高温負荷寿命が短くなりやすい。一方、保持温度が前記範囲を超えると、内部電極層が酸化して容量が低下するだけでなく、内部電極層が誘電体素地と反応してしまい、容量温度特性の悪化、IRの低下、高温負荷寿命の低下が生じやすくなる。   The holding temperature at the time of annealing is preferably 1200 ° C. or less, particularly 500 to 1200 ° C. When the holding temperature is lower than the above range, the dielectric layer is not sufficiently oxidized, so that the IR is low and the high temperature load life is likely to be shortened. On the other hand, when the holding temperature exceeds the above range, not only the internal electrode layer is oxidized and the capacity is lowered, but the internal electrode layer reacts with the dielectric substrate, the capacity temperature characteristic is deteriorated, the IR is lowered, the high temperature The load life is likely to decrease.

これ以外のアニール条件としては、昇温速度を好ましくは100〜900℃/時間、より好ましくは200〜900℃/時間、温度保持時間を好ましくは0.5〜12時間、より好ましくは1〜10時間、冷却速度を好ましくは50〜600℃/時間、より好ましくは100〜300℃/時間とする。また、アニールの雰囲気ガスとしては、たとえば、加湿したNガス等を用いることが好ましい。 As other annealing conditions, the rate of temperature rise is preferably 100 to 900 ° C./hour, more preferably 200 to 900 ° C./hour, and the temperature holding time is preferably 0.5 to 12 hours, more preferably 1 to 10 hours. The time and cooling rate are preferably 50 to 600 ° C./hour, more preferably 100 to 300 ° C./hour. Further, as the annealing atmosphere gas, for example, humidified N 2 gas or the like is preferably used.

上記した脱バインダ処理、焼成およびアニールにおいて、Nガスや混合ガス等を加湿するには、例えばウェッター等を使用すればよい。この場合、水温は5〜75℃程度が好ましい。 In the above-described binder removal processing, firing and annealing, for example, a wetter or the like may be used to wet the N 2 gas or mixed gas. In this case, the water temperature is preferably about 5 to 75 ° C.

脱バインダ処理、焼成およびアニールは、連続して行なっても、独立に行なってもよい。   The binder removal treatment, firing and annealing may be performed continuously or independently.

上記のようにして得られたコンデンサ素子本体に、例えばバレル研磨やサンドブラストなどにより端面研磨を施し、外部電極用ペーストを印刷または転写して焼成し、外部電極4を形成する。外部電極用ペーストの焼成条件は、例えば、加湿したNとHとの混合ガス中で600〜800℃にて10分間〜1時間程度とすることが好ましい。そして、必要に応じ、外部電極4表面に、めっき等により被覆層を形成する。 The capacitor element body obtained as described above is subjected to end surface polishing, for example, by barrel polishing or sand blasting, and the external electrode paste is printed or transferred and baked to form the external electrode 4. The firing conditions of the external electrode paste are preferably, for example, about 10 minutes to 1 hour at 600 to 800 ° C. in a humidified mixed gas of N 2 and H 2 . Then, if necessary, a coating layer is formed on the surface of the external electrode 4 by plating or the like.

このようにして製造された本発明の積層セラミックコンデンサは、ハンダ付等によりプリント基板上などに実装され、各種電子機器等に使用される。   The multilayer ceramic capacitor of the present invention thus manufactured is mounted on a printed circuit board by soldering or the like and used for various electronic devices.

以上、本発明の実施形態について説明してきたが、本発明は、上述した実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々に改変することができる。   As mentioned above, although embodiment of this invention has been described, this invention is not limited to the embodiment mentioned above at all, and can be variously modified within the range which does not deviate from the summary of this invention.

たとえば、上述した実施形態では、本発明に係る電子部品として積層セラミックコンデンサを例示したが、本発明に係る電子部品としては、積層セラミックコンデンサに限定されず、上記組成の誘電体磁器組成物で構成してある誘電体層を有するものであれば何でも良い。   For example, in the above-described embodiment, the multilayer ceramic capacitor is exemplified as the electronic component according to the present invention. However, the electronic component according to the present invention is not limited to the multilayer ceramic capacitor, and is composed of a dielectric ceramic composition having the above composition. Any material having a dielectric layer can be used.

以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。
実施例1
Hereinafter, although this invention is demonstrated based on a more detailed Example, this invention is not limited to these Examples.
Example 1

まず、平均粒径0.35μmの主成分原料(BaTiO)と、第4副成分の原料として、Y粉末を準備した。次いで、準備したBaTiO粉末とY粉末とをボールミルにより湿式混合粉砕してスラリー化し、このスラリーを乾燥後、仮焼・粉砕して、反応済み原料を得た。なお、仮焼き条件は、昇温速度:200℃/時間、保持温度:500℃、温度保持時間:2時間、雰囲気:空気中とした。また、Yの添加量は、主成分100モルに対して、Y原子換算(本願明細書の実施例、比較例および参考例において、以下同じ)で、0.02モルとした。すなわち、Y換算では、0.01モルとした。 First, a main component material (BaTiO 3 ) having an average particle size of 0.35 μm and a Y 2 O 3 powder were prepared as a fourth subcomponent material. Next, the prepared BaTiO 3 powder and Y 2 O 3 powder were wet mixed and pulverized by a ball mill to form a slurry. The slurry was dried, calcined and pulverized to obtain a reacted raw material. The calcining conditions were as follows: temperature increase rate: 200 ° C./hour, holding temperature: 500 ° C., temperature holding time: 2 hours, atmosphere: air. The amount of Y 2 O 3 added was 0.02 mol in terms of Y atom (the same applies to the examples, comparative examples and reference examples in the present specification) with respect to 100 mol of the main component. That is, it was 0.01 mol in terms of Y 2 O 3 .

次いで、得られた反応済み原料に対して、以下に示す第1〜第5副成分を、添加して、ボールミルにより湿式混合粉砕してスラリー化し、このスラリーを乾燥後、仮焼・粉砕することにより誘電体磁器組成物粉末を得た。なお、各副成分の添加量は、主成分100モルに対する、各酸化物換算での添加量である(ただし、Yは、Y原子換算の添加量とした)。
MgO (第1副成分):1.2モル
(Ba,Ca)SiO
(第2副成分):0.75モル
(第3副成分):0.03モル
(第4副成分):0.38モル
MnO (第5副成分):0.2モル
Next, the first to fifth subcomponents shown below are added to the obtained reacted raw material, and the mixture is wet-mixed and pulverized by a ball mill to form a slurry. The slurry is dried, calcined and pulverized. Thus, a dielectric ceramic composition powder was obtained. In addition, the addition amount of each subcomponent is the addition amount in terms of each oxide with respect to 100 mol of the main component (however, Y 2 O 3 is the addition amount in terms of Y atoms).
MgO (first subcomponent): 1.2 mol (Ba, Ca) SiO 3
(Second subcomponent): 0.75 mol V 2 O 5 (Third subcomponent): 0.03 mol Y 2 O 3 (Fourth subcomponent): 0.38 mol MnO (Fifth subcomponent): 0 .2 mole

上記にて得られた誘電体磁器組成物粉末100重量部と、アクリル樹脂4.8重量部と、酢酸エチル100重量部と、ミネラルスピリット6重量部と、トルエン4重量部とをボールミルで混合してペースト化し、誘電体層用ペーストを得た。   100 parts by weight of the dielectric ceramic composition powder obtained above, 4.8 parts by weight of acrylic resin, 100 parts by weight of ethyl acetate, 6 parts by weight of mineral spirit, and 4 parts by weight of toluene are mixed by a ball mill. Thus, a dielectric layer paste was obtained.

次に、Ni粒子44.6重量部と、テルピネオール52重量部と、エチルセルロース3重量部と、ベンゾトリアゾール0.4重量部とを、3本ロールにより混練し、スラリー化して内部電極層用ペーストを得た。   Next, 44.6 parts by weight of Ni particles, 52 parts by weight of terpineol, 3 parts by weight of ethyl cellulose, and 0.4 parts by weight of benzotriazole are kneaded with three rolls to form a slurry for an internal electrode layer paste. Obtained.

これらのペーストを用い、以下のようにして、図1に示される積層セラミックチップコンデンサ1を製造した。   Using these pastes, the multilayer ceramic chip capacitor 1 shown in FIG. 1 was manufactured as follows.

まず、得られた誘電体層用ペーストを用いてPETフィルム上にグリーンシートを形成した。この上に内部電極用ペーストを印刷した後、PETフィルムからシートを剥離した。次いで、これらのグリーンシートと保護用グリーンシート(内部電極層用ペーストを印刷しないもの)とを積層、圧着して、グリーンチップを得た。   First, a green sheet was formed on a PET film using the obtained dielectric layer paste. After the internal electrode paste was printed thereon, the sheet was peeled from the PET film. Next, these green sheets and protective green sheets (not printed with internal electrode layer paste) were laminated and pressure-bonded to obtain green chips.

次いで、グリーンチップを所定サイズに切断し、脱バインダ処理、焼成およびアニールを下記条件にて行って、積層セラミック焼成体を得た。   Next, the green chip was cut into a predetermined size and subjected to binder removal processing, firing and annealing under the following conditions to obtain a multilayer ceramic fired body.

脱バインダ処理条件は、昇温速度:32.5℃/時間、保持温度:260℃、温度保持時間:8時間、雰囲気:空気中とした。   The binder removal treatment conditions were temperature rising rate: 32.5 ° C./hour, holding temperature: 260 ° C., temperature holding time: 8 hours, and atmosphere: in the air.

焼成条件は、昇温速度:200℃/時間、保持温度:1260〜1280℃、温度保持時間:2時間、冷却速度:200℃/時間、雰囲気ガス:加湿したN+H混合ガス(酸素分圧:10−7Pa)とした。 Firing conditions were: temperature rising rate: 200 ° C./hour, holding temperature: 1260 to 1280 ° C., temperature holding time: 2 hours, cooling rate: 200 ° C./hour, atmospheric gas: humidified N 2 + H 2 mixed gas (oxygen content) Pressure: 10 −7 Pa).

アニール条件は、昇温速度:200℃/時間、保持温度:1050℃、温度保持時間:2時間、冷却速度:200℃/時間、雰囲気ガス:加湿したNガス(酸素分圧:1.01Pa)とした。 The annealing conditions were as follows: temperature rising rate: 200 ° C./hour, holding temperature: 1050 ° C., temperature holding time: 2 hours, cooling rate: 200 ° C./hour, atmospheric gas: humidified N 2 gas (oxygen partial pressure: 1.01 Pa) ).

なお、焼成およびアニールの際の雰囲気ガスの加湿には、水温を20℃としたウエッターを用いた。   Note that a wetter with a water temperature of 20 ° C. was used for humidifying the atmospheric gas during firing and annealing.

次いで、得られた積層セラミック焼成体の端面をサンドブラストにて研磨した後、外部電極としてIn−Gaを塗布し、図1に示す実施例1の積層セラミックコンデンサの試料を得た。   Next, after polishing the end face of the obtained multilayer ceramic fired body by sandblasting, In—Ga was applied as an external electrode, and a multilayer ceramic capacitor sample of Example 1 shown in FIG. 1 was obtained.

得られたコンデンサ試料のサイズは、3.2mm×1.6mm×0.6mmであり、内部電極層に挟まれた誘電体層の数は4とし、1層あたりの誘電体層の厚み(層間厚み)は4.5μm、内部電極層の厚みは1.2μmとした。次いで、得られたコンデンサ試料について、以下に示す方法により、誘電体粒子の平均結晶粒径、比誘電率ε、誘電損失tanδ、絶縁抵抗IR、CR積、静電容量の温度特性およびIR加速寿命の評価を行った。また、上記反応済み原料については、XPS測定により、Y元素の分布度を測定した。
誘電体粒子の平均結晶粒径
The size of the obtained capacitor sample was 3.2 mm × 1.6 mm × 0.6 mm, the number of dielectric layers sandwiched between internal electrode layers was 4, and the thickness of the dielectric layers per layer (interlayers) Thickness) was 4.5 μm, and the thickness of the internal electrode layer was 1.2 μm. Next, for the obtained capacitor sample, the average crystal grain size of dielectric particles, the relative dielectric constant ε, the dielectric loss tan δ, the insulation resistance IR, the CR product, the temperature characteristics of the capacitance, and the IR accelerated lifetime were obtained by the following method Was evaluated. Moreover, about the said reacted material, the distribution degree of Y element was measured by XPS measurement.
Average crystal grain size of dielectric particles

誘電体粒子の平均粒径の測定方法としては、まず、得られたコンデンサ試料を内部電極に垂直な面で切断し、その切断面を研磨した。そして、その研磨面にケミカルエッチングを施し、その後、走査型電子顕微鏡(SEM)により観察を行い、コード法により誘電体粒子の形状を球と仮定して算出した。結果を表1に示す。
比誘電率ε
As a method for measuring the average particle size of the dielectric particles, first, the obtained capacitor sample was cut along a plane perpendicular to the internal electrode, and the cut surface was polished. Then, the polished surface was subjected to chemical etching, then observed with a scanning electron microscope (SEM), and calculated by assuming that the shape of the dielectric particles was a sphere by the code method. The results are shown in Table 1.
Dielectric constant ε

コンデンサの試料に対し、基準温度20℃において、デジタルLCRメータ(横河電機(株)製 YHP4274A)にて、周波数120Hz,入力信号レベル(測定電圧)0.5Vrms/μmの条件下で、静電容量Cを測定した。そして、得られた静電容量、積層セラミックコンデンサの誘電体厚みおよび内部電極同士の重なり面積から、比誘電率(単位なし)を算出した。比誘電率は、高いほど好ましい。結果を表1に示す。
誘電損失tanδ
A capacitor sample was measured at a reference temperature of 20 ° C. using a digital LCR meter (YHP4274A manufactured by Yokogawa Electric Corporation) at a frequency of 120 Hz and an input signal level (measurement voltage) of 0.5 Vrms / μm. The capacity C was measured. The relative dielectric constant (no unit) was calculated from the obtained capacitance, the dielectric thickness of the multilayer ceramic capacitor, and the overlapping area of the internal electrodes. A higher dielectric constant is preferable. The results are shown in Table 1.
Dielectric loss tan δ

コンデンサの試料に対し、基準温度20℃において、デジタルLCRメータ(横河電機(株)製 YHP4274A)にて、周波数120Hz,入力信号レベル(測定電圧)0.5Vrms/μmの条件下で、誘電損失tanδを測定した。誘電損失は、小さいほど好ましい。結果を表1に示す。
絶縁抵抗IR
Dielectric loss with respect to a capacitor sample under the conditions of a frequency of 120 Hz and an input signal level (measurement voltage) of 0.5 Vrms / μm with a digital LCR meter (YHP4274A manufactured by Yokogawa Electric Corporation) at a reference temperature of 20 ° Tan δ was measured. The smaller the dielectric loss, the better. The results are shown in Table 1.
Insulation resistance IR

コンデンサ試料に対し、絶縁抵抗計(アドバンテスト社製R8340A)を用いて、20℃において4V/μmの直流電圧を、コンデンササンプルに1分間印加した後の絶縁抵抗IRを測定した。絶縁抵抗IRは、大きいほど好ましい。結果を表1に示す。
CR積
The insulation resistance IR after applying a DC voltage of 4 V / μm to the capacitor sample for 1 minute at 20 ° C. was measured using an insulation resistance meter (advantest R8340A) on the capacitor sample. The insulation resistance IR is preferably as large as possible. The results are shown in Table 1.
CR product

CR積は、上記にて測定した静電容量C(単位はμF)と、絶縁抵抗IR(単位はMΩ)との積を求めることにより測定した。CR積は、大きいほど好ましい。結果を表1に示す。
静電容量の温度特性
The CR product was measured by determining the product of the capacitance C (unit: μF) measured above and the insulation resistance IR (unit: MΩ). A larger CR product is preferable. The results are shown in Table 1.
Capacitance temperature characteristics

コンデンサ試料に対し、−55〜125℃における静電容量を測定し、静電容量の変化率ΔCを算出し、EIA規格のX7R特性を満足するか否かについて評価した。すなわち、−55〜125℃において、変化率ΔCが、±15%以内であるか否かを評価した。結果を表1に示す。なお、表1中、X7R特性を満足した試料は「○」とし、満足しなかった試料は「×」とした。
IR加速寿命
The capacitance at −55 to 125 ° C. was measured for the capacitor sample, the capacitance change rate ΔC was calculated, and it was evaluated whether or not the X7R characteristic of the EIA standard was satisfied. That is, it was evaluated whether the change rate ΔC was within ± 15% at −55 to 125 ° C. The results are shown in Table 1. In Table 1, a sample satisfying the X7R characteristic was indicated as “◯”, and a sample not satisfied was indicated as “x”.
IR accelerated life

コンデンサ試料に対し、180℃にて20V/μmの電界下で加速試験を行い、絶縁抵抗IRが10Ω以下になるまでの時間(単位は時間)を算出した。IR加速寿命は、長いほうが好ましい。結果を表1に示す。
反応済み原料のY原子の分布度の測定
The capacitor sample was subjected to an acceleration test at 180 ° C. under an electric field of 20 V / μm, and the time until the insulation resistance IR became 10 8 Ω or less (unit: time) was calculated. A longer IR accelerated lifetime is preferred. The results are shown in Table 1.
Measurement of the distribution of Y atoms in the reacted raw material

BaTiO粉末とY粉末とを予め反応させることにより得られた反応済み原料について、XPS測定により、表面深さ方向のBa、Ti、Yの各元素の分布状態を測定した。XPS測定の結果、Ba、Ti、Yの各元素は、反応済み原料の表面近傍付近から内部に至るまで、ほぼ同じ濃度で分布しており、固溶反応が均一に進行していることが確認できた。
実施例2〜4
For BaTiO 3 powder and reacted material obtained by pre-reacting a Y 2 O 3 powder by XPS measurement, the surface depth direction of Ba, Ti, the distribution of each element of Y was measured. As a result of XPS measurement, each element of Ba, Ti, and Y is distributed at almost the same concentration from near the surface to the inside of the reacted raw material, and it is confirmed that the solid solution reaction proceeds uniformly. did it.
Examples 2-4

誘電体磁器組成物粉末を作製する際に、以下のようにした以外は、実施例1と同様にして、誘電体磁器組成物粉末を得て、実施例2〜4のコンデンサ試料を得た。   When producing the dielectric ceramic composition powder, a dielectric ceramic composition powder was obtained in the same manner as in Example 1 except that the following was performed, and capacitor samples of Examples 2 to 4 were obtained.

すなわち、実施例2〜4では、まず、主成分原料(BaTiO)と、予め反応させるYの量を、実施例1とは異なり、それぞれ0.05モル(実施例2)、0.10モル(実施例3)、0.15モル(実施例4)として反応済み原料を得た。そして、得られた反応済み原料に対して添加する(後添加の)Yの量を、実施例1とは異なり、それぞれ、0.35モル(実施例2)、0.30モル(実施例3)、0.25モル(実施例4)とした。 That is, in Examples 2 to 4, first, the amount of the main component raw material (BaTiO 3 ) and Y 2 O 3 to be reacted in advance is 0.05 mol (Example 2) and 0, respectively, unlike Example 1. The reacted raw material was obtained as .10 mol (Example 3) and 0.15 mol (Example 4). The amount of Y 2 O 3 added (post-added) to the obtained reacted raw material is 0.35 mol (Example 2) and 0.30 mol (Example 2), unlike Example 1. Example 3) and 0.25 mol (Example 4).

得られた各コンデンサ試料について、実施例1と同様にして、誘電体粒子の平均結晶粒径、比誘電率ε、誘電損失tanδ、絶縁抵抗IR、CR積、静電容量の温度特性およびIR加速寿命の評価を行った。結果を表1に示す。
比較例1
For each obtained capacitor sample, in the same manner as in Example 1, the average crystal grain size of the dielectric particles, the relative dielectric constant ε, the dielectric loss tan δ, the insulation resistance IR, the CR product, the temperature characteristics of the capacitance, and the IR acceleration The life was evaluated. The results are shown in Table 1.
Comparative Example 1

誘電体磁器組成物粉末を作製する際に、以下のようにした以外は、実施例1と同様にして、誘電体磁器組成物粉末を得て、比較例1のコンデンサ試料を得た。   When producing the dielectric ceramic composition powder, the dielectric ceramic composition powder was obtained in the same manner as in Example 1 except that the following was performed, and a capacitor sample of Comparative Example 1 was obtained.

すなわち、比較例1では、主成分原料(BaTiO)と、Yを予め反応させることなく、直接、主成分原料と第1〜第5副成分の原料とを混合し、仮焼・粉砕することにより誘電体磁器組成物粉末を得た。なお、比較例1では、Yの添加量を、0.40モルとした。
比較例2
That is, in Comparative Example 1, the main component material (BaTiO 3 ) and Y 2 O 3 are directly mixed without previously reacting the main component material and the first to fifth subcomponent materials, By pulverizing, a dielectric ceramic composition powder was obtained. In Comparative Example 1, the amount of Y 2 O 3 added was 0.40 mol.
Comparative Example 2

誘電体磁器組成物粉末を作製する際に、以下のようにした以外は、実施例1と同様にして、誘電体磁器組成物粉末を得て、比較例2のコンデンサ試料を得た。   When producing the dielectric ceramic composition powder, the dielectric ceramic composition powder was obtained in the same manner as in Example 1 except that the following was performed, and a capacitor sample of Comparative Example 2 was obtained.

すなわち、比較例2では、まず、主成分原料(BaTiO)と、予め反応させるYの量を、実施例1とは異なり、0.25モルとして反応済み原料を得た。そして、得られた反応済み原料に対して添加する(後添加の)Yの量を、実施例1とは異なり、0.15モルとした。 That is, in Comparative Example 2, first, the reacted raw material was obtained by setting the amount of the main component raw material (BaTiO 3 ) and Y 2 O 3 to be reacted in advance to 0.25 mol unlike Example 1. Unlike Example 1, the amount of Y 2 O 3 added (post-added) to the obtained reacted raw material was 0.15 mol.

得られたコンデンサ試料について、実施例1と同様にして、誘電体粒子の平均結晶粒径、比誘電率ε、誘電損失tanδ、絶縁抵抗IR、CR積、静電容量の温度特性およびIR加速寿命の評価を行った。結果を表1に示す。
参考例1
For the obtained capacitor sample, in the same manner as in Example 1, the average crystal grain size of the dielectric particles, the relative dielectric constant ε, the dielectric loss tan δ, the insulation resistance IR, the CR product, the temperature characteristics of the capacitance, and the IR accelerated lifetime Was evaluated. The results are shown in Table 1.
Reference example 1

誘電体磁器組成物粉末を作製する際に、以下のようにした以外は、実施例1と同様にして、誘電体磁器組成物粉末を得て、参考例1のコンデンサ試料を得た。   A dielectric ceramic composition powder was obtained in the same manner as in Example 1 except that the dielectric ceramic composition powder was prepared as follows, and a capacitor sample of Reference Example 1 was obtained.

すなわち、参考例1では、まず、主成分原料(BaTiO)と、予め反応させるYの量を、実施例1とは異なり、0.40モルとして反応済み原料を得た。そして、参考例1では、実施例1とは異なり、得られた反応済み原料に対して、第4副成分であるYを添加することなく誘電体磁器組成物粉末を得た。 That is, in Reference Example 1, first, the reacted raw material was obtained by setting the amount of the main component raw material (BaTiO 3 ) and Y 2 O 3 reacted in advance to 0.40 mol unlike Example 1. In Reference Example 1, unlike Example 1, a dielectric ceramic composition powder was obtained without adding Y 2 O 3 as the fourth subcomponent to the obtained reacted material.

得られたコンデンサ試料について、実施例1と同様にして、誘電体粒子の平均結晶粒径、比誘電率ε、誘電損失tanδ、絶縁抵抗IR、CR積、静電容量の温度特性およびIR加速寿命の評価を行った。結果を表1に示す。   For the obtained capacitor sample, in the same manner as in Example 1, the average crystal grain size of the dielectric particles, the relative dielectric constant ε, the dielectric loss tan δ, the insulation resistance IR, the CR product, the temperature characteristics of the capacitance, and the IR accelerated lifetime Was evaluated. The results are shown in Table 1.

Figure 0004696891
Figure 0004696891
評価1Evaluation 1

表1に、実施例1〜4、比較例1,2および参考例1の誘電体粒子の平均結晶粒径、比誘電率ε、誘電損失tanδ、絶縁抵抗IR、CR積、静電容量の温度特性およびIR加速寿命を示す。なお、表1中、絶縁抵抗IRの「mE+n」は「m×10+n」を意味する。 Table 1 shows the average crystal grain size, relative dielectric constant ε, dielectric loss tan δ, insulation resistance IR, CR product, and capacitance temperature of the dielectric particles of Examples 1 to 4, Comparative Examples 1 and 2 and Reference Example 1. Properties and IR accelerated lifetime are shown. In Table 1, “mE + n” of the insulation resistance IR means “m × 10 + n ”.

表1より、主成分とYの一部とを予め反応させて、反応済み原料を得て、その後、この反応済み原料に残りのYを添加した実施例1〜4のコンデンサ試料においては、いずれも比誘電率を4000以上と高くすることができ、かつ、その他の電気特性(誘電損失tanδ、絶縁抵抗IR、CR積、静電容量の温度特性およびIR加速寿命)も良好となることが確認できた。 From Table 1, the main component and a part of Y 2 O 3 were reacted in advance to obtain a reacted raw material, and then the remaining Y 2 O 3 was added to this reacted raw material. In any of the capacitor samples, the relative dielectric constant can be as high as 4000 or more, and other electrical characteristics (dielectric loss tan δ, insulation resistance IR, CR product, temperature characteristics of capacitance and IR accelerated life) are also available. It was confirmed to be good.

一方、主成分とYとを予め反応させなかった比較例1では、比誘電率が3400と低くなってしまい、小型・大容量化への対応が困難であることが確認できた。 On the other hand, in Comparative Example 1 in which the main component and Y 2 O 3 were not reacted in advance, the relative dielectric constant was as low as 3400, and it was confirmed that it was difficult to cope with downsizing and large capacity.

また、主成分と予め反応させるYの量を0.40モルとし、その後、得られた反応済み原料には、Yを添加しなかった参考例1では、焼結後の誘電体粒子の平均結晶粒径が0.78μmと大きくなってしまい、誘電損失、絶縁抵抗、静電容量の温度特性およびIR加速寿命に劣る結果となってしまった。 Further, in Reference Example 1 in which the amount of Y 2 O 3 reacted in advance with the main component was 0.40 mol, and then Y 2 O 3 was not added to the obtained reacted raw material, The average crystal grain size of the dielectric particles became as large as 0.78 μm, resulting in inferior dielectric loss, insulation resistance, capacitance temperature characteristics and IR accelerated lifetime.

以上の結果より、実施例1〜4と比較例1および2とを比較することにより、主成分と第4副成分(Y)の一部とを予め反応させることにより、その他の電気特性(誘電損失tanδ、絶縁抵抗IR、CR積、静電容量の温度特性およびIR加速寿命)を良好に保ちつつ、比誘電率を高くできることが確認できた。また、実施例1〜4と参考例1とを比較することにより、主成分と第4副成分(Y)の一部とを予め反応させ、反応済み原料を製造する際には、第4副成分(Y)の量を、上述した本発明の好ましい範囲内とすることが好ましいこと、および、得られた反応済み原料には、さらに、残りの第4副成分(Y)を添加することが好ましいことが確認できた。
実施例5〜8、比較例3、参考例2
From the above results, by comparing Examples 1 to 4 with Comparative Examples 1 and 2, the main component and a part of the fourth subcomponent (Y 2 O 3 ) were reacted in advance to obtain other electric It was confirmed that the dielectric constant could be increased while maintaining the characteristics (dielectric loss tan δ, insulation resistance IR, CR product, capacitance temperature characteristics and IR accelerated life) well. Further, by comparing Examples 1 to 4 and Reference Example 1 to react the main component and part of the fourth subcomponent (Y 2 O 3 ) in advance to produce a reacted raw material, It is preferable that the amount of the fourth subcomponent (Y 2 O 3 ) be within the preferable range of the present invention described above, and the obtained reacted material further includes the remaining fourth subcomponent (Y It was confirmed that it was preferable to add 2 O 3 ).
Examples 5 to 8, Comparative Example 3, Reference Example 2

主成分原料と予め反応させる第4副成分の原料として、Yの代わりにTbを使用した以外は、実施例1〜4、比較例2、参考例1と同様にして、実施例5〜8、比較例3、参考例2のコンデンサ試料を製造した。すなわち、実施例5〜8、比較例3、参考例2においては、予め反応させる(前添加)第4副成分としてTbを使用し、反応済み原料に添加する(後添加)第4副成分としてYを使用した。得られた各コンデンサ試料について、実施例1と同様にして、誘電体粒子の平均結晶粒径、比誘電率ε、誘電損失tanδ、絶縁抵抗IR、CR積、静電容量の温度特性およびIR加速寿命の評価を行った。結果を表2に示す。 Except that Tb 2 O 3 was used instead of Y 2 O 3 as a raw material for the fourth subcomponent to be reacted in advance with the main component raw material, in the same manner as in Examples 1 to 4, Comparative Example 2, and Reference Example 1, Capacitor samples of Examples 5 to 8, Comparative Example 3, and Reference Example 2 were manufactured. That is, in Examples 5 to 8, Comparative Example 3, and Reference Example 2, Tb 2 O 3 is used as the fourth subcomponent to be reacted in advance (pre-addition) and added to the reacted raw material (post-addition). Y 2 O 3 was used as a minor component. For each obtained capacitor sample, in the same manner as in Example 1, the average crystal grain size of the dielectric particles, the relative dielectric constant ε, the dielectric loss tan δ, the insulation resistance IR, the CR product, the temperature characteristics of the capacitance, and the IR acceleration The life was evaluated. The results are shown in Table 2.

Figure 0004696891
Figure 0004696891
評価2Evaluation 2

表2に、実施例5〜8、比較例3、参考例2の誘電体粒子の平均結晶粒径、比誘電率ε、誘電損失tanδ、絶縁抵抗IR、CR積、静電容量の温度特性およびIR加速寿命を示す。なお、Tbの添加量は、Yと同様に、Tb原子換算で表した。 Table 2 shows the average crystal grain size, dielectric constant ε, dielectric loss tan δ, insulation resistance IR, CR product, capacitance temperature characteristics of the dielectric particles of Examples 5 to 8, Comparative Example 3, and Reference Example 2 and IR accelerated lifetime is shown. Note that the amount of Tb 2 O 3 added was expressed in terms of Tb atoms in the same manner as Y 2 O 3 .

表2より、主成分原料と予め反応させる第4副成分としてYの代わりにTbを使用した場合においても、同様の傾向が得られることが確認できた。
実施例9〜12、比較例4、参考例3
From Table 2, it was confirmed that the same tendency was obtained even when Tb 2 O 3 was used instead of Y 2 O 3 as the fourth subcomponent to be reacted in advance with the main component raw material.
Examples 9-12, Comparative Example 4, Reference Example 3

主成分原料と予め反応させる第4副成分の原料として、Yの代わりにYbを使用した以外は、実施例1〜4、比較例2、参考例1と同様にして、実施例9〜12、比較例4、参考例3のコンデンサ試料を製造した。すなわち、実施例9〜12、比較例4、参考例3においては、予め反応させる(前添加)第4副成分としてYbを使用し、反応済み原料に添加する(後添加)第4副成分としてYを使用した。得られた各コンデンサ試料について、実施例1と同様にして、誘電体粒子の平均結晶粒径、比誘電率ε、誘電損失tanδ、絶縁抵抗IR、CR積、静電容量の温度特性およびIR加速寿命の評価を行った。結果を表3に示す。 Except that Yb 2 O 3 was used instead of Y 2 O 3 as a raw material for the fourth subcomponent to be reacted in advance with the main component raw material, in the same manner as in Examples 1 to 4, Comparative Example 2, and Reference Example 1, Capacitor samples of Examples 9 to 12, Comparative Example 4, and Reference Example 3 were produced. That is, in Examples 9 to 12, Comparative Example 4, and Reference Example 3, Yb 2 O 3 is used as the fourth subcomponent to be reacted in advance (pre-addition) and added to the reacted raw material (post-addition). Y 2 O 3 was used as a minor component. For each obtained capacitor sample, in the same manner as in Example 1, the average crystal grain size of the dielectric particles, the relative dielectric constant ε, the dielectric loss tan δ, the insulation resistance IR, the CR product, the temperature characteristics of the capacitance, and the IR acceleration The life was evaluated. The results are shown in Table 3.

Figure 0004696891
Figure 0004696891
評価3Evaluation 3

表3に、実施例9〜12、比較例4、参考例3の誘電体粒子の平均結晶粒径、比誘電率ε、誘電損失tanδ、絶縁抵抗IR、CR積、静電容量の温度特性およびIR加速寿命を示す。なお、Ybの添加量は、Yと同様に、Yb原子換算で表した。 Table 3 shows the average crystal grain size, relative dielectric constant ε, dielectric loss tan δ, insulation resistance IR, CR product, capacitance temperature characteristics of Examples 9 to 12, Comparative Example 4, and Reference Example 3 and IR accelerated lifetime is shown. Note that the amount of Yb 2 O 3 added was expressed in terms of Yb atoms in the same manner as Y 2 O 3 .

表3より、主成分原料と予め反応させる第4副成分としてYの代わりにYbを使用した場合においても、同様の傾向が得られることが確認できた。
実施例13〜16
From Table 3, it was confirmed that the same tendency was obtained even when Yb 2 O 3 was used instead of Y 2 O 3 as the fourth subcomponent to be reacted in advance with the main component raw material.
Examples 13-16

主成分原料と予め反応させる第4副成分の原料として、Yの代わりにDy,Ho,Gd,Eu を使用した以外は、実施例2と同様にして、実施例13〜16のコンデンサ試料を製造した。すなわち、実施例13においては、予め反応させる(前添加)第4副成分としてDyを使用し、実施例14においては、予め反応させる(前添加)第4副成分としてHoを使用し、実施例15においては、予め反応させる(前添加)第4副成分としてGdを使用し、実施例16においては、予め反応させる(前添加)第4副成分としてEuを使用した。実施例13〜16のすべての場合において、反応済み原料に添加する(後添加)第4副成分としてYを使用した。得られた各コンデンサ試料について、実施例1と同様にして、誘電体粒子の平均結晶粒径、比誘電率ε、誘電損失tanδ、絶縁抵抗IR、CR積、静電容量の温度特性およびIR加速寿命の評価を行った。結果を表4に示す。 Example 2 except that Dy 2 O 3 , Ho 2 O 3 , Gd 2 O 3 , Eu 2 O 3 was used instead of Y 2 O 3 as a raw material for the fourth subcomponent to be reacted in advance with the main component raw material. In the same manner, capacitor samples of Examples 13 to 16 were manufactured. That is, in Example 13, Dy 2 O 3 is used as the fourth subcomponent to be reacted in advance (pre-addition), and in Example 14, Ho 2 O 3 is used as the fourth subcomponent to be reacted in advance (pre-addition). In Example 15, Gd 2 O 3 is used as a fourth subcomponent that is pre-reacted (pre-addition), and in Example 16, Eu 2 is used as the fourth sub-component that is pre-reacted (pre-addition). O 3 was used. In all cases of Examples 13 to 16, Y 2 O 3 was used as the fourth subcomponent added to the reacted raw material (post-addition). For each obtained capacitor sample, in the same manner as in Example 1, the average crystal grain size of the dielectric particles, the relative dielectric constant ε, the dielectric loss tan δ, the insulation resistance IR, the CR product, the temperature characteristics of the capacitance, and the IR acceleration The life was evaluated. The results are shown in Table 4.

Figure 0004696891
Figure 0004696891
評価4Evaluation 4

表4に、実施例13〜16の誘電体粒子の平均結晶粒径、比誘電率ε、誘電損失tanδ、絶縁抵抗IR、CR積、静電容量の温度特性およびIR加速寿命を示す。なお、Dy,Ho,Gd,Eu の添加量は、Yと同様に、それぞれの原子換算で表した。 Table 4 shows the average crystal grain size, the relative dielectric constant ε, the dielectric loss tan δ, the insulation resistance IR, the CR product, the temperature characteristics of the capacitance, and the IR accelerated lifetime of the dielectric particles of Examples 13 to 16. The addition amount of Dy 2 O 3, Ho 2 O 3, Gd 2 O 3, Eu 2 O 3 , as well as Y 2 O 3, expressed in the respective terms of atom.

表4より、予め反応させる第4副成分として、Yの代わりに、上記の希土類酸化物を使用した場合においても、Yの場合と同様の結果が得られた。 From Table 4, the same results as in the case of Y 2 O 3 were obtained even when the above-mentioned rare earth oxide was used instead of Y 2 O 3 as the fourth subcomponent to be reacted in advance.

図1は本発明の一実施形態に係る積層セラミックコンデンサの断面図である。FIG. 1 is a cross-sectional view of a multilayer ceramic capacitor according to an embodiment of the present invention.

符号の説明Explanation of symbols

1… 積層セラミックコンデンサ
10… コンデンサ素子本体
2… 誘電体層
3… 内部電極層
4… 外部電極
DESCRIPTION OF SYMBOLS 1 ... Multilayer ceramic capacitor 10 ... Capacitor element main body 2 ... Dielectric layer 3 ... Internal electrode layer 4 ... External electrode

Claims (7)

チタン酸バリウムを含む主成分と、
Rの酸化物(ただし、RはY,La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,YbおよびLuから選択される少なくとも1種)からなる第4副成分とを有する誘電体磁器組成物を製造する方法であって、
前記主成分の原料と、前記誘電体磁器組成物に含有されることとなる前記第4副成分の原料の一部とを予め反応させた反応済み原料を準備する工程と、
前記反応済み原料に、前記誘電体磁器組成物に含有されることとなる残りの前記第4副成分の原料を添加する工程と、を有し、
前記主成分の原料と予め反応させておく前記第4副成分を、前記主成分100モルに対して、R換算で、0.01〜0.2モルとすることを特徴とする誘電体磁器組成物の製造方法。
A main component comprising barium titanate;
An oxide of R (wherein R is at least one selected from Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) A method for producing a dielectric ceramic composition having a fourth subcomponent,
Preparing a reacted raw material in which the raw material of the main component and a part of the raw material of the fourth subcomponent to be contained in the dielectric ceramic composition are reacted in advance;
Adding the remaining raw material of the fourth subcomponent to be contained in the dielectric ceramic composition to the reacted raw material,
The dielectric ceramic composition characterized in that the fourth subcomponent that is reacted in advance with the raw material of the main component is 0.01 to 0.2 mol in terms of R with respect to 100 mol of the main component. Manufacturing method.
前記主成分の原料と、前記第4副成分の原料の一部とを予め固溶させ、前記反応済み原料を用いる請求項1に記載の誘電体磁器組成物の製造方法。 2. The method for producing a dielectric ceramic composition according to claim 1, wherein the raw material of the main component and a part of the raw material of the fourth subcomponent are previously dissolved, and the reacted raw material is used. 最終的に得られる前記誘電体磁器組成物中における前記第4副成分の含有量を、前記主成分100モルに対して、R換算で、0.1〜10モルとする請求項1または2に記載の誘電体磁器組成物の製造方法。   The content of the fourth subcomponent in the finally obtained dielectric ceramic composition is 0.1 to 10 mol in terms of R with respect to 100 mol of the main component. A method for producing the dielectric ceramic composition as described. 前記主成分の原料と予め反応させておく前記第4副成分の比率を、R換算で、前記誘電体磁器組成物に最終的に含有されることとなる前記第4副成分の総量100モル%に対して、0〜50モル%(ただし、0および50は含まない)とする請求項1〜3のいずれかに記載の誘電体磁器組成物の製造方法。   The ratio of the fourth subcomponent that is reacted in advance with the raw material of the main component is, in terms of R, a total amount of 100 mol% of the fourth subcomponent that is finally contained in the dielectric ceramic composition. The method for producing a dielectric ceramic composition according to claim 1, wherein the content is 0 to 50 mol% (however, 0 and 50 are not included). 前記誘電体磁器組成物は、
MgO、CaO、BaOおよびSrOから選択される少なくとも1種を含む第1副成分と、
SiOを主として含有し、MO(ただし、MはMg、Ca、BaおよびSrから選択される少なくとも1種)、LiOおよびBから選択される少なくとも1種を含む第2副成分と、
、MoOおよびWOから選択される少なくとも1種を含む第3副成分と、をさらに含有し、
前記主成分100モルに対する各副成分の比率を、
第1副成分:0.1〜5モル、
第2副成分:0.1〜12モル、
第3副成分:0〜0.3モル(ただし、0は含まない)、
とする請求項1〜4のいずれかに記載の誘電体磁器組成物の製造方法。
The dielectric ceramic composition is:
A first subcomponent comprising at least one selected from MgO, CaO, BaO and SrO;
Second subcomponent mainly containing SiO 2 and containing at least one selected from MO (wherein M is at least one selected from Mg, Ca, Ba and Sr), Li 2 O and B 2 O 3 When,
A third subcomponent including at least one selected from V 2 O 5 , MoO 3 and WO 3 ,
The ratio of each subcomponent to 100 moles of the main component,
1st subcomponent: 0.1-5 mol,
Second subcomponent: 0.1-12 mol,
Third subcomponent: 0 to 0.3 mol (excluding 0),
A method for producing a dielectric ceramic composition according to any one of claims 1 to 4.
前記誘電体磁器組成物は、MnOおよびCrから選択される少なくとも1種を含む第5副成分を、さらに含有し、
前記主成分100モルに対する第5副成分の比率を、0.05〜1.0モルとする請求項5に記載の誘電体磁器組成物の製造方法。
The dielectric ceramic composition further includes a fifth subcomponent including at least one selected from MnO and Cr 2 O 3 ,
The method for producing a dielectric ceramic composition according to claim 5, wherein a ratio of the fifth subcomponent to 100 mol of the main component is 0.05 to 1.0 mol.
前記主成分の原料として、平均粒径が0.05〜0.5μmである原料を使用する請求項1〜6のいずれかに記載の誘電体磁器組成物の製造方法。   The method for producing a dielectric ceramic composition according to claim 1, wherein a raw material having an average particle diameter of 0.05 to 0.5 μm is used as the main component raw material.
JP2005359424A 2004-12-13 2005-12-13 Electronic component, dielectric ceramic composition and method for producing the same Expired - Fee Related JP4696891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005359424A JP4696891B2 (en) 2004-12-13 2005-12-13 Electronic component, dielectric ceramic composition and method for producing the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2004359859 2004-12-13
JP2004359859 2004-12-13
JP2005317412 2005-10-31
JP2005317412 2005-10-31
JP2005359424A JP4696891B2 (en) 2004-12-13 2005-12-13 Electronic component, dielectric ceramic composition and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007145683A JP2007145683A (en) 2007-06-14
JP4696891B2 true JP4696891B2 (en) 2011-06-08

Family

ID=38207533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005359424A Expired - Fee Related JP4696891B2 (en) 2004-12-13 2005-12-13 Electronic component, dielectric ceramic composition and method for producing the same

Country Status (1)

Country Link
JP (1) JP4696891B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4839913B2 (en) * 2006-03-23 2011-12-21 Tdk株式会社 Electronic component, dielectric ceramic composition and method for producing the same
JP2007331958A (en) * 2006-06-12 2007-12-27 Tdk Corp Electronic component, dielectric ceramic composition and method for producing the same
JP2007331956A (en) * 2006-06-12 2007-12-27 Tdk Corp Electronic component, dielectric ceramic composition and method for producing the same
JP5094283B2 (en) * 2007-08-29 2012-12-12 京セラ株式会社 Dielectric porcelain and multilayer ceramic capacitor
JP4949219B2 (en) * 2007-12-25 2012-06-06 京セラ株式会社 Dielectric porcelain and capacitor
KR20140118557A (en) * 2013-03-29 2014-10-08 삼성전기주식회사 Dielectric composition and multi layer ceramic capacitor comprising the same
KR102292797B1 (en) * 2019-02-13 2021-08-24 삼성전기주식회사 Dielectric ceramic composition and multilayer ceramic capacitor comprising the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172076A (en) * 1999-10-05 2001-06-26 Tdk Corp Method for producing dielectric ceramic composition
JP2002060268A (en) * 2000-08-21 2002-02-26 Tdk Corp Production process of dielectric porcelain composition and manufacturing process of electronic component containing dielectric layer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172076A (en) * 1999-10-05 2001-06-26 Tdk Corp Method for producing dielectric ceramic composition
JP2002060268A (en) * 2000-08-21 2002-02-26 Tdk Corp Production process of dielectric porcelain composition and manufacturing process of electronic component containing dielectric layer

Also Published As

Publication number Publication date
JP2007145683A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
US7718560B2 (en) Electronic device, dielectric ceramic composition and the production method
JP4839913B2 (en) Electronic component, dielectric ceramic composition and method for producing the same
JP4821357B2 (en) Electronic component, dielectric ceramic composition and method for producing the same
JP2007331958A (en) Electronic component, dielectric ceramic composition and method for producing the same
US7696118B2 (en) Dielectric ceramic composition, electronic device and the production method
JP2005154237A (en) Dielectric ceramic composition, method of manufacturing the same and electronic component
KR100706685B1 (en) Electronic part, dielectric porcelain composition and producing method thereof
JP2005145791A (en) Electronic components, dielectric porcelain composition, and method for manufacturing the same
JP2008247656A (en) Method for producing dielectric porcelain composition and method for manufacturing electronic component
JP2007261876A (en) Dielectric particles, dielectric porcelain composition and its producing method
JP4696891B2 (en) Electronic component, dielectric ceramic composition and method for producing the same
JP4403705B2 (en) Dielectric porcelain composition and electronic component
JP4576807B2 (en) Dielectric porcelain composition and electronic component
JP2008207972A (en) Dielectric ceramic composition and electronic component
JP4863007B2 (en) Dielectric porcelain composition and electronic component
JP2008227093A (en) Manufacturing method of multilayer electronic component
JP4853360B2 (en) Dielectric porcelain composition and electronic component
JP2007230819A (en) Dielectric ceramic composition, electronic component, and method for producing the same
JP4547945B2 (en) Electronic component, dielectric ceramic composition and method for producing the same
JP4691978B2 (en) Method for manufacturing dielectric composition
JP4691977B2 (en) Method for manufacturing dielectric composition
JP2008285373A (en) Dielectric ceramic composition and electronic component
JP4529409B2 (en) Dielectric porcelain composition and electronic component
JP5233155B2 (en) Dielectric porcelain composition and electronic component
JP2007186365A (en) Method of manufacturing dielectric ceramic composition and multilayer ceramic capacitor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110214

LAPS Cancellation because of no payment of annual fees